xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 500db002748d9818288e46e10f026a2b09548086)
1 /*	$NetBSD: rf_reconstruct.c,v 1.107 2009/02/11 23:54:10 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.107 2009/02/11 23:54:10 oster Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <dev/raidframe/raidframevar.h>
48 
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_debugprint.h"
58 #include "rf_general.h"
59 #include "rf_driver.h"
60 #include "rf_utils.h"
61 #include "rf_shutdown.h"
62 
63 #include "rf_kintf.h"
64 
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
66 
67 #if RF_DEBUG_RECON
68 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76 
77 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79 
80 #else /* RF_DEBUG_RECON */
81 
82 #define Dprintf(s) {}
83 #define Dprintf1(s,a) {}
84 #define Dprintf2(s,a,b) {}
85 #define Dprintf3(s,a,b,c) {}
86 #define Dprintf4(s,a,b,c,d) {}
87 #define Dprintf5(s,a,b,c,d,e) {}
88 #define Dprintf6(s,a,b,c,d,e,f) {}
89 #define Dprintf7(s,a,b,c,d,e,f,g) {}
90 
91 #define DDprintf1(s,a) {}
92 #define DDprintf2(s,a,b) {}
93 
94 #endif /* RF_DEBUG_RECON */
95 
96 #define RF_RECON_DONE_READS   1
97 #define RF_RECON_READ_ERROR   2
98 #define RF_RECON_WRITE_ERROR  3
99 #define RF_RECON_READ_STOPPED 4
100 #define RF_RECON_WRITE_DONE   5
101 
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104 
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 					      RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 				RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 			       RF_RowCol_t, RF_HeadSepLimit_t,
120 			       RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 					      RF_ReconParityStripeStatus_t *,
123 					      RF_PerDiskReconCtrl_t *,
124 					      RF_RowCol_t, RF_StripeNum_t,
125 					      RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128 
129 struct RF_ReconDoneProc_s {
130 	void    (*proc) (RF_Raid_t *, void *);
131 	void   *arg;
132 	RF_ReconDoneProc_t *next;
133 };
134 
135 /**************************************************************************
136  *
137  * sets up the parameters that will be used by the reconstruction process
138  * currently there are none, except for those that the layout-specific
139  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140  *
141  * in the kernel, we fire off the recon thread.
142  *
143  **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 	pool_destroy(&rf_pools.reconbuffer);
148 }
149 
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153 
154 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157 
158 	return (0);
159 }
160 
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 		   RF_RowCol_t scol)
165 {
166 
167 	RF_RaidReconDesc_t *reconDesc;
168 
169 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 		  (RF_RaidReconDesc_t *));
171 	reconDesc->raidPtr = raidPtr;
172 	reconDesc->col = col;
173 	reconDesc->spareDiskPtr = spareDiskPtr;
174 	reconDesc->numDisksDone = numDisksDone;
175 	reconDesc->scol = scol;
176 	reconDesc->next = NULL;
177 
178 	return (reconDesc);
179 }
180 
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 	       reconDesc->raidPtr->raidid,
187 	       (long) reconDesc->numReconEventWaits,
188 	       (long) reconDesc->numReconExecDelays);
189 #endif				/* RF_RECON_STATS > 0 */
190 	printf("raid%d: %lu max exec ticks\n",
191 	       reconDesc->raidPtr->raidid,
192 	       (long) reconDesc->maxReconExecTicks);
193 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
194 }
195 
196 
197 /*****************************************************************************
198  *
199  * primary routine to reconstruct a failed disk.  This should be called from
200  * within its own thread.  It won't return until reconstruction completes,
201  * fails, or is aborted.
202  *****************************************************************************/
203 int
204 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
205 {
206 	const RF_LayoutSW_t *lp;
207 	int     rc;
208 
209 	lp = raidPtr->Layout.map;
210 	if (lp->SubmitReconBuffer) {
211 		/*
212 	         * The current infrastructure only supports reconstructing one
213 	         * disk at a time for each array.
214 	         */
215 		RF_LOCK_MUTEX(raidPtr->mutex);
216 		while (raidPtr->reconInProgress) {
217 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
218 		}
219 		raidPtr->reconInProgress++;
220 		RF_UNLOCK_MUTEX(raidPtr->mutex);
221 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
222 		RF_LOCK_MUTEX(raidPtr->mutex);
223 		raidPtr->reconInProgress--;
224 		RF_UNLOCK_MUTEX(raidPtr->mutex);
225 	} else {
226 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
227 		    lp->parityConfig);
228 		rc = EIO;
229 	}
230 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
231 	return (rc);
232 }
233 
234 int
235 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
236 {
237 	RF_ComponentLabel_t c_label;
238 	RF_RaidDisk_t *spareDiskPtr = NULL;
239 	RF_RaidReconDesc_t *reconDesc;
240 	RF_RowCol_t scol;
241 	int     numDisksDone = 0, rc;
242 
243 	/* first look for a spare drive onto which to reconstruct the data */
244 	/* spare disk descriptors are stored in row 0.  This may have to
245 	 * change eventually */
246 
247 	RF_LOCK_MUTEX(raidPtr->mutex);
248 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
249 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
250 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
251 		if (raidPtr->status != rf_rs_degraded) {
252 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
253 			RF_UNLOCK_MUTEX(raidPtr->mutex);
254 			return (EINVAL);
255 		}
256 		scol = (-1);
257 	} else {
258 #endif
259 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
260 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
261 				spareDiskPtr = &raidPtr->Disks[scol];
262 				spareDiskPtr->status = rf_ds_used_spare;
263 				break;
264 			}
265 		}
266 		if (!spareDiskPtr) {
267 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
268 			RF_UNLOCK_MUTEX(raidPtr->mutex);
269 			return (ENOSPC);
270 		}
271 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
272 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
273 	}
274 #endif
275 	RF_UNLOCK_MUTEX(raidPtr->mutex);
276 
277 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
278 	raidPtr->reconDesc = (void *) reconDesc;
279 #if RF_RECON_STATS > 0
280 	reconDesc->hsStallCount = 0;
281 	reconDesc->numReconExecDelays = 0;
282 	reconDesc->numReconEventWaits = 0;
283 #endif				/* RF_RECON_STATS > 0 */
284 	reconDesc->reconExecTimerRunning = 0;
285 	reconDesc->reconExecTicks = 0;
286 	reconDesc->maxReconExecTicks = 0;
287 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
288 
289 	if (!rc) {
290 		/* fix up the component label */
291 		/* Don't actually need the read here.. */
292 		raidread_component_label(
293                         raidPtr->raid_cinfo[scol].ci_dev,
294 			raidPtr->raid_cinfo[scol].ci_vp,
295 			&c_label);
296 
297 		raid_init_component_label( raidPtr, &c_label);
298 		c_label.row = 0;
299 		c_label.column = col;
300 		c_label.clean = RF_RAID_DIRTY;
301 		c_label.status = rf_ds_optimal;
302 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
303 
304 		/* We've just done a rebuild based on all the other
305 		   disks, so at this point the parity is known to be
306 		   clean, even if it wasn't before. */
307 
308 		/* XXX doesn't hold for RAID 6!!*/
309 
310 		RF_LOCK_MUTEX(raidPtr->mutex);
311 		raidPtr->parity_good = RF_RAID_CLEAN;
312 		RF_UNLOCK_MUTEX(raidPtr->mutex);
313 
314 		/* XXXX MORE NEEDED HERE */
315 
316 		raidwrite_component_label(
317                         raidPtr->raid_cinfo[scol].ci_dev,
318 			raidPtr->raid_cinfo[scol].ci_vp,
319 			&c_label);
320 
321 	} else {
322 		/* Reconstruct failed. */
323 
324 		RF_LOCK_MUTEX(raidPtr->mutex);
325 		/* Failed disk goes back to "failed" status */
326 		raidPtr->Disks[col].status = rf_ds_failed;
327 
328 		/* Spare disk goes back to "spare" status. */
329 		spareDiskPtr->status = rf_ds_spare;
330 		RF_UNLOCK_MUTEX(raidPtr->mutex);
331 
332 	}
333 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
334 	return (rc);
335 }
336 
337 /*
338 
339    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
340    and you don't get a spare until the next Monday.  With this function
341    (and hot-swappable drives) you can now put your new disk containing
342    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
343    rebuild the data "on the spot".
