1 /* $NetBSD: rf_reconstruct.c,v 1.111 2011/02/19 07:11:09 enami Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.111 2011/02/19 07:11:09 enami Exp $"); 37 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 #include <sys/namei.h> /* for pathbuf */ 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 #define RF_RECON_DONE_READS 1 98 #define RF_RECON_READ_ERROR 2 99 #define RF_RECON_WRITE_ERROR 3 100 #define RF_RECON_READ_STOPPED 4 101 #define RF_RECON_WRITE_DONE 5 102 103 #define RF_MAX_FREE_RECONBUFFER 32 104 #define RF_MIN_FREE_RECONBUFFER 16 105 106 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 107 RF_RaidDisk_t *, int, RF_RowCol_t); 108 static void FreeReconDesc(RF_RaidReconDesc_t *); 109 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 110 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 111 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 112 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 113 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 114 RF_SectorNum_t *); 115 static int IssueNextWriteRequest(RF_Raid_t *); 116 static int ReconReadDoneProc(void *, int); 117 static int ReconWriteDoneProc(void *, int); 118 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 119 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 120 RF_RowCol_t, RF_HeadSepLimit_t, 121 RF_ReconUnitNum_t); 122 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 123 RF_ReconParityStripeStatus_t *, 124 RF_PerDiskReconCtrl_t *, 125 RF_RowCol_t, RF_StripeNum_t, 126 RF_ReconUnitNum_t); 127 static void ForceReconReadDoneProc(void *, int); 128 static void rf_ShutdownReconstruction(void *); 129 130 struct RF_ReconDoneProc_s { 131 void (*proc) (RF_Raid_t *, void *); 132 void *arg; 133 RF_ReconDoneProc_t *next; 134 }; 135 136 /************************************************************************** 137 * 138 * sets up the parameters that will be used by the reconstruction process 139 * currently there are none, except for those that the layout-specific 140 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 141 * 142 * in the kernel, we fire off the recon thread. 143 * 144 **************************************************************************/ 145 static void 146 rf_ShutdownReconstruction(void *ignored) 147 { 148 pool_destroy(&rf_pools.reconbuffer); 149 } 150 151 int 152 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 153 { 154 155 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 156 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 157 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 158 159 return (0); 160 } 161 162 static RF_RaidReconDesc_t * 163 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 164 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 165 RF_RowCol_t scol) 166 { 167 168 RF_RaidReconDesc_t *reconDesc; 169 170 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 171 (RF_RaidReconDesc_t *)); 172 reconDesc->raidPtr = raidPtr; 173 reconDesc->col = col; 174 reconDesc->spareDiskPtr = spareDiskPtr; 175 reconDesc->numDisksDone = numDisksDone; 176 reconDesc->scol = scol; 177 reconDesc->next = NULL; 178 179 return (reconDesc); 180 } 181 182 static void 183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 184 { 185 #if RF_RECON_STATS > 0 186 printf("raid%d: %lu recon event waits, %lu recon delays\n", 187 reconDesc->raidPtr->raidid, 188 (long) reconDesc->numReconEventWaits, 189 (long) reconDesc->numReconExecDelays); 190 #endif /* RF_RECON_STATS > 0 */ 191 printf("raid%d: %lu max exec ticks\n", 192 reconDesc->raidPtr->raidid, 193 (long) reconDesc->maxReconExecTicks); 194 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 195 } 196 197 198 /***************************************************************************** 199 * 200 * primary routine to reconstruct a failed disk. This should be called from 201 * within its own thread. It won't return until reconstruction completes, 202 * fails, or is aborted. 203 *****************************************************************************/ 204 int 205 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 206 { 207 const RF_LayoutSW_t *lp; 208 int rc; 209 210 lp = raidPtr->Layout.map; 211 if (lp->SubmitReconBuffer) { 212 /* 213 * The current infrastructure only supports reconstructing one 214 * disk at a time for each array. 215 */ 216 RF_LOCK_MUTEX(raidPtr->mutex); 217 while (raidPtr->reconInProgress) { 218 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 219 } 220 raidPtr->reconInProgress++; 221 RF_UNLOCK_MUTEX(raidPtr->mutex); 222 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 223 RF_LOCK_MUTEX(raidPtr->mutex); 224 raidPtr->reconInProgress--; 225 RF_UNLOCK_MUTEX(raidPtr->mutex); 226 } else { 227 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 228 lp->parityConfig); 229 rc = EIO; 230 } 231 RF_SIGNAL_COND(raidPtr->waitForReconCond); 232 return (rc); 233 } 234 235 int 236 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 237 { 238 RF_ComponentLabel_t *c_label; 239 RF_RaidDisk_t *spareDiskPtr = NULL; 240 RF_RaidReconDesc_t *reconDesc; 241 RF_RowCol_t scol; 242 int numDisksDone = 0, rc; 243 244 /* first look for a spare drive onto which to reconstruct the data */ 245 /* spare disk descriptors are stored in row 0. This may have to 246 * change eventually */ 247 248 RF_LOCK_MUTEX(raidPtr->mutex); 249 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 250 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 251 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 252 if (raidPtr->status != rf_rs_degraded) { 253 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 254 RF_UNLOCK_MUTEX(raidPtr->mutex); 255 return (EINVAL); 256 } 257 scol = (-1); 258 } else { 259 #endif 260 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 261 if (raidPtr->Disks[scol].status == rf_ds_spare) { 262 spareDiskPtr = &raidPtr->Disks[scol]; 263 spareDiskPtr->status = rf_ds_used_spare; 264 break; 265 } 266 } 267 if (!spareDiskPtr) { 268 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 269 RF_UNLOCK_MUTEX(raidPtr->mutex); 270 return (ENOSPC); 271 } 272 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 273 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 274 } 275 #endif 276 RF_UNLOCK_MUTEX(raidPtr->mutex); 277 278 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 279 raidPtr->reconDesc = (void *) reconDesc; 280 #if RF_RECON_STATS > 0 281 reconDesc->hsStallCount = 0; 282 reconDesc->numReconExecDelays = 0; 283 reconDesc->numReconEventWaits = 0; 284 #endif /* RF_RECON_STATS > 0 */ 285 reconDesc->reconExecTimerRunning = 0; 286 reconDesc->reconExecTicks = 0; 287 reconDesc->maxReconExecTicks = 0; 288 rc = rf_ContinueReconstructFailedDisk(reconDesc); 289 290 if (!rc) { 291 /* fix up the component label */ 292 /* Don't actually need the read here.. */ 293 c_label = raidget_component_label(raidPtr, scol); 294 295 raid_init_component_label(raidPtr, c_label); 296 c_label->row = 0; 297 c_label->column = col; 298 c_label->clean = RF_RAID_DIRTY; 299 c_label->status = rf_ds_optimal; 300 rf_component_label_set_partitionsize(c_label, 301 raidPtr->Disks[scol].partitionSize); 302 303 /* We've just done a rebuild based on all the other 304 disks, so at this point the parity is known to be 305 clean, even if it wasn't before. */ 306 307 /* XXX doesn't hold for RAID 6!!*/ 308 309 RF_LOCK_MUTEX(raidPtr->mutex); 310 raidPtr->parity_good = RF_RAID_CLEAN; 311 RF_UNLOCK_MUTEX(raidPtr->mutex); 312 313 /* XXXX MORE NEEDED HERE */ 314 315 raidflush_component_label(raidPtr, scol); 316 } else { 317 /* Reconstruct failed. */ 318 319 RF_LOCK_MUTEX(raidPtr->mutex); 320 /* Failed disk goes back to "failed" status */ 321 raidPtr->Disks[col].status = rf_ds_failed; 322 323 /* Spare disk goes back to "spare" status. */ 324 spareDiskPtr->status = rf_ds_spare; 325 RF_UNLOCK_MUTEX(raidPtr->mutex); 326 327 } 328 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 329 return (rc); 330 } 331 332 /* 333 334 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 335 and you don't get a spare until the next Monday. With this function 336 (and hot-swappable drives) you can now put your new disk containing 337 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 338 rebuild the data "on the spot". 