1 /* $NetBSD: rf_reconstruct.c,v 1.127 2021/07/27 03:01:48 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.127 2021/07/27 03:01:48 oster Exp $"); 37 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 #include <sys/namei.h> /* for pathbuf */ 48 #include <dev/raidframe/raidframevar.h> 49 50 #include <miscfs/specfs/specdev.h> /* for v_rdev */ 51 52 #include "rf_raid.h" 53 #include "rf_reconutil.h" 54 #include "rf_revent.h" 55 #include "rf_reconbuffer.h" 56 #include "rf_acctrace.h" 57 #include "rf_etimer.h" 58 #include "rf_dag.h" 59 #include "rf_desc.h" 60 #include "rf_debugprint.h" 61 #include "rf_general.h" 62 #include "rf_driver.h" 63 #include "rf_utils.h" 64 #include "rf_shutdown.h" 65 66 #include "rf_kintf.h" 67 68 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 69 70 #if RF_DEBUG_RECON 71 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 75 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 76 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 77 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 78 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 79 80 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 81 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 82 83 #else /* RF_DEBUG_RECON */ 84 85 #define Dprintf(s) {} 86 #define Dprintf1(s,a) {} 87 #define Dprintf2(s,a,b) {} 88 #define Dprintf3(s,a,b,c) {} 89 #define Dprintf4(s,a,b,c,d) {} 90 #define Dprintf5(s,a,b,c,d,e) {} 91 #define Dprintf6(s,a,b,c,d,e,f) {} 92 #define Dprintf7(s,a,b,c,d,e,f,g) {} 93 94 #define DDprintf1(s,a) {} 95 #define DDprintf2(s,a,b) {} 96 97 #endif /* RF_DEBUG_RECON */ 98 99 #define RF_RECON_DONE_READS 1 100 #define RF_RECON_READ_ERROR 2 101 #define RF_RECON_WRITE_ERROR 3 102 #define RF_RECON_READ_STOPPED 4 103 #define RF_RECON_WRITE_DONE 5 104 105 #define RF_MAX_FREE_RECONBUFFER 32 106 #define RF_MIN_FREE_RECONBUFFER 16 107 108 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 109 RF_RaidDisk_t *, int, RF_RowCol_t); 110 static void FreeReconDesc(RF_RaidReconDesc_t *); 111 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 112 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 113 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 114 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 115 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 116 RF_SectorNum_t *); 117 static int IssueNextWriteRequest(RF_Raid_t *); 118 static void ReconReadDoneProc(void *, int); 119 static void ReconWriteDoneProc(void *, int); 120 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 121 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 122 RF_RowCol_t, RF_HeadSepLimit_t, 123 RF_ReconUnitNum_t); 124 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 125 RF_ReconParityStripeStatus_t *, 126 RF_PerDiskReconCtrl_t *, 127 RF_RowCol_t, RF_StripeNum_t, 128 RF_ReconUnitNum_t); 129 static void ForceReconReadDoneProc(void *, int); 130 static void rf_ShutdownReconstruction(void *); 131 132 struct RF_ReconDoneProc_s { 133 void (*proc) (RF_Raid_t *, void *); 134 void *arg; 135 RF_ReconDoneProc_t *next; 136 }; 137 138 /************************************************************************** 139 * 140 * sets up the parameters that will be used by the reconstruction process 141 * currently there are none, except for those that the layout-specific 142 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 143 * 144 * in the kernel, we fire off the recon thread. 145 * 146 **************************************************************************/ 147 static void 148 rf_ShutdownReconstruction(void *arg) 149 { 150 RF_Raid_t *raidPtr; 151 152 raidPtr = (RF_Raid_t *) arg; 153 154 pool_destroy(&raidPtr->pools.reconbuffer); 155 } 156 157 int 158 rf_ConfigureReconstruction(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr, 159 RF_Config_t *cfgPtr) 160 { 161 162 rf_pool_init(raidPtr, raidPtr->poolNames.reconbuffer, &raidPtr->pools.reconbuffer, sizeof(RF_ReconBuffer_t), 163 "reconbuf", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 164 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, raidPtr); 165 166 return (0); 167 } 168 169 static RF_RaidReconDesc_t * 170 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 171 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 172 RF_RowCol_t scol) 173 { 174 175 RF_RaidReconDesc_t *reconDesc; 176 177 reconDesc = RF_Malloc(sizeof(*reconDesc)); 178 reconDesc->raidPtr = raidPtr; 179 reconDesc->col = col; 180 reconDesc->spareDiskPtr = spareDiskPtr; 181 reconDesc->numDisksDone = numDisksDone; 182 reconDesc->scol = scol; 183 reconDesc->next = NULL; 184 185 return (reconDesc); 186 } 187 188 static void 189 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 190 { 191 #if RF_RECON_STATS > 0 192 printf("raid%d: %lu recon event waits, %lu recon delays\n", 193 reconDesc->raidPtr->raidid, 194 (long) reconDesc->numReconEventWaits, 195 (long) reconDesc->numReconExecDelays); 196 #endif /* RF_RECON_STATS > 0 */ 197 printf("raid%d: %lu max exec ticks\n", 198 reconDesc->raidPtr->raidid, 199 (long) reconDesc->maxReconExecTicks); 200 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 201 } 202 203 204 /***************************************************************************** 205 * 206 * primary routine to reconstruct a failed disk. This should be called from 207 * within its own thread. It won't return until reconstruction completes, 208 * fails, or is aborted. 209 *****************************************************************************/ 210 int 211 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 212 { 213 const RF_LayoutSW_t *lp; 214 int rc; 215 216 lp = raidPtr->Layout.map; 217 if (lp->SubmitReconBuffer) { 218 /* 219 * The current infrastructure only supports reconstructing one 220 * disk at a time for each array. 221 */ 222 rf_lock_mutex2(raidPtr->mutex); 223 while (raidPtr->reconInProgress) { 224 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 225 } 226 raidPtr->reconInProgress++; 227 rf_unlock_mutex2(raidPtr->mutex); 228 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 229 rf_lock_mutex2(raidPtr->mutex); 230 raidPtr->reconInProgress--; 231 } else { 232 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 233 lp->parityConfig); 234 rc = EIO; 235 rf_lock_mutex2(raidPtr->mutex); 236 } 237 rf_signal_cond2(raidPtr->waitForReconCond); 238 rf_unlock_mutex2(raidPtr->mutex); 239 return (rc); 240 } 241 242 int 243 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 244 { 245 RF_ComponentLabel_t *c_label; 246 RF_RaidDisk_t *spareDiskPtr = NULL; 247 RF_RaidReconDesc_t *reconDesc; 248 RF_RowCol_t scol; 249 int numDisksDone = 0, rc; 250 251 /* first look for a spare drive onto which to reconstruct the data */ 252 /* spare disk descriptors are stored in row 0. This may have to 253 * change eventually */ 254 255 rf_lock_mutex2(raidPtr->mutex); 256 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 257 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 258 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 259 if (raidPtr->status != rf_rs_degraded) { 260 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 261 rf_unlock_mutex2(raidPtr->mutex); 262 return (EINVAL); 263 } 264 scol = (-1); 265 } else { 266 #endif 267 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 268 if (raidPtr->Disks[scol].status == rf_ds_spare) { 269 spareDiskPtr = &raidPtr->Disks[scol]; 270 spareDiskPtr->status = rf_ds_rebuilding_spare; 271 break; 272 } 273 } 274 if (!spareDiskPtr) { 275 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 276 rf_unlock_mutex2(raidPtr->mutex); 277 return (ENOSPC); 278 } 279 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 280 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 281 } 282 #endif 283 rf_unlock_mutex2(raidPtr->mutex); 284 285 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 286 raidPtr->reconDesc = (void *) reconDesc; 287 #if RF_RECON_STATS > 0 288 reconDesc->hsStallCount = 0; 289 reconDesc->numReconExecDelays = 0; 290 reconDesc->numReconEventWaits = 0; 291 #endif /* RF_RECON_STATS > 0 */ 292 reconDesc->reconExecTimerRunning = 0; 293 reconDesc->reconExecTicks = 0; 294 reconDesc->maxReconExecTicks = 0; 295 rc = rf_ContinueReconstructFailedDisk(reconDesc); 296 297 if (!rc) { 298 /* fix up the component label */ 299 /* Don't actually need the read here.. */ 300 c_label = raidget_component_label(raidPtr, scol); 301 302 raid_init_component_label(raidPtr, c_label); 303 c_label->row = 0; 304 c_label->column = col; 305 c_label->clean = RF_RAID_DIRTY; 306 c_label->status = rf_ds_optimal; 307 rf_component_label_set_partitionsize(c_label, 308 raidPtr->Disks[scol].partitionSize); 309 310 /* We've just done a rebuild based on all the other 311 disks, so at this point the parity is known to be 312 clean, even if it wasn't before. */ 313 314 /* XXX doesn't hold for RAID 6!!