xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /*	$NetBSD: rf_reconstruct.c,v 1.127 2021/07/27 03:01:48 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.127 2021/07/27 03:01:48 oster Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <sys/namei.h> /* for pathbuf */
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include <miscfs/specfs/specdev.h> /* for v_rdev */
51 
52 #include "rf_raid.h"
53 #include "rf_reconutil.h"
54 #include "rf_revent.h"
55 #include "rf_reconbuffer.h"
56 #include "rf_acctrace.h"
57 #include "rf_etimer.h"
58 #include "rf_dag.h"
59 #include "rf_desc.h"
60 #include "rf_debugprint.h"
61 #include "rf_general.h"
62 #include "rf_driver.h"
63 #include "rf_utils.h"
64 #include "rf_shutdown.h"
65 
66 #include "rf_kintf.h"
67 
68 /* setting these to -1 causes them to be set to their default values if not set by debug options */
69 
70 #if RF_DEBUG_RECON
71 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
75 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
76 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
77 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
78 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
79 
80 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
81 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
82 
83 #else /* RF_DEBUG_RECON */
84 
85 #define Dprintf(s) {}
86 #define Dprintf1(s,a) {}
87 #define Dprintf2(s,a,b) {}
88 #define Dprintf3(s,a,b,c) {}
89 #define Dprintf4(s,a,b,c,d) {}
90 #define Dprintf5(s,a,b,c,d,e) {}
91 #define Dprintf6(s,a,b,c,d,e,f) {}
92 #define Dprintf7(s,a,b,c,d,e,f,g) {}
93 
94 #define DDprintf1(s,a) {}
95 #define DDprintf2(s,a,b) {}
96 
97 #endif /* RF_DEBUG_RECON */
98 
99 #define RF_RECON_DONE_READS   1
100 #define RF_RECON_READ_ERROR   2
101 #define RF_RECON_WRITE_ERROR  3
102 #define RF_RECON_READ_STOPPED 4
103 #define RF_RECON_WRITE_DONE   5
104 
105 #define RF_MAX_FREE_RECONBUFFER 32
106 #define RF_MIN_FREE_RECONBUFFER 16
107 
108 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
109 					      RF_RaidDisk_t *, int, RF_RowCol_t);
110 static void FreeReconDesc(RF_RaidReconDesc_t *);
111 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
112 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
113 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
114 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
115 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
116 				RF_SectorNum_t *);
117 static int IssueNextWriteRequest(RF_Raid_t *);
118 static void ReconReadDoneProc(void *, int);
119 static void ReconWriteDoneProc(void *, int);
120 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
121 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
122 			       RF_RowCol_t, RF_HeadSepLimit_t,
123 			       RF_ReconUnitNum_t);
124 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
125 					      RF_ReconParityStripeStatus_t *,
126 					      RF_PerDiskReconCtrl_t *,
127 					      RF_RowCol_t, RF_StripeNum_t,
128 					      RF_ReconUnitNum_t);
129 static void ForceReconReadDoneProc(void *, int);
130 static void rf_ShutdownReconstruction(void *);
131 
132 struct RF_ReconDoneProc_s {
133 	void    (*proc) (RF_Raid_t *, void *);
134 	void   *arg;
135 	RF_ReconDoneProc_t *next;
136 };
137 
138 /**************************************************************************
139  *
140  * sets up the parameters that will be used by the reconstruction process
141  * currently there are none, except for those that the layout-specific
142  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
143  *
144  * in the kernel, we fire off the recon thread.
145  *
146  **************************************************************************/
147 static void
148 rf_ShutdownReconstruction(void *arg)
149 {
150 	RF_Raid_t *raidPtr;
151 
152 	raidPtr = (RF_Raid_t *) arg;
153 
154 	pool_destroy(&raidPtr->pools.reconbuffer);
155 }
156 
157 int
158 rf_ConfigureReconstruction(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
159 			   RF_Config_t *cfgPtr)
160 {
161 
162 	rf_pool_init(raidPtr, raidPtr->poolNames.reconbuffer, &raidPtr->pools.reconbuffer, sizeof(RF_ReconBuffer_t),
163 		     "reconbuf", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
164 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, raidPtr);
165 
166 	return (0);
167 }
168 
169 static RF_RaidReconDesc_t *
170 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
171 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
172 		   RF_RowCol_t scol)
173 {
174 
175 	RF_RaidReconDesc_t *reconDesc;
176 
177 	reconDesc = RF_Malloc(sizeof(*reconDesc));
178 	reconDesc->raidPtr = raidPtr;
179 	reconDesc->col = col;
180 	reconDesc->spareDiskPtr = spareDiskPtr;
181 	reconDesc->numDisksDone = numDisksDone;
182 	reconDesc->scol = scol;
183 	reconDesc->next = NULL;
184 
185 	return (reconDesc);
186 }
187 
188 static void
189 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
190 {
191 #if RF_RECON_STATS > 0
192 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
193 	       reconDesc->raidPtr->raidid,
194 	       (long) reconDesc->numReconEventWaits,
195 	       (long) reconDesc->numReconExecDelays);
196 #endif				/* RF_RECON_STATS > 0 */
197 	printf("raid%d: %lu max exec ticks\n",
198 	       reconDesc->raidPtr->raidid,
199 	       (long) reconDesc->maxReconExecTicks);
200 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
201 }
202 
203 
204 /*****************************************************************************
205  *
206  * primary routine to reconstruct a failed disk.  This should be called from
207  * within its own thread.  It won't return until reconstruction completes,
208  * fails, or is aborted.
209  *****************************************************************************/
210 int
211 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
212 {
213 	const RF_LayoutSW_t *lp;
214 	int     rc;
215 
216 	lp = raidPtr->Layout.map;
217 	if (lp->SubmitReconBuffer) {
218 		/*
219 	         * The current infrastructure only supports reconstructing one
220 	         * disk at a time for each array.
221 	         */
222 		rf_lock_mutex2(raidPtr->mutex);
223 		while (raidPtr->reconInProgress) {
224 			rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
225 		}
226 		raidPtr->reconInProgress++;
227 		rf_unlock_mutex2(raidPtr->mutex);
228 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
229 		rf_lock_mutex2(raidPtr->mutex);
230 		raidPtr->reconInProgress--;
231 	} else {
232 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
233 		    lp->parityConfig);
234 		rc = EIO;
235 		rf_lock_mutex2(raidPtr->mutex);
236 	}
237 	rf_signal_cond2(raidPtr->waitForReconCond);
238 	rf_unlock_mutex2(raidPtr->mutex);
239 	return (rc);
240 }
241 
242 int
243 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
244 {
245 	RF_ComponentLabel_t *c_label;
246 	RF_RaidDisk_t *spareDiskPtr = NULL;
247 	RF_RaidReconDesc_t *reconDesc;
248 	RF_RowCol_t scol;
249 	int     numDisksDone = 0, rc;
250 
251 	/* first look for a spare drive onto which to reconstruct the data */
252 	/* spare disk descriptors are stored in row 0.  This may have to
253 	 * change eventually */
254 
255 	rf_lock_mutex2(raidPtr->mutex);
256 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
257 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
258 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
259 		if (raidPtr->status != rf_rs_degraded) {
260 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
261 			rf_unlock_mutex2(raidPtr->mutex);
262 			return (EINVAL);
263 		}
264 		scol = (-1);
265 	} else {
266 #endif
267 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
268 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
269 				spareDiskPtr = &raidPtr->Disks[scol];
270 				spareDiskPtr->status = rf_ds_rebuilding_spare;
271 				break;
272 			}
273 		}
274 		if (!spareDiskPtr) {
275 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
276 			rf_unlock_mutex2(raidPtr->mutex);
277 			return (ENOSPC);
278 		}
279 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
280 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
281 	}
282 #endif
283 	rf_unlock_mutex2(raidPtr->mutex);
284 
285 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
286 	raidPtr->reconDesc = (void *) reconDesc;
287 #if RF_RECON_STATS > 0
288 	reconDesc->hsStallCount = 0;
289 	reconDesc->numReconExecDelays = 0;
290 	reconDesc->numReconEventWaits = 0;
291 #endif				/* RF_RECON_STATS > 0 */
292 	reconDesc->reconExecTimerRunning = 0;
293 	reconDesc->reconExecTicks = 0;
294 	reconDesc->maxReconExecTicks = 0;
295 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
296 
297 	if (!rc) {
298 		/* fix up the component label */
299 		/* Don't actually need the read here.. */
300 		c_label = raidget_component_label(raidPtr, scol);
301 
302 		raid_init_component_label(raidPtr, c_label);
303 		c_label->row = 0;
304 		c_label->column = col;
305 		c_label->clean = RF_RAID_DIRTY;
306 		c_label->status = rf_ds_optimal;
307 		rf_component_label_set_partitionsize(c_label,
308 		    raidPtr->Disks[scol].partitionSize);
309 
310 		/* We've just done a rebuild based on all the other
311 		   disks, so at this point the parity is known to be
312 		   clean, even if it wasn't before. */
313 
314 		/* XXX doesn't hold for RAID 6!!*/
315 
316 		rf_lock_mutex2(raidPtr->mutex);
317 		/* The failed disk has already been marked as rf_ds_spared
318 		   (or rf_ds_dist_spared) in
319 		   rf_ContinueReconstructFailedDisk()
320 		   so we just update the spare disk as being a used spare
321 		*/
322 
323 		spareDiskPtr->status = rf_ds_used_spare;
324 		raidPtr->parity_good = RF_RAID_CLEAN;
325 		rf_unlock_mutex2(raidPtr->mutex);
326 
327 		/* XXXX MORE NEEDED HERE */
328 
329 		raidflush_component_label(raidPtr, scol);
330 	} else {
331 		/* Reconstruct failed. */
332 
333 		rf_lock_mutex2(raidPtr->mutex);
334 		/* Failed disk goes back to "failed" status */
335 		raidPtr->Disks[col].status = rf_ds_failed;
336 
337 		/* Spare disk goes back to "spare" status. */
338 		spareDiskPtr->status = rf_ds_spare;
339 		rf_unlock_mutex2(raidPtr->mutex);
340 
341 	}
342 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
343 	return (rc);
344 }
345 
346 /*
347 
348    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
349    and you don't get a spare until the next Monday.  With this function
350    (and hot-swappable drives) you can now put your new disk containing
351    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
352    rebuild the data "on the spot".