344 
345 */
346 
347 int
348 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
349 {
350 	RF_RaidDisk_t *spareDiskPtr = NULL;
351 	RF_RaidReconDesc_t *reconDesc;
352 	const RF_LayoutSW_t *lp;
353 	RF_ComponentLabel_t c_label;
354 	int     numDisksDone = 0, rc;
355 	struct partinfo dpart;
356 	struct vnode *vp;
357 	struct vattr va;
358 	int retcode;
359 	int ac;
360 
361 	lp = raidPtr->Layout.map;
362 	if (!lp->SubmitReconBuffer) {
363 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
364 			     lp->parityConfig);
365 		/* wakeup anyone who might be waiting to do a reconstruct */
366 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
367 		return(EIO);
368 	}
369 
370 	/*
371 	 * The current infrastructure only supports reconstructing one
372 	 * disk at a time for each array.
373 	 */
374 	RF_LOCK_MUTEX(raidPtr->mutex);
375 
376 	if (raidPtr->Disks[col].status != rf_ds_failed) {
377 		/* "It's gone..." */
378 		raidPtr->numFailures++;
379 		raidPtr->Disks[col].status = rf_ds_failed;
380 		raidPtr->status = rf_rs_degraded;
381 		RF_UNLOCK_MUTEX(raidPtr->mutex);
382 		rf_update_component_labels(raidPtr,
383 					   RF_NORMAL_COMPONENT_UPDATE);
384 		RF_LOCK_MUTEX(raidPtr->mutex);
385 	}
386 
387 	while (raidPtr->reconInProgress) {
388 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
389 	}
390 
391 	raidPtr->reconInProgress++;
392 
393 	/* first look for a spare drive onto which to reconstruct the
394 	   data.  spare disk descriptors are stored in row 0.  This
395 	   may have to change eventually */
396 
397 	/* Actually, we don't care if it's failed or not...  On a RAID
398 	   set with correct parity, this function should be callable
399 	   on any component without ill effects. */
400 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
401 
402 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
403 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
404 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
405 
406 		raidPtr->reconInProgress--;
407 		RF_UNLOCK_MUTEX(raidPtr->mutex);
408 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
409 		return (EINVAL);
410 	}
411 #endif
412 
413 	/* This device may have been opened successfully the
414 	   first time. Close it before trying to open it again.. */
415 
416 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
417 #if 0
418 		printf("Closed the open device: %s\n",
419 		       raidPtr->Disks[col].devname);
420 #endif
421 		vp = raidPtr->raid_cinfo[col].ci_vp;
422 		ac = raidPtr->Disks[col].auto_configured;
423 		RF_UNLOCK_MUTEX(raidPtr->mutex);
424 		rf_close_component(raidPtr, vp, ac);
425 		RF_LOCK_MUTEX(raidPtr->mutex);
426 		raidPtr->raid_cinfo[col].ci_vp = NULL;
427 	}
428 	/* note that this disk was *not* auto_configured (any longer)*/
429 	raidPtr->Disks[col].auto_configured = 0;
430 
431 #if 0
432 	printf("About to (re-)open the device for rebuilding: %s\n",
433 	       raidPtr->Disks[col].devname);
434 #endif
435 	RF_UNLOCK_MUTEX(raidPtr->mutex);
436 	retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE);
437 
438 	if (retcode) {
439 		printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
440 		       raidPtr->Disks[col].devname, retcode);
441 
442 		/* the component isn't responding properly...
443 		   must be still dead :-( */
444 		RF_LOCK_MUTEX(raidPtr->mutex);
445 		raidPtr->reconInProgress--;
446 		RF_UNLOCK_MUTEX(raidPtr->mutex);
447 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
448 		return(retcode);
449 	}
450 
451 	/* Ok, so we can at least do a lookup...
452 	   How about actually getting a vp for it? */
453 
454 	if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) {
455 		RF_LOCK_MUTEX(raidPtr->mutex);
456 		raidPtr->reconInProgress--;
457 		RF_UNLOCK_MUTEX(raidPtr->mutex);
458 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
459 		return(retcode);
460 	}
461 
462 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred);
463 	if (retcode) {
464 		RF_LOCK_MUTEX(raidPtr->mutex);
465 		raidPtr->reconInProgress--;
466 		RF_UNLOCK_MUTEX(raidPtr->mutex);
467 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
468 		return(retcode);
469 	}
470 	RF_LOCK_MUTEX(raidPtr->mutex);
471 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
472 
473 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
474 		rf_protectedSectors;
475 
476 	raidPtr->raid_cinfo[col].ci_vp = vp;
477 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
478 
479 	raidPtr->Disks[col].dev = va.va_rdev;
480 
481 	/* we allow the user to specify that only a fraction
482 	   of the disks should be used this is just for debug:
483 	   it speeds up * the parity scan */
484 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
485 		rf_sizePercentage / 100;
486 	RF_UNLOCK_MUTEX(raidPtr->mutex);
487 
488 	spareDiskPtr = &raidPtr->Disks[col];
489 	spareDiskPtr->status = rf_ds_used_spare;
490 
491 	printf("raid%d: initiating in-place reconstruction on column %d\n",
492 	       raidPtr->raidid, col);
493 
494 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
495 				       numDisksDone, col);
496 	raidPtr->reconDesc = (void *) reconDesc;
497 #if RF_RECON_STATS > 0
498 	reconDesc->hsStallCount = 0;
499 	reconDesc->numReconExecDelays = 0;
500 	reconDesc->numReconEventWaits = 0;
501 #endif				/* RF_RECON_STATS > 0 */
502 	reconDesc->reconExecTimerRunning = 0;
503 	reconDesc->reconExecTicks = 0;
504 	reconDesc->maxReconExecTicks = 0;
505 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
506 
507 	if (!rc) {
508 		RF_LOCK_MUTEX(raidPtr->mutex);
509 		/* Need to set these here, as at this point it'll be claiming
510 		   that the disk is in rf_ds_spared!  But we know better :-) */
511 
512 		raidPtr->Disks[col].status = rf_ds_optimal;
513 		raidPtr->status = rf_rs_optimal;
514 		RF_UNLOCK_MUTEX(raidPtr->mutex);
515 
516 		/* fix up the component label */
517 		/* Don't actually need the read here.. */
518 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
519 					 raidPtr->raid_cinfo[col].ci_vp,
520 					 &c_label);
521 
522 		RF_LOCK_MUTEX(raidPtr->mutex);
523 		raid_init_component_label(raidPtr, &c_label);
524 
525 		c_label.row = 0;
526 		c_label.column = col;
527 
528 		/* We've just done a rebuild based on all the other
529 		   disks, so at this point the parity is known to be
530 		   clean, even if it wasn't before. */
531 
532 		/* XXX doesn't hold for RAID 6!!*/
533 
534 		raidPtr->parity_good = RF_RAID_CLEAN;
535 		RF_UNLOCK_MUTEX(raidPtr->mutex);
536 
537 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
538 					  raidPtr->raid_cinfo[col].ci_vp,
539 					  &c_label);
540 
541 	} else {
542 		/* Reconstruct-in-place failed.  Disk goes back to
543 		   "failed" status, regardless of what it was before.  */
544 		RF_LOCK_MUTEX(raidPtr->mutex);
545 		raidPtr->Disks[col].status = rf_ds_failed;
546 		RF_UNLOCK_MUTEX(raidPtr->mutex);
547 	}
548 
549 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
550 
551 	RF_LOCK_MUTEX(raidPtr->mutex);
552 	raidPtr->reconInProgress--;
553 	RF_UNLOCK_MUTEX(raidPtr->mutex);
554 
555 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
556 	return (rc);
557 }
558 
559 
560 int
561 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
562 {
563 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
564 	RF_RowCol_t col = reconDesc->col;
565 	RF_RowCol_t scol = reconDesc->scol;
566 	RF_ReconMap_t *mapPtr;
567 	RF_ReconCtrl_t *tmp_reconctrl;
568 	RF_ReconEvent_t *event;
569 	RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
570 	RF_ReconUnitCount_t RUsPerPU;
571 	struct timeval etime, elpsd;
572 	unsigned long xor_s, xor_resid_us;
573 	int     i, ds;
574 	int status, done;
575 	int recon_error, write_error;
576 
577 	raidPtr->accumXorTimeUs = 0;
578 #if RF_ACC_TRACE > 0
579 	/* create one trace record per physical disk */
580 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
581 #endif
582 
583 	/* quiesce the array prior to starting recon.  this is needed
584 	 * to assure no nasty interactions with pending user writes.
