1 /* $NetBSD: rf_reconstruct.c,v 1.34 2002/07/13 20:54:57 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.34 2002/07/13 20:54:57 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_general.h" 59 #include "rf_freelist.h" 60 #include "rf_debugprint.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_shutdown.h" 64 65 #include "rf_kintf.h" 66 67 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 68 69 #ifdef DEBUG 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 81 82 #else /* DEBUG */ 83 84 #define Dprintf(s) {} 85 #define Dprintf1(s,a) {} 86 #define Dprintf2(s,a,b) {} 87 #define Dprintf3(s,a,b,c) {} 88 #define Dprintf4(s,a,b,c,d) {} 89 #define Dprintf5(s,a,b,c,d,e) {} 90 #define Dprintf6(s,a,b,c,d,e,f) {} 91 #define Dprintf7(s,a,b,c,d,e,f,g) {} 92 93 #define DDprintf1(s,a) {} 94 #define DDprintf2(s,a,b) {} 95 96 #endif /* DEBUG */ 97 98 99 static RF_FreeList_t *rf_recond_freelist; 100 #define RF_MAX_FREE_RECOND 4 101 #define RF_RECOND_INC 1 102 103 static RF_RaidReconDesc_t * 104 AllocRaidReconDesc(RF_Raid_t * raidPtr, 105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 108 static int 109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 110 RF_ReconEvent_t * event); 111 static int 112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 113 RF_RowCol_t col); 114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 115 static int 116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 121 static int ReconReadDoneProc(void *arg, int status); 122 static int ReconWriteDoneProc(void *arg, int status); 123 static void 124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 125 RF_HeadSepLimit_t hsCtr); 126 static int 127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 129 RF_ReconUnitNum_t which_ru); 130 static int 131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 134 RF_ReconUnitNum_t which_ru); 135 static void ForceReconReadDoneProc(void *arg, int status); 136 137 static void rf_ShutdownReconstruction(void *); 138 139 struct RF_ReconDoneProc_s { 140 void (*proc) (RF_Raid_t *, void *); 141 void *arg; 142 RF_ReconDoneProc_t *next; 143 }; 144 145 static RF_FreeList_t *rf_rdp_freelist; 146 #define RF_MAX_FREE_RDP 4 147 #define RF_RDP_INC 1 148 149 static void 150 SignalReconDone(RF_Raid_t * raidPtr) 151 { 152 RF_ReconDoneProc_t *p; 153 154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 155 for (p = raidPtr->recon_done_procs; p; p = p->next) { 156 p->proc(raidPtr, p->arg); 157 } 158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 159 } 160 161 int 162 rf_RegisterReconDoneProc( 163 RF_Raid_t * raidPtr, 164 void (*proc) (RF_Raid_t *, void *), 165 void *arg, 166 RF_ReconDoneProc_t ** handlep) 167 { 168 RF_ReconDoneProc_t *p; 169 170 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 171 if (p == NULL) 172 return (ENOMEM); 173 p->proc = proc; 174 p->arg = arg; 175 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 176 p->next = raidPtr->recon_done_procs; 177 raidPtr->recon_done_procs = p; 178 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 179 if (handlep) 180 *handlep = p; 181 return (0); 182 } 183 /************************************************************************** 184 * 185 * sets up the parameters that will be used by the reconstruction process 186 * currently there are none, except for those that the layout-specific 187 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 188 * 189 * in the kernel, we fire off the recon thread. 190 * 191 **************************************************************************/ 192 static void 193 rf_ShutdownReconstruction(ignored) 194 void *ignored; 195 { 196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 197 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 198 } 199 200 int 201 rf_ConfigureReconstruction(listp) 202 RF_ShutdownList_t **listp; 203 { 204 int rc; 205 206 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 207 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 208 if (rf_recond_freelist == NULL) 209 return (ENOMEM); 210 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 211 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 212 if (rf_rdp_freelist == NULL) { 213 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 214 return (ENOMEM); 215 } 216 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 217 if (rc) { 218 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", 219 __FILE__, __LINE__, rc); 220 rf_ShutdownReconstruction(NULL); 221 return (rc); 222 } 223 return (0); 224 } 225 226 static RF_RaidReconDesc_t * 227 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 228 RF_Raid_t *raidPtr; 229 RF_RowCol_t row; 230 RF_RowCol_t col; 231 RF_RaidDisk_t *spareDiskPtr; 232 int numDisksDone; 233 RF_RowCol_t srow; 234 RF_RowCol_t scol; 235 { 236 237 RF_RaidReconDesc_t *reconDesc; 238 239 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 240 241 reconDesc->raidPtr = raidPtr; 242 reconDesc->row = row; 243 reconDesc->col = col; 244 reconDesc->spareDiskPtr = spareDiskPtr; 245 reconDesc->numDisksDone = numDisksDone; 246 reconDesc->srow = srow; 247 reconDesc->scol = scol; 248 reconDesc->state = 0; 249 reconDesc->next = NULL; 250 251 return (reconDesc); 252 } 253 254 static void 255 FreeReconDesc(reconDesc) 256 RF_RaidReconDesc_t *reconDesc; 257 { 258 #if RF_RECON_STATS > 0 259 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 260 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 261 #endif /* RF_RECON_STATS > 0 */ 262 printf("RAIDframe: %lu max exec ticks\n", 263 (long) reconDesc->maxReconExecTicks); 264 #if (RF_RECON_STATS > 0) || defined(KERNEL) 265 printf("\n"); 266 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 267 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 268 } 269 270 271 /***************************************************************************** 272 * 273 * primary routine to reconstruct a failed disk. This should be called from 274 * within its own thread. It won't return until reconstruction completes, 275 * fails, or is aborted. 276 *****************************************************************************/ 277 int 278 rf_ReconstructFailedDisk(raidPtr, row, col) 279 RF_Raid_t *raidPtr; 280 RF_RowCol_t row; 281 RF_RowCol_t col; 282 { 283 RF_LayoutSW_t *lp; 284 int rc; 285 286 lp = raidPtr->Layout.map; 287 if (lp->SubmitReconBuffer) { 288 /* 289 * The current infrastructure only supports reconstructing one 290 * disk at a time for each array. 