353 
354 */
355 
356 int
357 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
358 {
359 	RF_RaidDisk_t *spareDiskPtr = NULL;
360 	RF_RaidReconDesc_t *reconDesc;
361 	const RF_LayoutSW_t *lp;
362 	RF_ComponentLabel_t *c_label;
363 	int     numDisksDone = 0, rc;
364 	uint64_t numsec;
365 	unsigned int secsize;
366 	struct pathbuf *pb;
367 	struct vnode *vp;
368 	int retcode;
369 	int ac;
370 
371 	rf_lock_mutex2(raidPtr->mutex);
372 	lp = raidPtr->Layout.map;
373 	if (!lp->SubmitReconBuffer) {
374 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
375 			     lp->parityConfig);
376 		/* wakeup anyone who might be waiting to do a reconstruct */
377 		rf_signal_cond2(raidPtr->waitForReconCond);
378 		rf_unlock_mutex2(raidPtr->mutex);
379 		return(EIO);
380 	}
381 
382 	/*
383 	 * The current infrastructure only supports reconstructing one
384 	 * disk at a time for each array.
385 	 */
386 
387 	if (raidPtr->Disks[col].status != rf_ds_failed) {
388 		/* "It's gone..." */
389 		raidPtr->numFailures++;
390 		raidPtr->Disks[col].status = rf_ds_failed;
391 		raidPtr->status = rf_rs_degraded;
392 		rf_unlock_mutex2(raidPtr->mutex);
393 		rf_update_component_labels(raidPtr,
394 					   RF_NORMAL_COMPONENT_UPDATE);
395 		rf_lock_mutex2(raidPtr->mutex);
396 	}
397 
398 	while (raidPtr->reconInProgress) {
399 		rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex);
400 	}
401 
402 	raidPtr->reconInProgress++;
403 
404 	/* first look for a spare drive onto which to reconstruct the
405 	   data.  spare disk descriptors are stored in row 0.  This
406 	   may have to change eventually */
407 
408 	/* Actually, we don't care if it's failed or not...  On a RAID
409 	   set with correct parity, this function should be callable
410 	   on any component without ill effects. */
411 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
412 
413 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
414 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
415 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
416 
417 		raidPtr->reconInProgress--;
418 		rf_signal_cond2(raidPtr->waitForReconCond);
419 		rf_unlock_mutex2(raidPtr->mutex);
420 		return (EINVAL);
421 	}
422 #endif
423 
424 	/* This device may have been opened successfully the
425 	   first time. Close it before trying to open it again.. */
426 
427 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
428 #if 0
429 		printf("Closed the open device: %s\n",
430 		       raidPtr->Disks[col].devname);
431 #endif
432 		vp = raidPtr->raid_cinfo[col].ci_vp;
433 		ac = raidPtr->Disks[col].auto_configured;
434 		rf_unlock_mutex2(raidPtr->mutex);
435 		rf_close_component(raidPtr, vp, ac);
436 		rf_lock_mutex2(raidPtr->mutex);
437 		raidPtr->raid_cinfo[col].ci_vp = NULL;
438 	}
439 	/* note that this disk was *not* auto_configured (any longer)*/
440 	raidPtr->Disks[col].auto_configured = 0;
441 
442 #if 0
443 	printf("About to (re-)open the device for rebuilding: %s\n",
444 	       raidPtr->Disks[col].devname);
445 #endif
446 	rf_unlock_mutex2(raidPtr->mutex);
447 	pb = pathbuf_create(raidPtr->Disks[col].devname);
448 	if (pb == NULL) {
449 		retcode = ENOMEM;
450 	} else {
451 		retcode = vn_bdev_openpath(pb, &vp, curlwp);
452 		pathbuf_destroy(pb);
453 	}
454 
455 	if (retcode) {
456 		printf("raid%d: rebuilding: open device: %s failed: %d!\n",raidPtr->raidid,
457 		       raidPtr->Disks[col].devname, retcode);
458 
459 		/* the component isn't responding properly...
460 		   must be still dead :-( */
461 		rf_lock_mutex2(raidPtr->mutex);
462 		raidPtr->reconInProgress--;
463 		rf_signal_cond2(raidPtr->waitForReconCond);
464 		rf_unlock_mutex2(raidPtr->mutex);
465 		return(retcode);
466 	}
467 
468 	/* Ok, so we can at least do a lookup...