585 	 * We need to do this before we change the disk or row status. */
586 
587 	Dprintf("RECON: begin request suspend\n");
588 	rf_SuspendNewRequestsAndWait(raidPtr);
589 	Dprintf("RECON: end request suspend\n");
590 
591 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
592 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
593 
594 	RF_LOCK_MUTEX(raidPtr->mutex);
595 
596 	/* create the reconstruction control pointer and install it in
597 	 * the right slot */
598 	raidPtr->reconControl = tmp_reconctrl;
599 	mapPtr = raidPtr->reconControl->reconMap;
600 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
601 	raidPtr->reconControl->numRUsComplete =	0;
602 	raidPtr->status = rf_rs_reconstructing;
603 	raidPtr->Disks[col].status = rf_ds_reconstructing;
604 	raidPtr->Disks[col].spareCol = scol;
605 
606 	RF_UNLOCK_MUTEX(raidPtr->mutex);
607 
608 	RF_GETTIME(raidPtr->reconControl->starttime);
609 
610 	Dprintf("RECON: resume requests\n");
611 	rf_ResumeNewRequests(raidPtr);
612 
613 
614 	mapPtr = raidPtr->reconControl->reconMap;
615 
616 	incPSID = RF_RECONMAP_SIZE;
617 	lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
618 	RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
619 	recon_error = 0;
620 	write_error = 0;
621 	pending_writes = incPSID;
622 	raidPtr->reconControl->lastPSID = incPSID;
623 
624 	/* start the actual reconstruction */
625 
626 	done = 0;
627 	while (!done) {
628 
629 		if (raidPtr->waitShutdown) {
630 			/* someone is unconfiguring this array... bail on the reconstruct.. */
631 			recon_error = 1;
632 			break;
633 		}
634 
635 		num_writes = 0;
636 
637 		/* issue a read for each surviving disk */
638 
639 		reconDesc->numDisksDone = 0;
640 		for (i = 0; i < raidPtr->numCol; i++) {
641 			if (i != col) {
642 				/* find and issue the next I/O on the
643 				 * indicated disk */
644 				if (IssueNextReadRequest(raidPtr, i)) {
645 					Dprintf1("RECON: done issuing for c%d\n", i);
646 					reconDesc->numDisksDone++;
647 				}
648 			}
649 		}
650 
651 		/* process reconstruction events until all disks report that
652 		 * they've completed all work */
653 
654 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
655 
656 			event = rf_GetNextReconEvent(reconDesc);
657 			status = ProcessReconEvent(raidPtr, event);
658 
659 			/* the normal case is that a read completes, and all is well. */
660 			if (status == RF_RECON_DONE_READS) {
661 				reconDesc->numDisksDone++;
662 			} else if ((status == RF_RECON_READ_ERROR) ||
663 				   (status == RF_RECON_WRITE_ERROR)) {
664 				/* an error was encountered while reconstructing...
665 				   Pretend we've finished this disk.
666 				*/
667 				recon_error = 1;
668 				raidPtr->reconControl->error = 1;
669 
670 				/* bump the numDisksDone count for reads,
671 				   but not for writes */
672 				if (status == RF_RECON_READ_ERROR)
673 					reconDesc->numDisksDone++;
674 
675 				/* write errors are special -- when we are
676 				   done dealing with the reads that are
677 				   finished, we don't want to wait for any
678 				   writes */
679 				if (status == RF_RECON_WRITE_ERROR) {
680 					write_error = 1;
681 					num_writes++;
682 				}
683 
684 			} else if (status == RF_RECON_READ_STOPPED) {
685 				/* count this component as being "done" */
686 				reconDesc->numDisksDone++;
687 			} else if (status == RF_RECON_WRITE_DONE) {
688 				num_writes++;
689 			}
690 
691 			if (recon_error) {
692 				/* make sure any stragglers are woken up so that
693 				   their theads will complete, and we can get out
694 				   of here with all IO processed */
695 
696 				rf_WakeupHeadSepCBWaiters(raidPtr);
697 			}
698 
699 			raidPtr->reconControl->numRUsTotal =
700 				mapPtr->totalRUs;
701 			raidPtr->reconControl->numRUsComplete =
702 				mapPtr->totalRUs -
703 				rf_UnitsLeftToReconstruct(mapPtr);
704 
705 #if RF_DEBUG_RECON
706 			raidPtr->reconControl->percentComplete =
707 				(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
708 			if (rf_prReconSched) {
709 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
710 			}
711 #endif
712 		}
713 
714 		/* reads done, wakup any waiters, and then wait for writes */
715 
716 		rf_WakeupHeadSepCBWaiters(raidPtr);
717 
718 		while (!recon_error && (num_writes < pending_writes)) {
719 			event = rf_GetNextReconEvent(reconDesc);
720 			status = ProcessReconEvent(raidPtr, event);
721 
722 			if (status == RF_RECON_WRITE_ERROR) {
723 				num_writes++;
724 				recon_error = 1;
725 				raidPtr->reconControl->error = 1;
726 				/* an error was encountered at the very end... bail */
727 			} else if (status == RF_RECON_WRITE_DONE) {
728 				num_writes++;
729 			} /* else it's something else, and we don't care */
730 		}
731 		if (recon_error ||
732 		    (raidPtr->reconControl->lastPSID == lastPSID)) {
733 			done = 1;
734 			break;
735 		}
736 
737 		prev = raidPtr->reconControl->lastPSID;
738 		raidPtr->reconControl->lastPSID += incPSID;
739 
740 		if (raidPtr->reconControl->lastPSID > lastPSID) {
741 			pending_writes = lastPSID - prev;
742 			raidPtr->reconControl->lastPSID = lastPSID;
743 		}
744 
745 		/* back down curPSID to get ready for the next round... */
746 		for (i = 0; i < raidPtr->numCol; i++) {
747 			if (i != col) {
748 				raidPtr->reconControl->perDiskInfo[i].curPSID--;
749 				raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
750 			}
751 		}
752 	}
753 
754 	mapPtr = raidPtr->reconControl->reconMap;
755 	if (rf_reconDebug) {
756 		printf("RECON: all reads completed\n");
757 	}
758 	/* at this point all the reads have completed.  We now wait
759 	 * for any pending writes to complete, and then we're done */
760 
761 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
762 
763 		event = rf_GetNextReconEvent(reconDesc);
764 		status = ProcessReconEvent(raidPtr, event);
765 
766 		if (status == RF_RECON_WRITE_ERROR) {
767 			recon_error = 1;
768 			raidPtr->reconControl->error = 1;
769 			/* an error was encountered at the very end... bail */
770 		} else {
771 #if RF_DEBUG_RECON
772 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
773 			if (rf_prReconSched) {
774 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
775 			}
776 #endif
777 		}
778 	}
779 
780 	if (recon_error) {
781 		/* we've encountered an error in reconstructing. */
782 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
783 
784 		/* we start by blocking IO to the RAID set. */
785 		rf_SuspendNewRequestsAndWait(raidPtr);
786 
787 		RF_LOCK_MUTEX(raidPtr->mutex);
788 		/* mark set as being degraded, rather than
789 		   rf_rs_reconstructing as we were before the problem.