291 */ 292 RF_LOCK_MUTEX(raidPtr->mutex); 293 while (raidPtr->reconInProgress) { 294 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 295 } 296 raidPtr->reconInProgress++; 297 RF_UNLOCK_MUTEX(raidPtr->mutex); 298 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 299 RF_LOCK_MUTEX(raidPtr->mutex); 300 raidPtr->reconInProgress--; 301 RF_UNLOCK_MUTEX(raidPtr->mutex); 302 } else { 303 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 304 lp->parityConfig); 305 rc = EIO; 306 } 307 RF_SIGNAL_COND(raidPtr->waitForReconCond); 308 return (rc); 309 } 310 311 int 312 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 313 RF_Raid_t *raidPtr; 314 RF_RowCol_t row; 315 RF_RowCol_t col; 316 { 317 RF_ComponentLabel_t c_label; 318 RF_RaidDisk_t *spareDiskPtr = NULL; 319 RF_RaidReconDesc_t *reconDesc; 320 RF_RowCol_t srow, scol; 321 int numDisksDone = 0, rc; 322 323 /* first look for a spare drive onto which to reconstruct the data */ 324 /* spare disk descriptors are stored in row 0. This may have to 325 * change eventually */ 326 327 RF_LOCK_MUTEX(raidPtr->mutex); 328 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 329 330 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 331 if (raidPtr->status[row] != rf_rs_degraded) { 332 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 333 RF_UNLOCK_MUTEX(raidPtr->mutex); 334 return (EINVAL); 335 } 336 srow = row; 337 scol = (-1); 338 } else { 339 srow = 0; 340 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 341 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 342 spareDiskPtr = &raidPtr->Disks[srow][scol]; 343 spareDiskPtr->status = rf_ds_used_spare; 344 break; 345 } 346 } 347 if (!spareDiskPtr) { 348 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 349 RF_UNLOCK_MUTEX(raidPtr->mutex); 350 return (ENOSPC); 351 } 352 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 353 } 354 RF_UNLOCK_MUTEX(raidPtr->mutex); 355 356 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 357 raidPtr->reconDesc = (void *) reconDesc; 358 #if RF_RECON_STATS > 0 359 reconDesc->hsStallCount = 0; 360 reconDesc->numReconExecDelays = 0; 361 reconDesc->numReconEventWaits = 0; 362 #endif /* RF_RECON_STATS > 0 */ 363 reconDesc->reconExecTimerRunning = 0; 364 reconDesc->reconExecTicks = 0; 365 reconDesc->maxReconExecTicks = 0; 366 rc = rf_ContinueReconstructFailedDisk(reconDesc); 367 368 if (!rc) { 369 /* fix up the component label */ 370 /* Don't actually need the read here.. */ 371 raidread_component_label( 372 raidPtr->raid_cinfo[srow][scol].ci_dev, 373 raidPtr->raid_cinfo[srow][scol].ci_vp, 374 &c_label); 375 376 raid_init_component_label( raidPtr, &c_label); 377 c_label.row = row; 378 c_label.column = col; 379 c_label.clean = RF_RAID_DIRTY; 380 c_label.status = rf_ds_optimal; 381 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 382 383 /* We've just done a rebuild based on all the other 384 disks, so at this point the parity is known to be 385 clean, even if it wasn't before. */ 386 387 /* XXX doesn't hold for RAID 6!!*/ 388 389 raidPtr->parity_good = RF_RAID_CLEAN; 390 391 /* XXXX MORE NEEDED HERE */ 392 393 raidwrite_component_label( 394 raidPtr->raid_cinfo[srow][scol].ci_dev, 395 raidPtr->raid_cinfo[srow][scol].ci_vp, 396 &c_label); 397 398 } 399 return (rc); 400 } 401 402 /* 403 404 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 405 and you don't get a spare until the next Monday. With this function 406 (and hot-swappable drives) you can now put your new disk containing 407 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 408 rebuild the data "on the spot". 409 410 */ 411 412 int 413 rf_ReconstructInPlace(raidPtr, row, col) 414 RF_Raid_t *raidPtr; 415 RF_RowCol_t row; 416 RF_RowCol_t col; 417 { 418 RF_RaidDisk_t *spareDiskPtr = NULL; 419 RF_RaidReconDesc_t *reconDesc; 420 RF_LayoutSW_t *lp; 421 RF_RaidDisk_t *badDisk; 422 RF_ComponentLabel_t c_label; 423 int numDisksDone = 0, rc; 424 struct partinfo dpart; 425 struct vnode *vp; 426 struct vattr va; 427 struct proc *proc; 428 int retcode; 429 int ac; 430 431 lp = raidPtr->Layout.map; 432 if (lp->SubmitReconBuffer) { 433 /* 434 * The current infrastructure only supports reconstructing one 435 * disk at a time for each array. 436 */ 437 RF_LOCK_MUTEX(raidPtr->mutex); 438 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 439 (raidPtr->numFailures > 0)) { 440 /* XXX 0 above shouldn't be constant!!! */ 441 /* some component other than this has failed. 442 Let's not make things worse than they already 443 are... */ 444 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 445 printf(" Row: %d Col: %d Too many failures.\n", 446 row, col); 447 RF_UNLOCK_MUTEX(raidPtr->mutex); 448 return (EINVAL); 449 } 450 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 451 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 452 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col); 453 454 RF_UNLOCK_MUTEX(raidPtr->mutex); 455 return (EINVAL); 456 } 457 458 459 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 460 /* "It's gone..." */ 461 raidPtr->numFailures++; 462 raidPtr->Disks[row][col].status = rf_ds_failed; 463 raidPtr->status[row] = rf_rs_degraded; 464 rf_update_component_labels(raidPtr, 465 RF_NORMAL_COMPONENT_UPDATE); 466 } 467 468 while (raidPtr->reconInProgress) { 469 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 470 } 471 472 raidPtr->reconInProgress++; 473 474 475 /* first look for a spare drive onto which to reconstruct 476 the data. spare disk descriptors are stored in row 0. 477 This may have to change eventually */ 478 479 /* Actually, we don't care if it's failed or not... 480 On a RAID set with correct parity, this function 481 should be callable on any component without ill affects. */ 482 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 483 */ 484 485 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 486 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 487 488 raidPtr->reconInProgress--; 489 RF_UNLOCK_MUTEX(raidPtr->mutex); 490 return (EINVAL); 491 } 492 493 /* XXX need goop here to see if the disk is alive, 494 and, if not, make it so... */ 495 496 497 498 badDisk = &raidPtr->Disks[row][col]; 499 500 proc = raidPtr->engine_thread; 501 502 /* This device may have been opened successfully the 503 first time. Close it before trying to open it again.. */ 504 505 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 506 printf("Closed the open device: %s\n", 507 raidPtr->Disks[row][col].devname); 508 vp = raidPtr->raid_cinfo[row][col].ci_vp; 509 ac = raidPtr->Disks[row][col].auto_configured; 510 rf_close_component(raidPtr, vp, ac); 511 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 512 } 513 /* note that this disk was *not* auto_configured (any longer)*/ 514 raidPtr->Disks[row][col].auto_configured = 0; 515 516 printf("About to (re-)open the device for rebuilding: %s\n", 517 raidPtr->Disks[row][col].devname); 518 519 retcode = raidlookup(raidPtr->Disks[row][col].devname, 520 proc, &vp); 521 522 if (retcode) { 523 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 524 raidPtr->Disks[row][col].devname, retcode); 525 526 /* XXX the component isn't responding properly... 527 must be still dead :-( */ 528 raidPtr->reconInProgress--; 529 RF_UNLOCK_MUTEX(raidPtr->mutex); 530 return(retcode); 531 532 } else { 533 534 /* Ok, so we can at least do a lookup... 