*/ 315 316 rf_lock_mutex2(raidPtr->mutex); 317 /* The failed disk has already been marked as rf_ds_spared 318 (or rf_ds_dist_spared) in 319 rf_ContinueReconstructFailedDisk() 320 so we just update the spare disk as being a used spare 321 */ 322 323 spareDiskPtr->status = rf_ds_used_spare; 324 raidPtr->parity_good = RF_RAID_CLEAN; 325 rf_unlock_mutex2(raidPtr->mutex); 326 327 /* XXXX MORE NEEDED HERE */ 328 329 raidflush_component_label(raidPtr, scol); 330 } else { 331 /* Reconstruct failed. */ 332 333 rf_lock_mutex2(raidPtr->mutex); 334 /* Failed disk goes back to "failed" status */ 335 raidPtr->Disks[col].status = rf_ds_failed; 336 337 /* Spare disk goes back to "spare" status. */ 338 spareDiskPtr->status = rf_ds_spare; 339 rf_unlock_mutex2(raidPtr->mutex); 340 341 } 342 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 343 return (rc); 344 } 345 346 /* 347 348 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 349 and you don't get a spare until the next Monday. With this function 350 (and hot-swappable drives) you can now put your new disk containing 351 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 352 rebuild the data "on the spot". 353 354 */ 355 356 int 357 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 358 { 359 RF_RaidDisk_t *spareDiskPtr = NULL; 360 RF_RaidReconDesc_t *reconDesc; 361 const RF_LayoutSW_t *lp; 362 RF_ComponentLabel_t *c_label; 363 int numDisksDone = 0, rc; 364 uint64_t numsec; 365 unsigned int secsize; 366 struct pathbuf *pb; 367 struct vnode *vp; 368 int retcode; 369 int ac; 370 371 rf_lock_mutex2(raidPtr->mutex); 372 lp = raidPtr->Layout.map; 373 if (!lp->SubmitReconBuffer) { 374 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 375 lp->parityConfig); 376 /* wakeup anyone who might be waiting to do a reconstruct */ 377 rf_signal_cond2(raidPtr->waitForReconCond); 378 rf_unlock_mutex2(raidPtr->mutex); 379 return(EIO); 380 } 381 382 /* 383 * The current infrastructure only supports reconstructing one 384 * disk at a time for each array. 385 */ 386 387 if (raidPtr->Disks[col].status != rf_ds_failed) { 388 /* "It's gone..." */ 389 raidPtr->numFailures++; 390 raidPtr->Disks[col].status = rf_ds_failed; 391 raidPtr->status = rf_rs_degraded; 392 rf_unlock_mutex2(raidPtr->mutex); 393 rf_update_component_labels(raidPtr, 394 RF_NORMAL_COMPONENT_UPDATE); 395 rf_lock_mutex2(raidPtr->mutex); 396 } 397 398 while (raidPtr->reconInProgress) { 399 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 400 } 401 402 raidPtr->reconInProgress++; 403 404 /* first look for a spare drive onto which to reconstruct the 405 data. spare disk descriptors are stored in row 0. This 406 may have to change eventually */ 407 408 /* Actually, we don't care if it's failed or not... On a RAID 409 set with correct parity, this function should be callable 410 on any component without ill effects. */ 411 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 412 413 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 414 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 415 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 416 417 raidPtr->reconInProgress--; 418 rf_signal_cond2(raidPtr->waitForReconCond); 419 rf_unlock_mutex2(raidPtr->mutex); 420 return (EINVAL); 421 } 422 #endif 423 424 /* This device may have been opened successfully the 425 first time. Close it before trying to open it again.. */ 426 427 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 428 #if 0 429 printf("Closed the open device: %s\n", 430 raidPtr->Disks[col].devname); 431 #endif 432 vp = raidPtr->raid_cinfo[col].ci_vp; 433 ac = raidPtr->Disks[col].auto_configured; 434 rf_unlock_mutex2(raidPtr->mutex); 435 rf_close_component(raidPtr, vp, ac); 436 rf_lock_mutex2(raidPtr->mutex); 437 raidPtr->raid_cinfo[col].ci_vp = NULL; 438 } 439 /* note that this disk was *not* auto_configured (any longer)*/ 440 raidPtr->Disks[col].auto_configured = 0; 441 442 #if 0 443 printf("About to (re-)open the device for rebuilding: %s\n", 444 raidPtr->Disks[col].devname); 445 #endif 446 rf_unlock_mutex2(raidPtr->mutex); 447 pb = pathbuf_create(raidPtr->Disks[col].devname); 448 if (pb == NULL) { 449 retcode = ENOMEM; 450 } else { 451 retcode = vn_bdev_openpath(pb, &vp, curlwp); 452 pathbuf_destroy(pb); 453 } 454 455 if (retcode) { 456 printf("raid%d: rebuilding: open device: %s failed: %d!\n",raidPtr->raidid, 457 raidPtr->Disks[col].devname, retcode); 458 459 /* the component isn't responding properly... 460 must be still dead :-( */ 461 rf_lock_mutex2(raidPtr->mutex); 462 raidPtr->reconInProgress--; 463 rf_signal_cond2(raidPtr->waitForReconCond); 464 rf_unlock_mutex2(raidPtr->mutex); 465 return(retcode); 466 } 467 468 /* Ok, so we can at least do a lookup... 469 How about actually getting a vp for it? */ 470 471 retcode = getdisksize(vp, &numsec, &secsize); 472 if (retcode) { 473 vn_close(vp, FREAD | FWRITE, kauth_cred_get()); 474 rf_lock_mutex2(raidPtr->mutex); 475 raidPtr->reconInProgress--; 476 rf_signal_cond2(raidPtr->waitForReconCond); 477 rf_unlock_mutex2(raidPtr->mutex); 478 return(retcode); 479 } 480 rf_lock_mutex2(raidPtr->mutex); 481 raidPtr->Disks[col].blockSize = secsize; 482 raidPtr->Disks[col].numBlocks = numsec - rf_protectedSectors; 483 484 raidPtr->raid_cinfo[col].ci_vp = vp; 485 raidPtr->raid_cinfo[col].ci_dev = vp->v_rdev; 486 487 raidPtr->Disks[col].dev = vp->v_rdev; 488 489 /* we allow the user to specify that only a fraction 490 of the disks should be used this is just for debug: 491 it speeds up * the parity scan */ 492 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 493 rf_sizePercentage / 100; 494 rf_unlock_mutex2(raidPtr->mutex); 495 496 spareDiskPtr = &raidPtr->Disks[col]; 497 spareDiskPtr->status = rf_ds_rebuilding_spare; 498 499 printf("raid%d: initiating in-place reconstruction on column %d\n", 500 raidPtr->raidid, col); 501 502 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 503 numDisksDone, col); 504 raidPtr->reconDesc = (void *) reconDesc; 505 #if RF_RECON_STATS > 0 506 reconDesc->hsStallCount = 0; 507 reconDesc->numReconExecDelays = 0; 508 reconDesc->numReconEventWaits = 0; 509 #endif /* RF_RECON_STATS > 0 */ 510 reconDesc->reconExecTimerRunning = 0; 511 reconDesc->reconExecTicks = 0; 512 reconDesc->maxReconExecTicks = 0; 513 rc = rf_ContinueReconstructFailedDisk(reconDesc); 514 515 if (!rc) { 516 rf_lock_mutex2(raidPtr->mutex); 517 /* Need to set these here, as at this point it'll be claiming 518 that the disk is in rf_ds_spared! But we know better :-) */ 519 520 raidPtr->Disks[col].status = rf_ds_optimal; 521 raidPtr->status = rf_rs_optimal; 522 rf_unlock_mutex2(raidPtr->mutex); 523 524 /* fix up the component label */ 525 /* Don't actually need the read here.. */ 526 c_label = raidget_component_label(raidPtr, col); 527 528 rf_lock_mutex2(raidPtr->mutex); 529 raid_init_component_label(raidPtr, c_label); 530 531 c_label->row = 0; 532 c_label->column = col; 533 534 /* We've just done a rebuild based on all the other 535 disks, so at this point the parity is known to be 536 clean, even if it wasn't before. */ 537 538 /* XXX doesn't hold for RAID 6!!