790 		   After this is done we can update status of the
791 		   component disks without worrying about someone
792 		   trying to read from a failed component.
793 		*/
794 		raidPtr->status = rf_rs_degraded;
795 		RF_UNLOCK_MUTEX(raidPtr->mutex);
796 
797 		/* resume IO */
798 		rf_ResumeNewRequests(raidPtr);
799 
800 		/* At this point there are two cases:
801 		   1) If we've experienced a read error, then we've
802 		   already waited for all the reads we're going to get,
803 		   and we just need to wait for the writes.
804 
805 		   2) If we've experienced a write error, we've also
806 		   already waited for all the reads to complete,
807 		   but there is little point in waiting for the writes --
808 		   when they do complete, they will just be ignored.
809 
810 		   So we just wait for writes to complete if we didn't have a
811 		   write error.
812 		*/
813 
814 		if (!write_error) {
815 			/* wait for writes to complete */
816 			while (raidPtr->reconControl->pending_writes > 0) {
817 
818 				event = rf_GetNextReconEvent(reconDesc);
819 				status = ProcessReconEvent(raidPtr, event);
820 
821 				if (status == RF_RECON_WRITE_ERROR) {
822 					raidPtr->reconControl->error = 1;
823 					/* an error was encountered at the very end... bail.
824 					   This will be very bad news for the user, since
825 					   at this point there will have been a read error
826 					   on one component, and a write error on another!
827 					*/
828 					break;
829 				}
830 			}
831 		}
832 
833 
834 		/* cleanup */
835 
836 		/* drain the event queue - after waiting for the writes above,
837 		   there shouldn't be much (if anything!) left in the queue. */
838 
839 		rf_DrainReconEventQueue(reconDesc);
840 
841 		/* XXX  As much as we'd like to free the recon control structure
842 		   and the reconDesc, we have no way of knowing if/when those will
843 		   be touched by IO that has yet to occur.  It is rather poor to be
844 		   basically causing a 'memory leak' here, but there doesn't seem to be
845 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
846 		   gets a makeover this problem will go away.
847 		*/
848 #if 0
849 		rf_FreeReconControl(raidPtr);
850 #endif
851 
852 #if RF_ACC_TRACE > 0
853 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
854 #endif
855 		/* XXX see comment above */
856 #if 0
857 		FreeReconDesc(reconDesc);
858 #endif
859 
860 		return (1);
861 	}
862 
863 	/* Success:  mark the dead disk as reconstructed.  We quiesce
864 	 * the array here to assure no nasty interactions with pending
865 	 * user accesses when we free up the psstatus structure as
866 	 * part of FreeReconControl() */
867 
868 	rf_SuspendNewRequestsAndWait(raidPtr);
869 
870 	RF_LOCK_MUTEX(raidPtr->mutex);
871 	raidPtr->numFailures--;
872 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
873 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
874 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
875 	RF_UNLOCK_MUTEX(raidPtr->mutex);
876 	RF_GETTIME(etime);
877 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
878 
879 	rf_ResumeNewRequests(raidPtr);
880 
881 	printf("raid%d: Reconstruction of disk at col %d completed\n",
882 	       raidPtr->raidid, col);
883 	xor_s = raidPtr->accumXorTimeUs / 1000000;
884 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
885 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
886 	       raidPtr->raidid,
887 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
888 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
889 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
890 	       raidPtr->raidid,
891 	       (int) raidPtr->reconControl->starttime.tv_sec,
892 	       (int) raidPtr->reconControl->starttime.tv_usec,
893 	       (int) etime.tv_sec, (int) etime.tv_usec);
894 #if RF_RECON_STATS > 0
895 	printf("raid%d: Total head-sep stall count was %d\n",
896 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
897 #endif				/* RF_RECON_STATS > 0 */
898 	rf_FreeReconControl(raidPtr);
899 #if RF_ACC_TRACE > 0
900 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
901 #endif
902 	FreeReconDesc(reconDesc);
903 
904 	return (0);
905 
906 }
907 /*****************************************************************************
908  * do the right thing upon each reconstruction event.