535 How about actually getting a vp for it? */ 536 537 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 538 proc)) != 0) { 539 raidPtr->reconInProgress--; 540 RF_UNLOCK_MUTEX(raidPtr->mutex); 541 return(retcode); 542 } 543 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 544 FREAD, proc->p_ucred, proc); 545 if (retcode) { 546 raidPtr->reconInProgress--; 547 RF_UNLOCK_MUTEX(raidPtr->mutex); 548 return(retcode); 549 } 550 raidPtr->Disks[row][col].blockSize = 551 dpart.disklab->d_secsize; 552 553 raidPtr->Disks[row][col].numBlocks = 554 dpart.part->p_size - rf_protectedSectors; 555 556 raidPtr->raid_cinfo[row][col].ci_vp = vp; 557 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 558 559 raidPtr->Disks[row][col].dev = va.va_rdev; 560 561 /* we allow the user to specify that only a 562 fraction of the disks should be used this is 563 just for debug: it speeds up 564 * the parity scan */ 565 raidPtr->Disks[row][col].numBlocks = 566 raidPtr->Disks[row][col].numBlocks * 567 rf_sizePercentage / 100; 568 } 569 570 571 572 spareDiskPtr = &raidPtr->Disks[row][col]; 573 spareDiskPtr->status = rf_ds_used_spare; 574 575 printf("RECON: initiating in-place reconstruction on\n"); 576 printf(" row %d col %d -> spare at row %d col %d\n", 577 row, col, row, col); 578 579 RF_UNLOCK_MUTEX(raidPtr->mutex); 580 581 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 582 spareDiskPtr, numDisksDone, 583 row, col); 584 raidPtr->reconDesc = (void *) reconDesc; 585 #if RF_RECON_STATS > 0 586 reconDesc->hsStallCount = 0; 587 reconDesc->numReconExecDelays = 0; 588 reconDesc->numReconEventWaits = 0; 589 #endif /* RF_RECON_STATS > 0 */ 590 reconDesc->reconExecTimerRunning = 0; 591 reconDesc->reconExecTicks = 0; 592 reconDesc->maxReconExecTicks = 0; 593 rc = rf_ContinueReconstructFailedDisk(reconDesc); 594 595 RF_LOCK_MUTEX(raidPtr->mutex); 596 raidPtr->reconInProgress--; 597 RF_UNLOCK_MUTEX(raidPtr->mutex); 598 599 } else { 600 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 601 lp->parityConfig); 602 rc = EIO; 603 } 604 RF_LOCK_MUTEX(raidPtr->mutex); 605 606 if (!rc) { 607 /* Need to set these here, as at this point it'll be claiming 608 that the disk is in rf_ds_spared! But we know better :-) */ 609 610 raidPtr->Disks[row][col].status = rf_ds_optimal; 611 raidPtr->status[row] = rf_rs_optimal; 612 613 /* fix up the component label */ 614 /* Don't actually need the read here.. */ 615 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 616 raidPtr->raid_cinfo[row][col].ci_vp, 617 &c_label); 618 619 raid_init_component_label(raidPtr, &c_label); 620 621 c_label.row = row; 622 c_label.column = col; 623 624 /* We've just done a rebuild based on all the other 625 disks, so at this point the parity is known to be 626 clean, even if it wasn't before. */ 627 628 /* XXX doesn't hold for RAID 6!!*/ 629 630 raidPtr->parity_good = RF_RAID_CLEAN; 631 632 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 633 raidPtr->raid_cinfo[row][col].ci_vp, 634 &c_label); 635 636 } 637 RF_UNLOCK_MUTEX(raidPtr->mutex); 638 RF_SIGNAL_COND(raidPtr->waitForReconCond); 639 wakeup(&raidPtr->waitForReconCond); 640 return (rc); 641 } 642 643 644 int 645 rf_ContinueReconstructFailedDisk(reconDesc) 646 RF_RaidReconDesc_t *reconDesc; 647 { 648 RF_Raid_t *raidPtr = reconDesc->raidPtr; 649 RF_RowCol_t row = reconDesc->row; 650 RF_RowCol_t col = reconDesc->col; 651 RF_RowCol_t srow = reconDesc->srow; 652 RF_RowCol_t scol = reconDesc->scol; 653 RF_ReconMap_t *mapPtr; 654 655 RF_ReconEvent_t *event; 656 struct timeval etime, elpsd; 657 unsigned long xor_s, xor_resid_us; 658 int retcode, i, ds; 659 660 switch (reconDesc->state) { 661 662 663 case 0: 664 665 raidPtr->accumXorTimeUs = 0; 666 667 /* create one trace record per physical disk */ 668 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 669 670 /* quiesce the array prior to starting recon. this is needed 671 * to assure no nasty interactions with pending user writes. 672 * We need to do this before we change the disk or row status. */ 673 reconDesc->state = 1; 674 675 Dprintf("RECON: begin request suspend\n"); 676 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 677 Dprintf("RECON: end request suspend\n"); 678 rf_StartUserStats(raidPtr); /* zero out the stats kept on 679 * user accs */ 680 681 /* fall through to state 1 */ 682 683 case 1: 684 685 RF_LOCK_MUTEX(raidPtr->mutex); 686 687 /* create the reconstruction control pointer and install it in 688 * the right slot */ 689 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 690 mapPtr = raidPtr->reconControl[row]->reconMap; 691 raidPtr->status[row] = rf_rs_reconstructing; 692 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 693 raidPtr->Disks[row][col].spareRow = srow; 694 raidPtr->Disks[row][col].spareCol = scol; 695 696 RF_UNLOCK_MUTEX(raidPtr->mutex); 697 698 RF_GETTIME(raidPtr->reconControl[row]->starttime); 699 700 /* now start up the actual reconstruction: issue a read for 701 * each surviving disk */ 702 703 reconDesc->numDisksDone = 0; 704 for (i = 0; i < raidPtr->numCol; i++) { 705 if (i != col) { 706 /* find and issue the next I/O on the 707 * indicated disk */ 708 if (IssueNextReadRequest(raidPtr, row, i)) { 709 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 710 reconDesc->numDisksDone++; 711 } 712 } 713 } 714 715 case 2: 716 Dprintf("RECON: resume requests\n"); 717 rf_ResumeNewRequests(raidPtr); 718 719 720 reconDesc->state = 3; 721 722 case 3: 723 724 /* process reconstruction events until all disks report that 725 * they've completed all work */ 726 mapPtr = raidPtr->reconControl[row]->reconMap; 727 728 729 730 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 731 732 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 733 RF_ASSERT(event); 734 735 if (ProcessReconEvent(raidPtr, row, event)) 736 reconDesc->numDisksDone++; 737 raidPtr->reconControl[row]->numRUsTotal = 738 mapPtr->totalRUs; 739 raidPtr->reconControl[row]->numRUsComplete = 740 mapPtr->totalRUs - 741 rf_UnitsLeftToReconstruct(mapPtr); 742 743 raidPtr->reconControl[row]->percentComplete = 744 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 745 if (rf_prReconSched) { 746 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 747 } 748 } 749 750 751 752 reconDesc->state = 4; 753 754 755 case 4: 756 mapPtr = raidPtr->reconControl[row]->reconMap; 757 if (rf_reconDebug) { 758 printf("RECON: all reads completed\n"); 759 } 760 /* at this point all the reads have completed. We now wait 761 * for any pending writes to complete, and then we're done */ 762 763 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 764 765 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 766 RF_ASSERT(event); 767 768 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 769 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 770 if (rf_prReconSched) { 771 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 