*/ 539 540 raidPtr->parity_good = RF_RAID_CLEAN; 541 rf_unlock_mutex2(raidPtr->mutex); 542 543 raidflush_component_label(raidPtr, col); 544 } else { 545 /* Reconstruct-in-place failed. Disk goes back to 546 "failed" status, regardless of what it was before. */ 547 rf_lock_mutex2(raidPtr->mutex); 548 raidPtr->Disks[col].status = rf_ds_failed; 549 rf_unlock_mutex2(raidPtr->mutex); 550 } 551 552 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 553 554 rf_lock_mutex2(raidPtr->mutex); 555 raidPtr->reconInProgress--; 556 rf_signal_cond2(raidPtr->waitForReconCond); 557 rf_unlock_mutex2(raidPtr->mutex); 558 559 return (rc); 560 } 561 562 563 int 564 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 565 { 566 RF_Raid_t *raidPtr = reconDesc->raidPtr; 567 RF_RowCol_t col = reconDesc->col; 568 RF_RowCol_t scol = reconDesc->scol; 569 RF_ReconMap_t *mapPtr; 570 RF_ReconCtrl_t *tmp_reconctrl; 571 RF_ReconEvent_t *event; 572 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; 573 #if RF_INCLUDE_RAID5_RS > 0 574 RF_StripeCount_t startPSID,endPSID,aPSID,bPSID,offPSID; 575 #endif 576 RF_ReconUnitCount_t RUsPerPU; 577 struct timeval etime, elpsd; 578 unsigned long xor_s, xor_resid_us; 579 int i, ds; 580 int status, done; 581 int recon_error, write_error; 582 583 raidPtr->accumXorTimeUs = 0; 584 #if RF_ACC_TRACE > 0 585 /* create one trace record per physical disk */ 586 raidPtr->recon_tracerecs = 587 RF_Malloc(raidPtr->numCol * sizeof(*raidPtr->recon_tracerecs)); 588 #endif 589 590 /* quiesce the array prior to starting recon. this is needed 591 * to assure no nasty interactions with pending user writes. 592 * We need to do this before we change the disk or row status. */ 593 594 Dprintf("RECON: begin request suspend\n"); 595 rf_SuspendNewRequestsAndWait(raidPtr); 596 Dprintf("RECON: end request suspend\n"); 597 598 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 599 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 600 601 rf_lock_mutex2(raidPtr->mutex); 602 603 /* create the reconstruction control pointer and install it in 604 * the right slot */ 605 raidPtr->reconControl = tmp_reconctrl; 606 mapPtr = raidPtr->reconControl->reconMap; 607 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 608 raidPtr->reconControl->numRUsComplete = 0; 609 raidPtr->status = rf_rs_reconstructing; 610 raidPtr->Disks[col].status = rf_ds_reconstructing; 611 raidPtr->Disks[col].spareCol = scol; 612 613 rf_unlock_mutex2(raidPtr->mutex); 614 615 RF_GETTIME(raidPtr->reconControl->starttime); 616 617 Dprintf("RECON: resume requests\n"); 618 rf_ResumeNewRequests(raidPtr); 619 620 621 mapPtr = raidPtr->reconControl->reconMap; 622 623 incPSID = RF_RECONMAP_SIZE; 624 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU - 1; 625 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; 626 recon_error = 0; 627 write_error = 0; 628 pending_writes = incPSID; 629 raidPtr->reconControl->lastPSID = incPSID - 1; 630 631 /* bounds check raidPtr->reconControl->lastPSID and 632 pending_writes so that we don't attempt to wait for more IO 633 than can possibly happen */ 634 635 if (raidPtr->reconControl->lastPSID > lastPSID) 636 raidPtr->reconControl->lastPSID = lastPSID; 637 638 if (pending_writes > lastPSID) 639 pending_writes = lastPSID + 1; 640 641 /* start the actual reconstruction */ 642 643 done = 0; 644 while (!done) { 645 646 if (raidPtr->waitShutdown) { 647 /* someone is unconfiguring this array... bail on the reconstruct.. */ 648 recon_error = 1; 649 break; 650 } 651 652 num_writes = 0; 653 654 #if RF_INCLUDE_RAID5_RS > 0 655 /* For RAID5 with Rotated Spares we will be 'short' 656 some number of writes since no writes will get 657 issued for stripes where the spare is on the 658 component being rebuilt. Account for the shortage 659 here so that we don't hang indefinitely below 660 waiting for writes to complete that were never 661 scheduled. 662 663 XXX: Should be fixed for PARITY_DECLUSTERING and 664 others too! 665 666 */ 667 668 if (raidPtr->Layout.numDataCol < 669 raidPtr->numCol - raidPtr->Layout.numParityCol) { 670 /* numDataCol is at least 2 less than numCol, so 671 should be RAID 5 with Rotated Spares */ 672 673 /* XXX need to update for RAID 6 */ 674 675 startPSID = raidPtr->reconControl->lastPSID - pending_writes + 1; 676 endPSID = raidPtr->reconControl->lastPSID; 677 678 offPSID = raidPtr->numCol - col - 1; 679 680 aPSID = startPSID - startPSID % raidPtr->numCol + offPSID; 681 if (aPSID < startPSID) { 682 aPSID += raidPtr->numCol; 683 } 684 685 bPSID = endPSID - ((endPSID - offPSID) % raidPtr->numCol); 686 687 if (aPSID < endPSID) { 688 num_writes = ((bPSID - aPSID) / raidPtr->numCol) + 1; 689 } 690 691 if ((aPSID == endPSID) && (bPSID == endPSID)) { 692 num_writes++; 693 } 694 } 695 #endif 696 697 /* issue a read for each surviving disk */ 698 699 reconDesc->numDisksDone = 0; 700 for (i = 0; i < raidPtr->numCol; i++) { 701 if (i != col) { 702 /* find and issue the next I/O on the 703 * indicated disk */ 704 if (IssueNextReadRequest(raidPtr, i)) { 705 Dprintf1("RECON: done issuing for c%d\n", i); 706 reconDesc->numDisksDone++; 707 } 708 } 709 } 710 711 /* process reconstruction events until all disks report that 712 * they've completed all work */ 713 714 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 715 716 event = rf_GetNextReconEvent(reconDesc); 717 status = ProcessReconEvent(raidPtr, event); 718 719 /* the normal case is that a read completes, and all is well. */ 720 if (status == RF_RECON_DONE_READS) { 721 reconDesc->numDisksDone++; 722 } else if ((status == RF_RECON_READ_ERROR) || 723 (status == RF_RECON_WRITE_ERROR)) { 724 /* an error was encountered while reconstructing... 725 Pretend we've finished this disk. 726 */ 727 recon_error = 1; 728 raidPtr->reconControl->error = 1; 729 730 /* bump the numDisksDone count for reads, 731 but not for writes */ 732 if (status == RF_RECON_READ_ERROR) 733 reconDesc->numDisksDone++; 734 735 /* write errors are special -- when we are 736 done dealing with the reads that are 737 finished, we don't want to wait for any 738 writes */ 739 if (status == RF_RECON_WRITE_ERROR) { 740 write_error = 1; 741 num_writes++; 742 } 743 744 } else if (status == RF_RECON_READ_STOPPED) { 745 /* count this component as being "done" */ 746 reconDesc->numDisksDone++; 747 } else if (status == RF_RECON_WRITE_DONE) { 748 num_writes++; 749 } 750 751 if (recon_error) { 752 /* make sure any stragglers are woken up so that 753 their theads will complete, and we can get out 754 of here with all IO processed */ 755 756 rf_WakeupHeadSepCBWaiters(raidPtr); 757 } 758 759 raidPtr->reconControl->numRUsTotal = 760 mapPtr->totalRUs; 761 raidPtr->reconControl->numRUsComplete = 762 mapPtr->totalRUs - 763 rf_UnitsLeftToReconstruct(mapPtr); 764 765 #if RF_DEBUG_RECON 766 raidPtr->reconControl->percentComplete = 767 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 768 if (rf_prReconSched) { 769 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 770 } 771 #endif 772 } 773 774 /* reads done, wakeup any waiters, and then wait for writes */ 775 776 rf_WakeupHeadSepCBWaiters(raidPtr); 777 778 while (!recon_error && (num_writes < pending_writes)) { 779 event = rf_GetNextReconEvent(reconDesc); 780 status = ProcessReconEvent(raidPtr, event); 781 782 if (status == RF_RECON_WRITE_ERROR) { 783 num_writes++; 784 recon_error = 1; 785 raidPtr->reconControl->error = 1; 786 /* an error was encountered at the very end... bail */ 787 } else if (status == RF_RECON_WRITE_DONE) { 788 num_writes++; 789 } /* else it's something else, and we don't care */ 790 } 791 if (recon_error || 792 (raidPtr->reconControl->lastPSID == lastPSID)) { 793 done = 1; 794 break; 795 } 796 797 prev = raidPtr->reconControl->lastPSID; 798 raidPtr->reconControl->lastPSID += incPSID; 799 800 if (raidPtr->reconControl->lastPSID > lastPSID) { 801 pending_writes = lastPSID - prev; 802 raidPtr->reconControl->lastPSID = lastPSID; 803 } 804 /* back down curPSID to get ready for the next round... */ 805 for (i = 0; i < raidPtr->numCol; i++) { 806 if (i != col) { 807 raidPtr->reconControl->perDiskInfo[i].curPSID--; 808 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; 809 } 810 } 811 } 812 813 mapPtr = raidPtr->reconControl->reconMap; 814 if (rf_reconDebug) { 815 printf("RECON: all reads completed\n"); 816 } 817 /* at this point all the reads have completed. We now wait 818 * for any pending writes to complete, and then we're done */ 819 820 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 821 822 event = rf_GetNextReconEvent(reconDesc); 823 status = ProcessReconEvent(raidPtr, event); 824 825 if (status == RF_RECON_WRITE_ERROR) { 826 recon_error = 1; 827 raidPtr->reconControl->error = 1; 828 /* an error was encountered at the very end... bail */ 829 } else { 830 #if RF_DEBUG_RECON 831 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 832 if (rf_prReconSched) { 833 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 834 } 835 #endif 836 } 837 } 838 839 if (recon_error) { 840 /* we've encountered an error in reconstructing. */ 841 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 842 843 /* we start by blocking IO to the RAID set. */ 844 rf_SuspendNewRequestsAndWait(raidPtr); 845 846 rf_lock_mutex2(raidPtr->mutex); 847 /* mark set as being degraded, rather than 848 rf_rs_reconstructing as we were before the problem. 