339 340 */ 341 342 int 343 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 344 { 345 RF_RaidDisk_t *spareDiskPtr = NULL; 346 RF_RaidReconDesc_t *reconDesc; 347 const RF_LayoutSW_t *lp; 348 RF_ComponentLabel_t *c_label; 349 int numDisksDone = 0, rc; 350 struct partinfo dpart; 351 struct pathbuf *pb; 352 struct vnode *vp; 353 struct vattr va; 354 int retcode; 355 int ac; 356 357 lp = raidPtr->Layout.map; 358 if (!lp->SubmitReconBuffer) { 359 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 360 lp->parityConfig); 361 /* wakeup anyone who might be waiting to do a reconstruct */ 362 RF_SIGNAL_COND(raidPtr->waitForReconCond); 363 return(EIO); 364 } 365 366 /* 367 * The current infrastructure only supports reconstructing one 368 * disk at a time for each array. 369 */ 370 RF_LOCK_MUTEX(raidPtr->mutex); 371 372 if (raidPtr->Disks[col].status != rf_ds_failed) { 373 /* "It's gone..." */ 374 raidPtr->numFailures++; 375 raidPtr->Disks[col].status = rf_ds_failed; 376 raidPtr->status = rf_rs_degraded; 377 RF_UNLOCK_MUTEX(raidPtr->mutex); 378 rf_update_component_labels(raidPtr, 379 RF_NORMAL_COMPONENT_UPDATE); 380 RF_LOCK_MUTEX(raidPtr->mutex); 381 } 382 383 while (raidPtr->reconInProgress) { 384 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 385 } 386 387 raidPtr->reconInProgress++; 388 389 /* first look for a spare drive onto which to reconstruct the 390 data. spare disk descriptors are stored in row 0. This 391 may have to change eventually */ 392 393 /* Actually, we don't care if it's failed or not... On a RAID 394 set with correct parity, this function should be callable 395 on any component without ill effects. */ 396 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 397 398 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 399 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 400 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 401 402 raidPtr->reconInProgress--; 403 RF_UNLOCK_MUTEX(raidPtr->mutex); 404 RF_SIGNAL_COND(raidPtr->waitForReconCond); 405 return (EINVAL); 406 } 407 #endif 408 409 /* This device may have been opened successfully the 410 first time. Close it before trying to open it again.. */ 411 412 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 413 #if 0 414 printf("Closed the open device: %s\n", 415 raidPtr->Disks[col].devname); 416 #endif 417 vp = raidPtr->raid_cinfo[col].ci_vp; 418 ac = raidPtr->Disks[col].auto_configured; 419 RF_UNLOCK_MUTEX(raidPtr->mutex); 420 rf_close_component(raidPtr, vp, ac); 421 RF_LOCK_MUTEX(raidPtr->mutex); 422 raidPtr->raid_cinfo[col].ci_vp = NULL; 423 } 424 /* note that this disk was *not* auto_configured (any longer)*/ 425 raidPtr->Disks[col].auto_configured = 0; 426 427 #if 0 428 printf("About to (re-)open the device for rebuilding: %s\n", 429 raidPtr->Disks[col].devname); 430 #endif 431 RF_UNLOCK_MUTEX(raidPtr->mutex); 432 pb = pathbuf_create(raidPtr->Disks[col].devname); 433 if (pb == NULL) { 434 retcode = ENOMEM; 435 } else { 436 retcode = dk_lookup(pb, curlwp, &vp); 437 pathbuf_destroy(pb); 438 } 439 440 if (retcode) { 441 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid, 442 raidPtr->Disks[col].devname, retcode); 443 444 /* the component isn't responding properly... 445 must be still dead :-( */ 446 RF_LOCK_MUTEX(raidPtr->mutex); 447 raidPtr->reconInProgress--; 448 RF_UNLOCK_MUTEX(raidPtr->mutex); 449 RF_SIGNAL_COND(raidPtr->waitForReconCond); 450 return(retcode); 451 } 452 453 /* Ok, so we can at least do a lookup... 454 How about actually getting a vp for it? */ 455 456 if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) { 457 RF_LOCK_MUTEX(raidPtr->mutex); 458 raidPtr->reconInProgress--; 459 RF_UNLOCK_MUTEX(raidPtr->mutex); 460 RF_SIGNAL_COND(raidPtr->waitForReconCond); 461 return(retcode); 462 } 463 464 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred); 465 if (retcode) { 466 RF_LOCK_MUTEX(raidPtr->mutex); 467 raidPtr->reconInProgress--; 468 RF_UNLOCK_MUTEX(raidPtr->mutex); 469 RF_SIGNAL_COND(raidPtr->waitForReconCond); 470 return(retcode); 471 } 472 RF_LOCK_MUTEX(raidPtr->mutex); 473 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 474 475 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 476 rf_protectedSectors; 477 478 raidPtr->raid_cinfo[col].ci_vp = vp; 479 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 480 481 raidPtr->Disks[col].dev = va.va_rdev; 482 483 /* we allow the user to specify that only a fraction 484 of the disks should be used this is just for debug: 485 it speeds up * the parity scan */ 486 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 487 rf_sizePercentage / 100; 488 RF_UNLOCK_MUTEX(raidPtr->mutex); 489 490 spareDiskPtr = &raidPtr->Disks[col]; 491 spareDiskPtr->status = rf_ds_used_spare; 492 493 printf("raid%d: initiating in-place reconstruction on column %d\n", 494 raidPtr->raidid, col); 495 496 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 497 numDisksDone, col); 498 raidPtr->reconDesc = (void *) reconDesc; 499 #if RF_RECON_STATS > 0 500 reconDesc->hsStallCount = 0; 501 reconDesc->numReconExecDelays = 0; 502 reconDesc->numReconEventWaits = 0; 503 #endif /* RF_RECON_STATS > 0 */ 504 reconDesc->reconExecTimerRunning = 0; 505 reconDesc->reconExecTicks = 0; 506 reconDesc->maxReconExecTicks = 0; 507 rc = rf_ContinueReconstructFailedDisk(reconDesc); 508 509 if (!rc) { 510 RF_LOCK_MUTEX(raidPtr->mutex); 511 /* Need to set these here, as at this point it'll be claiming 512 that the disk is in rf_ds_spared! But we know better :-) */ 513 514 raidPtr->Disks[col].status = rf_ds_optimal; 515 raidPtr->status = rf_rs_optimal; 516 RF_UNLOCK_MUTEX(raidPtr->mutex); 517 518 /* fix up the component label */ 519 /* Don't actually need the read here.. */ 520 c_label = raidget_component_label(raidPtr, col); 521 522 RF_LOCK_MUTEX(raidPtr->mutex); 523 raid_init_component_label(raidPtr, c_label); 524 525 c_label->row = 0; 526 c_label->column = col; 527 528 /* We've just done a rebuild based on all the other 529 disks, so at this point the parity is known to be 530 clean, even if it wasn't before. */ 531 532 /* XXX doesn't hold for RAID 6!!*/ 533 534 raidPtr->parity_good = RF_RAID_CLEAN; 535 RF_UNLOCK_MUTEX(raidPtr->mutex); 536 537 raidflush_component_label(raidPtr, col); 538 } else { 539 /* Reconstruct-in-place failed. Disk goes back to 540 "failed" status, regardless of what it was before. */ 541 RF_LOCK_MUTEX(raidPtr->mutex); 542 raidPtr->Disks[col].status = rf_ds_failed; 543 RF_UNLOCK_MUTEX(raidPtr->mutex); 544 } 545 546 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 547 548 RF_LOCK_MUTEX(raidPtr->mutex); 549 raidPtr->reconInProgress--; 550 RF_UNLOCK_MUTEX(raidPtr->mutex); 551 552 RF_SIGNAL_COND(raidPtr->waitForReconCond); 553 return (rc); 554 } 555 556 557 int 558 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 559 { 560 RF_Raid_t *raidPtr = reconDesc->raidPtr; 561 RF_RowCol_t col = reconDesc->col; 562 RF_RowCol_t scol = reconDesc->scol; 563 RF_ReconMap_t *mapPtr; 564 RF_ReconCtrl_t *tmp_reconctrl; 565 RF_ReconEvent_t *event; 566 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; 567 RF_ReconUnitCount_t RUsPerPU; 568 struct timeval etime, elpsd; 569 unsigned long xor_s, xor_resid_us; 570 int i, ds; 571 int status, done; 572 int recon_error, write_error; 573 574 raidPtr->accumXorTimeUs = 0; 575 #if RF_ACC_TRACE > 0 576 /* create one trace record per physical disk */ 577 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 578 #endif 579 580 /* quiesce the array prior to starting recon. this is needed 581 * to assure no nasty interactions with pending user writes. 