772 } 773 } 774 reconDesc->state = 5; 775 776 case 5: 777 /* Success: mark the dead disk as reconstructed. We quiesce 778 * the array here to assure no nasty interactions with pending 779 * user accesses when we free up the psstatus structure as 780 * part of FreeReconControl() */ 781 782 reconDesc->state = 6; 783 784 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 785 rf_StopUserStats(raidPtr); 786 rf_PrintUserStats(raidPtr); /* print out the stats on user 787 * accs accumulated during 788 * recon */ 789 790 /* fall through to state 6 */ 791 case 6: 792 793 794 795 RF_LOCK_MUTEX(raidPtr->mutex); 796 raidPtr->numFailures--; 797 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 798 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 799 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 800 RF_UNLOCK_MUTEX(raidPtr->mutex); 801 RF_GETTIME(etime); 802 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 803 804 /* XXX -- why is state 7 different from state 6 if there is no 805 * return() here? -- XXX Note that I set elpsd above & use it 806 * below, so if you put a return here you'll have to fix this. 807 * (also, FreeReconControl is called below) */ 808 809 case 7: 810 811 rf_ResumeNewRequests(raidPtr); 812 813 printf("Reconstruction of disk at row %d col %d completed\n", 814 row, col); 815 xor_s = raidPtr->accumXorTimeUs / 1000000; 816 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 817 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 818 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 819 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", 820 (int) raidPtr->reconControl[row]->starttime.tv_sec, 821 (int) raidPtr->reconControl[row]->starttime.tv_usec, 822 (int) etime.tv_sec, (int) etime.tv_usec); 823 824 #if RF_RECON_STATS > 0 825 printf("Total head-sep stall count was %d\n", 826 (int) reconDesc->hsStallCount); 827 #endif /* RF_RECON_STATS > 0 */ 828 rf_FreeReconControl(raidPtr, row); 829 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 830 FreeReconDesc(reconDesc); 831 832 } 833 834 SignalReconDone(raidPtr); 835 return (0); 836 } 837 /***************************************************************************** 838 * do the right thing upon each reconstruction event. 839 * returns nonzero if and only if there is nothing left unread on the 840 * indicated disk 841 *****************************************************************************/ 842 static int 843 ProcessReconEvent(raidPtr, frow, event) 844 RF_Raid_t *raidPtr; 845 RF_RowCol_t frow; 846 RF_ReconEvent_t *event; 847 { 848 int retcode = 0, submitblocked; 849 RF_ReconBuffer_t *rbuf; 850 RF_SectorCount_t sectorsPerRU; 851 852 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 853 switch (event->type) { 854 855 /* a read I/O has completed */ 856 case RF_REVENT_READDONE: 857 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 858 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 859 frow, event->col, rbuf->parityStripeID); 860 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 861 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 862 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 863 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 864 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 865 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 866 if (!submitblocked) 867 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 868 break; 869 870 /* a write I/O has completed */ 871 case RF_REVENT_WRITEDONE: 872 if (rf_floatingRbufDebug) { 873 rf_CheckFloatingRbufCount(raidPtr, 1); 874 } 875 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 876 rbuf = (RF_ReconBuffer_t *) event->arg; 877 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 878 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 879 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 880 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 881 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 882 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 883 884 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 885 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 886 raidPtr->numFullReconBuffers--; 887 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 888 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 889 } else 890 if (rbuf->type == RF_RBUF_TYPE_FORCED) 891 rf_FreeReconBuffer(rbuf); 892 else 893 RF_ASSERT(0); 894 break; 895 896 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 897 * cleared */ 898 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 899 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 900 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 901 * BUFCLEAR event if we 902 * couldn't submit */ 903 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 904 break; 905 906 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 907 * blockage has been cleared */ 908 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 909 retcode = TryToRead(raidPtr, frow, event->col); 910 break; 911 912 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 913 * reconstruction blockage has been 914 * cleared */ 915 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 916 retcode = TryToRead(raidPtr, frow, event->col); 917 break; 918 919 /* a buffer has become ready to write */ 920 case RF_REVENT_BUFREADY: 921 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 922 retcode = IssueNextWriteRequest(raidPtr, frow); 923 if (rf_floatingRbufDebug) { 924 rf_CheckFloatingRbufCount(raidPtr, 1); 925 } 926 break; 927 928 /* we need to skip the current RU entirely because it got 929 * recon'd while we were waiting for something else to happen */ 930 case RF_REVENT_SKIP: 931 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 932 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 933 break; 934 935 /* a forced-reconstruction read access has completed. Just 936 * submit the buffer */ 937 case RF_REVENT_FORCEDREADDONE: 938 rbuf = (RF_ReconBuffer_t *) event->arg; 939 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 940 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 941 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 942 RF_ASSERT(!submitblocked); 943 break; 944 945 default: 946 RF_PANIC(); 947 } 948 rf_FreeReconEventDesc(event); 949 return (retcode); 950 } 951 /***************************************************************************** 952 * 953 * find the next thing that's needed on the indicated disk, and issue 954 * a read request for it. We assume that the reconstruction buffer 955 * associated with this process is free to receive the data. If 956 * reconstruction is blocked on the indicated RU, we issue a 957 * blockage-release request instead of a physical disk read request. 958 * If the current disk gets too far ahead of the others, we issue a 959 * head-separation wait request and return. 