xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: rf_reconstruct.c,v 1.100 2007/11/26 19:01:40 pooka Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.100 2007/11/26 19:01:40 pooka Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <dev/raidframe/raidframevar.h>
48 
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_debugprint.h"
58 #include "rf_general.h"
59 #include "rf_driver.h"
60 #include "rf_utils.h"
61 #include "rf_shutdown.h"
62 
63 #include "rf_kintf.h"
64 
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
66 
67 #if RF_DEBUG_RECON
68 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76 
77 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79 
80 #else /* RF_DEBUG_RECON */
81 
82 #define Dprintf(s) {}
83 #define Dprintf1(s,a) {}
84 #define Dprintf2(s,a,b) {}
85 #define Dprintf3(s,a,b,c) {}
86 #define Dprintf4(s,a,b,c,d) {}
87 #define Dprintf5(s,a,b,c,d,e) {}
88 #define Dprintf6(s,a,b,c,d,e,f) {}
89 #define Dprintf7(s,a,b,c,d,e,f,g) {}
90 
91 #define DDprintf1(s,a) {}
92 #define DDprintf2(s,a,b) {}
93 
94 #endif /* RF_DEBUG_RECON */
95 
96 #define RF_RECON_DONE_READS   1
97 #define RF_RECON_READ_ERROR   2
98 #define RF_RECON_WRITE_ERROR  3
99 #define RF_RECON_READ_STOPPED 4
100 
101 #define RF_MAX_FREE_RECONBUFFER 32
102 #define RF_MIN_FREE_RECONBUFFER 16
103 
104 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
105 					      RF_RaidDisk_t *, int, RF_RowCol_t);
106 static void FreeReconDesc(RF_RaidReconDesc_t *);
107 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
108 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
109 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
110 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
111 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
112 				RF_SectorNum_t *);
113 static int IssueNextWriteRequest(RF_Raid_t *);
114 static int ReconReadDoneProc(void *, int);
115 static int ReconWriteDoneProc(void *, int);
116 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
117 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
118 			       RF_RowCol_t, RF_HeadSepLimit_t,
119 			       RF_ReconUnitNum_t);
120 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
121 					      RF_ReconParityStripeStatus_t *,
122 					      RF_PerDiskReconCtrl_t *,
123 					      RF_RowCol_t, RF_StripeNum_t,
124 					      RF_ReconUnitNum_t);
125 static void ForceReconReadDoneProc(void *, int);
126 static void rf_ShutdownReconstruction(void *);
127 
128 struct RF_ReconDoneProc_s {
129 	void    (*proc) (RF_Raid_t *, void *);
130 	void   *arg;
131 	RF_ReconDoneProc_t *next;
132 };
133 
134 /**************************************************************************
135  *
136  * sets up the parameters that will be used by the reconstruction process
137  * currently there are none, except for those that the layout-specific
138  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
139  *
140  * in the kernel, we fire off the recon thread.
141  *
142  **************************************************************************/
143 static void
144 rf_ShutdownReconstruction(void *ignored)
145 {
146 	pool_destroy(&rf_pools.reconbuffer);
147 }
148 
149 int
150 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
151 {
152 
153 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
154 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
155 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
156 
157 	return (0);
158 }
159 
160 static RF_RaidReconDesc_t *
161 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
162 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
163 		   RF_RowCol_t scol)
164 {
165 
166 	RF_RaidReconDesc_t *reconDesc;
167 
168 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
169 		  (RF_RaidReconDesc_t *));
170 	reconDesc->raidPtr = raidPtr;
171 	reconDesc->col = col;
172 	reconDesc->spareDiskPtr = spareDiskPtr;
173 	reconDesc->numDisksDone = numDisksDone;
174 	reconDesc->scol = scol;
175 	reconDesc->next = NULL;
176 
177 	return (reconDesc);
178 }
179 
180 static void
181 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
182 {
183 #if RF_RECON_STATS > 0
184 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
185 	       reconDesc->raidPtr->raidid,
186 	       (long) reconDesc->numReconEventWaits,
187 	       (long) reconDesc->numReconExecDelays);
188 #endif				/* RF_RECON_STATS > 0 */
189 	printf("raid%d: %lu max exec ticks\n",
190 	       reconDesc->raidPtr->raidid,
191 	       (long) reconDesc->maxReconExecTicks);
192 #if (RF_RECON_STATS > 0) || defined(KERNEL)
193 	printf("\n");
194 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
195 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
196 }
197 
198 
199 /*****************************************************************************
200  *
201  * primary routine to reconstruct a failed disk.  This should be called from
202  * within its own thread.  It won't return until reconstruction completes,
203  * fails, or is aborted.
204  *****************************************************************************/
205 int
206 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
207 {
208 	const RF_LayoutSW_t *lp;
209 	int     rc;
210 
211 	lp = raidPtr->Layout.map;
212 	if (lp->SubmitReconBuffer) {
213 		/*
214 	         * The current infrastructure only supports reconstructing one
215 	         * disk at a time for each array.
216 	         */
217 		RF_LOCK_MUTEX(raidPtr->mutex);
218 		while (raidPtr->reconInProgress) {
219 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
220 		}
221 		raidPtr->reconInProgress++;
222 		RF_UNLOCK_MUTEX(raidPtr->mutex);
223 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
224 		RF_LOCK_MUTEX(raidPtr->mutex);
225 		raidPtr->reconInProgress--;
226 		RF_UNLOCK_MUTEX(raidPtr->mutex);
227 	} else {
228 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
229 		    lp->parityConfig);
230 		rc = EIO;
231 	}
232 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
233 	return (rc);
234 }
235 
236 int
237 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
238 {
239 	RF_ComponentLabel_t c_label;
240 	RF_RaidDisk_t *spareDiskPtr = NULL;
241 	RF_RaidReconDesc_t *reconDesc;
242 	RF_RowCol_t scol;
243 	int     numDisksDone = 0, rc;
244 
245 	/* first look for a spare drive onto which to reconstruct the data */
246 	/* spare disk descriptors are stored in row 0.  This may have to
247 	 * change eventually */
248 
249 	RF_LOCK_MUTEX(raidPtr->mutex);
250 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
251 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
252 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