849 After this is done we can update status of the 850 component disks without worrying about someone 851 trying to read from a failed component. 852 */ 853 raidPtr->status = rf_rs_degraded; 854 rf_unlock_mutex2(raidPtr->mutex); 855 856 /* resume IO */ 857 rf_ResumeNewRequests(raidPtr); 858 859 /* At this point there are two cases: 860 1) If we've experienced a read error, then we've 861 already waited for all the reads we're going to get, 862 and we just need to wait for the writes. 863 864 2) If we've experienced a write error, we've also 865 already waited for all the reads to complete, 866 but there is little point in waiting for the writes -- 867 when they do complete, they will just be ignored. 868 869 So we just wait for writes to complete if we didn't have a 870 write error. 871 */ 872 873 if (!write_error) { 874 /* wait for writes to complete */ 875 while (raidPtr->reconControl->pending_writes > 0) { 876 877 event = rf_GetNextReconEvent(reconDesc); 878 status = ProcessReconEvent(raidPtr, event); 879 880 if (status == RF_RECON_WRITE_ERROR) { 881 raidPtr->reconControl->error = 1; 882 /* an error was encountered at the very end... bail. 883 This will be very bad news for the user, since 884 at this point there will have been a read error 885 on one component, and a write error on another! 886 */ 887 break; 888 } 889 } 890 } 891 892 893 /* cleanup */ 894 895 /* drain the event queue - after waiting for the writes above, 896 there shouldn't be much (if anything!) left in the queue. */ 897 898 rf_DrainReconEventQueue(reconDesc); 899 900 /* XXX As much as we'd like to free the recon control structure 901 and the reconDesc, we have no way of knowing if/when those will 902 be touched by IO that has yet to occur. It is rather poor to be 903 basically causing a 'memory leak' here, but there doesn't seem to be 904 a cleaner alternative at this time. Perhaps when the reconstruct code 905 gets a makeover this problem will go away. 906 */ 907 #if 0 908 rf_FreeReconControl(raidPtr); 909 #endif 910 911 #if RF_ACC_TRACE > 0 912 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 913 #endif 914 /* XXX see comment above */ 915 #if 0 916 FreeReconDesc(reconDesc); 917 #endif 918 919 return (1); 920 } 921 922 /* Success: mark the dead disk as reconstructed. We quiesce 923 * the array here to assure no nasty interactions with pending 924 * user accesses when we free up the psstatus structure as 925 * part of FreeReconControl() */ 926 927 rf_SuspendNewRequestsAndWait(raidPtr); 928 929 rf_lock_mutex2(raidPtr->mutex); 930 raidPtr->numFailures--; 931 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 932 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 933 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 934 rf_unlock_mutex2(raidPtr->mutex); 935 RF_GETTIME(etime); 936 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 937 938 rf_ResumeNewRequests(raidPtr); 939 940 printf("raid%d: Reconstruction of disk at col %d completed\n", 941 raidPtr->raidid, col); 942 xor_s = raidPtr->accumXorTimeUs / 1000000; 943 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 944 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 945 raidPtr->raidid, 946 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 947 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 948 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 949 raidPtr->raidid, 950 (int) raidPtr->reconControl->starttime.tv_sec, 951 (int) raidPtr->reconControl->starttime.tv_usec, 952 (int) etime.tv_sec, (int) etime.tv_usec); 953 #if RF_RECON_STATS > 0 954 printf("raid%d: Total head-sep stall count was %d\n", 955 raidPtr->raidid, (int) reconDesc->hsStallCount); 956 #endif /* RF_RECON_STATS > 0 */ 957 rf_FreeReconControl(raidPtr); 958 #if RF_ACC_TRACE > 0 959 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 960 #endif 961 FreeReconDesc(reconDesc); 962 963 return (0); 964 965 } 966 /***************************************************************************** 967 * do the right thing upon each reconstruction event. 968 *****************************************************************************/ 969 static int 970 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 971 { 972 int retcode = 0, submitblocked; 973 RF_ReconBuffer_t *rbuf; 974 RF_SectorCount_t sectorsPerRU; 975 976 retcode = RF_RECON_READ_STOPPED; 977 978 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 979 980 switch (event->type) { 981 982 /* a read I/O has completed */ 983 case RF_REVENT_READDONE: 984 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 985 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 986 event->col, rbuf->parityStripeID); 987 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 988 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 989 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 990 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 991 if (!raidPtr->reconControl->error) { 992 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 993 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 994 if (!submitblocked) 995 retcode = IssueNextReadRequest(raidPtr, event->col); 996 else 997 retcode = 0; 998 } 999 break; 1000 1001 /* a write I/O has completed */ 1002 case RF_REVENT_WRITEDONE: 1003 #if RF_DEBUG_RECON 1004 if (rf_floatingRbufDebug) { 1005 rf_CheckFloatingRbufCount(raidPtr, 1); 1006 } 1007 #endif 1008 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1009 rbuf = (RF_ReconBuffer_t *) event->arg; 1010 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1011 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 1012 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 1013 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 1014 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 1015 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 1016 1017 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1018 raidPtr->reconControl->pending_writes--; 1019 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1020 1021 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 1022 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1023 while(raidPtr->reconControl->rb_lock) { 1024 rf_wait_cond2(raidPtr->reconControl->rb_cv, 1025 raidPtr->reconControl->rb_mutex); 1026 } 1027 raidPtr->reconControl->rb_lock = 1; 1028 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1029 1030 raidPtr->numFullReconBuffers--; 1031 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 1032 1033 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1034 raidPtr->reconControl->rb_lock = 0; 1035 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 1036 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1037 } else 1038 if (rbuf->type == RF_RBUF_TYPE_FORCED) 1039 rf_FreeReconBuffer(rbuf); 1040 else 1041 RF_ASSERT(0); 1042 retcode = RF_RECON_WRITE_DONE; 1043 break; 1044 1045 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 1046 * cleared */ 1047 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 1048 if (!raidPtr->reconControl->error) { 1049 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 1050 0, (int) (long) event->arg); 1051 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 1052 * BUFCLEAR event if we 1053 * couldn't submit */ 1054 retcode = IssueNextReadRequest(raidPtr, event->col); 1055 } 1056 break; 1057 1058 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 1059 * blockage has been cleared */ 1060 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 1061 if (!raidPtr->reconControl->error) { 1062 retcode = TryToRead(raidPtr, event->col); 1063 } 1064 break; 1065 1066 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 1067 * reconstruction blockage has been 1068 * cleared */ 1069 