469 	   How about actually getting a vp for it? */
470 
471 	retcode = getdisksize(vp, &numsec, &secsize);
472 	if (retcode) {
473 		vn_close(vp, FREAD | FWRITE, kauth_cred_get());
474 		rf_lock_mutex2(raidPtr->mutex);
475 		raidPtr->reconInProgress--;
476 		rf_signal_cond2(raidPtr->waitForReconCond);
477 		rf_unlock_mutex2(raidPtr->mutex);
478 		return(retcode);
479 	}
480 	rf_lock_mutex2(raidPtr->mutex);
481 	raidPtr->Disks[col].blockSize =	secsize;
482 	raidPtr->Disks[col].numBlocks = numsec - rf_protectedSectors;
483 
484 	raidPtr->raid_cinfo[col].ci_vp = vp;
485 	raidPtr->raid_cinfo[col].ci_dev = vp->v_rdev;
486 
487 	raidPtr->Disks[col].dev = vp->v_rdev;
488 
489 	/* we allow the user to specify that only a fraction
490 	   of the disks should be used this is just for debug:
491 	   it speeds up * the parity scan */
492 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
493 		rf_sizePercentage / 100;
494 	rf_unlock_mutex2(raidPtr->mutex);
495 
496 	spareDiskPtr = &raidPtr->Disks[col];
497 	spareDiskPtr->status = rf_ds_rebuilding_spare;
498 
499 	printf("raid%d: initiating in-place reconstruction on column %d\n",
500 	       raidPtr->raidid, col);
501 
502 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
503 				       numDisksDone, col);
504 	raidPtr->reconDesc = (void *) reconDesc;
505 #if RF_RECON_STATS > 0
506 	reconDesc->hsStallCount = 0;
507 	reconDesc->numReconExecDelays = 0;
508 	reconDesc->numReconEventWaits = 0;
509 #endif				/* RF_RECON_STATS > 0 */
510 	reconDesc->reconExecTimerRunning = 0;
511 	reconDesc->reconExecTicks = 0;
512 	reconDesc->maxReconExecTicks = 0;
513 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
514 
515 	if (!rc) {
516 		rf_lock_mutex2(raidPtr->mutex);
517 		/* Need to set these here, as at this point it'll be claiming
518 		   that the disk is in rf_ds_spared!  But we know better :-) */
519 
520 		raidPtr->Disks[col].status = rf_ds_optimal;
521 		raidPtr->status = rf_rs_optimal;
522 		rf_unlock_mutex2(raidPtr->mutex);
523 
524 		/* fix up the component label */
525 		/* Don't actually need the read here.. */
526 		c_label = raidget_component_label(raidPtr, col);
527 
528 		rf_lock_mutex2(raidPtr->mutex);
529 		raid_init_component_label(raidPtr, c_label);
530 
531 		c_label->row = 0;
532 		c_label->column = col;
533 
534 		/* We've just done a rebuild based on all the other
535 		   disks, so at this point the parity is known to be
536 		   clean, even if it wasn't before. */
537 
538 		/* XXX doesn't hold for RAID 6!!*/
539 
540 		raidPtr->parity_good = RF_RAID_CLEAN;
541 		rf_unlock_mutex2(raidPtr->mutex);
542 
543 		raidflush_component_label(raidPtr, col);
544 	} else {
545 		/* Reconstruct-in-place failed.  Disk goes back to
546 		   "failed" status, regardless of what it was before.  */
547 		rf_lock_mutex2(raidPtr->mutex);
548 		raidPtr->Disks[col].status = rf_ds_failed;
549 		rf_unlock_mutex2(raidPtr->mutex);
550 	}
551 
552 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
553 
554 	rf_lock_mutex2(raidPtr->mutex);
555 	raidPtr->reconInProgress--;
556 	rf_signal_cond2(raidPtr->waitForReconCond);
557 	rf_unlock_mutex2(raidPtr->mutex);
558 
559 	return (rc);
560 }
561 
562 
563 int
564 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
565 {
566 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
567 	RF_RowCol_t col = reconDesc->col;
568 	RF_RowCol_t scol = reconDesc->scol;
569 	RF_ReconMap_t *mapPtr;
570 	RF_ReconCtrl_t *tmp_reconctrl;
571 	RF_ReconEvent_t *event;
572 	RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
573 #if RF_INCLUDE_RAID5_RS > 0
574 	RF_StripeCount_t startPSID,endPSID,aPSID,bPSID,offPSID;
575 #endif
576 	RF_ReconUnitCount_t RUsPerPU;
577 	struct timeval etime, elpsd;
578 	unsigned long xor_s, xor_resid_us;
579 	int     i, ds;
580 	int status, done;
581 	int recon_error, write_error;
582 
583 	raidPtr->accumXorTimeUs = 0;
584 #if RF_ACC_TRACE > 0
585 	/* create one trace record per physical disk */
586 	raidPtr->recon_tracerecs =
587 	    RF_Malloc(raidPtr->numCol * sizeof(*raidPtr->recon_tracerecs));
588 #endif
589 
590 	/* quiesce the array prior to starting recon.  this is needed
591 	 * to assure no nasty interactions with pending user writes.
592 	 * We need to do this before we change the disk or row status. */
593 
594 	Dprintf("RECON: begin request suspend\n");
595 	rf_SuspendNewRequestsAndWait(raidPtr);
596 	Dprintf("RECON: end request suspend\n");
597 
598 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
599 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
600 
601 	rf_lock_mutex2(raidPtr->mutex);
602 
603 	/* create the reconstruction control pointer and install it in
604 	 * the right slot */
605 	raidPtr->reconControl = tmp_reconctrl;
606 	mapPtr = raidPtr->reconControl->reconMap;
607 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
608 	raidPtr->reconControl->numRUsComplete =	0;
609 	raidPtr->status = rf_rs_reconstructing;
610 	raidPtr->Disks[col].status = rf_ds_reconstructing;
611 	raidPtr->Disks[col].spareCol = scol;
612 
613 	rf_unlock_mutex2(raidPtr->mutex);
614 
615 	RF_GETTIME(raidPtr->reconControl->starttime);
616 
617 	Dprintf("RECON: resume requests\n");
618 	rf_ResumeNewRequests(raidPtr);
619 
620 
621 	mapPtr = raidPtr->reconControl->reconMap;
622 
623 	incPSID = RF_RECONMAP_SIZE;
624 	lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU - 1;
625 	RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
626 	recon_error = 0;
627 	write_error = 0;
628 	pending_writes = incPSID;
629 	raidPtr->reconControl->lastPSID = incPSID - 1;
630 
631 	/* bounds check raidPtr->reconControl->lastPSID and
632 	   pending_writes so that we don't attempt to wait for more IO
633 	   than can possibly happen */
634 
635 	if (raidPtr->reconControl->lastPSID > lastPSID)
636 		raidPtr->reconControl->lastPSID = lastPSID;
637 
638 	if (pending_writes > lastPSID)
639 		pending_writes = lastPSID + 1;
640 
641 	/* start the actual reconstruction */
642 
643 	done = 0;
644 	while (!done) {
645 
646 		if (raidPtr->waitShutdown) {
647 			/* someone is unconfiguring this array... bail on the reconstruct.. */
648 			recon_error = 1;
649 			break;
650 		}
651 
652 		num_writes = 0;
653 
654 #if RF_INCLUDE_RAID5_RS > 0
655 		/* For RAID5 with Rotated Spares we will be 'short'
656 		   some number of writes since no writes will get
657 		   issued for stripes where the spare is on the
658 		   component being rebuilt.  Account for the shortage
659 		   here so that we don't hang indefinitely below
660 		   waiting for writes to complete that were never
661 		   scheduled.
662 
663 		   XXX: Should be fixed for PARITY_DECLUSTERING and
664 		   others too!
665 
666 		*/
667 
668 		if (raidPtr->Layout.numDataCol <
669 		    raidPtr->numCol - raidPtr->Layout.numParityCol) {
670 			/* numDataCol is at least 2 less than numCol, so
671 			   should be RAID 5 with Rotated Spares */
672 
673 			/* XXX need to update for RAID 6 */
674 
675 			startPSID = raidPtr->reconControl->lastPSID - pending_writes + 1;
676 			endPSID = raidPtr->reconControl->lastPSID;
677 
678 			offPSID = raidPtr->numCol - col - 1;
679 
680 			aPSID = startPSID - startPSID % raidPtr->numCol + offPSID;
681 			if (aPSID < startPSID) {
682 				aPSID += raidPtr->numCol;
683 			}
684 
685 			bPSID = endPSID - ((endPSID - offPSID) % raidPtr->numCol);
686 
687 			if (aPSID < endPSID) {
688 				num_writes = ((bPSID - aPSID) / raidPtr->numCol) + 1;
689 			}
690 
691 			if ((aPSID == endPSID) && (bPSID == endPSID)) {
692 				num_writes++;
693 			}
694 		}
695 #endif
696 
697 		/* issue a read for each surviving disk */
698 
699 		reconDesc->numDisksDone = 0;
700 		for (i = 0; i < raidPtr->numCol; i++) {
701 			if (i != col) {
702 				/* find and issue the next I/O on the
703 				 * indicated disk */
704 				if (IssueNextReadRequest(raidPtr, i)) {
705 					Dprintf1("RECON: done issuing for c%d\n", i);
706 					reconDesc->numDisksDone++;
707 				}
708 			}
709 		}
710 
711 		/* process reconstruction events until all disks report that
712 		 * they've completed all work */
713 
714 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
715 
716 			event = rf_GetNextReconEvent(reconDesc);
717 			status = ProcessReconEvent(raidPtr, event);
718 
719 			/* the normal case is that a read completes, and all is well. */
720 			if (status == RF_RECON_DONE_READS) {
721 				reconDesc->numDisksDone++;
722 			} else if ((status == RF_RECON_READ_ERROR) ||
723 				   (status == RF_RECON_WRITE_ERROR)) {
724 				/* an error was encountered while reconstructing...