582 * We need to do this before we change the disk or row status. */ 583 584 Dprintf("RECON: begin request suspend\n"); 585 rf_SuspendNewRequestsAndWait(raidPtr); 586 Dprintf("RECON: end request suspend\n"); 587 588 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 589 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 590 591 RF_LOCK_MUTEX(raidPtr->mutex); 592 593 /* create the reconstruction control pointer and install it in 594 * the right slot */ 595 raidPtr->reconControl = tmp_reconctrl; 596 mapPtr = raidPtr->reconControl->reconMap; 597 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 598 raidPtr->reconControl->numRUsComplete = 0; 599 raidPtr->status = rf_rs_reconstructing; 600 raidPtr->Disks[col].status = rf_ds_reconstructing; 601 raidPtr->Disks[col].spareCol = scol; 602 603 RF_UNLOCK_MUTEX(raidPtr->mutex); 604 605 RF_GETTIME(raidPtr->reconControl->starttime); 606 607 Dprintf("RECON: resume requests\n"); 608 rf_ResumeNewRequests(raidPtr); 609 610 611 mapPtr = raidPtr->reconControl->reconMap; 612 613 incPSID = RF_RECONMAP_SIZE; 614 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU; 615 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; 616 recon_error = 0; 617 write_error = 0; 618 pending_writes = incPSID; 619 raidPtr->reconControl->lastPSID = incPSID; 620 621 /* start the actual reconstruction */ 622 623 done = 0; 624 while (!done) { 625 626 if (raidPtr->waitShutdown) { 627 /* someone is unconfiguring this array... bail on the reconstruct.. */ 628 recon_error = 1; 629 break; 630 } 631 632 num_writes = 0; 633 634 /* issue a read for each surviving disk */ 635 636 reconDesc->numDisksDone = 0; 637 for (i = 0; i < raidPtr->numCol; i++) { 638 if (i != col) { 639 /* find and issue the next I/O on the 640 * indicated disk */ 641 if (IssueNextReadRequest(raidPtr, i)) { 642 Dprintf1("RECON: done issuing for c%d\n", i); 643 reconDesc->numDisksDone++; 644 } 645 } 646 } 647 648 /* process reconstruction events until all disks report that 649 * they've completed all work */ 650 651 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 652 653 event = rf_GetNextReconEvent(reconDesc); 654 status = ProcessReconEvent(raidPtr, event); 655 656 /* the normal case is that a read completes, and all is well. */ 657 if (status == RF_RECON_DONE_READS) { 658 reconDesc->numDisksDone++; 659 } else if ((status == RF_RECON_READ_ERROR) || 660 (status == RF_RECON_WRITE_ERROR)) { 661 /* an error was encountered while reconstructing... 662 Pretend we've finished this disk. 663 */ 664 recon_error = 1; 665 raidPtr->reconControl->error = 1; 666 667 /* bump the numDisksDone count for reads, 668 but not for writes */ 669 if (status == RF_RECON_READ_ERROR) 670 reconDesc->numDisksDone++; 671 672 /* write errors are special -- when we are 673 done dealing with the reads that are 674 finished, we don't want to wait for any 675 writes */ 676 if (status == RF_RECON_WRITE_ERROR) { 677 write_error = 1; 678 num_writes++; 679 } 680 681 } else if (status == RF_RECON_READ_STOPPED) { 682 /* count this component as being "done" */ 683 reconDesc->numDisksDone++; 684 } else if (status == RF_RECON_WRITE_DONE) { 685 num_writes++; 686 } 687 688 if (recon_error) { 689 /* make sure any stragglers are woken up so that 690 their theads will complete, and we can get out 691 of here with all IO processed */ 692 693 rf_WakeupHeadSepCBWaiters(raidPtr); 694 } 695 696 raidPtr->reconControl->numRUsTotal = 697 mapPtr->totalRUs; 698 raidPtr->reconControl->numRUsComplete = 699 mapPtr->totalRUs - 700 rf_UnitsLeftToReconstruct(mapPtr); 701 702 #if RF_DEBUG_RECON 703 raidPtr->reconControl->percentComplete = 704 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 705 if (rf_prReconSched) { 706 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 707 } 708 #endif 709 } 710 711 /* reads done, wakup any waiters, and then wait for writes */ 712 713 rf_WakeupHeadSepCBWaiters(raidPtr); 714 715 while (!recon_error && (num_writes < pending_writes)) { 716 event = rf_GetNextReconEvent(reconDesc); 717 status = ProcessReconEvent(raidPtr, event); 718 719 if (status == RF_RECON_WRITE_ERROR) { 720 num_writes++; 721 recon_error = 1; 722 raidPtr->reconControl->error = 1; 723 /* an error was encountered at the very end... bail */ 724 } else if (status == RF_RECON_WRITE_DONE) { 725 num_writes++; 726 } /* else it's something else, and we don't care */ 727 } 728 if (recon_error || 729 (raidPtr->reconControl->lastPSID == lastPSID)) { 730 done = 1; 731 break; 732 } 733 734 prev = raidPtr->reconControl->lastPSID; 735 raidPtr->reconControl->lastPSID += incPSID; 736 737 if (raidPtr->reconControl->lastPSID > lastPSID) { 738 pending_writes = lastPSID - prev; 739 raidPtr->reconControl->lastPSID = lastPSID; 740 } 741 742 /* back down curPSID to get ready for the next round... */ 743 for (i = 0; i < raidPtr->numCol; i++) { 744 if (i != col) { 745 raidPtr->reconControl->perDiskInfo[i].curPSID--; 746 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; 747 } 748 } 749 } 750 751 mapPtr = raidPtr->reconControl->reconMap; 752 if (rf_reconDebug) { 753 printf("RECON: all reads completed\n"); 754 } 755 /* at this point all the reads have completed. We now wait 756 * for any pending writes to complete, and then we're done */ 757 758 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 759 760 event = rf_GetNextReconEvent(reconDesc); 761 status = ProcessReconEvent(raidPtr, event); 762 763 if (status == RF_RECON_WRITE_ERROR) { 764 recon_error = 1; 765 raidPtr->reconControl->error = 1; 766 /* an error was encountered at the very end... bail */ 767 } else { 768 #if RF_DEBUG_RECON 769 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 770 if (rf_prReconSched) { 771 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 772 } 773 #endif 774 } 775 } 776 777 if (recon_error) { 778 /* we've encountered an error in reconstructing. */ 779 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 780 781 /* we start by blocking IO to the RAID set. */ 782 rf_SuspendNewRequestsAndWait(raidPtr); 783 784 RF_LOCK_MUTEX(raidPtr->mutex); 785 /* mark set as being degraded, rather than 786 rf_rs_reconstructing as we were before the problem. 787 After this is done we can update status of the 788 component disks without worrying about someone 789 trying to read from a failed component. 790 */ 791 raidPtr->status = rf_rs_degraded; 792 RF_UNLOCK_MUTEX(raidPtr->mutex); 793 794 /* resume IO */ 795 rf_ResumeNewRequests(raidPtr); 796 797 /* At this point there are two cases: 798 1) If we've experienced a read error, then we've 799 already waited for all the reads we're going to get, 800 and we just need to wait for the writes. 801 802 2) If we've experienced a write error, we've also 803 already waited for all the reads to complete, 804 but there is little point in waiting for the writes -- 805 when they do complete, they will just be ignored. 806 807 So we just wait for writes to complete if we didn't have a 808 write error. 809 */ 810 811 if (!write_error) { 812 /* wait for writes to complete */ 813 while (raidPtr->reconControl->pending_writes > 0) { 814 815 event = rf_GetNextReconEvent(reconDesc); 816 status = ProcessReconEvent(raidPtr, event); 817 818 if (status == RF_RECON_WRITE_ERROR) { 819 raidPtr->reconControl->error = 1; 820 /* an error was encountered at the very end... bail. 821 This will be very bad news for the user, since 822 at this point there will have been a read error 823 on one component, and a write error on another! 