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 1070 if (!raidPtr->reconControl->error) { 1071 retcode = TryToRead(raidPtr, event->col); 1072 } 1073 break; 1074 1075 /* a buffer has become ready to write */ 1076 case RF_REVENT_BUFREADY: 1077 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 1078 if (!raidPtr->reconControl->error) { 1079 retcode = IssueNextWriteRequest(raidPtr); 1080 #if RF_DEBUG_RECON 1081 if (rf_floatingRbufDebug) { 1082 rf_CheckFloatingRbufCount(raidPtr, 1); 1083 } 1084 #endif 1085 } 1086 break; 1087 1088 /* we need to skip the current RU entirely because it got 1089 * recon'd while we were waiting for something else to happen */ 1090 case RF_REVENT_SKIP: 1091 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 1092 if (!raidPtr->reconControl->error) { 1093 retcode = IssueNextReadRequest(raidPtr, event->col); 1094 } 1095 break; 1096 1097 /* a forced-reconstruction read access has completed. Just 1098 * submit the buffer */ 1099 case RF_REVENT_FORCEDREADDONE: 1100 rbuf = (RF_ReconBuffer_t *) event->arg; 1101 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1102 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 1103 if (!raidPtr->reconControl->error) { 1104 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 1105 RF_ASSERT(!submitblocked); 1106 retcode = 0; 1107 } 1108 break; 1109 1110 /* A read I/O failed to complete */ 1111 case RF_REVENT_READ_FAILED: 1112 retcode = RF_RECON_READ_ERROR; 1113 break; 1114 1115 /* A write I/O failed to complete */ 1116 case RF_REVENT_WRITE_FAILED: 1117 retcode = RF_RECON_WRITE_ERROR; 1118 1119 /* This is an error, but it was a pending write. 1120 Account for it. */ 1121 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1122 raidPtr->reconControl->pending_writes--; 1123 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1124 1125 rbuf = (RF_ReconBuffer_t *) event->arg; 1126 1127 /* cleanup the disk queue data */ 1128 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1129 1130 /* At this point we're erroring out, badly, and floatingRbufs 1131 may not even be valid. Rather than putting this back onto 1132 the floatingRbufs list, just arrange for its immediate 1133 destruction. 1134 */ 1135 rf_FreeReconBuffer(rbuf); 1136 break; 1137 1138 /* a forced read I/O failed to complete */ 1139 case RF_REVENT_FORCEDREAD_FAILED: 1140 retcode = RF_RECON_READ_ERROR; 1141 break; 1142 1143 default: 1144 RF_PANIC(); 1145 } 1146 rf_FreeReconEventDesc(raidPtr, event); 1147 return (retcode); 1148 } 1149 /***************************************************************************** 1150 * 1151 * find the next thing that's needed on the indicated disk, and issue 1152 * a read request for it. We assume that the reconstruction buffer 1153 * associated with this process is free to receive the data. If 1154 * reconstruction is blocked on the indicated RU, we issue a 1155 * blockage-release request instead of a physical disk read request. 1156 * If the current disk gets too far ahead of the others, we issue a 1157 * head-separation wait request and return. 1158 * 1159 * ctrl->{ru_count, curPSID, diskOffset} and 1160 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1161 * we're currently accessing. Note that this deviates from the 1162 * standard C idiom of having counters point to the next thing to be 1163 * accessed. This allows us to easily retry when we're blocked by 1164 * head separation or reconstruction-blockage events. 1165 * 1166 *****************************************************************************/ 1167 static int 1168 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1169 { 1170 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1171 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1172 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1173 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1174 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1175 int do_new_check = 0, retcode = 0, status; 1176 1177 /* if we are currently the slowest disk, mark that we have to do a new 1178 * check */ 1179 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1180 do_new_check = 1; 1181 1182 while (1) { 1183 1184 ctrl->ru_count++; 1185 if (ctrl->ru_count < RUsPerPU) { 1186 ctrl->diskOffset += sectorsPerRU; 1187 rbuf->failedDiskSectorOffset += sectorsPerRU; 1188 } else { 1189 ctrl->curPSID++; 1190 ctrl->ru_count = 0; 1191 /* code left over from when head-sep was based on 1192 * parity stripe id */ 1193 if (ctrl->curPSID > raidPtr->reconControl->lastPSID) { 1194 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1195 return (RF_RECON_DONE_READS); /* finito! */ 1196 } 1197 /* find the disk offsets of the start of the parity 1198 * stripe on both the current disk and the failed 1199 * disk. skip this entire parity stripe if either disk 1200 * does not appear in the indicated PS */ 1201 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1202 &rbuf->spCol, &rbuf->spOffset); 1203 if (status) { 1204 ctrl->ru_count = RUsPerPU - 1; 1205 continue; 1206 } 1207 } 1208 rbuf->which_ru = ctrl->ru_count; 1209 1210 /* skip this RU if it's already been reconstructed */ 1211 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1212 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1213 continue; 1214 } 1215 break; 1216 } 1217 ctrl->headSepCounter++; 1218 if (do_new_check) 1219 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1220 1221 1222 /* at this point, we have definitely decided what to do, and we have 1223 * only to see if we can actually do it now */ 1224 rbuf->parityStripeID = ctrl->curPSID; 1225 rbuf->which_ru = ctrl->ru_count; 1226 #if RF_ACC_TRACE > 0 1227 memset(&raidPtr->recon_tracerecs[col], 0, 1228 sizeof(raidPtr->recon_tracerecs[col])); 1229 raidPtr->recon_tracerecs[col].reconacc = 1; 1230 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1231 #endif 1232 retcode = TryToRead(raidPtr, col); 1233 return (retcode); 1234 } 1235 1236 /* 1237 * tries to issue the next read on the indicated disk. We may be 1238 * blocked by (a) the heads being too far apart, or (b) recon on the 1239 * indicated RU being blocked due to a write by a user thread. In 1240 * this case, we issue a head-sep or blockage wait request, which will 1241 * cause this same routine to be invoked again later when the blockage 1242 * has cleared. 1243 */ 1244 1245 static int 1246 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1247 { 1248 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1249 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1250 RF_StripeNum_t psid = ctrl->curPSID; 1251 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1252 RF_DiskQueueData_t *req; 1253 int status; 1254 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1255 1256 /* if the current disk is too far ahead of the others, issue a 1257 * head-separation wait and return */ 1258 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1259 return (0); 1260 1261 /* allocate a new PSS in case we need it */ 1262 newpssPtr = rf_AllocPSStatus(raidPtr); 1263 1264 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1265 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1266 1267 if (pssPtr != newpssPtr) { 1268 rf_FreePSStatus(raidPtr, newpssPtr); 1269 } 1270 1271 /* if recon is blocked on the indicated parity stripe, issue a 1272 * block-wait request and return. this also must mark the indicated RU 1273 * in the stripe as under reconstruction if not blocked. */ 1274 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1275 if (status == RF_PSS_RECON_BLOCKED) { 1276 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1277 goto out; 1278 } else 1279 if (status == RF_PSS_FORCED_ON_WRITE) { 1280 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1281 goto out; 1282 } 1283 /* make one last check to be sure that the indicated RU didn't get 1284 * reconstructed while we were waiting for something else to happen. 