725 				   Pretend we've finished this disk.
726 				*/
727 				recon_error = 1;
728 				raidPtr->reconControl->error = 1;
729 
730 				/* bump the numDisksDone count for reads,
731 				   but not for writes */
732 				if (status == RF_RECON_READ_ERROR)
733 					reconDesc->numDisksDone++;
734 
735 				/* write errors are special -- when we are
736 				   done dealing with the reads that are
737 				   finished, we don't want to wait for any
738 				   writes */
739 				if (status == RF_RECON_WRITE_ERROR) {
740 					write_error = 1;
741 					num_writes++;
742 				}
743 
744 			} else if (status == RF_RECON_READ_STOPPED) {
745 				/* count this component as being "done" */
746 				reconDesc->numDisksDone++;
747 			} else if (status == RF_RECON_WRITE_DONE) {
748 				num_writes++;
749 			}
750 
751 			if (recon_error) {
752 				/* make sure any stragglers are woken up so that
753 				   their theads will complete, and we can get out
754 				   of here with all IO processed */
755 
756 				rf_WakeupHeadSepCBWaiters(raidPtr);
757 			}
758 
759 			raidPtr->reconControl->numRUsTotal =
760 				mapPtr->totalRUs;
761 			raidPtr->reconControl->numRUsComplete =
762 				mapPtr->totalRUs -
763 				rf_UnitsLeftToReconstruct(mapPtr);
764 
765 #if RF_DEBUG_RECON
766 			raidPtr->reconControl->percentComplete =
767 				(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
768 			if (rf_prReconSched) {
769 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
770 			}
771 #endif
772 		}
773 
774 		/* reads done, wakeup any waiters, and then wait for writes */
775 
776 		rf_WakeupHeadSepCBWaiters(raidPtr);
777 
778 		while (!recon_error && (num_writes < pending_writes)) {
779 			event = rf_GetNextReconEvent(reconDesc);
780 			status = ProcessReconEvent(raidPtr, event);
781 
782 			if (status == RF_RECON_WRITE_ERROR) {
783 				num_writes++;
784 				recon_error = 1;
785 				raidPtr->reconControl->error = 1;
786 				/* an error was encountered at the very end... bail */
787 			} else if (status == RF_RECON_WRITE_DONE) {
788 				num_writes++;
789 			} /* else it's something else, and we don't care */
790 		}
791 		if (recon_error ||
792 		    (raidPtr->reconControl->lastPSID == lastPSID)) {
793 			done = 1;
794 			break;
795 		}
796 
797 		prev = raidPtr->reconControl->lastPSID;
798 		raidPtr->reconControl->lastPSID += incPSID;
799 
800 		if (raidPtr->reconControl->lastPSID > lastPSID) {
801 			pending_writes = lastPSID - prev;
802 			raidPtr->reconControl->lastPSID = lastPSID;
803 		}
804 		/* back down curPSID to get ready for the next round... */
805 		for (i = 0; i < raidPtr->numCol; i++) {
806 			if (i != col) {
807 				raidPtr->reconControl->perDiskInfo[i].curPSID--;
808 				raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
809 			}
810 		}
811 	}
812 
813 	mapPtr = raidPtr->reconControl->reconMap;
814 	if (rf_reconDebug) {
815 		printf("RECON: all reads completed\n");
816 	}
817 	/* at this point all the reads have completed.  We now wait
818 	 * for any pending writes to complete, and then we're done */
819 
820 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
821 
822 		event = rf_GetNextReconEvent(reconDesc);
823 		status = ProcessReconEvent(raidPtr, event);
824 
825 		if (status == RF_RECON_WRITE_ERROR) {
826 			recon_error = 1;
827 			raidPtr->reconControl->error = 1;
828 			/* an error was encountered at the very end... bail */
829 		} else {
830 #if RF_DEBUG_RECON
831 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
832 			if (rf_prReconSched) {
833 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
834 			}
835 #endif
836 		}
837 	}
838 
839 	if (recon_error) {
840 		/* we've encountered an error in reconstructing. */
841 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
842 
843 		/* we start by blocking IO to the RAID set. */
844 		rf_SuspendNewRequestsAndWait(raidPtr);
845 
846 		rf_lock_mutex2(raidPtr->mutex);
847 		/* mark set as being degraded, rather than
848 		   rf_rs_reconstructing as we were before the problem.
849 		   After this is done we can update status of the
850 		   component disks without worrying about someone
851 		   trying to read from a failed component.
852 		*/
853 		raidPtr->status = rf_rs_degraded;
854 		rf_unlock_mutex2(raidPtr->mutex);
855 
856 		/* resume IO */
857 		rf_ResumeNewRequests(raidPtr);
858 
859 		/* At this point there are two cases:
860 		   1) If we've experienced a read error, then we've
861 		   already waited for all the reads we're going to get,
862 		   and we just need to wait for the writes.
863 
864 		   2) If we've experienced a write error, we've also
865 		   already waited for all the reads to complete,
866 		   but there is little point in waiting for the writes --
867 		   when they do complete, they will just be ignored.
868 
869 		   So we just wait for writes to complete if we didn't have a
870 		   write error.
871 		*/
872 
873 		if (!write_error) {
874 			/* wait for writes to complete */
875 			while (raidPtr->reconControl->pending_writes > 0) {
876 
877 				event = rf_GetNextReconEvent(reconDesc);
878 				status = ProcessReconEvent(raidPtr, event);
879 
880 				if (status == RF_RECON_WRITE_ERROR) {
881 					raidPtr->reconControl->error = 1;
882 					/* an error was encountered at the very end... bail.
883 					   This will be very bad news for the user, since
884 					   at this point there will have been a read error
885 					   on one component, and a write error on another!
886 					*/
887 					break;
888 				}
889 			}
890 		}
891 
892 
893 		/* cleanup */
894 
895 		/* drain the event queue - after waiting for the writes above,
896 		   there shouldn't be much (if anything!) left in the queue. */
897 
898 		rf_DrainReconEventQueue(reconDesc);
899 
900 		/* XXX  As much as we'd like to free the recon control structure
901 		   and the reconDesc, we have no way of knowing if/when those will
902 		   be touched by IO that has yet to occur.  It is rather poor to be
903 		   basically causing a 'memory leak' here, but there doesn't seem to be
904 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
905 		   gets a makeover this problem will go away.
906 		*/
907 #if 0
908 		rf_FreeReconControl(raidPtr);
909 #endif
910 
911 #if RF_ACC_TRACE > 0
912 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
913 #endif
914 		/* XXX see comment above */
915 #if 0
916 		FreeReconDesc(reconDesc);
917 #endif
918 
919 		return (1);
920 	}
921 
922 	/* Success:  mark the dead disk as reconstructed.  We quiesce
923 	 * the array here to assure no nasty interactions with pending
924 	 * user accesses when we free up the psstatus structure as
925 	 * part of FreeReconControl() */
926 
927 	rf_SuspendNewRequestsAndWait(raidPtr);
928 
929 	rf_lock_mutex2(raidPtr->mutex);
930 	raidPtr->numFailures--;
931 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
932 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
933 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
934 	rf_unlock_mutex2(raidPtr->mutex);
935 	RF_GETTIME(etime);
936 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
937 
938 	rf_ResumeNewRequests(raidPtr);
939 
940 	printf("raid%d: Reconstruction of disk at col %d completed\n",
941 	       raidPtr->raidid, col);
942 	xor_s = raidPtr->accumXorTimeUs / 1000000;
943 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
944 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
945 	       raidPtr->raidid,
946 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
947 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
948 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
949 	       raidPtr->raidid,
950 	       (int) raidPtr->reconControl->starttime.tv_sec,
951 	       (int) raidPtr->reconControl->starttime.tv_usec,
952 	       (int) etime.tv_sec, (int) etime.tv_usec);
953 #if RF_RECON_STATS > 0
954 	printf("raid%d: Total head-sep stall count was %d\n",
955 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
956 #endif				/* RF_RECON_STATS > 0 */
957 	rf_FreeReconControl(raidPtr);
958 #if RF_ACC_TRACE > 0
959 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
960 #endif
961 	FreeReconDesc(reconDesc);
962 
963 	return (0);
964 
965 }
966 /*****************************************************************************
967  * do the right thing upon each reconstruction event.