253 		if (raidPtr->status != rf_rs_degraded) {
254 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
255 			RF_UNLOCK_MUTEX(raidPtr->mutex);
256 			return (EINVAL);
257 		}
258 		scol = (-1);
259 	} else {
260 #endif
261 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
262 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
263 				spareDiskPtr = &raidPtr->Disks[scol];
264 				spareDiskPtr->status = rf_ds_used_spare;
265 				break;
266 			}
267 		}
268 		if (!spareDiskPtr) {
269 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
270 			RF_UNLOCK_MUTEX(raidPtr->mutex);
271 			return (ENOSPC);
272 		}
273 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
274 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
275 	}
276 #endif
277 	RF_UNLOCK_MUTEX(raidPtr->mutex);
278 
279 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
280 	raidPtr->reconDesc = (void *) reconDesc;
281 #if RF_RECON_STATS > 0
282 	reconDesc->hsStallCount = 0;
283 	reconDesc->numReconExecDelays = 0;
284 	reconDesc->numReconEventWaits = 0;
285 #endif				/* RF_RECON_STATS > 0 */
286 	reconDesc->reconExecTimerRunning = 0;
287 	reconDesc->reconExecTicks = 0;
288 	reconDesc->maxReconExecTicks = 0;
289 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
290 
291 	if (!rc) {
292 		/* fix up the component label */
293 		/* Don't actually need the read here.. */
294 		raidread_component_label(
295                         raidPtr->raid_cinfo[scol].ci_dev,
296 			raidPtr->raid_cinfo[scol].ci_vp,
297 			&c_label);
298 
299 		raid_init_component_label( raidPtr, &c_label);
300 		c_label.row = 0;
301 		c_label.column = col;
302 		c_label.clean = RF_RAID_DIRTY;
303 		c_label.status = rf_ds_optimal;
304 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
305 
306 		/* We've just done a rebuild based on all the other
307 		   disks, so at this point the parity is known to be
308 		   clean, even if it wasn't before. */
309 
310 		/* XXX doesn't hold for RAID 6!!*/
311 
312 		RF_LOCK_MUTEX(raidPtr->mutex);
313 		raidPtr->parity_good = RF_RAID_CLEAN;
314 		RF_UNLOCK_MUTEX(raidPtr->mutex);
315 
316 		/* XXXX MORE NEEDED HERE */
317 
318 		raidwrite_component_label(
319                         raidPtr->raid_cinfo[scol].ci_dev,
320 			raidPtr->raid_cinfo[scol].ci_vp,
321 			&c_label);
322 
323 	} else {
324 		/* Reconstruct failed. */
325 
326 		RF_LOCK_MUTEX(raidPtr->mutex);
327 		/* Failed disk goes back to "failed" status */
328 		raidPtr->Disks[col].status = rf_ds_failed;
329 
330 		/* Spare disk goes back to "spare" status. */
331 		spareDiskPtr->status = rf_ds_spare;
332 		RF_UNLOCK_MUTEX(raidPtr->mutex);
333 
334 	}
335 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
336 	return (rc);
337 }
338 
339 /*
340 
341    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
342    and you don't get a spare until the next Monday.  With this function
343    (and hot-swappable drives) you can now put your new disk containing
344    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
345    rebuild the data "on the spot".
346 
347 */
348 
349 int
350 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
351 {
352 	RF_RaidDisk_t *spareDiskPtr = NULL;
353 	RF_RaidReconDesc_t *reconDesc;
354 	const RF_LayoutSW_t *lp;
355 	RF_ComponentLabel_t c_label;
356 	int     numDisksDone = 0, rc;
357 	struct partinfo dpart;
358 	struct vnode *vp;
359 	struct vattr va;
360 	struct lwp *lwp;
361 	int retcode;
362 	int ac;
363 
364 	lp = raidPtr->Layout.map;
365 	if (!lp->SubmitReconBuffer) {
366 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
367 			     lp->parityConfig);
368 		/* wakeup anyone who might be waiting to do a reconstruct */
369 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
370 		return(EIO);
371 	}
372 
373 	/*
374 	 * The current infrastructure only supports reconstructing one
375 	 * disk at a time for each array.
376 	 */
377 	RF_LOCK_MUTEX(raidPtr->mutex);
378 
379 	if (raidPtr->Disks[col].status != rf_ds_failed) {
380 		/* "It's gone..." */
381 		raidPtr->numFailures++;
382 		raidPtr->Disks[col].status = rf_ds_failed;
383 		raidPtr->status = rf_rs_degraded;
384 		RF_UNLOCK_MUTEX(raidPtr->mutex);
385 		rf_update_component_labels(raidPtr,
386 					   RF_NORMAL_COMPONENT_UPDATE);
387 		RF_LOCK_MUTEX(raidPtr->mutex);
388 	}
389 
390 	while (raidPtr->reconInProgress) {
391 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
392 	}
393 
394 	raidPtr->reconInProgress++;
395 
396 	/* first look for a spare drive onto which to reconstruct the
397 	   data.  spare disk descriptors are stored in row 0.  This
398 	   may have to change eventually */
399 
400 	/* Actually, we don't care if it's failed or not...  On a RAID
401 	   set with correct parity, this function should be callable
402 	   on any component without ill effects. */
403 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
404 
405 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
406 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
407 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
408 
409 		raidPtr->reconInProgress--;
410 		RF_UNLOCK_MUTEX(raidPtr->mutex);
411 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
412 		return (EINVAL);
413 	}
414 #endif
415 	lwp = raidPtr->engine_thread;
416 
417 	/* This device may have been opened successfully the
418 	   first time. Close it before trying to open it again.. */
419 
420 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
421 #if 0
422 		printf("Closed the open device: %s\n",
423 		       raidPtr->Disks[col].devname);
424 #endif
425 		vp = raidPtr->raid_cinfo[col].ci_vp;
426 		ac = raidPtr->Disks[col].auto_configured;
427 		RF_UNLOCK_MUTEX(raidPtr->mutex);
428 		rf_close_component(raidPtr, vp, ac);
429 		RF_LOCK_MUTEX(raidPtr->mutex);
430 		raidPtr->raid_cinfo[col].ci_vp = NULL;
431 	}
432 	/* note that this disk was *not* auto_configured (any longer)*/
433 	raidPtr->Disks[col].auto_configured = 0;
434 
435 #if 0
436 	printf("About to (re-)open the device for rebuilding: %s\n",
437 	       raidPtr->Disks[col].devname);
438 #endif
439 	RF_UNLOCK_MUTEX(raidPtr->mutex);
440 	retcode = dk_lookup(raidPtr->Disks[col].devname, lwp, &vp, UIO_SYSSPACE);
441 
442 	if (retcode) {
443 		printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
444 		       raidPtr->Disks[col].devname, retcode);
445 
446 		/* the component isn't responding properly...
447 		   must be still dead :-( */
448 		RF_LOCK_MUTEX(raidPtr->mutex);
449 		raidPtr->reconInProgress--;
450 		RF_UNLOCK_MUTEX(raidPtr->mutex);
451 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
452 		return(retcode);
453 	}
454 
455 	/* Ok, so we can at least do a lookup...