1285 * This is unfortunate in that it causes us to make this check twice 1286 * in the normal case. Might want to make some attempt to re-work 1287 * this so that we only do this check if we've definitely blocked on 1288 * one of the above checks. When this condition is detected, we may 1289 * have just created a bogus status entry, which we need to delete. */ 1290 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1291 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1292 if (pssPtr == newpssPtr) 1293 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1294 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1295 goto out; 1296 } 1297 /* found something to read. issue the I/O */ 1298 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1299 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1300 #if RF_ACC_TRACE > 0 1301 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1302 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1303 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1304 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1305 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1306 #endif 1307 /* should be ok to use a NULL proc pointer here, all the bufs we use 1308 * should be in kernel space */ 1309 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1310 ReconReadDoneProc, (void *) ctrl, 1311 #if RF_ACC_TRACE > 0 1312 &raidPtr->recon_tracerecs[col], 1313 #else 1314 NULL, 1315 #endif 1316 (void *) raidPtr, 0, NULL); 1317 1318 ctrl->rbuf->arg = (void *) req; 1319 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1320 pssPtr->issued[col] = 1; 1321 1322 out: 1323 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1324 return (0); 1325 } 1326 1327 1328 /* 1329 * given a parity stripe ID, we want to find out whether both the 1330 * current disk and the failed disk exist in that parity stripe. If 1331 * not, we want to skip this whole PS. If so, we want to find the 1332 * disk offset of the start of the PS on both the current disk and the 1333 * failed disk. 1334 * 1335 * this works by getting a list of disks comprising the indicated 1336 * parity stripe, and searching the list for the current and failed 1337 * disks. Once we've decided they both exist in the parity stripe, we 1338 * need to decide whether each is data or parity, so that we'll know 1339 * which mapping function to call to get the corresponding disk 1340 * offsets. 1341 * 1342 * this is kind of unpleasant, but doing it this way allows the 1343 * reconstruction code to use parity stripe IDs rather than physical 1344 * disks address to march through the failed disk, which greatly 1345 * simplifies a lot of code, as well as eliminating the need for a 1346 * reverse-mapping function. I also think it will execute faster, 1347 * since the calls to the mapping module are kept to a minimum. 1348 * 1349 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1350 * THE STRIPE IN THE CORRECT ORDER 1351 * 1352 * raidPtr - raid descriptor 1353 * psid - parity stripe identifier 1354 * col - column of disk to find the offsets for 1355 * spCol - out: col of spare unit for failed unit 1356 * spOffset - out: offset into disk containing spare unit 1357 * 1358 */ 1359 1360 1361 static int 1362 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1363 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1364 RF_SectorNum_t *outFailedDiskSectorOffset, 1365 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1366 { 1367 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1368 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1369 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1370 RF_RowCol_t *diskids; 1371 u_int i, j, k, i_offset, j_offset; 1372 RF_RowCol_t pcol; 1373 int testcol; 1374 RF_SectorNum_t poffset; 1375 char i_is_parity = 0, j_is_parity = 0; 1376 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1377 1378 /* get a listing of the disks comprising that stripe */ 1379 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1380 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1381 RF_ASSERT(diskids); 1382 1383 /* reject this entire parity stripe if it does not contain the 1384 * indicated disk or it does not contain the failed disk */ 1385 1386 for (i = 0; i < stripeWidth; i++) { 1387 if (col == diskids[i]) 1388 break; 1389 } 1390 if (i == stripeWidth) 1391 goto skipit; 1392 for (j = 0; j < stripeWidth; j++) { 1393 if (fcol == diskids[j]) 1394 break; 1395 } 1396 if (j == stripeWidth) { 1397 goto skipit; 1398 } 1399 /* find out which disk the parity is on */ 1400 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1401 1402 /* find out if either the current RU or the failed RU is parity */ 1403 /* also, if the parity occurs in this stripe prior to the data and/or 1404 * failed col, we need to decrement i and/or j */ 1405 for (k = 0; k < stripeWidth; k++) 1406 if (diskids[k] == pcol) 1407 break; 1408 RF_ASSERT(k < stripeWidth); 1409 i_offset = i; 1410 j_offset = j; 1411 if (k < i) 1412 i_offset--; 1413 else 1414 if (k == i) { 1415 i_is_parity = 1; 1416 i_offset = 0; 1417 } /* set offsets to zero to disable multiply 1418 * below */ 1419 if (k < j) 1420 j_offset--; 1421 else 1422 if (k == j) { 1423 j_is_parity = 1; 1424 j_offset = 0; 1425 } 1426 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1427 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1428 * tells us how far into the stripe the [current,failed] disk is. */ 1429 1430 /* call the mapping routine to get the offset into the current disk, 1431 * repeat for failed disk. */ 1432 if (i_is_parity) 1433 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1434 else 1435 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1436 1437 RF_ASSERT(col == testcol); 1438 1439 if (j_is_parity) 1440 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1441 else 1442 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1443 RF_ASSERT(fcol == testcol); 1444 1445 /* now locate the spare unit for the failed unit */ 1446 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1447 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1448 if (j_is_parity) 1449 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1450 else 1451 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1452 } else { 1453 #endif 1454 *spCol = raidPtr->reconControl->spareCol; 1455 *spOffset = *outFailedDiskSectorOffset; 1456 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1457 } 1458 #endif 1459 return (0); 1460 1461 skipit: 1462 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n", 1463 psid, col); 1464 return (1); 1465 } 1466 /* this is called when a buffer has become ready to write to the replacement disk */ 1467 static int 1468 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1469 { 1470 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1471 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1472 #if RF_ACC_TRACE > 0 1473 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1474 #endif 1475 RF_ReconBuffer_t *rbuf; 1476 RF_DiskQueueData_t *req; 1477 1478 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1479 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1480 * have gotten the event that sent us here */ 1481 RF_ASSERT(rbuf->pssPtr); 1482 1483 rbuf->pssPtr->writeRbuf = rbuf; 1484 rbuf->pssPtr = NULL; 1485 1486 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1487 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1488 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1489 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1490 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1491 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1492 1493 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1494 * kernel space */ 1495 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1496 sectorsPerRU, rbuf->buffer, 1497 rbuf->parityStripeID, rbuf->which_ru, 1498 ReconWriteDoneProc, (void *) rbuf, 1499 #if RF_ACC_TRACE > 0 1500 &raidPtr->recon_tracerecs[fcol], 1501 #else 1502 NULL, 1503 #endif 1504 (void *) raidPtr, 0, NULL); 1505 1506 rbuf->arg = (void *) req; 1507 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1508 raidPtr->reconControl->pending_writes++; 1509 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1510 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1511 1512 return (0); 1513 } 1514 1515 /* 1516 * this gets called upon the completion of a reconstruction read 1517 * operation the arg is a pointer to the per-disk reconstruction 1518 * control structure for the process that just finished a read. 1519 * 1520 * called at interrupt context in the kernel, so don't do anything 1521 * illegal here. 1522 */ 1523 static void 1524 ReconReadDoneProc(void *arg, int status) 1525 { 1526 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1527 RF_Raid_t *raidPtr; 1528 1529 /* Detect that reconCtrl is no longer valid, and if that 1530 is the case, bail without calling rf_CauseReconEvent(). 