968  *****************************************************************************/
969 static int
970 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
971 {
972 	int     retcode = 0, submitblocked;
973 	RF_ReconBuffer_t *rbuf;
974 	RF_SectorCount_t sectorsPerRU;
975 
976 	retcode = RF_RECON_READ_STOPPED;
977 
978 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
979 
980 	switch (event->type) {
981 
982 		/* a read I/O has completed */
983 	case RF_REVENT_READDONE:
984 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
985 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
986 		    event->col, rbuf->parityStripeID);
987 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
988 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
989 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
990 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
991 		if (!raidPtr->reconControl->error) {
992 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
993 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
994 			if (!submitblocked)
995 				retcode = IssueNextReadRequest(raidPtr, event->col);
996 			else
997 				retcode = 0;
998 		}
999 		break;
1000 
1001 		/* a write I/O has completed */
1002 	case RF_REVENT_WRITEDONE:
1003 #if RF_DEBUG_RECON
1004 		if (rf_floatingRbufDebug) {
1005 			rf_CheckFloatingRbufCount(raidPtr, 1);
1006 		}
1007 #endif
1008 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1009 		rbuf = (RF_ReconBuffer_t *) event->arg;
1010 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1011 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
1012 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
1013 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
1014 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
1015 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
1016 
1017 		rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1018 		raidPtr->reconControl->pending_writes--;
1019 		rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1020 
1021 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
1022 			rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1023 			while(raidPtr->reconControl->rb_lock) {
1024 				rf_wait_cond2(raidPtr->reconControl->rb_cv,
1025 					      raidPtr->reconControl->rb_mutex);
1026 			}
1027 			raidPtr->reconControl->rb_lock = 1;
1028 			rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1029 
1030 			raidPtr->numFullReconBuffers--;
1031 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
1032 
1033 			rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1034 			raidPtr->reconControl->rb_lock = 0;
1035 			rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
1036 			rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1037 		} else
1038 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
1039 				rf_FreeReconBuffer(rbuf);
1040 			else
1041 				RF_ASSERT(0);
1042 		retcode = RF_RECON_WRITE_DONE;
1043 		break;
1044 
1045 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
1046 					 * cleared */
1047 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
1048 		if (!raidPtr->reconControl->error) {
1049 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
1050 							     0, (int) (long) event->arg);
1051 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
1052 							 * BUFCLEAR event if we
1053 							 * couldn't submit */
1054 			retcode = IssueNextReadRequest(raidPtr, event->col);
1055 		}
1056 		break;
1057 
1058 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
1059 					 * blockage has been cleared */
1060 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
1061 		if (!raidPtr->reconControl->error) {
1062 			retcode = TryToRead(raidPtr, event->col);
1063 		}
1064 		break;
1065 
1066 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
1067 					 * reconstruction blockage has been
1068 					 * cleared */
1069 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1070 		if (!raidPtr->reconControl->error) {
1071 			retcode = TryToRead(raidPtr, event->col);
1072 		}
1073 		break;
1074 
1075 		/* a buffer has become ready to write */
1076 	case RF_REVENT_BUFREADY:
1077 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1078 		if (!raidPtr->reconControl->error) {
1079 			retcode = IssueNextWriteRequest(raidPtr);
1080 #if RF_DEBUG_RECON
1081 			if (rf_floatingRbufDebug) {
1082 				rf_CheckFloatingRbufCount(raidPtr, 1);
1083 			}
1084 #endif
1085 		}
1086 		break;
1087 
1088 		/* we need to skip the current RU entirely because it got
1089 		 * recon'd while we were waiting for something else to happen */
1090 	case RF_REVENT_SKIP:
1091 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1092 		if (!raidPtr->reconControl->error) {
1093 			retcode = IssueNextReadRequest(raidPtr, event->col);
1094 		}
1095 		break;
1096 
1097 		/* a forced-reconstruction read access has completed.  Just
1098 		 * submit the buffer */
1099 	case RF_REVENT_FORCEDREADDONE:
1100 		rbuf = (RF_ReconBuffer_t *) event->arg;
1101 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1102 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1103 		if (!raidPtr->reconControl->error) {
1104 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1105 			RF_ASSERT(!submitblocked);
1106 			retcode = 0;
1107 		}
1108 		break;
1109 
1110 		/* A read I/O failed to complete */
1111 	case RF_REVENT_READ_FAILED:
1112 		retcode = RF_RECON_READ_ERROR;
1113 		break;
1114 
1115 		/* A write I/O failed to complete */
1116 	case RF_REVENT_WRITE_FAILED:
1117 		retcode = RF_RECON_WRITE_ERROR;
1118 
1119 		/* This is an error, but it was a pending write.
1120 		   Account for it. */
1121 		rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1122 		raidPtr->reconControl->pending_writes--;
1123 		rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1124 
1125 		rbuf = (RF_ReconBuffer_t *) event->arg;
1126 
1127 		/* cleanup the disk queue data */
1128 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1129 
1130 		/* At this point we're erroring out, badly, and floatingRbufs
1131 		   may not even be valid.  Rather than putting this back onto
1132 		   the floatingRbufs list, just arrange for its immediate
1133 		   destruction.
1134 		*/
1135 		rf_FreeReconBuffer(rbuf);
1136 		break;
1137 
1138 		/* a forced read I/O failed to complete */
1139 	case RF_REVENT_FORCEDREAD_FAILED:
1140 		retcode = RF_RECON_READ_ERROR;
1141 		break;
1142 
1143 	default:
1144 		RF_PANIC();
1145 	}
1146 	rf_FreeReconEventDesc(raidPtr, event);
1147 	return (retcode);
1148 }
1149 /*****************************************************************************
1150  *
1151  * find the next thing that's needed on the indicated disk, and issue
1152  * a read request for it.  We assume that the reconstruction buffer
1153  * associated with this process is free to receive the data.  If
1154  * reconstruction is blocked on the indicated RU, we issue a
1155  * blockage-release request instead of a physical disk read request.
1156  * If the current disk gets too far ahead of the others, we issue a
1157  * head-separation wait request and return.
1158  *
1159  * ctrl->{ru_count, curPSID, diskOffset} and
1160  * rbuf->failedDiskSectorOffset are maintained to point to the unit
1161  * we're currently accessing.  Note that this deviates from the
1162  * standard C idiom of having counters point to the next thing to be
1163  * accessed.  This allows us to easily retry when we're blocked by
1164  * head separation or reconstruction-blockage events.
1165  *
1166  *****************************************************************************/
1167 static int
1168 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1169 {
1170 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1171 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1172 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1173 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1174 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1175 	int     do_new_check = 0, retcode = 0, status;
1176 
1177 	/* if we are currently the slowest disk, mark that we have to do a new
1178 	 * check */
1179 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1180 		do_new_check = 1;
1181 
1182 	while (1) {
1183 
1184 		ctrl->ru_count++;
1185 		if (ctrl->ru_count < RUsPerPU) {
1186 			ctrl->diskOffset += sectorsPerRU;
1187 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1188 		} else {
1189 			ctrl->curPSID++;
1190 			ctrl->ru_count = 0;
1191 			/* code left over from when head-sep was based on
1192 			 * parity stripe id */
1193 			if (ctrl->curPSID > raidPtr->reconControl->lastPSID) {
1194 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1195 				return (RF_RECON_DONE_READS);	/* finito! */
1196 			}
1197 			/* find the disk offsets of the start of the parity
1198 			 * stripe on both the current disk and the failed
1199 			 * disk. skip this entire parity stripe if either disk
1200 			 * does not appear in the indicated PS */
1201 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1202 			    &rbuf->spCol, &rbuf->spOffset);
1203 			if (status) {
1204 				ctrl->ru_count = RUsPerPU - 1;
1205 				continue;
1206 			}
1207 		}
1208 		rbuf->which_ru = ctrl->ru_count;
1209 
1210 		/* skip this RU if it's already been reconstructed */
1211 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1212 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1213 			continue;
1214 		}
1215 		break;
1216 	}
1217 	ctrl->headSepCounter++;
1218 	if (do_new_check)
1219 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
1220 
1221 
1222 	/* at this point, we have definitely decided what to do, and we have
1223 	 * only to see if we can actually do it now */
1224 	rbuf->parityStripeID = ctrl->curPSID;
1225 	rbuf->which_ru = ctrl->ru_count;
1226 #if RF_ACC_TRACE > 0
1227 	memset(&raidPtr->recon_tracerecs[col], 0,
1228 	    sizeof(raidPtr->recon_tracerecs[col]));
1229 	raidPtr->recon_tracerecs[col].reconacc = 1;
1230 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1231 #endif
1232 	retcode = TryToRead(raidPtr, col);
1233 	return (retcode);
1234 }
1235 
1236 /*
1237  * tries to issue the next read on the indicated disk.  We may be
1238  * blocked by (a) the heads being too far apart, or (b) recon on the
1239  * indicated RU being blocked due to a write by a user thread.  In
1240  * this case, we issue a head-sep or blockage wait request, which will
1241  * cause this same routine to be invoked again later when the blockage
1242  * has cleared.