456 	   How about actually getting a vp for it? */
457 
458 	if ((retcode = VOP_GETATTR(vp, &va, lwp->l_cred)) != 0) {
459 		RF_LOCK_MUTEX(raidPtr->mutex);
460 		raidPtr->reconInProgress--;
461 		RF_UNLOCK_MUTEX(raidPtr->mutex);
462 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
463 		return(retcode);
464 	}
465 
466 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, lwp->l_cred);
467 	if (retcode) {
468 		RF_LOCK_MUTEX(raidPtr->mutex);
469 		raidPtr->reconInProgress--;
470 		RF_UNLOCK_MUTEX(raidPtr->mutex);
471 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
472 		return(retcode);
473 	}
474 	RF_LOCK_MUTEX(raidPtr->mutex);
475 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
476 
477 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
478 		rf_protectedSectors;
479 
480 	raidPtr->raid_cinfo[col].ci_vp = vp;
481 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
482 
483 	raidPtr->Disks[col].dev = va.va_rdev;
484 
485 	/* we allow the user to specify that only a fraction
486 	   of the disks should be used this is just for debug:
487 	   it speeds up * the parity scan */
488 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
489 		rf_sizePercentage / 100;
490 	RF_UNLOCK_MUTEX(raidPtr->mutex);
491 
492 	spareDiskPtr = &raidPtr->Disks[col];
493 	spareDiskPtr->status = rf_ds_used_spare;
494 
495 	printf("raid%d: initiating in-place reconstruction on column %d\n",
496 	       raidPtr->raidid, col);
497 
498 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
499 				       numDisksDone, col);
500 	raidPtr->reconDesc = (void *) reconDesc;
501 #if RF_RECON_STATS > 0
502 	reconDesc->hsStallCount = 0;
503 	reconDesc->numReconExecDelays = 0;
504 	reconDesc->numReconEventWaits = 0;
505 #endif				/* RF_RECON_STATS > 0 */
506 	reconDesc->reconExecTimerRunning = 0;
507 	reconDesc->reconExecTicks = 0;
508 	reconDesc->maxReconExecTicks = 0;
509 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
510 
511 	if (!rc) {
512 		RF_LOCK_MUTEX(raidPtr->mutex);
513 		/* Need to set these here, as at this point it'll be claiming
514 		   that the disk is in rf_ds_spared!  But we know better :-) */
515 
516 		raidPtr->Disks[col].status = rf_ds_optimal;
517 		raidPtr->status = rf_rs_optimal;
518 		RF_UNLOCK_MUTEX(raidPtr->mutex);
519 
520 		/* fix up the component label */
521 		/* Don't actually need the read here.. */
522 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
523 					 raidPtr->raid_cinfo[col].ci_vp,
524 					 &c_label);
525 
526 		RF_LOCK_MUTEX(raidPtr->mutex);
527 		raid_init_component_label(raidPtr, &c_label);
528 
529 		c_label.row = 0;
530 		c_label.column = col;
531 
532 		/* We've just done a rebuild based on all the other
533 		   disks, so at this point the parity is known to be
534 		   clean, even if it wasn't before. */
535 
536 		/* XXX doesn't hold for RAID 6!!*/
537 
538 		raidPtr->parity_good = RF_RAID_CLEAN;
539 		RF_UNLOCK_MUTEX(raidPtr->mutex);
540 
541 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
542 					  raidPtr->raid_cinfo[col].ci_vp,
543 					  &c_label);
544 
545 	} else {
546 		/* Reconstruct-in-place failed.  Disk goes back to
547 		   "failed" status, regardless of what it was before.  */
548 		RF_LOCK_MUTEX(raidPtr->mutex);
549 		raidPtr->Disks[col].status = rf_ds_failed;
550 		RF_UNLOCK_MUTEX(raidPtr->mutex);
551 	}
552 
553 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
554 
555 	RF_LOCK_MUTEX(raidPtr->mutex);
556 	raidPtr->reconInProgress--;
557 	RF_UNLOCK_MUTEX(raidPtr->mutex);
558 
559 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
560 	return (rc);
561 }
562 
563 
564 int
565 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
566 {
567 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
568 	RF_RowCol_t col = reconDesc->col;
569 	RF_RowCol_t scol = reconDesc->scol;
570 	RF_ReconMap_t *mapPtr;
571 	RF_ReconCtrl_t *tmp_reconctrl;
572 	RF_ReconEvent_t *event;
573 	RF_CallbackDesc_t *p;
574 	struct timeval etime, elpsd;
575 	unsigned long xor_s, xor_resid_us;
576 	int     i, ds;
577 	int status;
578 	int recon_error, write_error;
579 
580 	raidPtr->accumXorTimeUs = 0;
581 #if RF_ACC_TRACE > 0
582 	/* create one trace record per physical disk */
583 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
584 #endif
585 
586 	/* quiesce the array prior to starting recon.  this is needed
587 	 * to assure no nasty interactions with pending user writes.
588 	 * We need to do this before we change the disk or row status. */
589 
590 	Dprintf("RECON: begin request suspend\n");
591 	rf_SuspendNewRequestsAndWait(raidPtr);
592 	Dprintf("RECON: end request suspend\n");
593 
594 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
595 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
596 
597 	RF_LOCK_MUTEX(raidPtr->mutex);
598 
599 	/* create the reconstruction control pointer and install it in
600 	 * the right slot */
601 	raidPtr->reconControl = tmp_reconctrl;
602 	mapPtr = raidPtr->reconControl->reconMap;
603 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
604 	raidPtr->reconControl->numRUsComplete =	0;
605 	raidPtr->status = rf_rs_reconstructing;
606 	raidPtr->Disks[col].status = rf_ds_reconstructing;
607 	raidPtr->Disks[col].spareCol = scol;
608 
609 	RF_UNLOCK_MUTEX(raidPtr->mutex);
610 
611 	RF_GETTIME(raidPtr->reconControl->starttime);
612 
613 	/* now start up the actual reconstruction: issue a read for
614 	 * each surviving disk */
615 
616 	reconDesc->numDisksDone = 0;
617 	for (i = 0; i < raidPtr->numCol; i++) {
618 		if (i != col) {
619 			/* find and issue the next I/O on the
620 			 * indicated disk */
621 			if (IssueNextReadRequest(raidPtr, i)) {
622 				Dprintf1("RECON: done issuing for c%d\n", i);
623 				reconDesc->numDisksDone++;
624 			}
625 		}
626 	}
627 
628 	Dprintf("RECON: resume requests\n");
629 	rf_ResumeNewRequests(raidPtr);
630 
631 	/* process reconstruction events until all disks report that
632 	 * they've completed all work */
633 
634 	mapPtr = raidPtr->reconControl->reconMap;
635 	recon_error = 0;
636 	write_error = 0;
637 
638 	while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
639 
640 		event = rf_GetNextReconEvent(reconDesc);
641 		status = ProcessReconEvent(raidPtr, event);
642 
643 		/* the normal case is that a read completes, and all is well. */
644 		if (status == RF_RECON_DONE_READS) {
645 			reconDesc->numDisksDone++;
646 		} else if ((status == RF_RECON_READ_ERROR) ||
647 			   (status == RF_RECON_WRITE_ERROR)) {
648 			/* an error was encountered while reconstructing...