909  *****************************************************************************/
910 static int
911 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
912 {
913 	int     retcode = 0, submitblocked;
914 	RF_ReconBuffer_t *rbuf;
915 	RF_SectorCount_t sectorsPerRU;
916 
917 	retcode = RF_RECON_READ_STOPPED;
918 
919 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
920 
921 	switch (event->type) {
922 
923 		/* a read I/O has completed */
924 	case RF_REVENT_READDONE:
925 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
926 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
927 		    event->col, rbuf->parityStripeID);
928 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
929 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
930 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
931 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
932 		if (!raidPtr->reconControl->error) {
933 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
934 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
935 			if (!submitblocked)
936 				retcode = IssueNextReadRequest(raidPtr, event->col);
937 			else
938 				retcode = 0;
939 		}
940 		break;
941 
942 		/* a write I/O has completed */
943 	case RF_REVENT_WRITEDONE:
944 #if RF_DEBUG_RECON
945 		if (rf_floatingRbufDebug) {
946 			rf_CheckFloatingRbufCount(raidPtr, 1);
947 		}
948 #endif
949 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
950 		rbuf = (RF_ReconBuffer_t *) event->arg;
951 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
952 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
953 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
954 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
955 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
956 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
957 
958 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
959 		raidPtr->reconControl->pending_writes--;
960 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
961 
962 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
963 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
964 			while(raidPtr->reconControl->rb_lock) {
965 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
966 					&raidPtr->reconControl->rb_mutex);
967 			}
968 			raidPtr->reconControl->rb_lock = 1;
969 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
970 
971 			raidPtr->numFullReconBuffers--;
972 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
973 
974 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
975 			raidPtr->reconControl->rb_lock = 0;
976 			wakeup(&raidPtr->reconControl->rb_lock);
977 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
978 		} else
979 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
980 				rf_FreeReconBuffer(rbuf);
981 			else
982 				RF_ASSERT(0);
983 		retcode = RF_RECON_WRITE_DONE;
984 		break;
985 
986 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
987 					 * cleared */
988 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
989 		if (!raidPtr->reconControl->error) {
990 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
991 							     0, (int) (long) event->arg);
992 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
993 							 * BUFCLEAR event if we
994 							 * couldn't submit */
995 			retcode = IssueNextReadRequest(raidPtr, event->col);
996 		}
997 		break;
998 
999 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
1000 					 * blockage has been cleared */
1001 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
1002 		if (!raidPtr->reconControl->error) {
1003 			retcode = TryToRead(raidPtr, event->col);
1004 		}
1005 		break;
1006 
1007 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
1008 					 * reconstruction blockage has been
1009 					 * cleared */
1010 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1011 		if (!raidPtr->reconControl->error) {
1012 			retcode = TryToRead(raidPtr, event->col);
1013 		}
1014 		break;
1015 
1016 		/* a buffer has become ready to write */
1017 	case RF_REVENT_BUFREADY:
1018 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1019 		if (!raidPtr->reconControl->error) {
1020 			retcode = IssueNextWriteRequest(raidPtr);
1021 #if RF_DEBUG_RECON
1022 			if (rf_floatingRbufDebug) {
1023 				rf_CheckFloatingRbufCount(raidPtr, 1);
1024 			}
1025 #endif
1026 		}
1027 		break;
1028 
1029 		/* we need to skip the current RU entirely because it got
1030 		 * recon'd while we were waiting for something else to happen */
1031 	case RF_REVENT_SKIP:
1032 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1033 		if (!raidPtr->reconControl->error) {
1034 			retcode = IssueNextReadRequest(raidPtr, event->col);
1035 		}
1036 		break;
1037 
1038 		/* a forced-reconstruction read access has completed.  Just
1039 		 * submit the buffer */
1040 	case RF_REVENT_FORCEDREADDONE:
1041 		rbuf = (RF_ReconBuffer_t *) event->arg;
1042 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1043 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1044 		if (!raidPtr->reconControl->error) {
1045 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1046 			RF_ASSERT(!submitblocked);
1047 			retcode = 0;
1048 		}
1049 		break;
1050 
1051 		/* A read I/O failed to complete */
1052 	case RF_REVENT_READ_FAILED:
1053 		retcode = RF_RECON_READ_ERROR;
1054 		break;
1055 
1056 		/* A write I/O failed to complete */
1057 	case RF_REVENT_WRITE_FAILED:
1058 		retcode = RF_RECON_WRITE_ERROR;
1059 
1060 		/* This is an error, but it was a pending write.
1061 		   Account for it. */
1062 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1063 		raidPtr->reconControl->pending_writes--;
1064 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1065 
1066 		rbuf = (RF_ReconBuffer_t *) event->arg;
1067 
1068 		/* cleanup the disk queue data */
1069 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1070 
1071 		/* At this point we're erroring out, badly, and floatingRbufs
1072 		   may not even be valid.  Rather than putting this back onto
1073 		   the floatingRbufs list, just arrange for its immediate
1074 		   destruction.
1075 		*/
1076 		rf_FreeReconBuffer(rbuf);
1077 		break;
1078 
1079 		/* a forced read I/O failed to complete */
1080 	case RF_REVENT_FORCEDREAD_FAILED:
1081 		retcode = RF_RECON_READ_ERROR;
1082 		break;
1083 
1084 	default:
1085 		RF_PANIC();
1086 	}
1087 	rf_FreeReconEventDesc(event);
1088 	return (retcode);
1089 }
1090 /*****************************************************************************
1091  *
1092  * find the next thing that's needed on the indicated disk, and issue
1093  * a read request for it.  We assume that the reconstruction buffer
1094  * associated with this process is free to receive the data.  If
1095  * reconstruction is blocked on the indicated RU, we issue a
1096  * blockage-release request instead of a physical disk read request.
1097  * If the current disk gets too far ahead of the others, we issue a
1098  * head-separation wait request and return.
1099  *
1100  * ctrl->{ru_count, curPSID, diskOffset} and
1101  * rbuf->failedDiskSectorOffset are maintained to point to the unit
1102  * we're currently accessing.  Note that this deviates from the
1103  * standard C idiom of having counters point to the next thing to be
1104  * accessed.  This allows us to easily retry when we're blocked by
1105  * head separation or reconstruction-blockage events.
1106  *
1107  *****************************************************************************/
1108 static int
1109 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1110 {
1111 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1112 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1113 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1114 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1115 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1116 	int     do_new_check = 0, retcode = 0, status;
1117 
1118 	/* if we are currently the slowest disk, mark that we have to do a new
1119 	 * check */
1120 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1121 		do_new_check = 1;
1122 
1123 	while (1) {
1124 
1125 		ctrl->ru_count++;
1126 		if (ctrl->ru_count < RUsPerPU) {
1127 			ctrl->diskOffset += sectorsPerRU;
1128 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1129 		} else {
1130 			ctrl->curPSID++;
1131 			ctrl->ru_count = 0;
1132 			/* code left over from when head-sep was based on
1133 			 * parity stripe id */
1134 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1135 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1136 				return (RF_RECON_DONE_READS);	/* finito! */
1137 			}
1138 			/* find the disk offsets of the start of the parity
1139 			 * stripe on both the current disk and the failed
1140 			 * disk. skip this entire parity stripe if either disk
1141 			 * does not appear in the indicated PS */
1142 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1143 			    &rbuf->spCol, &rbuf->spOffset);
1144 			if (status) {
1145 				ctrl->ru_count = RUsPerPU - 1;
1146 				continue;
1147 			}
1148 		}
1149 		rbuf->which_ru = ctrl->ru_count;
1150 
1151 		/* skip this RU if it's already been reconstructed */
1152 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1153 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1154 			continue;
1155 		}
1156 		break;
1157 	}
1158 	ctrl->headSepCounter++;
1159 	if (do_new_check)
1160 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
1161 
1162 
1163 	/* at this point, we have definitely decided what to do, and we have
1164 	 * only to see if we can actually do it now */
1165 	rbuf->parityStripeID = ctrl->curPSID;
1166 	rbuf->which_ru = ctrl->ru_count;
1167 #if RF_ACC_TRACE > 0
1168 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1169 	    sizeof(raidPtr->recon_tracerecs[col]));
1170 	raidPtr->recon_tracerecs[col].reconacc = 1;
1171 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1172 #endif
1173 	retcode = TryToRead(raidPtr, col);
1174 	return (retcode);
1175 }
1176 
1177 /*
1178  * tries to issue the next read on the indicated disk.  We may be
1179  * blocked by (a) the heads being too far apart, or (b) recon on the
1180  * indicated RU being blocked due to a write by a user thread.  In
1181  * this case, we issue a head-sep or blockage wait request, which will
1182  * cause this same routine to be invoked again later when the blockage
1183  * has cleared.