960 * 961 * ctrl->{ru_count, curPSID, diskOffset} and 962 * rbuf->failedDiskSectorOffset are maintained to point to the unit 963 * we're currently accessing. Note that this deviates from the 964 * standard C idiom of having counters point to the next thing to be 965 * accessed. This allows us to easily retry when we're blocked by 966 * head separation or reconstruction-blockage events. 967 * 968 * returns nonzero if and only if there is nothing left unread on the 969 * indicated disk 970 * 971 *****************************************************************************/ 972 static int 973 IssueNextReadRequest(raidPtr, row, col) 974 RF_Raid_t *raidPtr; 975 RF_RowCol_t row; 976 RF_RowCol_t col; 977 { 978 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 979 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 980 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 981 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 982 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 983 int do_new_check = 0, retcode = 0, status; 984 985 /* if we are currently the slowest disk, mark that we have to do a new 986 * check */ 987 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 988 do_new_check = 1; 989 990 while (1) { 991 992 ctrl->ru_count++; 993 if (ctrl->ru_count < RUsPerPU) { 994 ctrl->diskOffset += sectorsPerRU; 995 rbuf->failedDiskSectorOffset += sectorsPerRU; 996 } else { 997 ctrl->curPSID++; 998 ctrl->ru_count = 0; 999 /* code left over from when head-sep was based on 1000 * parity stripe id */ 1001 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 1002 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 1003 return (1); /* finito! */ 1004 } 1005 /* find the disk offsets of the start of the parity 1006 * stripe on both the current disk and the failed 1007 * disk. skip this entire parity stripe if either disk 1008 * does not appear in the indicated PS */ 1009 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1010 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 1011 if (status) { 1012 ctrl->ru_count = RUsPerPU - 1; 1013 continue; 1014 } 1015 } 1016 rbuf->which_ru = ctrl->ru_count; 1017 1018 /* skip this RU if it's already been reconstructed */ 1019 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1020 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1021 continue; 1022 } 1023 break; 1024 } 1025 ctrl->headSepCounter++; 1026 if (do_new_check) 1027 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1028 1029 1030 /* at this point, we have definitely decided what to do, and we have 1031 * only to see if we can actually do it now */ 1032 rbuf->parityStripeID = ctrl->curPSID; 1033 rbuf->which_ru = ctrl->ru_count; 1034 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1035 sizeof(raidPtr->recon_tracerecs[col])); 1036 raidPtr->recon_tracerecs[col].reconacc = 1; 1037 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1038 retcode = TryToRead(raidPtr, row, col); 1039 return (retcode); 1040 } 1041 1042 /* 1043 * tries to issue the next read on the indicated disk. We may be 1044 * blocked by (a) the heads being too far apart, or (b) recon on the 1045 * indicated RU being blocked due to a write by a user thread. In 1046 * this case, we issue a head-sep or blockage wait request, which will 1047 * cause this same routine to be invoked again later when the blockage 1048 * has cleared. 1049 */ 1050 1051 static int 1052 TryToRead(raidPtr, row, col) 1053 RF_Raid_t *raidPtr; 1054 RF_RowCol_t row; 1055 RF_RowCol_t col; 1056 { 1057 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1058 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1059 RF_StripeNum_t psid = ctrl->curPSID; 1060 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1061 RF_DiskQueueData_t *req; 1062 int status, created = 0; 1063 RF_ReconParityStripeStatus_t *pssPtr; 1064 1065 /* if the current disk is too far ahead of the others, issue a 1066 * head-separation wait and return */ 1067 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1068 return (0); 1069 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1070 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1071 1072 /* if recon is blocked on the indicated parity stripe, issue a 1073 * block-wait request and return. this also must mark the indicated RU 1074 * in the stripe as under reconstruction if not blocked. */ 1075 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1076 if (status == RF_PSS_RECON_BLOCKED) { 1077 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1078 goto out; 1079 } else 1080 if (status == RF_PSS_FORCED_ON_WRITE) { 1081 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1082 goto out; 1083 } 1084 /* make one last check to be sure that the indicated RU didn't get 1085 * reconstructed while we were waiting for something else to happen. 1086 * This is unfortunate in that it causes us to make this check twice 1087 * in the normal case. Might want to make some attempt to re-work 1088 * this so that we only do this check if we've definitely blocked on 1089 * one of the above checks. When this condition is detected, we may 1090 * have just created a bogus status entry, which we need to delete. */ 1091 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1092 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1093 if (created) 1094 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1095 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1096 goto out; 1097 } 1098 /* found something to read. issue the I/O */ 1099 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1100 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1101 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1102 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1103 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1104 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1105 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1106 1107 /* should be ok to use a NULL proc pointer here, all the bufs we use 1108 * should be in kernel space */ 1109 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1110 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1111 1112 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1113 1114 ctrl->rbuf->arg = (void *) req; 1115 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1116 pssPtr->issued[col] = 1; 1117 1118 out: 1119 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1120 return (0); 1121 } 1122 1123 1124 /* 1125 * given a parity stripe ID, we want to find out whether both the 1126 * current disk and the failed disk exist in that parity stripe. If 1127 * not, we want to skip this whole PS. If so, we want to find the 1128 * disk offset of the start of the PS on both the current disk and the 1129 * failed disk. 1130 * 1131 * this works by getting a list of disks comprising the indicated 1132 * parity stripe, and searching the list for the current and failed 1133 * disks. Once we've decided they both exist in the parity stripe, we 1134 * need to decide whether each is data or parity, so that we'll know 1135 * which mapping function to call to get the corresponding disk 1136 * offsets. 