824 */ 825 break; 826 } 827 } 828 } 829 830 831 /* cleanup */ 832 833 /* drain the event queue - after waiting for the writes above, 834 there shouldn't be much (if anything!) left in the queue. */ 835 836 rf_DrainReconEventQueue(reconDesc); 837 838 /* XXX As much as we'd like to free the recon control structure 839 and the reconDesc, we have no way of knowing if/when those will 840 be touched by IO that has yet to occur. It is rather poor to be 841 basically causing a 'memory leak' here, but there doesn't seem to be 842 a cleaner alternative at this time. Perhaps when the reconstruct code 843 gets a makeover this problem will go away. 844 */ 845 #if 0 846 rf_FreeReconControl(raidPtr); 847 #endif 848 849 #if RF_ACC_TRACE > 0 850 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 851 #endif 852 /* XXX see comment above */ 853 #if 0 854 FreeReconDesc(reconDesc); 855 #endif 856 857 return (1); 858 } 859 860 /* Success: mark the dead disk as reconstructed. We quiesce 861 * the array here to assure no nasty interactions with pending 862 * user accesses when we free up the psstatus structure as 863 * part of FreeReconControl() */ 864 865 rf_SuspendNewRequestsAndWait(raidPtr); 866 867 RF_LOCK_MUTEX(raidPtr->mutex); 868 raidPtr->numFailures--; 869 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 870 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 871 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 872 RF_UNLOCK_MUTEX(raidPtr->mutex); 873 RF_GETTIME(etime); 874 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 875 876 rf_ResumeNewRequests(raidPtr); 877 878 printf("raid%d: Reconstruction of disk at col %d completed\n", 879 raidPtr->raidid, col); 880 xor_s = raidPtr->accumXorTimeUs / 1000000; 881 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 882 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 883 raidPtr->raidid, 884 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 885 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 886 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 887 raidPtr->raidid, 888 (int) raidPtr->reconControl->starttime.tv_sec, 889 (int) raidPtr->reconControl->starttime.tv_usec, 890 (int) etime.tv_sec, (int) etime.tv_usec); 891 #if RF_RECON_STATS > 0 892 printf("raid%d: Total head-sep stall count was %d\n", 893 raidPtr->raidid, (int) reconDesc->hsStallCount); 894 #endif /* RF_RECON_STATS > 0 */ 895 rf_FreeReconControl(raidPtr); 896 #if RF_ACC_TRACE > 0 897 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 898 #endif 899 FreeReconDesc(reconDesc); 900 901 return (0); 902 903 } 904 /***************************************************************************** 905 * do the right thing upon each reconstruction event. 906 *****************************************************************************/ 907 static int 908 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 909 { 910 int retcode = 0, submitblocked; 911 RF_ReconBuffer_t *rbuf; 912 RF_SectorCount_t sectorsPerRU; 913 914 retcode = RF_RECON_READ_STOPPED; 915 916 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 917 918 switch (event->type) { 919 920 /* a read I/O has completed */ 921 case RF_REVENT_READDONE: 922 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 923 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 924 event->col, rbuf->parityStripeID); 925 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 926 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 927 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 928 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 929 if (!raidPtr->reconControl->error) { 930 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 931 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 932 if (!submitblocked) 933 retcode = IssueNextReadRequest(raidPtr, event->col); 934 else 935 retcode = 0; 936 } 937 break; 938 939 /* a write I/O has completed */ 940 case RF_REVENT_WRITEDONE: 941 #if RF_DEBUG_RECON 942 if (rf_floatingRbufDebug) { 943 rf_CheckFloatingRbufCount(raidPtr, 1); 944 } 945 #endif 946 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 947 rbuf = (RF_ReconBuffer_t *) event->arg; 948 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 949 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 950 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 951 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 952 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 953 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 954 955 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 956 raidPtr->reconControl->pending_writes--; 957 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 958 959 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 960 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 961 while(raidPtr->reconControl->rb_lock) { 962 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 963 &raidPtr->reconControl->rb_mutex); 964 } 965 raidPtr->reconControl->rb_lock = 1; 966 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 967 968 raidPtr->numFullReconBuffers--; 969 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 970 971 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 972 raidPtr->reconControl->rb_lock = 0; 973 wakeup(&raidPtr->reconControl->rb_lock); 974 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 975 } else 976 if (rbuf->type == RF_RBUF_TYPE_FORCED) 977 rf_FreeReconBuffer(rbuf); 978 else 979 RF_ASSERT(0); 980 retcode = RF_RECON_WRITE_DONE; 981 break; 982 983 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 984 * cleared */ 985 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 986 if (!raidPtr->reconControl->error) { 987 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 988 0, (int) (long) event->arg); 989 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 990 * BUFCLEAR event if we 991 * couldn't submit */ 992 retcode = IssueNextReadRequest(raidPtr, event->col); 993 } 994 break; 995 996 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 997 * blockage has been cleared */ 998 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 999 if (!raidPtr->reconControl->error) { 1000 retcode = TryToRead(raidPtr, event->col); 1001 } 1002 break; 1003 1004 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 1005 * reconstruction blockage has been 1006 * cleared */ 1007 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 1008 if (!raidPtr->reconControl->error) { 1009 retcode = TryToRead(raidPtr, event->col); 1010 } 1011 break; 1012 1013 /* a buffer has become ready to write */ 1014 case RF_REVENT_BUFREADY: 1015 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 1016 if (!raidPtr->reconControl->error) { 1017 retcode = IssueNextWriteRequest(raidPtr); 1018 #if RF_DEBUG_RECON 1019 if (rf_floatingRbufDebug) { 1020 rf_CheckFloatingRbufCount(raidPtr, 1); 1021 } 1022 #endif 1023 } 1024 break; 1025 1026 /* we need to skip the current RU entirely because it got 1027 * recon'd while we were waiting for something else to happen */ 1028 case RF_REVENT_SKIP: 1029 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 1030 if (!raidPtr->reconControl->error) { 1031 retcode = IssueNextReadRequest(raidPtr, event->col); 1032 } 1033 break; 1034 1035 /* a forced-reconstruction read access has completed. Just 1036 * submit the buffer */ 1037 case RF_REVENT_FORCEDREADDONE: 1038 rbuf = (RF_ReconBuffer_t *) event->arg; 1039 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1040 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 1041 if (!raidPtr->reconControl->error) { 1042 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 1043 RF_ASSERT(!submitblocked); 1044 retcode = 0; 1045 } 1046 break; 1047 1048 /* A read I/O failed to complete */ 1049 case RF_REVENT_READ_FAILED: 1050 retcode = RF_RECON_READ_ERROR; 1051 break; 1052 1053 /* A write I/O failed to complete */ 1054 case RF_REVENT_WRITE_FAILED: 1055 retcode = RF_RECON_WRITE_ERROR; 1056 1057 /* This is an error, but it was a pending write. 