649 			   Pretend we've finished this disk.
650 			*/
651 			recon_error = 1;
652 			raidPtr->reconControl->error = 1;
653 
654 			/* bump the numDisksDone count for reads,
655 			   but not for writes */
656 			if (status == RF_RECON_READ_ERROR)
657 				reconDesc->numDisksDone++;
658 
659 			/* write errors are special -- when we are
660 			   done dealing with the reads that are
661 			   finished, we don't want to wait for any
662 			   writes */
663 			if (status == RF_RECON_WRITE_ERROR)
664 				write_error = 1;
665 
666 		} else if (status == RF_RECON_READ_STOPPED) {
667 			/* count this component as being "done" */
668 			reconDesc->numDisksDone++;
669 		}
670 
671 		if (recon_error) {
672 
673 			/* make sure any stragglers are woken up so that
674 			   their theads will complete, and we can get out
675 			   of here with all IO processed */
676 
677 			while (raidPtr->reconControl->headSepCBList) {
678 				p = raidPtr->reconControl->headSepCBList;
679 				raidPtr->reconControl->headSepCBList = p->next;
680 				p->next = NULL;
681 				rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
682 				rf_FreeCallbackDesc(p);
683 			}
684 		}
685 
686 		raidPtr->reconControl->numRUsTotal =
687 			mapPtr->totalRUs;
688 		raidPtr->reconControl->numRUsComplete =
689 			mapPtr->totalRUs -
690 			rf_UnitsLeftToReconstruct(mapPtr);
691 
692 #if RF_DEBUG_RECON
693 		raidPtr->reconControl->percentComplete =
694 			(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
695 		if (rf_prReconSched) {
696 			rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
697 		}
698 #endif
699 	}
700 
701 	mapPtr = raidPtr->reconControl->reconMap;
702 	if (rf_reconDebug) {
703 		printf("RECON: all reads completed\n");
704 	}
705 	/* at this point all the reads have completed.  We now wait
706 	 * for any pending writes to complete, and then we're done */
707 
708 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
709 
710 		event = rf_GetNextReconEvent(reconDesc);
711 		status = ProcessReconEvent(raidPtr, event);
712 
713 		if (status == RF_RECON_WRITE_ERROR) {
714 			recon_error = 1;
715 			raidPtr->reconControl->error = 1;
716 			/* an error was encountered at the very end... bail */
717 		} else {
718 #if RF_DEBUG_RECON
719 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
720 			if (rf_prReconSched) {
721 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
722 			}
723 #endif
724 		}
725 	}
726 
727 	if (recon_error) {
728 		/* we've encountered an error in reconstructing. */
729 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
730 
731 		/* we start by blocking IO to the RAID set. */
732 		rf_SuspendNewRequestsAndWait(raidPtr);
733 
734 		RF_LOCK_MUTEX(raidPtr->mutex);
735 		/* mark set as being degraded, rather than
736 		   rf_rs_reconstructing as we were before the problem.
737 		   After this is done we can update status of the
738 		   component disks without worrying about someone
739 		   trying to read from a failed component.
740 		*/
741 		raidPtr->status = rf_rs_degraded;
742 		RF_UNLOCK_MUTEX(raidPtr->mutex);
743 
744 		/* resume IO */
745 		rf_ResumeNewRequests(raidPtr);
746 
747 		/* At this point there are two cases:
748 		   1) If we've experienced a read error, then we've
749 		   already waited for all the reads we're going to get,
750 		   and we just need to wait for the writes.
751 
752 		   2) If we've experienced a write error, we've also
753 		   already waited for all the reads to complete,
754 		   but there is little point in waiting for the writes --
755 		   when they do complete, they will just be ignored.
756 
757 		   So we just wait for writes to complete if we didn't have a
758 		   write error.
759 		*/
760 
761 		if (!write_error) {
762 			/* wait for writes to complete */
763 			while (raidPtr->reconControl->pending_writes > 0) {
764 
765 				event = rf_GetNextReconEvent(reconDesc);
766 				status = ProcessReconEvent(raidPtr, event);
767 
768 				if (status == RF_RECON_WRITE_ERROR) {
769 					raidPtr->reconControl->error = 1;
770 					/* an error was encountered at the very end... bail.
771 					   This will be very bad news for the user, since
772 					   at this point there will have been a read error
773 					   on one component, and a write error on another!
774 					*/
775 					break;
776 				}
777 			}
778 		}
779 
780 
781 		/* cleanup */
782 
783 		/* drain the event queue - after waiting for the writes above,
784 		   there shouldn't be much (if anything!) left in the queue. */
785 
786 		rf_DrainReconEventQueue(reconDesc);
787 
788 		/* XXX  As much as we'd like to free the recon control structure
789 		   and the reconDesc, we have no way of knowing if/when those will
790 		   be touched by IO that has yet to occur.  It is rather poor to be
791 		   basically causing a 'memory leak' here, but there doesn't seem to be
792 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
793 		   gets a makeover this problem will go away.
794 		*/
795 #if 0
796 		rf_FreeReconControl(raidPtr);
797 #endif
798 
799 #if RF_ACC_TRACE > 0
800 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
801 #endif
802 		/* XXX see comment above */
803 #if 0
804 		FreeReconDesc(reconDesc);
805 #endif
806 
807 		return (1);
808 	}
809 
810 	/* Success:  mark the dead disk as reconstructed.  We quiesce
811 	 * the array here to assure no nasty interactions with pending
812 	 * user accesses when we free up the psstatus structure as
813 	 * part of FreeReconControl() */
814 
815 	rf_SuspendNewRequestsAndWait(raidPtr);
816 
817 	RF_LOCK_MUTEX(raidPtr->mutex);
818 	raidPtr->numFailures--;
819 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
820 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
821 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
822 	RF_UNLOCK_MUTEX(raidPtr->mutex);
823 	RF_GETTIME(etime);
824 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
825 
826 	rf_ResumeNewRequests(raidPtr);
827 
828 	printf("raid%d: Reconstruction of disk at col %d completed\n",
829 	       raidPtr->raidid, col);
830 	xor_s = raidPtr->accumXorTimeUs / 1000000;
831 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
832 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
833 	       raidPtr->raidid,
834 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
835 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
836 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
837 	       raidPtr->raidid,
838 	       (int) raidPtr->reconControl->starttime.tv_sec,
839 	       (int) raidPtr->reconControl->starttime.tv_usec,
840 	       (int) etime.tv_sec, (int) etime.tv_usec);
841 #if RF_RECON_STATS > 0
842 	printf("raid%d: Total head-sep stall count was %d\n",
843 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
844 #endif				/* RF_RECON_STATS > 0 */
845 	rf_FreeReconControl(raidPtr);
846 #if RF_ACC_TRACE > 0
847 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
848 #endif
849 	FreeReconDesc(reconDesc);
850 
851 	return (0);
852 
853 }
854 /*****************************************************************************
855  * do the right thing upon each reconstruction event.