1137 * 1138 * this is kind of unpleasant, but doing it this way allows the 1139 * reconstruction code to use parity stripe IDs rather than physical 1140 * disks address to march through the failed disk, which greatly 1141 * simplifies a lot of code, as well as eliminating the need for a 1142 * reverse-mapping function. I also think it will execute faster, 1143 * since the calls to the mapping module are kept to a minimum. 1144 * 1145 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1146 * THE STRIPE IN THE CORRECT ORDER */ 1147 1148 1149 static int 1150 ComputePSDiskOffsets( 1151 RF_Raid_t * raidPtr, /* raid descriptor */ 1152 RF_StripeNum_t psid, /* parity stripe identifier */ 1153 RF_RowCol_t row, /* row and column of disk to find the offsets 1154 * for */ 1155 RF_RowCol_t col, 1156 RF_SectorNum_t * outDiskOffset, 1157 RF_SectorNum_t * outFailedDiskSectorOffset, 1158 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1159 RF_RowCol_t * spCol, 1160 RF_SectorNum_t * spOffset) 1161 { /* OUT: offset into disk containing spare unit */ 1162 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1163 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1164 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1165 RF_RowCol_t *diskids; 1166 u_int i, j, k, i_offset, j_offset; 1167 RF_RowCol_t prow, pcol; 1168 int testcol, testrow; 1169 RF_RowCol_t stripe; 1170 RF_SectorNum_t poffset; 1171 char i_is_parity = 0, j_is_parity = 0; 1172 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1173 1174 /* get a listing of the disks comprising that stripe */ 1175 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1176 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1177 RF_ASSERT(diskids); 1178 1179 /* reject this entire parity stripe if it does not contain the 1180 * indicated disk or it does not contain the failed disk */ 1181 if (row != stripe) 1182 goto skipit; 1183 for (i = 0; i < stripeWidth; i++) { 1184 if (col == diskids[i]) 1185 break; 1186 } 1187 if (i == stripeWidth) 1188 goto skipit; 1189 for (j = 0; j < stripeWidth; j++) { 1190 if (fcol == diskids[j]) 1191 break; 1192 } 1193 if (j == stripeWidth) { 1194 goto skipit; 1195 } 1196 /* find out which disk the parity is on */ 1197 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1198 1199 /* find out if either the current RU or the failed RU is parity */ 1200 /* also, if the parity occurs in this stripe prior to the data and/or 1201 * failed col, we need to decrement i and/or j */ 1202 for (k = 0; k < stripeWidth; k++) 1203 if (diskids[k] == pcol) 1204 break; 1205 RF_ASSERT(k < stripeWidth); 1206 i_offset = i; 1207 j_offset = j; 1208 if (k < i) 1209 i_offset--; 1210 else 1211 if (k == i) { 1212 i_is_parity = 1; 1213 i_offset = 0; 1214 } /* set offsets to zero to disable multiply 1215 * below */ 1216 if (k < j) 1217 j_offset--; 1218 else 1219 if (k == j) { 1220 j_is_parity = 1; 1221 j_offset = 0; 1222 } 1223 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1224 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1225 * tells us how far into the stripe the [current,failed] disk is. */ 1226 1227 /* call the mapping routine to get the offset into the current disk, 1228 * repeat for failed disk. */ 1229 if (i_is_parity) 1230 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1231 else 1232 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1233 1234 RF_ASSERT(row == testrow && col == testcol); 1235 1236 if (j_is_parity) 1237 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1238 else 1239 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1240 RF_ASSERT(row == testrow && fcol == testcol); 1241 1242 /* now locate the spare unit for the failed unit */ 1243 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1244 if (j_is_parity) 1245 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1246 else 1247 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1248 } else { 1249 *spRow = raidPtr->reconControl[row]->spareRow; 1250 *spCol = raidPtr->reconControl[row]->spareCol; 1251 *spOffset = *outFailedDiskSectorOffset; 1252 } 1253 1254 return (0); 1255 1256 skipit: 1257 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1258 psid, row, col); 1259 return (1); 1260 } 1261 /* this is called when a buffer has become ready to write to the replacement disk */ 1262 static int 1263 IssueNextWriteRequest(raidPtr, row) 1264 RF_Raid_t *raidPtr; 1265 RF_RowCol_t row; 1266 { 1267 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1268 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1269 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1270 RF_ReconBuffer_t *rbuf; 1271 RF_DiskQueueData_t *req; 1272 1273 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1274 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1275 * have gotten the event that sent us here */ 1276 RF_ASSERT(rbuf->pssPtr); 1277 1278 rbuf->pssPtr->writeRbuf = rbuf; 1279 rbuf->pssPtr = NULL; 1280 1281 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1282 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1283 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1284 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1285 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1286 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1287 1288 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1289 * kernel space */ 1290 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1291 sectorsPerRU, rbuf->buffer, 1292 rbuf->parityStripeID, rbuf->which_ru, 1293 ReconWriteDoneProc, (void *) rbuf, NULL, 1294 &raidPtr->recon_tracerecs[fcol], 1295 (void *) raidPtr, 0, NULL); 1296 1297 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1298 1299 rbuf->arg = (void *) req; 1300 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1301 1302 return (0); 1303 } 1304 1305 /* 1306 * this gets called upon the completion of a reconstruction read 1307 * operation the arg is a pointer to the per-disk reconstruction 1308 * control structure for the process that just finished a read. 1309 * 1310 * called at interrupt context in the kernel, so don't do anything 1311 * illegal here. 1312 */ 1313 static int 1314 ReconReadDoneProc(arg, status) 1315 void *arg; 1316 int status; 1317 { 1318 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1319 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1320 1321 if (status) { 1322 /* 1323 * XXX 1324 */ 1325 printf("Recon read failed!\n"); 1326 RF_PANIC(); 1327 } 1328 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1329 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1330 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1331 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1332 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1333 1334 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1335 return (0); 1336 } 1337 /* this gets called upon the completion of a reconstruction write operation. 