1243  */
1244 
1245 static int
1246 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1247 {
1248 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1249 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1250 	RF_StripeNum_t psid = ctrl->curPSID;
1251 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1252 	RF_DiskQueueData_t *req;
1253 	int     status;
1254 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1255 
1256 	/* if the current disk is too far ahead of the others, issue a
1257 	 * head-separation wait and return */
1258 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1259 		return (0);
1260 
1261 	/* allocate a new PSS in case we need it */
1262 	newpssPtr = rf_AllocPSStatus(raidPtr);
1263 
1264 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1265 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1266 
1267 	if (pssPtr != newpssPtr) {
1268 		rf_FreePSStatus(raidPtr, newpssPtr);
1269 	}
1270 
1271 	/* if recon is blocked on the indicated parity stripe, issue a
1272 	 * block-wait request and return. this also must mark the indicated RU
1273 	 * in the stripe as under reconstruction if not blocked. */
1274 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1275 	if (status == RF_PSS_RECON_BLOCKED) {
1276 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1277 		goto out;
1278 	} else
1279 		if (status == RF_PSS_FORCED_ON_WRITE) {
1280 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1281 			goto out;
1282 		}
1283 	/* make one last check to be sure that the indicated RU didn't get
1284 	 * reconstructed while we were waiting for something else to happen.
1285 	 * This is unfortunate in that it causes us to make this check twice
1286 	 * in the normal case.  Might want to make some attempt to re-work
1287 	 * this so that we only do this check if we've definitely blocked on
1288 	 * one of the above checks.  When this condition is detected, we may
1289 	 * have just created a bogus status entry, which we need to delete. */
1290 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1291 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1292 		if (pssPtr == newpssPtr)
1293 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1294 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1295 		goto out;
1296 	}
1297 	/* found something to read.  issue the I/O */
1298 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1299 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1300 #if RF_ACC_TRACE > 0
1301 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1302 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1303 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1304 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1305 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1306 #endif
1307 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1308 	 * should be in kernel space */
1309 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1310 	    ReconReadDoneProc, (void *) ctrl,
1311 #if RF_ACC_TRACE > 0
1312 				     &raidPtr->recon_tracerecs[col],
1313 #else
1314 				     NULL,
1315 #endif
1316 				     (void *) raidPtr, 0, NULL);
1317 
1318 	ctrl->rbuf->arg = (void *) req;
1319 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1320 	pssPtr->issued[col] = 1;
1321 
1322 out:
1323 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1324 	return (0);
1325 }
1326 
1327 
1328 /*
1329  * given a parity stripe ID, we want to find out whether both the
1330  * current disk and the failed disk exist in that parity stripe.  If
1331  * not, we want to skip this whole PS.  If so, we want to find the
1332  * disk offset of the start of the PS on both the current disk and the
1333  * failed disk.
1334  *
1335  * this works by getting a list of disks comprising the indicated
1336  * parity stripe, and searching the list for the current and failed
1337  * disks.  Once we've decided they both exist in the parity stripe, we
1338  * need to decide whether each is data or parity, so that we'll know
1339  * which mapping function to call to get the corresponding disk
1340  * offsets.
1341  *
1342  * this is kind of unpleasant, but doing it this way allows the
1343  * reconstruction code to use parity stripe IDs rather than physical
1344  * disks address to march through the failed disk, which greatly
1345  * simplifies a lot of code, as well as eliminating the need for a
1346  * reverse-mapping function.  I also think it will execute faster,
1347  * since the calls to the mapping module are kept to a minimum.
1348  *
1349  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1350  * THE STRIPE IN THE CORRECT ORDER
1351  *
1352  * raidPtr          - raid descriptor
1353  * psid             - parity stripe identifier
1354  * col              - column of disk to find the offsets for
1355  * spCol            - out: col of spare unit for failed unit
1356  * spOffset         - out: offset into disk containing spare unit
1357  *
1358  */
1359 
1360 
1361 static int
1362 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1363 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1364 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1365 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1366 {
1367 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1368 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1369 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1370 	RF_RowCol_t *diskids;
1371 	u_int   i, j, k, i_offset, j_offset;
1372 	RF_RowCol_t pcol;
1373 	int     testcol;
1374 	RF_SectorNum_t poffset;
1375 	char    i_is_parity = 0, j_is_parity = 0;
1376 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1377 
1378 	/* get a listing of the disks comprising that stripe */
1379 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1380 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1381 	RF_ASSERT(diskids);
1382 
1383 	/* reject this entire parity stripe if it does not contain the
1384 	 * indicated disk or it does not contain the failed disk */
1385 
1386 	for (i = 0; i < stripeWidth; i++) {
1387 		if (col == diskids[i])
1388 			break;
1389 	}
1390 	if (i == stripeWidth)
1391 		goto skipit;
1392 	for (j = 0; j < stripeWidth; j++) {
1393 		if (fcol == diskids[j])
1394 			break;
1395 	}
1396 	if (j == stripeWidth) {
1397 		goto skipit;
1398 	}
1399 	/* find out which disk the parity is on */
1400 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1401 
1402 	/* find out if either the current RU or the failed RU is parity */
1403 	/* also, if the parity occurs in this stripe prior to the data and/or
1404 	 * failed col, we need to decrement i and/or j */
1405 	for (k = 0; k < stripeWidth; k++)
1406 		if (diskids[k] == pcol)
1407 			break;
1408 	RF_ASSERT(k < stripeWidth);
1409 	i_offset = i;
1410 	j_offset = j;
1411 	if (k < i)
1412 		i_offset--;
1413 	else
1414 		if (k == i) {
1415 			i_is_parity = 1;
1416 			i_offset = 0;
1417 		}		/* set offsets to zero to disable multiply
1418 				 * below */
1419 	if (k < j)
1420 		j_offset--;
1421 	else
1422 		if (k == j) {
1423 			j_is_parity = 1;
1424 			j_offset = 0;
1425 		}
1426 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1427 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1428 	 * tells us how far into the stripe the [current,failed] disk is. */
1429 
1430 	/* call the mapping routine to get the offset into the current disk,
1431 	 * repeat for failed disk. */
1432 	if (i_is_parity)
1433 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1434 	else
1435 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1436 
1437 	RF_ASSERT(col == testcol);
1438 
1439 	if (j_is_parity)
1440 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1441 	else
1442 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1443 	RF_ASSERT(fcol == testcol);
1444 
1445 	/* now locate the spare unit for the failed unit */
1446 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1447 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1448 		if (j_is_parity)
1449 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1450 		else
1451 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1452 	} else {
1453 #endif
1454 		*spCol = raidPtr->reconControl->spareCol;
1455 		*spOffset = *outFailedDiskSectorOffset;
1456 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1457 	}
1458 #endif
1459 	return (0);
1460 
1461 skipit:
1462 	Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1463 	    psid, col);
1464 	return (1);
1465 }
1466 /* this is called when a buffer has become ready to write to the replacement disk */
1467 static int
1468 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1469 {
1470 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1471 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1472 #if RF_ACC_TRACE > 0
1473 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1474 #endif
1475 	RF_ReconBuffer_t *rbuf;
1476 	RF_DiskQueueData_t *req;
1477 
1478 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1479 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1480 				 * have gotten the event that sent us here */
1481 	RF_ASSERT(rbuf->pssPtr);
1482 
1483 	rbuf->pssPtr->writeRbuf = rbuf;
1484 	rbuf->pssPtr = NULL;
1485 
1486 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1487 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1488 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1489 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1490 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1491 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1492 
1493 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1494 	 * kernel space */
1495 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1496 	    sectorsPerRU, rbuf->buffer,
1497 	    rbuf->parityStripeID, rbuf->which_ru,
1498 	    ReconWriteDoneProc, (void *) rbuf,
1499 #if RF_ACC_TRACE > 0
1500 	    &raidPtr->recon_tracerecs[fcol],
1501 #else
1502 				     NULL,
1503 #endif
1504 	    (void *) raidPtr, 0, NULL);
1505 
1506 	rbuf->arg = (void *) req;
1507 	rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1508 	raidPtr->reconControl->pending_writes++;
1509 	rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1510 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1511 
1512 	return (0);
1513 }
1514 
1515 /*
1516  * this gets called upon the completion of a reconstruction read
1517  * operation the arg is a pointer to the per-disk reconstruction
1518  * control structure for the process that just finished a read.