1184  */
1185 
1186 static int
1187 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1188 {
1189 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1190 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1191 	RF_StripeNum_t psid = ctrl->curPSID;
1192 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1193 	RF_DiskQueueData_t *req;
1194 	int     status;
1195 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1196 
1197 	/* if the current disk is too far ahead of the others, issue a
1198 	 * head-separation wait and return */
1199 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1200 		return (0);
1201 
1202 	/* allocate a new PSS in case we need it */
1203 	newpssPtr = rf_AllocPSStatus(raidPtr);
1204 
1205 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1206 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1207 
1208 	if (pssPtr != newpssPtr) {
1209 		rf_FreePSStatus(raidPtr, newpssPtr);
1210 	}
1211 
1212 	/* if recon is blocked on the indicated parity stripe, issue a
1213 	 * block-wait request and return. this also must mark the indicated RU
1214 	 * in the stripe as under reconstruction if not blocked. */
1215 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1216 	if (status == RF_PSS_RECON_BLOCKED) {
1217 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1218 		goto out;
1219 	} else
1220 		if (status == RF_PSS_FORCED_ON_WRITE) {
1221 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1222 			goto out;
1223 		}
1224 	/* make one last check to be sure that the indicated RU didn't get
1225 	 * reconstructed while we were waiting for something else to happen.
1226 	 * This is unfortunate in that it causes us to make this check twice
1227 	 * in the normal case.  Might want to make some attempt to re-work
1228 	 * this so that we only do this check if we've definitely blocked on
1229 	 * one of the above checks.  When this condition is detected, we may
1230 	 * have just created a bogus status entry, which we need to delete. */
1231 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1232 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1233 		if (pssPtr == newpssPtr)
1234 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1235 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1236 		goto out;
1237 	}
1238 	/* found something to read.  issue the I/O */
1239 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1240 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1241 #if RF_ACC_TRACE > 0
1242 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1243 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1244 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1245 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1246 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1247 #endif
1248 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1249 	 * should be in kernel space */
1250 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1251 	    ReconReadDoneProc, (void *) ctrl,
1252 #if RF_ACC_TRACE > 0
1253 				     &raidPtr->recon_tracerecs[col],
1254 #else
1255 				     NULL,
1256 #endif
1257 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
1258 
1259 	ctrl->rbuf->arg = (void *) req;
1260 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1261 	pssPtr->issued[col] = 1;
1262 
1263 out:
1264 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1265 	return (0);
1266 }
1267 
1268 
1269 /*
1270  * given a parity stripe ID, we want to find out whether both the
1271  * current disk and the failed disk exist in that parity stripe.  If
1272  * not, we want to skip this whole PS.  If so, we want to find the
1273  * disk offset of the start of the PS on both the current disk and the
1274  * failed disk.
1275  *
1276  * this works by getting a list of disks comprising the indicated
1277  * parity stripe, and searching the list for the current and failed
1278  * disks.  Once we've decided they both exist in the parity stripe, we
1279  * need to decide whether each is data or parity, so that we'll know
1280  * which mapping function to call to get the corresponding disk
1281  * offsets.
1282  *
1283  * this is kind of unpleasant, but doing it this way allows the
1284  * reconstruction code to use parity stripe IDs rather than physical
1285  * disks address to march through the failed disk, which greatly
1286  * simplifies a lot of code, as well as eliminating the need for a
1287  * reverse-mapping function.  I also think it will execute faster,
1288  * since the calls to the mapping module are kept to a minimum.
1289  *
1290  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1291  * THE STRIPE IN THE CORRECT ORDER
1292  *
1293  * raidPtr          - raid descriptor
1294  * psid             - parity stripe identifier
1295  * col              - column of disk to find the offsets for
1296  * spCol            - out: col of spare unit for failed unit
1297  * spOffset         - out: offset into disk containing spare unit
1298  *
1299  */
1300 
1301 
1302 static int
1303 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1304 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1305 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1306 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1307 {
1308 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1309 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1310 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1311 	RF_RowCol_t *diskids;
1312 	u_int   i, j, k, i_offset, j_offset;
1313 	RF_RowCol_t pcol;
1314 	int     testcol;
1315 	RF_SectorNum_t poffset;
1316 	char    i_is_parity = 0, j_is_parity = 0;
1317 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1318 
1319 	/* get a listing of the disks comprising that stripe */
1320 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1321 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1322 	RF_ASSERT(diskids);
1323 
1324 	/* reject this entire parity stripe if it does not contain the
1325 	 * indicated disk or it does not contain the failed disk */
1326 
1327 	for (i = 0; i < stripeWidth; i++) {
1328 		if (col == diskids[i])
1329 			break;
1330 	}
1331 	if (i == stripeWidth)
1332 		goto skipit;
1333 	for (j = 0; j < stripeWidth; j++) {
1334 		if (fcol == diskids[j])
1335 			break;
1336 	}
1337 	if (j == stripeWidth) {
1338 		goto skipit;
1339 	}
1340 	/* find out which disk the parity is on */
1341 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1342 
1343 	/* find out if either the current RU or the failed RU is parity */
1344 	/* also, if the parity occurs in this stripe prior to the data and/or
1345 	 * failed col, we need to decrement i and/or j */
1346 	for (k = 0; k < stripeWidth; k++)
1347 		if (diskids[k] == pcol)
1348 			break;
1349 	RF_ASSERT(k < stripeWidth);
1350 	i_offset = i;
1351 	j_offset = j;
1352 	if (k < i)
1353 		i_offset--;
1354 	else
1355 		if (k == i) {
1356 			i_is_parity = 1;
1357 			i_offset = 0;
1358 		}		/* set offsets to zero to disable multiply
1359 				 * below */
1360 	if (k < j)
1361 		j_offset--;
1362 	else
1363 		if (k == j) {
1364 			j_is_parity = 1;
1365 			j_offset = 0;
1366 		}
1367 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1368 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1369 	 * tells us how far into the stripe the [current,failed] disk is. */
1370 
1371 	/* call the mapping routine to get the offset into the current disk,
1372 	 * repeat for failed disk. */
1373 	if (i_is_parity)
1374 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1375 	else
1376 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1377 
1378 	RF_ASSERT(col == testcol);
1379 
1380 	if (j_is_parity)
1381 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1382 	else
1383 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1384 	RF_ASSERT(fcol == testcol);
1385 
1386 	/* now locate the spare unit for the failed unit */
1387 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1388 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1389 		if (j_is_parity)
1390 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1391 		else
1392 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1393 	} else {
1394 #endif
1395 		*spCol = raidPtr->reconControl->spareCol;
1396 		*spOffset = *outFailedDiskSectorOffset;
1397 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1398 	}
1399 #endif
1400 	return (0);
1401 
1402 skipit:
1403 	Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1404 	    psid, col);
1405 	return (1);
1406 }
1407 /* this is called when a buffer has become ready to write to the replacement disk */
1408 static int
1409 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1410 {
1411 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1412 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1413 #if RF_ACC_TRACE > 0
1414 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1415 #endif
1416 	RF_ReconBuffer_t *rbuf;
1417 	RF_DiskQueueData_t *req;
1418 
1419 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1420 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1421 				 * have gotten the event that sent us here */
1422 	RF_ASSERT(rbuf->pssPtr);
1423 
1424 	rbuf->pssPtr->writeRbuf = rbuf;
1425 	rbuf->pssPtr = NULL;
1426 
1427 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1428 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1429 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1430 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1431 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1432 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1433 
1434 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1435 	 * kernel space */
1436 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1437 	    sectorsPerRU, rbuf->buffer,
1438 	    rbuf->parityStripeID, rbuf->which_ru,
1439 	    ReconWriteDoneProc, (void *) rbuf,
1440 #if RF_ACC_TRACE > 0
1441 	    &raidPtr->recon_tracerecs[fcol],
1442 #else
1443 				     NULL,
1444 #endif
1445 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
1446 
1447 	rbuf->arg = (void *) req;
1448 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1449 	raidPtr->reconControl->pending_writes++;
1450 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1451 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1452 
1453 	return (0);
1454 }
1455 
1456 /*
1457  * this gets called upon the completion of a reconstruction read
1458  * operation the arg is a pointer to the per-disk reconstruction
1459  * control structure for the process that just finished a read.