1338 * the arg is a pointer to the rbuf that was just written 1339 * 1340 * called at interrupt context in the kernel, so don't do anything illegal here. 1341 */ 1342 static int 1343 ReconWriteDoneProc(arg, status) 1344 void *arg; 1345 int status; 1346 { 1347 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1348 1349 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1350 if (status) { 1351 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1352 * write failed!\n"); */ 1353 RF_PANIC(); 1354 } 1355 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1356 return (0); 1357 } 1358 1359 1360 /* 1361 * computes a new minimum head sep, and wakes up anyone who needs to 1362 * be woken as a result 1363 */ 1364 static void 1365 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1366 RF_Raid_t *raidPtr; 1367 RF_RowCol_t row; 1368 RF_HeadSepLimit_t hsCtr; 1369 { 1370 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1371 RF_HeadSepLimit_t new_min; 1372 RF_RowCol_t i; 1373 RF_CallbackDesc_t *p; 1374 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1375 * of a minimum */ 1376 1377 1378 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1379 1380 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1381 for (i = 0; i < raidPtr->numCol; i++) 1382 if (i != reconCtrlPtr->fcol) { 1383 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1384 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1385 } 1386 /* set the new minimum and wake up anyone who can now run again */ 1387 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1388 reconCtrlPtr->minHeadSepCounter = new_min; 1389 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1390 while (reconCtrlPtr->headSepCBList) { 1391 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1392 break; 1393 p = reconCtrlPtr->headSepCBList; 1394 reconCtrlPtr->headSepCBList = p->next; 1395 p->next = NULL; 1396 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1397 rf_FreeCallbackDesc(p); 1398 } 1399 1400 } 1401 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1402 } 1403 1404 /* 1405 * checks to see that the maximum head separation will not be violated 1406 * if we initiate a reconstruction I/O on the indicated disk. 1407 * Limiting the maximum head separation between two disks eliminates 1408 * the nasty buffer-stall conditions that occur when one disk races 1409 * ahead of the others and consumes all of the floating recon buffers. 1410 * This code is complex and unpleasant but it's necessary to avoid 1411 * some very nasty, albeit fairly rare, reconstruction behavior. 1412 * 1413 * returns non-zero if and only if we have to stop working on the 1414 * indicated disk due to a head-separation delay. 1415 */ 1416 static int 1417 CheckHeadSeparation( 1418 RF_Raid_t * raidPtr, 1419 RF_PerDiskReconCtrl_t * ctrl, 1420 RF_RowCol_t row, 1421 RF_RowCol_t col, 1422 RF_HeadSepLimit_t hsCtr, 1423 RF_ReconUnitNum_t which_ru) 1424 { 1425 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1426 RF_CallbackDesc_t *cb, *p, *pt; 1427 int retval = 0; 1428 1429 /* if we're too far ahead of the slowest disk, stop working on this 1430 * disk until the slower ones catch up. We do this by scheduling a 1431 * wakeup callback for the time when the slowest disk has caught up. 1432 * We define "caught up" with 20% hysteresis, i.e. the head separation 1433 * must have fallen to at most 80% of the max allowable head 1434 * separation before we'll wake up. 1435 * 1436 */ 1437 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1438 if ((raidPtr->headSepLimit >= 0) && 1439 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1440 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1441 raidPtr->raidid, row, col, ctrl->headSepCounter, 1442 reconCtrlPtr->minHeadSepCounter, 1443 raidPtr->headSepLimit); 1444 cb = rf_AllocCallbackDesc(); 1445 /* the minHeadSepCounter value we have to get to before we'll 1446 * wake up. build in 20% hysteresis. */ 1447 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1448 cb->row = row; 1449 cb->col = col; 1450 cb->next = NULL; 1451 1452 /* insert this callback descriptor into the sorted list of 1453 * pending head-sep callbacks */ 1454 p = reconCtrlPtr->headSepCBList; 1455 if (!p) 1456 reconCtrlPtr->headSepCBList = cb; 1457 else 1458 if (cb->callbackArg.v < p->callbackArg.v) { 1459 cb->next = reconCtrlPtr->headSepCBList; 1460 reconCtrlPtr->headSepCBList = cb; 1461 } else { 1462 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1463 cb->next = p; 1464 pt->next = cb; 1465 } 1466 retval = 1; 1467 #if RF_RECON_STATS > 0 1468 ctrl->reconCtrl->reconDesc->hsStallCount++; 1469 #endif /* RF_RECON_STATS > 0 */ 1470 } 1471 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1472 1473 return (retval); 1474 } 1475 /* 1476 * checks to see if reconstruction has been either forced or blocked 1477 * by a user operation. if forced, we skip this RU entirely. else if 1478 * blocked, put ourselves on the wait list. else return 0. 1479 * 1480 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1481 */ 1482 static int 1483 CheckForcedOrBlockedReconstruction( 1484 RF_Raid_t * raidPtr, 1485 RF_ReconParityStripeStatus_t * pssPtr, 1486 RF_PerDiskReconCtrl_t * ctrl, 1487 RF_RowCol_t row, 1488 RF_RowCol_t col, 1489 RF_StripeNum_t psid, 1490 RF_ReconUnitNum_t which_ru) 1491 { 1492 RF_CallbackDesc_t *cb; 1493 int retcode = 0; 1494 1495 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1496 retcode = RF_PSS_FORCED_ON_WRITE; 1497 else 1498 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1499 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1500 cb = rf_AllocCallbackDesc(); /* append ourselves to 1501 * the blockage-wait 1502 * list */ 1503 cb->row = row; 1504 cb->col = col; 1505 cb->next = pssPtr->blockWaitList; 1506 pssPtr->blockWaitList = cb; 1507 retcode = RF_PSS_RECON_BLOCKED; 1508 } 1509 if (!retcode) 1510 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1511 * reconstruction */ 1512 1513 return (retcode); 1514 } 1515 /* 1516 * if reconstruction is currently ongoing for the indicated stripeID, 1517 * reconstruction is forced to completion and we return non-zero to 1518 * indicate that the caller must wait. If not, then reconstruction is 1519 * blocked on the indicated stripe and the routine returns zero. If 1520 * and only if we return non-zero, we'll cause the cbFunc to get 1521 * invoked with the cbArg when the reconstruction has completed. 