1519  *
1520  * called at interrupt context in the kernel, so don't do anything
1521  * illegal here.
1522  */
1523 static void
1524 ReconReadDoneProc(void *arg, int status)
1525 {
1526 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1527 	RF_Raid_t *raidPtr;
1528 
1529 	/* Detect that reconCtrl is no longer valid, and if that
1530 	   is the case, bail without calling rf_CauseReconEvent().
1531 	   There won't be anyone listening for this event anyway */
1532 
1533 	if (ctrl->reconCtrl == NULL)
1534 		return;
1535 
1536 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1537 
1538 	if (status) {
1539 		printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1540 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1541 		return;
1542 	}
1543 #if RF_ACC_TRACE > 0
1544 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1545 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1546 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1547 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1548 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1549 #endif
1550 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1551 	return;
1552 }
1553 /* this gets called upon the completion of a reconstruction write operation.
1554  * the arg is a pointer to the rbuf that was just written
1555  *
1556  * called at interrupt context in the kernel, so don't do anything illegal here.
1557  */
1558 static void
1559 ReconWriteDoneProc(void *arg, int status)
1560 {
1561 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1562 
1563 	/* Detect that reconControl is no longer valid, and if that
1564 	   is the case, bail without calling rf_CauseReconEvent().
1565 	   There won't be anyone listening for this event anyway */
1566 
1567 	if (rbuf->raidPtr->reconControl == NULL)
1568 		return;
1569 
1570 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1571 	if (status) {
1572 		printf("raid%d: Recon write failed (status %d(0x%x))!\n", rbuf->raidPtr->raidid,status,status);
1573 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1574 		return;
1575 	}
1576 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1577 }
1578 
1579 
1580 /*
1581  * computes a new minimum head sep, and wakes up anyone who needs to
1582  * be woken as a result
1583  */
1584 static void
1585 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1586 {
1587 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1588 	RF_HeadSepLimit_t new_min;
1589 	RF_RowCol_t i;
1590 	RF_CallbackValueDesc_t *p;
1591 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1592 								 * of a minimum */
1593 
1594 
1595 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1596 	while(reconCtrlPtr->rb_lock) {
1597 		rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1598 	}
1599 	reconCtrlPtr->rb_lock = 1;
1600 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1601 
1602 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1603 	for (i = 0; i < raidPtr->numCol; i++)
1604 		if (i != reconCtrlPtr->fcol) {
1605 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1606 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1607 		}
1608 	/* set the new minimum and wake up anyone who can now run again */
1609 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1610 		reconCtrlPtr->minHeadSepCounter = new_min;
1611 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1612 		while (reconCtrlPtr->headSepCBList) {
1613 			if (reconCtrlPtr->headSepCBList->v > new_min)
1614 				break;
1615 			p = reconCtrlPtr->headSepCBList;
1616 			reconCtrlPtr->headSepCBList = p->next;
1617 			p->next = NULL;
1618 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1619 			rf_FreeCallbackValueDesc(raidPtr, p);
1620 		}
1621 
1622 	}
1623 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1624 	reconCtrlPtr->rb_lock = 0;
1625 	rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1626 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1627 }
1628 
1629 /*
1630  * checks to see that the maximum head separation will not be violated
1631  * if we initiate a reconstruction I/O on the indicated disk.
1632  * Limiting the maximum head separation between two disks eliminates
1633  * the nasty buffer-stall conditions that occur when one disk races
1634  * ahead of the others and consumes all of the floating recon buffers.
1635  * This code is complex and unpleasant but it's necessary to avoid
1636  * some very nasty, albeit fairly rare, reconstruction behavior.
1637  *
1638  * returns non-zero if and only if we have to stop working on the
1639  * indicated disk due to a head-separation delay.
1640  */
1641 static int
1642 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1643 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1644 		    RF_ReconUnitNum_t which_ru)
1645 {
1646 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1647 	RF_CallbackValueDesc_t *cb, *p, *pt;
1648 	int     retval = 0;
1649 
1650 	/* if we're too far ahead of the slowest disk, stop working on this
1651 	 * disk until the slower ones catch up.  We do this by scheduling a
1652 	 * wakeup callback for the time when the slowest disk has caught up.
1653 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1654 	 * must have fallen to at most 80% of the max allowable head
1655 	 * separation before we'll wake up.
1656 	 *
1657 	 */
1658 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1659 	while(reconCtrlPtr->rb_lock) {
1660 		rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
1661 	}
1662 	reconCtrlPtr->rb_lock = 1;
1663 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1664 	if ((raidPtr->headSepLimit >= 0) &&
1665 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1666 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1667 			 raidPtr->raidid, col, ctrl->headSepCounter,
1668 			 reconCtrlPtr->minHeadSepCounter,
1669 			 raidPtr->headSepLimit);
1670 		cb = rf_AllocCallbackValueDesc(raidPtr);
1671 		/* the minHeadSepCounter value we have to get to before we'll
1672 		 * wake up.  build in 20% hysteresis. */
1673 		cb->v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1674 		cb->col = col;
1675 		cb->next = NULL;
1676 
1677 		/* insert this callback descriptor into the sorted list of
1678 		 * pending head-sep callbacks */
1679 		p = reconCtrlPtr->headSepCBList;
1680 		if (!p)
1681 			reconCtrlPtr->headSepCBList = cb;
1682 		else
1683 			if (cb->v < p->v) {
1684 				cb->next = reconCtrlPtr->headSepCBList;
1685 				reconCtrlPtr->headSepCBList = cb;
1686 			} else {
1687 				for (pt = p, p = p->next; p && (p->v < cb->v); pt = p, p = p->next);
1688 				cb->next = p;
1689 				pt->next = cb;
1690 			}
1691 		retval = 1;
1692 #if RF_RECON_STATS > 0
1693 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1694 #endif				/* RF_RECON_STATS > 0 */
1695 	}
1696 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
1697 	reconCtrlPtr->rb_lock = 0;
1698 	rf_broadcast_cond2(reconCtrlPtr->rb_cv);
1699 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
1700 
1701 	return (retval);
1702 }
1703 /*
1704  * checks to see if reconstruction has been either forced or blocked
1705  * by a user operation.  if forced, we skip this RU entirely.  else if
1706  * blocked, put ourselves on the wait list.  else return 0.