1460  *
1461  * called at interrupt context in the kernel, so don't do anything
1462  * illegal here.
1463  */
1464 static int
1465 ReconReadDoneProc(void *arg, int status)
1466 {
1467 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1468 	RF_Raid_t *raidPtr;
1469 
1470 	/* Detect that reconCtrl is no longer valid, and if that
1471 	   is the case, bail without calling rf_CauseReconEvent().
1472 	   There won't be anyone listening for this event anyway */
1473 
1474 	if (ctrl->reconCtrl == NULL)
1475 		return(0);
1476 
1477 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1478 
1479 	if (status) {
1480 		printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1481 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1482 		return(0);
1483 	}
1484 #if RF_ACC_TRACE > 0
1485 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1486 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1487 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1488 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1489 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1490 #endif
1491 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1492 	return (0);
1493 }
1494 /* this gets called upon the completion of a reconstruction write operation.
1495  * the arg is a pointer to the rbuf that was just written
1496  *
1497  * called at interrupt context in the kernel, so don't do anything illegal here.
1498  */
1499 static int
1500 ReconWriteDoneProc(void *arg, int status)
1501 {
1502 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1503 
1504 	/* Detect that reconControl is no longer valid, and if that
1505 	   is the case, bail without calling rf_CauseReconEvent().
1506 	   There won't be anyone listening for this event anyway */
1507 
1508 	if (rbuf->raidPtr->reconControl == NULL)
1509 		return(0);
1510 
1511 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1512 	if (status) {
1513 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1514 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1515 		return(0);
1516 	}
1517 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1518 	return (0);
1519 }
1520 
1521 
1522 /*
1523  * computes a new minimum head sep, and wakes up anyone who needs to
1524  * be woken as a result
1525  */
1526 static void
1527 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1528 {
1529 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1530 	RF_HeadSepLimit_t new_min;
1531 	RF_RowCol_t i;
1532 	RF_CallbackDesc_t *p;
1533 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1534 								 * of a minimum */
1535 
1536 
1537 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1538 	while(reconCtrlPtr->rb_lock) {
1539 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1540 	}
1541 	reconCtrlPtr->rb_lock = 1;
1542 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1543 
1544 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1545 	for (i = 0; i < raidPtr->numCol; i++)
1546 		if (i != reconCtrlPtr->fcol) {
1547 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1548 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1549 		}
1550 	/* set the new minimum and wake up anyone who can now run again */
1551 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1552 		reconCtrlPtr->minHeadSepCounter = new_min;
1553 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1554 		while (reconCtrlPtr->headSepCBList) {
1555 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1556 				break;
1557 			p = reconCtrlPtr->headSepCBList;
1558 			reconCtrlPtr->headSepCBList = p->next;
1559 			p->next = NULL;
1560 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1561 			rf_FreeCallbackDesc(p);
1562 		}
1563 
1564 	}
1565 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1566 	reconCtrlPtr->rb_lock = 0;
1567 	wakeup(&reconCtrlPtr->rb_lock);
1568 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1569 }
1570 
1571 /*
1572  * checks to see that the maximum head separation will not be violated
1573  * if we initiate a reconstruction I/O on the indicated disk.
1574  * Limiting the maximum head separation between two disks eliminates
1575  * the nasty buffer-stall conditions that occur when one disk races
1576  * ahead of the others and consumes all of the floating recon buffers.
1577  * This code is complex and unpleasant but it's necessary to avoid
1578  * some very nasty, albeit fairly rare, reconstruction behavior.
1579  *
1580  * returns non-zero if and only if we have to stop working on the
1581  * indicated disk due to a head-separation delay.
1582  */
1583 static int
1584 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1585 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1586 		    RF_ReconUnitNum_t which_ru)
1587 {
1588 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1589 	RF_CallbackDesc_t *cb, *p, *pt;
1590 	int     retval = 0;
1591 
1592 	/* if we're too far ahead of the slowest disk, stop working on this
1593 	 * disk until the slower ones catch up.  We do this by scheduling a
1594 	 * wakeup callback for the time when the slowest disk has caught up.
1595 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1596 	 * must have fallen to at most 80% of the max allowable head
1597 	 * separation before we'll wake up.
1598 	 *
1599 	 */
1600 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1601 	while(reconCtrlPtr->rb_lock) {
1602 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1603 	}
1604 	reconCtrlPtr->rb_lock = 1;
1605 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1606 	if ((raidPtr->headSepLimit >= 0) &&
1607 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1608 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1609 			 raidPtr->raidid, col, ctrl->headSepCounter,
1610 			 reconCtrlPtr->minHeadSepCounter,
1611 			 raidPtr->headSepLimit);
1612 		cb = rf_AllocCallbackDesc();
1613 		/* the minHeadSepCounter value we have to get to before we'll
1614 		 * wake up.  build in 20% hysteresis. */
1615 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1616 		cb->col = col;
1617 		cb->next = NULL;
1618 
1619 		/* insert this callback descriptor into the sorted list of
1620 		 * pending head-sep callbacks */
1621 		p = reconCtrlPtr->headSepCBList;
1622 		if (!p)
1623 			reconCtrlPtr->headSepCBList = cb;
1624 		else
1625 			if (cb->callbackArg.v < p->callbackArg.v) {
1626 				cb->next = reconCtrlPtr->headSepCBList;
1627 				reconCtrlPtr->headSepCBList = cb;
1628 			} else {
1629 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1630 				cb->next = p;
1631 				pt->next = cb;
1632 			}
1633 		retval = 1;
1634 #if RF_RECON_STATS > 0
1635 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1636 #endif				/* RF_RECON_STATS > 0 */
1637 	}
1638 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1639 	reconCtrlPtr->rb_lock = 0;
1640 	wakeup(&reconCtrlPtr->rb_lock);
1641 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1642 
1643 	return (retval);
1644 }
1645 /*
1646  * checks to see if reconstruction has been either forced or blocked
1647  * by a user operation.  if forced, we skip this RU entirely.  else if
1648  * blocked, put ourselves on the wait list.  else return 0.