1058 Account for it. */ 1059 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1060 raidPtr->reconControl->pending_writes--; 1061 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1062 1063 rbuf = (RF_ReconBuffer_t *) event->arg; 1064 1065 /* cleanup the disk queue data */ 1066 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1067 1068 /* At this point we're erroring out, badly, and floatingRbufs 1069 may not even be valid. Rather than putting this back onto 1070 the floatingRbufs list, just arrange for its immediate 1071 destruction. 1072 */ 1073 rf_FreeReconBuffer(rbuf); 1074 break; 1075 1076 /* a forced read I/O failed to complete */ 1077 case RF_REVENT_FORCEDREAD_FAILED: 1078 retcode = RF_RECON_READ_ERROR; 1079 break; 1080 1081 default: 1082 RF_PANIC(); 1083 } 1084 rf_FreeReconEventDesc(event); 1085 return (retcode); 1086 } 1087 /***************************************************************************** 1088 * 1089 * find the next thing that's needed on the indicated disk, and issue 1090 * a read request for it. We assume that the reconstruction buffer 1091 * associated with this process is free to receive the data. If 1092 * reconstruction is blocked on the indicated RU, we issue a 1093 * blockage-release request instead of a physical disk read request. 1094 * If the current disk gets too far ahead of the others, we issue a 1095 * head-separation wait request and return. 1096 * 1097 * ctrl->{ru_count, curPSID, diskOffset} and 1098 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1099 * we're currently accessing. Note that this deviates from the 1100 * standard C idiom of having counters point to the next thing to be 1101 * accessed. This allows us to easily retry when we're blocked by 1102 * head separation or reconstruction-blockage events. 1103 * 1104 *****************************************************************************/ 1105 static int 1106 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1107 { 1108 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1109 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1110 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1111 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1112 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1113 int do_new_check = 0, retcode = 0, status; 1114 1115 /* if we are currently the slowest disk, mark that we have to do a new 1116 * check */ 1117 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1118 do_new_check = 1; 1119 1120 while (1) { 1121 1122 ctrl->ru_count++; 1123 if (ctrl->ru_count < RUsPerPU) { 1124 ctrl->diskOffset += sectorsPerRU; 1125 rbuf->failedDiskSectorOffset += sectorsPerRU; 1126 } else { 1127 ctrl->curPSID++; 1128 ctrl->ru_count = 0; 1129 /* code left over from when head-sep was based on 1130 * parity stripe id */ 1131 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1132 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1133 return (RF_RECON_DONE_READS); /* finito! */ 1134 } 1135 /* find the disk offsets of the start of the parity 1136 * stripe on both the current disk and the failed 1137 * disk. skip this entire parity stripe if either disk 1138 * does not appear in the indicated PS */ 1139 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1140 &rbuf->spCol, &rbuf->spOffset); 1141 if (status) { 1142 ctrl->ru_count = RUsPerPU - 1; 1143 continue; 1144 } 1145 } 1146 rbuf->which_ru = ctrl->ru_count; 1147 1148 /* skip this RU if it's already been reconstructed */ 1149 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1150 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1151 continue; 1152 } 1153 break; 1154 } 1155 ctrl->headSepCounter++; 1156 if (do_new_check) 1157 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1158 1159 1160 /* at this point, we have definitely decided what to do, and we have 1161 * only to see if we can actually do it now */ 1162 rbuf->parityStripeID = ctrl->curPSID; 1163 rbuf->which_ru = ctrl->ru_count; 1164 #if RF_ACC_TRACE > 0 1165 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1166 sizeof(raidPtr->recon_tracerecs[col])); 1167 raidPtr->recon_tracerecs[col].reconacc = 1; 1168 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1169 #endif 1170 retcode = TryToRead(raidPtr, col); 1171 return (retcode); 1172 } 1173 1174 /* 1175 * tries to issue the next read on the indicated disk. We may be 1176 * blocked by (a) the heads being too far apart, or (b) recon on the 1177 * indicated RU being blocked due to a write by a user thread. In 1178 * this case, we issue a head-sep or blockage wait request, which will 1179 * cause this same routine to be invoked again later when the blockage 1180 * has cleared. 1181 */ 1182 1183 static int 1184 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1185 { 1186 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1187 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1188 RF_StripeNum_t psid = ctrl->curPSID; 1189 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1190 RF_DiskQueueData_t *req; 1191 int status; 1192 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1193 1194 /* if the current disk is too far ahead of the others, issue a 1195 * head-separation wait and return */ 1196 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1197 return (0); 1198 1199 /* allocate a new PSS in case we need it */ 1200 newpssPtr = rf_AllocPSStatus(raidPtr); 1201 1202 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1203 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1204 1205 if (pssPtr != newpssPtr) { 1206 rf_FreePSStatus(raidPtr, newpssPtr); 1207 } 1208 1209 /* if recon is blocked on the indicated parity stripe, issue a 1210 * block-wait request and return. this also must mark the indicated RU 1211 * in the stripe as under reconstruction if not blocked. */ 1212 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1213 if (status == RF_PSS_RECON_BLOCKED) { 1214 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1215 goto out; 1216 } else 1217 if (status == RF_PSS_FORCED_ON_WRITE) { 1218 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1219 goto out; 1220 } 1221 /* make one last check to be sure that the indicated RU didn't get 1222 * reconstructed while we were waiting for something else to happen. 1223 * This is unfortunate in that it causes us to make this check twice 1224 * in the normal case. Might want to make some attempt to re-work 1225 * this so that we only do this check if we've definitely blocked on 1226 * one of the above checks. When this condition is detected, we may 1227 * have just created a bogus status entry, which we need to delete. */ 1228 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1229 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1230 if (pssPtr == newpssPtr) 1231 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1232 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1233 goto out; 1234 } 1235 /* found something to read. issue the I/O */ 1236 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1237 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1238 #if RF_ACC_TRACE > 0 1239 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1240 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1241 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1242 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1243 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1244 #endif 1245 /* should be ok to use a NULL proc pointer here, all the bufs we use 1246 * should be in kernel space */ 1247 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1248 ReconReadDoneProc, (void *) ctrl, 1249 #if RF_ACC_TRACE > 0 1250 &raidPtr->recon_tracerecs[col], 1251 #else 1252 NULL, 1253 #endif 1254 (void *) raidPtr, 0, NULL, PR_WAITOK); 1255 1256 ctrl->rbuf->arg = (void *) req; 1257 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1258 pssPtr->issued[col] = 1; 1259 1260 out: 1261 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1262 return (0); 1263 } 1264 1265 1266 /* 1267 * given a parity stripe ID, we want to find out whether both the 1268 * current disk and the failed disk exist in that parity stripe. If 1269 * not, we want to skip this whole PS. If so, we want to find the 1270 * disk offset of the start of the PS on both the current disk and the 1271 * failed disk. 1272 * 1273 * this works by getting a list of disks comprising the indicated 1274 * parity stripe, and searching the list for the current and failed 1275 * disks. Once we've decided they both exist in the parity stripe, we 1276 * need to decide whether each is data or parity, so that we'll know 1277 * which mapping function to call to get the corresponding disk 1278 * offsets. 