856  *****************************************************************************/
857 static int
858 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
859 {
860 	int     retcode = 0, submitblocked;
861 	RF_ReconBuffer_t *rbuf;
862 	RF_SectorCount_t sectorsPerRU;
863 
864 	retcode = RF_RECON_READ_STOPPED;
865 
866 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
867 	switch (event->type) {
868 
869 		/* a read I/O has completed */
870 	case RF_REVENT_READDONE:
871 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
872 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
873 		    event->col, rbuf->parityStripeID);
874 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
875 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
876 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
877 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
878 		if (!raidPtr->reconControl->error) {
879 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
880 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
881 			if (!submitblocked)
882 				retcode = IssueNextReadRequest(raidPtr, event->col);
883 			else
884 				retcode = 0;
885 		}
886 		break;
887 
888 		/* a write I/O has completed */
889 	case RF_REVENT_WRITEDONE:
890 #if RF_DEBUG_RECON
891 		if (rf_floatingRbufDebug) {
892 			rf_CheckFloatingRbufCount(raidPtr, 1);
893 		}
894 #endif
895 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
896 		rbuf = (RF_ReconBuffer_t *) event->arg;
897 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
898 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
899 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
900 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
901 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
902 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
903 
904 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
905 		raidPtr->reconControl->pending_writes--;
906 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
907 
908 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
909 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
910 			while(raidPtr->reconControl->rb_lock) {
911 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
912 					&raidPtr->reconControl->rb_mutex);
913 			}
914 			raidPtr->reconControl->rb_lock = 1;
915 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
916 
917 			raidPtr->numFullReconBuffers--;
918 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
919 
920 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
921 			raidPtr->reconControl->rb_lock = 0;
922 			wakeup(&raidPtr->reconControl->rb_lock);
923 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
924 		} else
925 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
926 				rf_FreeReconBuffer(rbuf);
927 			else
928 				RF_ASSERT(0);
929 		retcode = 0;
930 		break;
931 
932 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
933 					 * cleared */
934 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
935 		if (!raidPtr->reconControl->error) {
936 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
937 							     0, (int) (long) event->arg);
938 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
939 							 * BUFCLEAR event if we
940 							 * couldn't submit */
941 			retcode = IssueNextReadRequest(raidPtr, event->col);
942 		}
943 		break;
944 
945 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
946 					 * blockage has been cleared */
947 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
948 		if (!raidPtr->reconControl->error) {
949 			retcode = TryToRead(raidPtr, event->col);
950 		}
951 		break;
952 
953 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
954 					 * reconstruction blockage has been
955 					 * cleared */
956 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
957 		if (!raidPtr->reconControl->error) {
958 			retcode = TryToRead(raidPtr, event->col);
959 		}
960 		break;
961 
962 		/* a buffer has become ready to write */
963 	case RF_REVENT_BUFREADY:
964 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
965 		if (!raidPtr->reconControl->error) {
966 			retcode = IssueNextWriteRequest(raidPtr);
967 #if RF_DEBUG_RECON
968 			if (rf_floatingRbufDebug) {
969 				rf_CheckFloatingRbufCount(raidPtr, 1);
970 			}
971 #endif
972 		}
973 		break;
974 
975 		/* we need to skip the current RU entirely because it got
976 		 * recon'd while we were waiting for something else to happen */
977 	case RF_REVENT_SKIP:
978 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
979 		if (!raidPtr->reconControl->error) {
980 			retcode = IssueNextReadRequest(raidPtr, event->col);
981 		}
982 		break;
983 
984 		/* a forced-reconstruction read access has completed.  Just
985 		 * submit the buffer */
986 	case RF_REVENT_FORCEDREADDONE:
987 		rbuf = (RF_ReconBuffer_t *) event->arg;
988 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
989 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
990 		if (!raidPtr->reconControl->error) {
991 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
992 			RF_ASSERT(!submitblocked);
993 		}
994 		break;
995 
996 		/* A read I/O failed to complete */
997 	case RF_REVENT_READ_FAILED:
998 		retcode = RF_RECON_READ_ERROR;
999 		break;
1000 
1001 		/* A write I/O failed to complete */
1002 	case RF_REVENT_WRITE_FAILED:
1003 		retcode = RF_RECON_WRITE_ERROR;
1004 
1005 		rbuf = (RF_ReconBuffer_t *) event->arg;
1006 
1007 		/* cleanup the disk queue data */
1008 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1009 
1010 		/* At this point we're erroring out, badly, and floatingRbufs
1011 		   may not even be valid.  Rather than putting this back onto
1012 		   the floatingRbufs list, just arrange for its immediate
1013 		   destruction.
1014 		*/
1015 		rf_FreeReconBuffer(rbuf);
1016 		break;
1017 
1018 		/* a forced read I/O failed to complete */
1019 	case RF_REVENT_FORCEDREAD_FAILED:
1020 		retcode = RF_RECON_READ_ERROR;
1021 		break;
1022 
1023 	default:
1024 		RF_PANIC();
1025 	}
1026 	rf_FreeReconEventDesc(event);
1027 	return (retcode);
1028 }
1029 /*****************************************************************************
1030  *
1031  * find the next thing that's needed on the indicated disk, and issue
1032  * a read request for it.  We assume that the reconstruction buffer
1033  * associated with this process is free to receive the data.  If
1034  * reconstruction is blocked on the indicated RU, we issue a
1035  * blockage-release request instead of a physical disk read request.
1036  * If the current disk gets too far ahead of the others, we issue a
1037  * head-separation wait request and return.
1038  *
1039  * ctrl->{ru_count, curPSID, diskOffset} and
1040  * rbuf->failedDiskSectorOffset are maintained to point to the unit
1041  * we're currently accessing.  Note that this deviates from the
1042  * standard C idiom of having counters point to the next thing to be
1043  * accessed.  This allows us to easily retry when we're blocked by
1044  * head separation or reconstruction-blockage events.
1045  *
1046  *****************************************************************************/
1047 static int
1048 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1049 {
1050 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1051 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1052 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1053 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1054 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1055 	int     do_new_check = 0, retcode = 0, status;
1056 
1057 	/* if we are currently the slowest disk, mark that we have to do a new
1058 	 * check */
1059 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1060 		do_new_check = 1;
1061 
1062 	while (1) {
1063 
1064 		ctrl->ru_count++;
1065 		if (ctrl->ru_count < RUsPerPU) {
1066 			ctrl->diskOffset += sectorsPerRU;
1067 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1068 		} else {
1069 			ctrl->curPSID++;
1070 			ctrl->ru_count = 0;
1071 			/* code left over from when head-sep was based on
1072 			 * parity stripe id */
1073 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1074 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1075 				return (RF_RECON_DONE_READS);	/* finito! */
1076 			}
1077 			/* find the disk offsets of the start of the parity
1078 			 * stripe on both the current disk and the failed
1079 			 * disk. skip this entire parity stripe if either disk
1080 			 * does not appear in the indicated PS */
1081 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1082 			    &rbuf->spCol, &rbuf->spOffset);
1083 			if (status) {
1084 				ctrl->ru_count = RUsPerPU - 1;
1085 				continue;
1086 			}
1087 		}
1088 		rbuf->which_ru = ctrl->ru_count;
1089 
1090 		/* skip this RU if it's already been reconstructed */
1091 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1092 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1093 			continue;
1094 		}
1095 		break;
1096 	}
1097 	ctrl->headSepCounter++;
1098 	if (do_new_check)
1099 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
1100 
1101 
1102 	/* at this point, we have definitely decided what to do, and we have
1103 	 * only to see if we can actually do it now */
1104 	rbuf->parityStripeID = ctrl->curPSID;
1105 	rbuf->which_ru = ctrl->ru_count;
1106 #if RF_ACC_TRACE > 0
1107 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1108 	    sizeof(raidPtr->recon_tracerecs[col]));
1109 	raidPtr->recon_tracerecs[col].reconacc = 1;
1110 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1111 #endif
1112 	retcode = TryToRead(raidPtr, col);
1113 	return (retcode);
1114 }
1115 
1116 /*
1117  * tries to issue the next read on the indicated disk.  We may be
1118  * blocked by (a) the heads being too far apart, or (b) recon on the
1119  * indicated RU being blocked due to a write by a user thread.  In
1120  * this case, we issue a head-sep or blockage wait request, which will
1121  * cause this same routine to be invoked again later when the blockage
1122  * has cleared.