1531 There won't be anyone listening for this event anyway */ 1532 1533 if (ctrl->reconCtrl == NULL) 1534 return; 1535 1536 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1537 1538 if (status) { 1539 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status); 1540 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1541 return; 1542 } 1543 #if RF_ACC_TRACE > 0 1544 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1545 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1546 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1547 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1548 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1549 #endif 1550 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1551 return; 1552 } 1553 /* this gets called upon the completion of a reconstruction write operation. 1554 * the arg is a pointer to the rbuf that was just written 1555 * 1556 * called at interrupt context in the kernel, so don't do anything illegal here. 1557 */ 1558 static void 1559 ReconWriteDoneProc(void *arg, int status) 1560 { 1561 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1562 1563 /* Detect that reconControl is no longer valid, and if that 1564 is the case, bail without calling rf_CauseReconEvent(). 1565 There won't be anyone listening for this event anyway */ 1566 1567 if (rbuf->raidPtr->reconControl == NULL) 1568 return; 1569 1570 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1571 if (status) { 1572 printf("raid%d: Recon write failed (status %d(0x%x))!\n", rbuf->raidPtr->raidid,status,status); 1573 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1574 return; 1575 } 1576 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1577 } 1578 1579 1580 /* 1581 * computes a new minimum head sep, and wakes up anyone who needs to 1582 * be woken as a result 1583 */ 1584 static void 1585 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1586 { 1587 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1588 RF_HeadSepLimit_t new_min; 1589 RF_RowCol_t i; 1590 RF_CallbackValueDesc_t *p; 1591 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1592 * of a minimum */ 1593 1594 1595 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1596 while(reconCtrlPtr->rb_lock) { 1597 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1598 } 1599 reconCtrlPtr->rb_lock = 1; 1600 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1601 1602 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1603 for (i = 0; i < raidPtr->numCol; i++) 1604 if (i != reconCtrlPtr->fcol) { 1605 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1606 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1607 } 1608 /* set the new minimum and wake up anyone who can now run again */ 1609 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1610 reconCtrlPtr->minHeadSepCounter = new_min; 1611 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1612 while (reconCtrlPtr->headSepCBList) { 1613 if (reconCtrlPtr->headSepCBList->v > new_min) 1614 break; 1615 p = reconCtrlPtr->headSepCBList; 1616 reconCtrlPtr->headSepCBList = p->next; 1617 p->next = NULL; 1618 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1619 rf_FreeCallbackValueDesc(raidPtr, p); 1620 } 1621 1622 } 1623 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1624 reconCtrlPtr->rb_lock = 0; 1625 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1626 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1627 } 1628 1629 /* 1630 * checks to see that the maximum head separation will not be violated 1631 * if we initiate a reconstruction I/O on the indicated disk. 1632 * Limiting the maximum head separation between two disks eliminates 1633 * the nasty buffer-stall conditions that occur when one disk races 1634 * ahead of the others and consumes all of the floating recon buffers. 1635 * This code is complex and unpleasant but it's necessary to avoid 1636 * some very nasty, albeit fairly rare, reconstruction behavior. 1637 * 1638 * returns non-zero if and only if we have to stop working on the 1639 * indicated disk due to a head-separation delay. 1640 */ 1641 static int 1642 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1643 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1644 RF_ReconUnitNum_t which_ru) 1645 { 1646 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1647 RF_CallbackValueDesc_t *cb, *p, *pt; 1648 int retval = 0; 1649 1650 /* if we're too far ahead of the slowest disk, stop working on this 1651 * disk until the slower ones catch up. We do this by scheduling a 1652 * wakeup callback for the time when the slowest disk has caught up. 1653 * We define "caught up" with 20% hysteresis, i.e. the head separation 1654 * must have fallen to at most 80% of the max allowable head 1655 * separation before we'll wake up. 1656 * 1657 */ 1658 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1659 while(reconCtrlPtr->rb_lock) { 1660 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1661 } 1662 reconCtrlPtr->rb_lock = 1; 1663 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1664 if ((raidPtr->headSepLimit >= 0) && 1665 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1666 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1667 raidPtr->raidid, col, ctrl->headSepCounter, 1668 reconCtrlPtr->minHeadSepCounter, 1669 raidPtr->headSepLimit); 1670 cb = rf_AllocCallbackValueDesc(raidPtr); 1671 /* the minHeadSepCounter value we have to get to before we'll 1672 * wake up. build in 20% hysteresis. */ 1673 cb->v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1674 cb->col = col; 1675 cb->next = NULL; 1676 1677 /* insert this callback descriptor into the sorted list of 1678 * pending head-sep callbacks */ 1679 p = reconCtrlPtr->headSepCBList; 1680 if (!p) 1681 reconCtrlPtr->headSepCBList = cb; 1682 else 1683 if (cb->v < p->v) { 1684 cb->next = reconCtrlPtr->headSepCBList; 1685 reconCtrlPtr->headSepCBList = cb; 1686 } else { 1687 for (pt = p, p = p->next; p && (p->v < cb->v); pt = p, p = p->next); 1688 cb->next = p; 1689 pt->next = cb; 1690 } 1691 retval = 1; 1692 #if RF_RECON_STATS > 0 1693 ctrl->reconCtrl->reconDesc->hsStallCount++; 1694 #endif /* RF_RECON_STATS > 0 */ 1695 } 1696 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1697 reconCtrlPtr->rb_lock = 0; 1698 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1699 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1700 1701 return (retval); 1702 } 1703 /* 1704 * checks to see if reconstruction has been either forced or blocked 1705 * by a user operation. if forced, we skip this RU entirely. else if 1706 * blocked, put ourselves on the wait list. else return 0. 1707 * 1708 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1709 */ 1710 static int 1711 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1712 RF_ReconParityStripeStatus_t *pssPtr, 1713 RF_PerDiskReconCtrl_t *ctrl, 1714 RF_RowCol_t col, 1715 RF_StripeNum_t psid, 1716 RF_ReconUnitNum_t which_ru) 1717 { 1718 RF_CallbackValueDesc_t *cb; 1719 int retcode = 0; 1720 1721 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1722 retcode = RF_PSS_FORCED_ON_WRITE; 1723 else 1724 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1725 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1726 cb = rf_AllocCallbackValueDesc(raidPtr); /* append ourselves to 1727 * the blockage-wait 1728 * list */ 1729 cb->col = col; 1730 cb->next = pssPtr->blockWaitList; 1731 pssPtr->blockWaitList = cb; 1732 retcode = RF_PSS_RECON_BLOCKED; 1733 } 1734 if (!retcode) 1735 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1736 * reconstruction */ 1737 1738 return (retcode); 1739 } 1740 /* 1741 * if reconstruction is currently ongoing for the indicated stripeID, 1742 * reconstruction is forced to completion and we return non-zero to 1743 * indicate that the caller must wait. If not, then reconstruction is 1744 * blocked on the indicated stripe and the routine returns zero. If 1745 * and only if we return non-zero, we'll cause the cbFunc to get 1746 * invoked with the cbArg when the reconstruction has completed. 