1279 * 1280 * this is kind of unpleasant, but doing it this way allows the 1281 * reconstruction code to use parity stripe IDs rather than physical 1282 * disks address to march through the failed disk, which greatly 1283 * simplifies a lot of code, as well as eliminating the need for a 1284 * reverse-mapping function. I also think it will execute faster, 1285 * since the calls to the mapping module are kept to a minimum. 1286 * 1287 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1288 * THE STRIPE IN THE CORRECT ORDER 1289 * 1290 * raidPtr - raid descriptor 1291 * psid - parity stripe identifier 1292 * col - column of disk to find the offsets for 1293 * spCol - out: col of spare unit for failed unit 1294 * spOffset - out: offset into disk containing spare unit 1295 * 1296 */ 1297 1298 1299 static int 1300 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1301 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1302 RF_SectorNum_t *outFailedDiskSectorOffset, 1303 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1304 { 1305 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1306 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1307 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1308 RF_RowCol_t *diskids; 1309 u_int i, j, k, i_offset, j_offset; 1310 RF_RowCol_t pcol; 1311 int testcol; 1312 RF_SectorNum_t poffset; 1313 char i_is_parity = 0, j_is_parity = 0; 1314 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1315 1316 /* get a listing of the disks comprising that stripe */ 1317 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1318 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1319 RF_ASSERT(diskids); 1320 1321 /* reject this entire parity stripe if it does not contain the 1322 * indicated disk or it does not contain the failed disk */ 1323 1324 for (i = 0; i < stripeWidth; i++) { 1325 if (col == diskids[i]) 1326 break; 1327 } 1328 if (i == stripeWidth) 1329 goto skipit; 1330 for (j = 0; j < stripeWidth; j++) { 1331 if (fcol == diskids[j]) 1332 break; 1333 } 1334 if (j == stripeWidth) { 1335 goto skipit; 1336 } 1337 /* find out which disk the parity is on */ 1338 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1339 1340 /* find out if either the current RU or the failed RU is parity */ 1341 /* also, if the parity occurs in this stripe prior to the data and/or 1342 * failed col, we need to decrement i and/or j */ 1343 for (k = 0; k < stripeWidth; k++) 1344 if (diskids[k] == pcol) 1345 break; 1346 RF_ASSERT(k < stripeWidth); 1347 i_offset = i; 1348 j_offset = j; 1349 if (k < i) 1350 i_offset--; 1351 else 1352 if (k == i) { 1353 i_is_parity = 1; 1354 i_offset = 0; 1355 } /* set offsets to zero to disable multiply 1356 * below */ 1357 if (k < j) 1358 j_offset--; 1359 else 1360 if (k == j) { 1361 j_is_parity = 1; 1362 j_offset = 0; 1363 } 1364 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1365 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1366 * tells us how far into the stripe the [current,failed] disk is. */ 1367 1368 /* call the mapping routine to get the offset into the current disk, 1369 * repeat for failed disk. */ 1370 if (i_is_parity) 1371 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1372 else 1373 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1374 1375 RF_ASSERT(col == testcol); 1376 1377 if (j_is_parity) 1378 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1379 else 1380 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1381 RF_ASSERT(fcol == testcol); 1382 1383 /* now locate the spare unit for the failed unit */ 1384 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1385 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1386 if (j_is_parity) 1387 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1388 else 1389 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1390 } else { 1391 #endif 1392 *spCol = raidPtr->reconControl->spareCol; 1393 *spOffset = *outFailedDiskSectorOffset; 1394 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1395 } 1396 #endif 1397 return (0); 1398 1399 skipit: 1400 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n", 1401 psid, col); 1402 return (1); 1403 } 1404 /* this is called when a buffer has become ready to write to the replacement disk */ 1405 static int 1406 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1407 { 1408 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1409 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1410 #if RF_ACC_TRACE > 0 1411 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1412 #endif 1413 RF_ReconBuffer_t *rbuf; 1414 RF_DiskQueueData_t *req; 1415 1416 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1417 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1418 * have gotten the event that sent us here */ 1419 RF_ASSERT(rbuf->pssPtr); 1420 1421 rbuf->pssPtr->writeRbuf = rbuf; 1422 rbuf->pssPtr = NULL; 1423 1424 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1425 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1426 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1427 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1428 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1429 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1430 1431 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1432 * kernel space */ 1433 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1434 sectorsPerRU, rbuf->buffer, 1435 rbuf->parityStripeID, rbuf->which_ru, 1436 ReconWriteDoneProc, (void *) rbuf, 1437 #if RF_ACC_TRACE > 0 1438 &raidPtr->recon_tracerecs[fcol], 1439 #else 1440 NULL, 1441 #endif 1442 (void *) raidPtr, 0, NULL, PR_WAITOK); 1443 1444 rbuf->arg = (void *) req; 1445 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1446 raidPtr->reconControl->pending_writes++; 1447 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1448 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1449 1450 return (0); 1451 } 1452 1453 /* 1454 * this gets called upon the completion of a reconstruction read 1455 * operation the arg is a pointer to the per-disk reconstruction 1456 * control structure for the process that just finished a read. 1457 * 1458 * called at interrupt context in the kernel, so don't do anything 1459 * illegal here. 1460 */ 1461 static int 1462 ReconReadDoneProc(void *arg, int status) 1463 { 1464 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1465 RF_Raid_t *raidPtr; 1466 1467 /* Detect that reconCtrl is no longer valid, and if that 1468 is the case, bail without calling rf_CauseReconEvent(). 1469 There won't be anyone listening for this event anyway */ 1470 1471 if (ctrl->reconCtrl == NULL) 1472 return(0); 1473 1474 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1475 1476 if (status) { 1477 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status); 1478 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1479 return(0); 1480 } 1481 #if RF_ACC_TRACE > 0 1482 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1483 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1484 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1485 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1486 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1487 #endif 1488 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1489 return (0); 1490 } 1491 /* this gets called upon the completion of a reconstruction write operation. 