1123  */
1124 
1125 static int
1126 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1127 {
1128 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1129 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1130 	RF_StripeNum_t psid = ctrl->curPSID;
1131 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1132 	RF_DiskQueueData_t *req;
1133 	int     status;
1134 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1135 
1136 	/* if the current disk is too far ahead of the others, issue a
1137 	 * head-separation wait and return */
1138 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1139 		return (0);
1140 
1141 	/* allocate a new PSS in case we need it */
1142 	newpssPtr = rf_AllocPSStatus(raidPtr);
1143 
1144 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1145 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1146 
1147 	if (pssPtr != newpssPtr) {
1148 		rf_FreePSStatus(raidPtr, newpssPtr);
1149 	}
1150 
1151 	/* if recon is blocked on the indicated parity stripe, issue a
1152 	 * block-wait request and return. this also must mark the indicated RU
1153 	 * in the stripe as under reconstruction if not blocked. */
1154 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1155 	if (status == RF_PSS_RECON_BLOCKED) {
1156 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1157 		goto out;
1158 	} else
1159 		if (status == RF_PSS_FORCED_ON_WRITE) {
1160 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1161 			goto out;
1162 		}
1163 	/* make one last check to be sure that the indicated RU didn't get
1164 	 * reconstructed while we were waiting for something else to happen.
1165 	 * This is unfortunate in that it causes us to make this check twice
1166 	 * in the normal case.  Might want to make some attempt to re-work
1167 	 * this so that we only do this check if we've definitely blocked on
1168 	 * one of the above checks.  When this condition is detected, we may
1169 	 * have just created a bogus status entry, which we need to delete. */
1170 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1171 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1172 		if (pssPtr == newpssPtr)
1173 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1174 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1175 		goto out;
1176 	}
1177 	/* found something to read.  issue the I/O */
1178 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1179 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1180 #if RF_ACC_TRACE > 0
1181 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1182 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1183 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1184 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1185 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1186 #endif
1187 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1188 	 * should be in kernel space */
1189 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1190 	    ReconReadDoneProc, (void *) ctrl,
1191 #if RF_ACC_TRACE > 0
1192 				     &raidPtr->recon_tracerecs[col],
1193 #else
1194 				     NULL,
1195 #endif
1196 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
1197 
1198 	ctrl->rbuf->arg = (void *) req;
1199 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1200 	pssPtr->issued[col] = 1;
1201 
1202 out:
1203 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1204 	return (0);
1205 }
1206 
1207 
1208 /*
1209  * given a parity stripe ID, we want to find out whether both the
1210  * current disk and the failed disk exist in that parity stripe.  If
1211  * not, we want to skip this whole PS.  If so, we want to find the
1212  * disk offset of the start of the PS on both the current disk and the
1213  * failed disk.
1214  *
1215  * this works by getting a list of disks comprising the indicated
1216  * parity stripe, and searching the list for the current and failed
1217  * disks.  Once we've decided they both exist in the parity stripe, we
1218  * need to decide whether each is data or parity, so that we'll know
1219  * which mapping function to call to get the corresponding disk
1220  * offsets.
1221  *
1222  * this is kind of unpleasant, but doing it this way allows the
1223  * reconstruction code to use parity stripe IDs rather than physical
1224  * disks address to march through the failed disk, which greatly
1225  * simplifies a lot of code, as well as eliminating the need for a
1226  * reverse-mapping function.  I also think it will execute faster,
1227  * since the calls to the mapping module are kept to a minimum.
1228  *
1229  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1230  * THE STRIPE IN THE CORRECT ORDER
1231  *
1232  * raidPtr          - raid descriptor
1233  * psid             - parity stripe identifier
1234  * col              - column of disk to find the offsets for
1235  * spCol            - out: col of spare unit for failed unit
1236  * spOffset         - out: offset into disk containing spare unit
1237  *
1238  */
1239 
1240 
1241 static int
1242 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1243 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1244 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1245 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1246 {
1247 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1248 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1249 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1250 	RF_RowCol_t *diskids;
1251 	u_int   i, j, k, i_offset, j_offset;
1252 	RF_RowCol_t pcol;
1253 	int     testcol;
1254 	RF_SectorNum_t poffset;
1255 	char    i_is_parity = 0, j_is_parity = 0;
1256 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1257 
1258 	/* get a listing of the disks comprising that stripe */
1259 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1260 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1261 	RF_ASSERT(diskids);
1262 
1263 	/* reject this entire parity stripe if it does not contain the
1264 	 * indicated disk or it does not contain the failed disk */
1265 
1266 	for (i = 0; i < stripeWidth; i++) {
1267 		if (col == diskids[i])
1268 			break;
1269 	}
1270 	if (i == stripeWidth)
1271 		goto skipit;
1272 	for (j = 0; j < stripeWidth; j++) {
1273 		if (fcol == diskids[j])
1274 			break;
1275 	}
1276 	if (j == stripeWidth) {
1277 		goto skipit;
1278 	}
1279 	/* find out which disk the parity is on */
1280 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1281 
1282 	/* find out if either the current RU or the failed RU is parity */
1283 	/* also, if the parity occurs in this stripe prior to the data and/or
1284 	 * failed col, we need to decrement i and/or j */
1285 	for (k = 0; k < stripeWidth; k++)
1286 		if (diskids[k] == pcol)
1287 			break;
1288 	RF_ASSERT(k < stripeWidth);
1289 	i_offset = i;
1290 	j_offset = j;
1291 	if (k < i)
1292 		i_offset--;
1293 	else
1294 		if (k == i) {
1295 			i_is_parity = 1;
1296 			i_offset = 0;
1297 		}		/* set offsets to zero to disable multiply
1298 				 * below */
1299 	if (k < j)
1300 		j_offset--;
1301 	else
1302 		if (k == j) {
1303 			j_is_parity = 1;
1304 			j_offset = 0;
1305 		}
1306 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1307 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1308 	 * tells us how far into the stripe the [current,failed] disk is. */
1309 
1310 	/* call the mapping routine to get the offset into the current disk,
1311 	 * repeat for failed disk. */
1312 	if (i_is_parity)
1313 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1314 	else
1315 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1316 
1317 	RF_ASSERT(col == testcol);
1318 
1319 	if (j_is_parity)
1320 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1321 	else
1322 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1323 	RF_ASSERT(fcol == testcol);
1324 
1325 	/* now locate the spare unit for the failed unit */
1326 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1327 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1328 		if (j_is_parity)
1329 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1330 		else
1331 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1332 	} else {
1333 #endif
1334 		*spCol = raidPtr->reconControl->spareCol;
1335 		*spOffset = *outFailedDiskSectorOffset;
1336 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1337 	}
1338 #endif
1339 	return (0);
1340 
1341 skipit:
1342 	Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1343 	    psid, col);
1344 	return (1);
1345 }
1346 /* this is called when a buffer has become ready to write to the replacement disk */
1347 static int
1348 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1349 {
1350 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1351 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1352 #if RF_ACC_TRACE > 0
1353 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1354 #endif
1355 	RF_ReconBuffer_t *rbuf;
1356 	RF_DiskQueueData_t *req;
1357 
1358 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1359 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1360 				 * have gotten the event that sent us here */
1361 	RF_ASSERT(rbuf->pssPtr);
1362 
1363 	rbuf->pssPtr->writeRbuf = rbuf;
1364 	rbuf->pssPtr = NULL;
1365 
1366 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1367 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1368 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1369 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1370 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1371 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1372 
1373 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1374 	 * kernel space */
1375 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1376 	    sectorsPerRU, rbuf->buffer,
1377 	    rbuf->parityStripeID, rbuf->which_ru,
1378 	    ReconWriteDoneProc, (void *) rbuf,
1379 #if RF_ACC_TRACE > 0
1380 	    &raidPtr->recon_tracerecs[fcol],
1381 #else
1382 				     NULL,
1383 #endif
1384 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
1385 
1386 	rbuf->arg = (void *) req;
1387 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1388 	raidPtr->reconControl->pending_writes++;
1389 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1390 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1391 
1392 	return (0);
1393 }
1394 
1395 /*
1396  * this gets called upon the completion of a reconstruction read
1397  * operation the arg is a pointer to the per-disk reconstruction
1398  * control structure for the process that just finished a read.