1522 */ 1523 int 1524 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1525 RF_Raid_t *raidPtr; 1526 RF_AccessStripeMap_t *asmap; 1527 void (*cbFunc) (RF_Raid_t *, void *); 1528 void *cbArg; 1529 { 1530 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1531 * we're working on */ 1532 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1533 * forcing recon on */ 1534 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1535 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1536 * stripe status structure */ 1537 RF_StripeNum_t psid; /* parity stripe id */ 1538 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1539 * offset */ 1540 RF_RowCol_t *diskids; 1541 RF_RowCol_t stripe; 1542 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1543 RF_RowCol_t fcol, diskno, i; 1544 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1545 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1546 RF_CallbackDesc_t *cb; 1547 int created = 0, nPromoted; 1548 1549 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1550 1551 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1552 1553 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1554 1555 /* if recon is not ongoing on this PS, just return */ 1556 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1557 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1558 return (0); 1559 } 1560 /* otherwise, we have to wait for reconstruction to complete on this 1561 * RU. */ 1562 /* In order to avoid waiting for a potentially large number of 1563 * low-priority accesses to complete, we force a normal-priority (i.e. 1564 * not low-priority) reconstruction on this RU. */ 1565 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1566 DDprintf1("Forcing recon on psid %ld\n", psid); 1567 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1568 * forced recon */ 1569 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1570 * that we just set */ 1571 fcol = raidPtr->reconControl[row]->fcol; 1572 1573 /* get a listing of the disks comprising the indicated stripe */ 1574 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1575 RF_ASSERT(row == stripe); 1576 1577 /* For previously issued reads, elevate them to normal 1578 * priority. If the I/O has already completed, it won't be 1579 * found in the queue, and hence this will be a no-op. For 1580 * unissued reads, allocate buffers and issue new reads. The 1581 * fact that we've set the FORCED bit means that the regular 1582 * recon procs will not re-issue these reqs */ 1583 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1584 if ((diskno = diskids[i]) != fcol) { 1585 if (pssPtr->issued[diskno]) { 1586 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1587 if (rf_reconDebug && nPromoted) 1588 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1589 } else { 1590 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1591 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1592 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1593 * location */ 1594 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1595 new_rbuf->which_ru = which_ru; 1596 new_rbuf->failedDiskSectorOffset = fd_offset; 1597 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1598 1599 /* use NULL b_proc b/c all addrs 1600 * should be in kernel space */ 1601 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1602 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1603 NULL, (void *) raidPtr, 0, NULL); 1604 1605 RF_ASSERT(req); /* XXX -- fix this -- 1606 * XXX */ 1607 1608 new_rbuf->arg = req; 1609 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1610 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1611 } 1612 } 1613 /* if the write is sitting in the disk queue, elevate its 1614 * priority */ 1615 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1616 printf("raid%d: promoted write to row %d col %d\n", 1617 raidPtr->raidid, row, fcol); 1618 } 1619 /* install a callback descriptor to be invoked when recon completes on 1620 * this parity stripe. */ 1621 cb = rf_AllocCallbackDesc(); 1622 /* XXX the following is bogus.. These functions don't really match!! 1623 * GO */ 1624 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1625 cb->callbackArg.p = (void *) cbArg; 1626 cb->next = pssPtr->procWaitList; 1627 pssPtr->procWaitList = cb; 1628 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1629 raidPtr->raidid, psid); 1630 1631 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1632 return (1); 1633 } 1634 /* called upon the completion of a forced reconstruction read. 1635 * all we do is schedule the FORCEDREADONE event. 1636 * called at interrupt context in the kernel, so don't do anything illegal here. 1637 */ 1638 static void 1639 ForceReconReadDoneProc(arg, status) 1640 void *arg; 1641 int status; 1642 { 1643 RF_ReconBuffer_t *rbuf = arg; 1644 1645 if (status) { 1646 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1647 * recon read 1648 * failed!\n"); */ 1649 RF_PANIC(); 1650 } 1651 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1652 } 1653 /* releases a block on the reconstruction of the indicated stripe */ 1654 int 1655 rf_UnblockRecon(raidPtr, asmap) 1656 RF_Raid_t *raidPtr; 1657 RF_AccessStripeMap_t *asmap; 1658 { 1659 RF_RowCol_t row = asmap->origRow; 1660 RF_StripeNum_t stripeID = asmap->stripeID; 1661 RF_ReconParityStripeStatus_t *pssPtr; 1662 RF_ReconUnitNum_t which_ru; 1663 RF_StripeNum_t psid; 1664 int created = 0; 1665 RF_CallbackDesc_t *cb; 1666 1667 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1668 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1669 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1670 1671 /* When recon is forced, the pss desc can get deleted before we get 1672 * back to unblock recon. But, this can _only_ happen when recon is 1673 * forced. It would be good to put some kind of sanity check here, but 1674 * how to decide if recon was just forced or not? */ 1675 if (!pssPtr) { 1676 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1677 * RU %d\n",psid,which_ru); */ 1678 if (rf_reconDebug || rf_pssDebug) 1679 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1680 goto out; 1681 } 1682 pssPtr->blockCount--; 1683 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1684 raidPtr->raidid, psid, pssPtr->blockCount); 1685 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1686 1687 /* unblock recon before calling CauseReconEvent in case 1688 * CauseReconEvent causes us to try to issue a new read before 1689 * returning here. */ 1690 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1691 1692 1693 while (pssPtr->blockWaitList) { 1694 /* spin through the block-wait list and 1695 release all the waiters */ 1696 cb = pssPtr->blockWaitList; 1697 pssPtr->blockWaitList = cb->next; 1698 cb->next = NULL; 1699 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1700 rf_FreeCallbackDesc(cb); 1701 } 1702 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1703 /* if no recon was requested while recon was blocked */ 1704 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1705 } 1706 } 1707 out: 1708 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1709 return (0); 1710 } 1711