1492 * the arg is a pointer to the rbuf that was just written 1493 * 1494 * called at interrupt context in the kernel, so don't do anything illegal here. 1495 */ 1496 static int 1497 ReconWriteDoneProc(void *arg, int status) 1498 { 1499 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1500 1501 /* Detect that reconControl is no longer valid, and if that 1502 is the case, bail without calling rf_CauseReconEvent(). 1503 There won't be anyone listening for this event anyway */ 1504 1505 if (rbuf->raidPtr->reconControl == NULL) 1506 return(0); 1507 1508 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1509 if (status) { 1510 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1511 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1512 return(0); 1513 } 1514 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1515 return (0); 1516 } 1517 1518 1519 /* 1520 * computes a new minimum head sep, and wakes up anyone who needs to 1521 * be woken as a result 1522 */ 1523 static void 1524 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1525 { 1526 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1527 RF_HeadSepLimit_t new_min; 1528 RF_RowCol_t i; 1529 RF_CallbackDesc_t *p; 1530 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1531 * of a minimum */ 1532 1533 1534 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1535 while(reconCtrlPtr->rb_lock) { 1536 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1537 } 1538 reconCtrlPtr->rb_lock = 1; 1539 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1540 1541 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1542 for (i = 0; i < raidPtr->numCol; i++) 1543 if (i != reconCtrlPtr->fcol) { 1544 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1545 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1546 } 1547 /* set the new minimum and wake up anyone who can now run again */ 1548 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1549 reconCtrlPtr->minHeadSepCounter = new_min; 1550 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1551 while (reconCtrlPtr->headSepCBList) { 1552 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1553 break; 1554 p = reconCtrlPtr->headSepCBList; 1555 reconCtrlPtr->headSepCBList = p->next; 1556 p->next = NULL; 1557 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1558 rf_FreeCallbackDesc(p); 1559 } 1560 1561 } 1562 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1563 reconCtrlPtr->rb_lock = 0; 1564 wakeup(&reconCtrlPtr->rb_lock); 1565 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1566 } 1567 1568 /* 1569 * checks to see that the maximum head separation will not be violated 1570 * if we initiate a reconstruction I/O on the indicated disk. 1571 * Limiting the maximum head separation between two disks eliminates 1572 * the nasty buffer-stall conditions that occur when one disk races 1573 * ahead of the others and consumes all of the floating recon buffers. 1574 * This code is complex and unpleasant but it's necessary to avoid 1575 * some very nasty, albeit fairly rare, reconstruction behavior. 1576 * 1577 * returns non-zero if and only if we have to stop working on the 1578 * indicated disk due to a head-separation delay. 1579 */ 1580 static int 1581 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1582 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1583 RF_ReconUnitNum_t which_ru) 1584 { 1585 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1586 RF_CallbackDesc_t *cb, *p, *pt; 1587 int retval = 0; 1588 1589 /* if we're too far ahead of the slowest disk, stop working on this 1590 * disk until the slower ones catch up. We do this by scheduling a 1591 * wakeup callback for the time when the slowest disk has caught up. 1592 * We define "caught up" with 20% hysteresis, i.e. the head separation 1593 * must have fallen to at most 80% of the max allowable head 1594 * separation before we'll wake up. 1595 * 1596 */ 1597 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1598 while(reconCtrlPtr->rb_lock) { 1599 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1600 } 1601 reconCtrlPtr->rb_lock = 1; 1602 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1603 if ((raidPtr->headSepLimit >= 0) && 1604 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1605 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1606 raidPtr->raidid, col, ctrl->headSepCounter, 1607 reconCtrlPtr->minHeadSepCounter, 1608 raidPtr->headSepLimit); 1609 cb = rf_AllocCallbackDesc(); 1610 /* the minHeadSepCounter value we have to get to before we'll 1611 * wake up. build in 20% hysteresis. */ 1612 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1613 cb->col = col; 1614 cb->next = NULL; 1615 1616 /* insert this callback descriptor into the sorted list of 1617 * pending head-sep callbacks */ 1618 p = reconCtrlPtr->headSepCBList; 1619 if (!p) 1620 reconCtrlPtr->headSepCBList = cb; 1621 else 1622 if (cb->callbackArg.v < p->callbackArg.v) { 1623 cb->next = reconCtrlPtr->headSepCBList; 1624 reconCtrlPtr->headSepCBList = cb; 1625 } else { 1626 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1627 cb->next = p; 1628 pt->next = cb; 1629 } 1630 retval = 1; 1631 #if RF_RECON_STATS > 0 1632 ctrl->reconCtrl->reconDesc->hsStallCount++; 1633 #endif /* RF_RECON_STATS > 0 */ 1634 } 1635 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1636 reconCtrlPtr->rb_lock = 0; 1637 wakeup(&reconCtrlPtr->rb_lock); 1638 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1639 1640 return (retval); 1641 } 1642 /* 1643 * checks to see if reconstruction has been either forced or blocked 1644 * by a user operation. if forced, we skip this RU entirely. else if 1645 * blocked, put ourselves on the wait list. else return 0. 1646 * 1647 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1648 */ 1649 static int 1650 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1651 RF_ReconParityStripeStatus_t *pssPtr, 1652 RF_PerDiskReconCtrl_t *ctrl, 1653 RF_RowCol_t col, 1654 RF_StripeNum_t psid, 1655 RF_ReconUnitNum_t which_ru) 1656 { 1657 RF_CallbackDesc_t *cb; 1658 int retcode = 0; 1659 1660 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1661 retcode = RF_PSS_FORCED_ON_WRITE; 1662 else 1663 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1664 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1665 cb = rf_AllocCallbackDesc(); /* append ourselves to 1666 * the blockage-wait 1667 * list */ 1668 cb->col = col; 1669 cb->next = pssPtr->blockWaitList; 1670 pssPtr->blockWaitList = cb; 1671 retcode = RF_PSS_RECON_BLOCKED; 1672 } 1673 if (!retcode) 1674 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1675 * reconstruction */ 1676 1677 return (retcode); 1678 } 1679 /* 1680 * if reconstruction is currently ongoing for the indicated stripeID, 1681 * reconstruction is forced to completion and we return non-zero to 1682 * indicate that the caller must wait. If not, then reconstruction is 1683 * blocked on the indicated stripe and the routine returns zero. If 1684 * and only if we return non-zero, we'll cause the cbFunc to get 1685 * invoked with the cbArg when the reconstruction has completed. 