1747 */ 1748 int 1749 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1750 void (*cbFunc)(void *), void *cbArg) 1751 { 1752 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1753 * forcing recon on */ 1754 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1755 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1756 * stripe status structure */ 1757 RF_StripeNum_t psid; /* parity stripe id */ 1758 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1759 * offset */ 1760 RF_RowCol_t *diskids; 1761 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1762 RF_RowCol_t fcol, diskno, i; 1763 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1764 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1765 RF_CallbackFuncDesc_t *cb; 1766 int nPromoted; 1767 1768 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1769 1770 /* allocate a new PSS in case we need it */ 1771 newpssPtr = rf_AllocPSStatus(raidPtr); 1772 1773 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1774 1775 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1776 1777 if (pssPtr != newpssPtr) { 1778 rf_FreePSStatus(raidPtr, newpssPtr); 1779 } 1780 1781 /* if recon is not ongoing on this PS, just return */ 1782 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1783 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1784 return (0); 1785 } 1786 /* otherwise, we have to wait for reconstruction to complete on this 1787 * RU. */ 1788 /* In order to avoid waiting for a potentially large number of 1789 * low-priority accesses to complete, we force a normal-priority (i.e. 1790 * not low-priority) reconstruction on this RU. */ 1791 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1792 DDprintf1("Forcing recon on psid %ld\n", psid); 1793 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1794 * forced recon */ 1795 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1796 * that we just set */ 1797 fcol = raidPtr->reconControl->fcol; 1798 1799 /* get a listing of the disks comprising the indicated stripe */ 1800 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1801 1802 /* For previously issued reads, elevate them to normal 1803 * priority. If the I/O has already completed, it won't be 1804 * found in the queue, and hence this will be a no-op. For 1805 * unissued reads, allocate buffers and issue new reads. The 1806 * fact that we've set the FORCED bit means that the regular 1807 * recon procs will not re-issue these reqs */ 1808 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1809 if ((diskno = diskids[i]) != fcol) { 1810 if (pssPtr->issued[diskno]) { 1811 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1812 if (rf_reconDebug && nPromoted) 1813 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1814 } else { 1815 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1816 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1817 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1818 * location */ 1819 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1820 new_rbuf->which_ru = which_ru; 1821 new_rbuf->failedDiskSectorOffset = fd_offset; 1822 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1823 1824 /* use NULL b_proc b/c all addrs 1825 * should be in kernel space */ 1826 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1827 psid, which_ru, 1828 ForceReconReadDoneProc, 1829 (void *) new_rbuf, 1830 NULL, (void *) raidPtr, 0, NULL); 1831 1832 new_rbuf->arg = req; 1833 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1834 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1835 } 1836 } 1837 /* if the write is sitting in the disk queue, elevate its 1838 * priority */ 1839 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1840 if (rf_reconDebug) 1841 printf("raid%d: promoted write to col %d\n", 1842 raidPtr->raidid, fcol); 1843 } 1844 /* install a callback descriptor to be invoked when recon completes on 1845 * this parity stripe. */ 1846 cb = rf_AllocCallbackFuncDesc(raidPtr); 1847 cb->callbackFunc = cbFunc; 1848 cb->callbackArg = cbArg; 1849 cb->next = pssPtr->procWaitList; 1850 pssPtr->procWaitList = cb; 1851 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1852 raidPtr->raidid, psid); 1853 1854 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1855 return (1); 1856 } 1857 /* called upon the completion of a forced reconstruction read. 1858 * all we do is schedule the FORCEDREADONE event. 1859 * called at interrupt context in the kernel, so don't do anything illegal here. 1860 */ 1861 static void 1862 ForceReconReadDoneProc(void *arg, int status) 1863 { 1864 RF_ReconBuffer_t *rbuf = arg; 1865 1866 /* Detect that reconControl is no longer valid, and if that 1867 is the case, bail without calling rf_CauseReconEvent(). 1868 There won't be anyone listening for this event anyway */ 1869 1870 if (rbuf->raidPtr->reconControl == NULL) 1871 return; 1872 1873 if (status) { 1874 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1875 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1876 return; 1877 } 1878 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1879 } 1880 /* releases a block on the reconstruction of the indicated stripe */ 1881 int 1882 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1883 { 1884 RF_StripeNum_t stripeID = asmap->stripeID; 1885 RF_ReconParityStripeStatus_t *pssPtr; 1886 RF_ReconUnitNum_t which_ru; 1887 RF_StripeNum_t psid; 1888 RF_CallbackValueDesc_t *cb; 1889 1890 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1891 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1892 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1893 1894 /* When recon is forced, the pss desc can get deleted before we get 1895 * back to unblock recon. But, this can _only_ happen when recon is 1896 * forced. It would be good to put some kind of sanity check here, but 1897 * how to decide if recon was just forced or not? */ 1898 if (!pssPtr) { 1899 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1900 * RU %d\n",psid,which_ru); */ 1901 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1902 if (rf_reconDebug || rf_pssDebug) 1903 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1904 #endif 1905 goto out; 1906 } 1907 pssPtr->blockCount--; 1908 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1909 raidPtr->raidid, psid, pssPtr->blockCount); 1910 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1911 1912 /* unblock recon before calling CauseReconEvent in case 1913 * CauseReconEvent causes us to try to issue a new read before 1914 * returning here. */ 1915 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1916 1917 1918 while (pssPtr->blockWaitList) { 1919 /* spin through the block-wait list and 1920 release all the waiters */ 1921 cb = pssPtr->blockWaitList; 1922 pssPtr->blockWaitList = cb->next; 1923 cb->next = NULL; 1924 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1925 rf_FreeCallbackValueDesc(raidPtr, cb); 1926 } 1927 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1928 /* if no recon was requested while recon was blocked */ 1929 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1930 } 1931 } 1932 out: 1933 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1934 return (0); 1935 } 1936 1937 void 1938 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) 1939 { 1940 RF_CallbackValueDesc_t *p; 1941 1942 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1943 while(raidPtr->reconControl->rb_lock) { 1944 rf_wait_cond2(raidPtr->reconControl->rb_cv, 1945 raidPtr->reconControl->rb_mutex); 1946 } 1947 1948 raidPtr->reconControl->rb_lock = 1; 1949 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1950 1951 while (raidPtr->reconControl->headSepCBList) { 1952 p = raidPtr->reconControl->headSepCBList; 1953 raidPtr->reconControl->headSepCBList = p->next; 1954 p->next = NULL; 1955 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1956 rf_FreeCallbackValueDesc(raidPtr, p); 1957 } 1958 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1959 raidPtr->reconControl->rb_lock = 0; 1960 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 1961 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1962 1963 } 1964 1965