1707  *
1708  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1709  */
1710 static int
1711 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1712 				   RF_ReconParityStripeStatus_t *pssPtr,
1713 				   RF_PerDiskReconCtrl_t *ctrl,
1714 				   RF_RowCol_t col,
1715 				   RF_StripeNum_t psid,
1716 				   RF_ReconUnitNum_t which_ru)
1717 {
1718 	RF_CallbackValueDesc_t *cb;
1719 	int     retcode = 0;
1720 
1721 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1722 		retcode = RF_PSS_FORCED_ON_WRITE;
1723 	else
1724 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1725 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1726 			cb = rf_AllocCallbackValueDesc(raidPtr);	/* append ourselves to
1727 									 * the blockage-wait
1728 									 * list */
1729 			cb->col = col;
1730 			cb->next = pssPtr->blockWaitList;
1731 			pssPtr->blockWaitList = cb;
1732 			retcode = RF_PSS_RECON_BLOCKED;
1733 		}
1734 	if (!retcode)
1735 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1736 							 * reconstruction */
1737 
1738 	return (retcode);
1739 }
1740 /*
1741  * if reconstruction is currently ongoing for the indicated stripeID,
1742  * reconstruction is forced to completion and we return non-zero to
1743  * indicate that the caller must wait.  If not, then reconstruction is
1744  * blocked on the indicated stripe and the routine returns zero.  If
1745  * and only if we return non-zero, we'll cause the cbFunc to get
1746  * invoked with the cbArg when the reconstruction has completed.
1747  */
1748 int
1749 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1750 		     void (*cbFunc)(void *), void *cbArg)
1751 {
1752 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1753 							 * forcing recon on */
1754 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1755 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1756 						 * stripe status structure */
1757 	RF_StripeNum_t psid;	/* parity stripe id */
1758 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1759 						 * offset */
1760 	RF_RowCol_t *diskids;
1761 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1762 	RF_RowCol_t fcol, diskno, i;
1763 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1764 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1765 	RF_CallbackFuncDesc_t *cb;
1766 	int     nPromoted;
1767 
1768 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1769 
1770 	/* allocate a new PSS in case we need it */
1771         newpssPtr = rf_AllocPSStatus(raidPtr);
1772 
1773 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1774 
1775 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1776 
1777         if (pssPtr != newpssPtr) {
1778                 rf_FreePSStatus(raidPtr, newpssPtr);
1779         }
1780 
1781 	/* if recon is not ongoing on this PS, just return */
1782 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1783 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1784 		return (0);
1785 	}
1786 	/* otherwise, we have to wait for reconstruction to complete on this
1787 	 * RU. */
1788 	/* In order to avoid waiting for a potentially large number of
1789 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1790 	 * not low-priority) reconstruction on this RU. */
1791 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1792 		DDprintf1("Forcing recon on psid %ld\n", psid);
1793 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1794 								 * forced recon */
1795 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1796 							 * that we just set */
1797 		fcol = raidPtr->reconControl->fcol;
1798 
1799 		/* get a listing of the disks comprising the indicated stripe */
1800 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1801 
1802 		/* For previously issued reads, elevate them to normal
1803 		 * priority.  If the I/O has already completed, it won't be
1804 		 * found in the queue, and hence this will be a no-op. For
1805 		 * unissued reads, allocate buffers and issue new reads.  The
1806 		 * fact that we've set the FORCED bit means that the regular
1807 		 * recon procs will not re-issue these reqs */
1808 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1809 			if ((diskno = diskids[i]) != fcol) {
1810 				if (pssPtr->issued[diskno]) {
1811 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1812 					if (rf_reconDebug && nPromoted)
1813 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1814 				} else {
1815 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1816 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1817 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1818 													 * location */
1819 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1820 					new_rbuf->which_ru = which_ru;
1821 					new_rbuf->failedDiskSectorOffset = fd_offset;
1822 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1823 
1824 					/* use NULL b_proc b/c all addrs
1825 					 * should be in kernel space */
1826 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1827 					    psid, which_ru,
1828 					    ForceReconReadDoneProc,
1829 					    (void *) new_rbuf,
1830 					    NULL, (void *) raidPtr, 0, NULL);
1831 
1832 					new_rbuf->arg = req;
1833 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1834 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1835 				}
1836 			}
1837 		/* if the write is sitting in the disk queue, elevate its
1838 		 * priority */
1839 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1840 			if (rf_reconDebug)
1841 				printf("raid%d: promoted write to col %d\n",
1842 				       raidPtr->raidid, fcol);
1843 	}
1844 	/* install a callback descriptor to be invoked when recon completes on
1845 	 * this parity stripe. */
1846 	cb = rf_AllocCallbackFuncDesc(raidPtr);
1847 	cb->callbackFunc = cbFunc;
1848 	cb->callbackArg = cbArg;
1849 	cb->next = pssPtr->procWaitList;
1850 	pssPtr->procWaitList = cb;
1851 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1852 		  raidPtr->raidid, psid);
1853 
1854 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1855 	return (1);
1856 }
1857 /* called upon the completion of a forced reconstruction read.
1858  * all we do is schedule the FORCEDREADONE event.
1859  * called at interrupt context in the kernel, so don't do anything illegal here.
1860  */
1861 static void
1862 ForceReconReadDoneProc(void *arg, int status)
1863 {
1864 	RF_ReconBuffer_t *rbuf = arg;
1865 
1866 	/* Detect that reconControl is no longer valid, and if that
1867 	   is the case, bail without calling rf_CauseReconEvent().
1868 	   There won't be anyone listening for this event anyway */
1869 
1870 	if (rbuf->raidPtr->reconControl == NULL)
1871 		return;
1872 
1873 	if (status) {
1874 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1875 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1876 		return;
1877 	}
1878 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1879 }
1880 /* releases a block on the reconstruction of the indicated stripe */
1881 int
1882 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1883 {
1884 	RF_StripeNum_t stripeID = asmap->stripeID;
1885 	RF_ReconParityStripeStatus_t *pssPtr;
1886 	RF_ReconUnitNum_t which_ru;
1887 	RF_StripeNum_t psid;
1888 	RF_CallbackValueDesc_t *cb;
1889 
1890 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1891 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1892 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1893 
1894 	/* When recon is forced, the pss desc can get deleted before we get
1895 	 * back to unblock recon. But, this can _only_ happen when recon is
1896 	 * forced. It would be good to put some kind of sanity check here, but
1897 	 * how to decide if recon was just forced or not? */
1898 	if (!pssPtr) {
1899 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1900 		 * RU %d\n",psid,which_ru); */
1901 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1902 		if (rf_reconDebug || rf_pssDebug)
1903 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1904 #endif
1905 		goto out;
1906 	}
1907 	pssPtr->blockCount--;
1908 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1909 		 raidPtr->raidid, psid, pssPtr->blockCount);
1910 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1911 
1912 		/* unblock recon before calling CauseReconEvent in case
1913 		 * CauseReconEvent causes us to try to issue a new read before
1914 		 * returning here. */
1915 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1916 
1917 
1918 		while (pssPtr->blockWaitList) {
1919 			/* spin through the block-wait list and
1920 			   release all the waiters */
1921 			cb = pssPtr->blockWaitList;
1922 			pssPtr->blockWaitList = cb->next;
1923 			cb->next = NULL;
1924 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1925 			rf_FreeCallbackValueDesc(raidPtr, cb);
1926 		}
1927 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1928 			/* if no recon was requested while recon was blocked */
1929 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1930 		}
1931 	}
1932 out:
1933 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1934 	return (0);
1935 }
1936 
1937 void
1938 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1939 {
1940 	RF_CallbackValueDesc_t *p;
1941 
1942 	rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1943 	while(raidPtr->reconControl->rb_lock) {
1944 		rf_wait_cond2(raidPtr->reconControl->rb_cv,
1945 			      raidPtr->reconControl->rb_mutex);
1946 	}
1947 
1948 	raidPtr->reconControl->rb_lock = 1;
1949 	rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1950 
1951 	while (raidPtr->reconControl->headSepCBList) {
1952 		p = raidPtr->reconControl->headSepCBList;
1953 		raidPtr->reconControl->headSepCBList = p->next;
1954 		p->next = NULL;
1955 		rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1956 		rf_FreeCallbackValueDesc(raidPtr, p);
1957 	}
1958 	rf_lock_mutex2(raidPtr->reconControl->rb_mutex);
1959 	raidPtr->reconControl->rb_lock = 0;
1960 	rf_broadcast_cond2(raidPtr->reconControl->rb_cv);
1961 	rf_unlock_mutex2(raidPtr->reconControl->rb_mutex);
1962 
1963 }
1964 
1965