1686 */ 1687 int 1688 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1689 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1690 { 1691 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1692 * forcing recon on */ 1693 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1694 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1695 * stripe status structure */ 1696 RF_StripeNum_t psid; /* parity stripe id */ 1697 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1698 * offset */ 1699 RF_RowCol_t *diskids; 1700 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1701 RF_RowCol_t fcol, diskno, i; 1702 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1703 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1704 RF_CallbackDesc_t *cb; 1705 int nPromoted; 1706 1707 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1708 1709 /* allocate a new PSS in case we need it */ 1710 newpssPtr = rf_AllocPSStatus(raidPtr); 1711 1712 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1713 1714 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1715 1716 if (pssPtr != newpssPtr) { 1717 rf_FreePSStatus(raidPtr, newpssPtr); 1718 } 1719 1720 /* if recon is not ongoing on this PS, just return */ 1721 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1722 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1723 return (0); 1724 } 1725 /* otherwise, we have to wait for reconstruction to complete on this 1726 * RU. */ 1727 /* In order to avoid waiting for a potentially large number of 1728 * low-priority accesses to complete, we force a normal-priority (i.e. 1729 * not low-priority) reconstruction on this RU. */ 1730 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1731 DDprintf1("Forcing recon on psid %ld\n", psid); 1732 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1733 * forced recon */ 1734 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1735 * that we just set */ 1736 fcol = raidPtr->reconControl->fcol; 1737 1738 /* get a listing of the disks comprising the indicated stripe */ 1739 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1740 1741 /* For previously issued reads, elevate them to normal 1742 * priority. If the I/O has already completed, it won't be 1743 * found in the queue, and hence this will be a no-op. For 1744 * unissued reads, allocate buffers and issue new reads. The 1745 * fact that we've set the FORCED bit means that the regular 1746 * recon procs will not re-issue these reqs */ 1747 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1748 if ((diskno = diskids[i]) != fcol) { 1749 if (pssPtr->issued[diskno]) { 1750 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1751 if (rf_reconDebug && nPromoted) 1752 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1753 } else { 1754 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1755 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1756 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1757 * location */ 1758 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1759 new_rbuf->which_ru = which_ru; 1760 new_rbuf->failedDiskSectorOffset = fd_offset; 1761 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1762 1763 /* use NULL b_proc b/c all addrs 1764 * should be in kernel space */ 1765 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1766 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, 1767 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1768 1769 new_rbuf->arg = req; 1770 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1771 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1772 } 1773 } 1774 /* if the write is sitting in the disk queue, elevate its 1775 * priority */ 1776 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1777 if (rf_reconDebug) 1778 printf("raid%d: promoted write to col %d\n", 1779 raidPtr->raidid, fcol); 1780 } 1781 /* install a callback descriptor to be invoked when recon completes on 1782 * this parity stripe. */ 1783 cb = rf_AllocCallbackDesc(); 1784 /* XXX the following is bogus.. These functions don't really match!! 1785 * GO */ 1786 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1787 cb->callbackArg.p = (void *) cbArg; 1788 cb->next = pssPtr->procWaitList; 1789 pssPtr->procWaitList = cb; 1790 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1791 raidPtr->raidid, psid); 1792 1793 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1794 return (1); 1795 } 1796 /* called upon the completion of a forced reconstruction read. 1797 * all we do is schedule the FORCEDREADONE event. 1798 * called at interrupt context in the kernel, so don't do anything illegal here. 1799 */ 1800 static void 1801 ForceReconReadDoneProc(void *arg, int status) 1802 { 1803 RF_ReconBuffer_t *rbuf = arg; 1804 1805 /* Detect that reconControl is no longer valid, and if that 1806 is the case, bail without calling rf_CauseReconEvent(). 1807 There won't be anyone listening for this event anyway */ 1808 1809 if (rbuf->raidPtr->reconControl == NULL) 1810 return; 1811 1812 if (status) { 1813 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1814 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1815 return; 1816 } 1817 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1818 } 1819 /* releases a block on the reconstruction of the indicated stripe */ 1820 int 1821 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1822 { 1823 RF_StripeNum_t stripeID = asmap->stripeID; 1824 RF_ReconParityStripeStatus_t *pssPtr; 1825 RF_ReconUnitNum_t which_ru; 1826 RF_StripeNum_t psid; 1827 RF_CallbackDesc_t *cb; 1828 1829 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1830 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1831 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1832 1833 /* When recon is forced, the pss desc can get deleted before we get 1834 * back to unblock recon. But, this can _only_ happen when recon is 1835 * forced. It would be good to put some kind of sanity check here, but 1836 * how to decide if recon was just forced or not? */ 1837 if (!pssPtr) { 1838 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1839 * RU %d\n",psid,which_ru); */ 1840 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1841 if (rf_reconDebug || rf_pssDebug) 1842 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1843 #endif 1844 goto out; 1845 } 1846 pssPtr->blockCount--; 1847 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1848 raidPtr->raidid, psid, pssPtr->blockCount); 1849 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1850 1851 /* unblock recon before calling CauseReconEvent in case 1852 * CauseReconEvent causes us to try to issue a new read before 1853 * returning here. */ 1854 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1855 1856 1857 while (pssPtr->blockWaitList) { 1858 /* spin through the block-wait list and 1859 release all the waiters */ 1860 cb = pssPtr->blockWaitList; 1861 pssPtr->blockWaitList = cb->next; 1862 cb->next = NULL; 1863 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1864 rf_FreeCallbackDesc(cb); 1865 } 1866 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1867 /* if no recon was requested while recon was blocked */ 1868 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1869 } 1870 } 1871 out: 1872 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1873 return (0); 1874 } 1875 1876 void 1877 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) 1878 { 1879 RF_CallbackDesc_t *p; 1880 1881 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1882 while(raidPtr->reconControl->rb_lock) { 1883 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, 1884 "rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex); 1885 } 1886 1887 raidPtr->reconControl->rb_lock = 1; 1888 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1889 1890 while (raidPtr->reconControl->headSepCBList) { 1891 p = raidPtr->reconControl->headSepCBList; 1892 raidPtr->reconControl->headSepCBList = p->next; 1893 p->next = NULL; 1894 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1895 rf_FreeCallbackDesc(p); 1896 } 1897 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1898 raidPtr->reconControl->rb_lock = 0; 1899 wakeup(&raidPtr->reconControl->rb_lock); 1900 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1901 1902 } 1903 1904