1399  *
1400  * called at interrupt context in the kernel, so don't do anything
1401  * illegal here.
1402  */
1403 static int
1404 ReconReadDoneProc(void *arg, int status)
1405 {
1406 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1407 	RF_Raid_t *raidPtr;
1408 
1409 	/* Detect that reconCtrl is no longer valid, and if that
1410 	   is the case, bail without calling rf_CauseReconEvent().
1411 	   There won't be anyone listening for this event anyway */
1412 
1413 	if (ctrl->reconCtrl == NULL)
1414 		return(0);
1415 
1416 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1417 
1418 	if (status) {
1419 		printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1420 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1421 		return(0);
1422 	}
1423 #if RF_ACC_TRACE > 0
1424 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1425 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1426 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1427 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1428 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1429 #endif
1430 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1431 	return (0);
1432 }
1433 /* this gets called upon the completion of a reconstruction write operation.
1434  * the arg is a pointer to the rbuf that was just written
1435  *
1436  * called at interrupt context in the kernel, so don't do anything illegal here.
1437  */
1438 static int
1439 ReconWriteDoneProc(void *arg, int status)
1440 {
1441 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1442 
1443 	/* Detect that reconControl is no longer valid, and if that
1444 	   is the case, bail without calling rf_CauseReconEvent().
1445 	   There won't be anyone listening for this event anyway */
1446 
1447 	if (rbuf->raidPtr->reconControl == NULL)
1448 		return(0);
1449 
1450 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1451 	if (status) {
1452 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1453 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1454 		return(0);
1455 	}
1456 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1457 	return (0);
1458 }
1459 
1460 
1461 /*
1462  * computes a new minimum head sep, and wakes up anyone who needs to
1463  * be woken as a result
1464  */
1465 static void
1466 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1467 {
1468 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1469 	RF_HeadSepLimit_t new_min;
1470 	RF_RowCol_t i;
1471 	RF_CallbackDesc_t *p;
1472 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1473 								 * of a minimum */
1474 
1475 
1476 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1477 	while(reconCtrlPtr->rb_lock) {
1478 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1479 	}
1480 	reconCtrlPtr->rb_lock = 1;
1481 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1482 
1483 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1484 	for (i = 0; i < raidPtr->numCol; i++)
1485 		if (i != reconCtrlPtr->fcol) {
1486 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1487 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1488 		}
1489 	/* set the new minimum and wake up anyone who can now run again */
1490 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1491 		reconCtrlPtr->minHeadSepCounter = new_min;
1492 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1493 		while (reconCtrlPtr->headSepCBList) {
1494 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1495 				break;
1496 			p = reconCtrlPtr->headSepCBList;
1497 			reconCtrlPtr->headSepCBList = p->next;
1498 			p->next = NULL;
1499 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1500 			rf_FreeCallbackDesc(p);
1501 		}
1502 
1503 	}
1504 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1505 	reconCtrlPtr->rb_lock = 0;
1506 	wakeup(&reconCtrlPtr->rb_lock);
1507 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1508 }
1509 
1510 /*
1511  * checks to see that the maximum head separation will not be violated
1512  * if we initiate a reconstruction I/O on the indicated disk.
1513  * Limiting the maximum head separation between two disks eliminates
1514  * the nasty buffer-stall conditions that occur when one disk races
1515  * ahead of the others and consumes all of the floating recon buffers.
1516  * This code is complex and unpleasant but it's necessary to avoid
1517  * some very nasty, albeit fairly rare, reconstruction behavior.
1518  *
1519  * returns non-zero if and only if we have to stop working on the
1520  * indicated disk due to a head-separation delay.
1521  */
1522 static int
1523 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1524 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1525 		    RF_ReconUnitNum_t which_ru)
1526 {
1527 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1528 	RF_CallbackDesc_t *cb, *p, *pt;
1529 	int     retval = 0;
1530 
1531 	/* if we're too far ahead of the slowest disk, stop working on this
1532 	 * disk until the slower ones catch up.  We do this by scheduling a
1533 	 * wakeup callback for the time when the slowest disk has caught up.
1534 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1535 	 * must have fallen to at most 80% of the max allowable head
1536 	 * separation before we'll wake up.
1537 	 *
1538 	 */
1539 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1540 	while(reconCtrlPtr->rb_lock) {
1541 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1542 	}
1543 	reconCtrlPtr->rb_lock = 1;
1544 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1545 	if ((raidPtr->headSepLimit >= 0) &&
1546 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1547 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1548 			 raidPtr->raidid, col, ctrl->headSepCounter,
1549 			 reconCtrlPtr->minHeadSepCounter,
1550 			 raidPtr->headSepLimit);
1551 		cb = rf_AllocCallbackDesc();
1552 		/* the minHeadSepCounter value we have to get to before we'll
1553 		 * wake up.  build in 20% hysteresis. */
1554 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1555 		cb->col = col;
1556 		cb->next = NULL;
1557 
1558 		/* insert this callback descriptor into the sorted list of
1559 		 * pending head-sep callbacks */
1560 		p = reconCtrlPtr->headSepCBList;
1561 		if (!p)
1562 			reconCtrlPtr->headSepCBList = cb;
1563 		else
1564 			if (cb->callbackArg.v < p->callbackArg.v) {
1565 				cb->next = reconCtrlPtr->headSepCBList;
1566 				reconCtrlPtr->headSepCBList = cb;
1567 			} else {
1568 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1569 				cb->next = p;
1570 				pt->next = cb;
1571 			}
1572 		retval = 1;
1573 #if RF_RECON_STATS > 0
1574 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1575 #endif				/* RF_RECON_STATS > 0 */
1576 	}
1577 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1578 	reconCtrlPtr->rb_lock = 0;
1579 	wakeup(&reconCtrlPtr->rb_lock);
1580 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1581 
1582 	return (retval);
1583 }
1584 /*
1585  * checks to see if reconstruction has been either forced or blocked
1586  * by a user operation.  if forced, we skip this RU entirely.  else if
1587  * blocked, put ourselves on the wait list.  else return 0.
1588  *
1589  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1590  */
1591 static int
1592 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1593 				   RF_ReconParityStripeStatus_t *pssPtr,
1594 				   RF_PerDiskReconCtrl_t *ctrl,
1595 				   RF_RowCol_t col,
1596 				   RF_StripeNum_t psid,
1597 				   RF_ReconUnitNum_t which_ru)
1598 {
1599 	RF_CallbackDesc_t *cb;
1600 	int     retcode = 0;
1601 
1602 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1603 		retcode = RF_PSS_FORCED_ON_WRITE;
1604 	else
1605 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1606 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1607 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1608 							 * the blockage-wait
1609 							 * list */
1610 			cb->col = col;
1611 			cb->next = pssPtr->blockWaitList;
1612 			pssPtr->blockWaitList = cb;
1613 			retcode = RF_PSS_RECON_BLOCKED;
1614 		}
1615 	if (!retcode)
1616 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1617 							 * reconstruction */
1618 
1619 	return (retcode);
1620 }
1621 /*
1622  * if reconstruction is currently ongoing for the indicated stripeID,
1623  * reconstruction is forced to completion and we return non-zero to
1624  * indicate that the caller must wait.  If not, then reconstruction is
1625  * blocked on the indicated stripe and the routine returns zero.  If
1626  * and only if we return non-zero, we'll cause the cbFunc to get
1627  * invoked with the cbArg when the reconstruction has completed.
1628  */
1629 int
1630 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1631 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1632 {
1633 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1634 							 * forcing recon on */
1635 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1636 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1637 						 * stripe status structure */
1638 	RF_StripeNum_t psid;	/* parity stripe id */
1639 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1640 						 * offset */
1641 	RF_RowCol_t *diskids;
1642 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1643 	RF_RowCol_t fcol, diskno, i;
1644 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1645 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1646 	RF_CallbackDesc_t *cb;
1647 	int     nPromoted;
1648 
1649 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1650 
1651 	/* allocate a new PSS in case we need it */
1652         newpssPtr = rf_AllocPSStatus(raidPtr);
1653 
1654 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1655 
1656 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1657 
1658         if (pssPtr != newpssPtr) {
1659                 rf_FreePSStatus(raidPtr, newpssPtr);
1660         }
1661 
1662 	/* if recon is not ongoing on this PS, just return */
1663 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1664 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1665 		return (0);
1666 	}
1667 	/* otherwise, we have to wait for reconstruction to complete on this
1668 	 * RU. */
1669 	/* In order to avoid waiting for a potentially large number of
1670 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1671 	 * not low-priority) reconstruction on this RU. */
1672 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1673 		DDprintf1("Forcing recon on psid %ld\n", psid);
1674 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1675 								 * forced recon */
1676 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1677 							 * that we just set */
1678 		fcol = raidPtr->reconControl->fcol;
1679 
1680 		/* get a listing of the disks comprising the indicated stripe */
1681 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1682 
1683 		/* For previously issued reads, elevate them to normal
1684 		 * priority.  If the I/O has already completed, it won't be
1685 		 * found in the queue, and hence this will be a no-op. For
1686 		 * unissued reads, allocate buffers and issue new reads.  The
1687 		 * fact that we've set the FORCED bit means that the regular
1688 		 * recon procs will not re-issue these reqs */
1689 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1690 			if ((diskno = diskids[i]) != fcol) {
1691 				if (pssPtr->issued[diskno]) {
1692 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1693 					if (rf_reconDebug && nPromoted)
1694 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1695 				} else {
1696 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1697 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1698 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1699 													 * location */
1700 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1701 					new_rbuf->which_ru = which_ru;
1702 					new_rbuf->failedDiskSectorOffset = fd_offset;
1703 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1704 
1705 					/* use NULL b_proc b/c all addrs
1706 					 * should be in kernel space */
1707 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1708 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1709 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1710 
1711 					new_rbuf->arg = req;
1712 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1713 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1714 				}
1715 			}
1716 		/* if the write is sitting in the disk queue, elevate its
1717 		 * priority */
1718 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1719 			printf("raid%d: promoted write to col %d\n",
1720 			       raidPtr->raidid, fcol);
1721 	}
1722 	/* install a callback descriptor to be invoked when recon completes on
1723 	 * this parity stripe. */
1724 	cb = rf_AllocCallbackDesc();
1725 	/* XXX the following is bogus.. These functions don't really match!!
1726 	 * GO */
1727 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1728 	cb->callbackArg.p = (void *) cbArg;
1729 	cb->next = pssPtr->procWaitList;
1730 	pssPtr->procWaitList = cb;
1731 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1732 		  raidPtr->raidid, psid);
1733 
1734 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1735 	return (1);
1736 }
1737 /* called upon the completion of a forced reconstruction read.
1738  * all we do is schedule the FORCEDREADONE event.
1739  * called at interrupt context in the kernel, so don't do anything illegal here.
1740  */
1741 static void
1742 ForceReconReadDoneProc(void *arg, int status)
1743 {
1744 	RF_ReconBuffer_t *rbuf = arg;
1745 
1746 	/* Detect that reconControl is no longer valid, and if that
1747 	   is the case, bail without calling rf_CauseReconEvent().
1748 	   There won't be anyone listening for this event anyway */
1749 
1750 	if (rbuf->raidPtr->reconControl == NULL)
1751 		return;
1752 
1753 	if (status) {
1754 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1755 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1756 		return;
1757 	}
1758 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1759 }
1760 /* releases a block on the reconstruction of the indicated stripe */
1761 int
1762 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1763 {
1764 	RF_StripeNum_t stripeID = asmap->stripeID;
1765 	RF_ReconParityStripeStatus_t *pssPtr;
1766 	RF_ReconUnitNum_t which_ru;
1767 	RF_StripeNum_t psid;
1768 	RF_CallbackDesc_t *cb;
1769 
1770 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1771 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1772 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1773 
1774 	/* When recon is forced, the pss desc can get deleted before we get
1775 	 * back to unblock recon. But, this can _only_ happen when recon is
1776 	 * forced. It would be good to put some kind of sanity check here, but
1777 	 * how to decide if recon was just forced or not? */
1778 	if (!pssPtr) {
1779 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1780 		 * RU %d\n",psid,which_ru); */
1781 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1782 		if (rf_reconDebug || rf_pssDebug)
1783 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1784 #endif
1785 		goto out;
1786 	}
1787 	pssPtr->blockCount--;
1788 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1789 		 raidPtr->raidid, psid, pssPtr->blockCount);
1790 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1791 
1792 		/* unblock recon before calling CauseReconEvent in case
1793 		 * CauseReconEvent causes us to try to issue a new read before
1794 		 * returning here. */
1795 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1796 
1797 
1798 		while (pssPtr->blockWaitList) {
1799 			/* spin through the block-wait list and
1800 			   release all the waiters */
1801 			cb = pssPtr->blockWaitList;
1802 			pssPtr->blockWaitList = cb->next;
1803 			cb->next = NULL;
1804 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1805 			rf_FreeCallbackDesc(cb);
1806 		}
1807 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1808 			/* if no recon was requested while recon was blocked */
1809 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1810 		}
1811 	}
1812 out:
1813 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1814 	return (0);
1815 }
1816