1649  *
1650  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1651  */
1652 static int
1653 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1654 				   RF_ReconParityStripeStatus_t *pssPtr,
1655 				   RF_PerDiskReconCtrl_t *ctrl,
1656 				   RF_RowCol_t col,
1657 				   RF_StripeNum_t psid,
1658 				   RF_ReconUnitNum_t which_ru)
1659 {
1660 	RF_CallbackDesc_t *cb;
1661 	int     retcode = 0;
1662 
1663 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1664 		retcode = RF_PSS_FORCED_ON_WRITE;
1665 	else
1666 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1667 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1668 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1669 							 * the blockage-wait
1670 							 * list */
1671 			cb->col = col;
1672 			cb->next = pssPtr->blockWaitList;
1673 			pssPtr->blockWaitList = cb;
1674 			retcode = RF_PSS_RECON_BLOCKED;
1675 		}
1676 	if (!retcode)
1677 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1678 							 * reconstruction */
1679 
1680 	return (retcode);
1681 }
1682 /*
1683  * if reconstruction is currently ongoing for the indicated stripeID,
1684  * reconstruction is forced to completion and we return non-zero to
1685  * indicate that the caller must wait.  If not, then reconstruction is
1686  * blocked on the indicated stripe and the routine returns zero.  If
1687  * and only if we return non-zero, we'll cause the cbFunc to get
1688  * invoked with the cbArg when the reconstruction has completed.
1689  */
1690 int
1691 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1692 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1693 {
1694 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1695 							 * forcing recon on */
1696 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1697 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1698 						 * stripe status structure */
1699 	RF_StripeNum_t psid;	/* parity stripe id */
1700 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1701 						 * offset */
1702 	RF_RowCol_t *diskids;
1703 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1704 	RF_RowCol_t fcol, diskno, i;
1705 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1706 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1707 	RF_CallbackDesc_t *cb;
1708 	int     nPromoted;
1709 
1710 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1711 
1712 	/* allocate a new PSS in case we need it */
1713         newpssPtr = rf_AllocPSStatus(raidPtr);
1714 
1715 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1716 
1717 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1718 
1719         if (pssPtr != newpssPtr) {
1720                 rf_FreePSStatus(raidPtr, newpssPtr);
1721         }
1722 
1723 	/* if recon is not ongoing on this PS, just return */
1724 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1725 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1726 		return (0);
1727 	}
1728 	/* otherwise, we have to wait for reconstruction to complete on this
1729 	 * RU. */
1730 	/* In order to avoid waiting for a potentially large number of
1731 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1732 	 * not low-priority) reconstruction on this RU. */
1733 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1734 		DDprintf1("Forcing recon on psid %ld\n", psid);
1735 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1736 								 * forced recon */
1737 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1738 							 * that we just set */
1739 		fcol = raidPtr->reconControl->fcol;
1740 
1741 		/* get a listing of the disks comprising the indicated stripe */
1742 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1743 
1744 		/* For previously issued reads, elevate them to normal
1745 		 * priority.  If the I/O has already completed, it won't be
1746 		 * found in the queue, and hence this will be a no-op. For
1747 		 * unissued reads, allocate buffers and issue new reads.  The
1748 		 * fact that we've set the FORCED bit means that the regular
1749 		 * recon procs will not re-issue these reqs */
1750 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1751 			if ((diskno = diskids[i]) != fcol) {
1752 				if (pssPtr->issued[diskno]) {
1753 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1754 					if (rf_reconDebug && nPromoted)
1755 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1756 				} else {
1757 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1758 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1759 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1760 													 * location */
1761 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1762 					new_rbuf->which_ru = which_ru;
1763 					new_rbuf->failedDiskSectorOffset = fd_offset;
1764 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1765 
1766 					/* use NULL b_proc b/c all addrs
1767 					 * should be in kernel space */
1768 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1769 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1770 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1771 
1772 					new_rbuf->arg = req;
1773 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1774 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1775 				}
1776 			}
1777 		/* if the write is sitting in the disk queue, elevate its
1778 		 * priority */
1779 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1780 			if (rf_reconDebug)
1781 				printf("raid%d: promoted write to col %d\n",
1782 				       raidPtr->raidid, fcol);
1783 	}
1784 	/* install a callback descriptor to be invoked when recon completes on
1785 	 * this parity stripe. */
1786 	cb = rf_AllocCallbackDesc();
1787 	/* XXX the following is bogus.. These functions don't really match!!
1788 	 * GO */
1789 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1790 	cb->callbackArg.p = (void *) cbArg;
1791 	cb->next = pssPtr->procWaitList;
1792 	pssPtr->procWaitList = cb;
1793 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1794 		  raidPtr->raidid, psid);
1795 
1796 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1797 	return (1);
1798 }
1799 /* called upon the completion of a forced reconstruction read.
1800  * all we do is schedule the FORCEDREADONE event.
1801  * called at interrupt context in the kernel, so don't do anything illegal here.
1802  */
1803 static void
1804 ForceReconReadDoneProc(void *arg, int status)
1805 {
1806 	RF_ReconBuffer_t *rbuf = arg;
1807 
1808 	/* Detect that reconControl is no longer valid, and if that
1809 	   is the case, bail without calling rf_CauseReconEvent().
1810 	   There won't be anyone listening for this event anyway */
1811 
1812 	if (rbuf->raidPtr->reconControl == NULL)
1813 		return;
1814 
1815 	if (status) {
1816 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1817 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1818 		return;
1819 	}
1820 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1821 }
1822 /* releases a block on the reconstruction of the indicated stripe */
1823 int
1824 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1825 {
1826 	RF_StripeNum_t stripeID = asmap->stripeID;
1827 	RF_ReconParityStripeStatus_t *pssPtr;
1828 	RF_ReconUnitNum_t which_ru;
1829 	RF_StripeNum_t psid;
1830 	RF_CallbackDesc_t *cb;
1831 
1832 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1833 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1834 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1835 
1836 	/* When recon is forced, the pss desc can get deleted before we get
1837 	 * back to unblock recon. But, this can _only_ happen when recon is
1838 	 * forced. It would be good to put some kind of sanity check here, but
1839 	 * how to decide if recon was just forced or not? */
1840 	if (!pssPtr) {
1841 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1842 		 * RU %d\n",psid,which_ru); */
1843 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1844 		if (rf_reconDebug || rf_pssDebug)
1845 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1846 #endif
1847 		goto out;
1848 	}
1849 	pssPtr->blockCount--;
1850 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1851 		 raidPtr->raidid, psid, pssPtr->blockCount);
1852 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1853 
1854 		/* unblock recon before calling CauseReconEvent in case
1855 		 * CauseReconEvent causes us to try to issue a new read before
1856 		 * returning here. */
1857 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1858 
1859 
1860 		while (pssPtr->blockWaitList) {
1861 			/* spin through the block-wait list and
1862 			   release all the waiters */
1863 			cb = pssPtr->blockWaitList;
1864 			pssPtr->blockWaitList = cb->next;
1865 			cb->next = NULL;
1866 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1867 			rf_FreeCallbackDesc(cb);
1868 		}
1869 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1870 			/* if no recon was requested while recon was blocked */
1871 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1872 		}
1873 	}
1874 out:
1875 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1876 	return (0);
1877 }
1878 
1879 void
1880 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1881 {
1882 	RF_CallbackDesc_t *p;
1883 
1884 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1885 	while(raidPtr->reconControl->rb_lock) {
1886 		ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO,
1887 			"rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex);
1888 	}
1889 
1890 	raidPtr->reconControl->rb_lock = 1;
1891 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1892 
1893 	while (raidPtr->reconControl->headSepCBList) {
1894 		p = raidPtr->reconControl->headSepCBList;
1895 		raidPtr->reconControl->headSepCBList = p->next;
1896 		p->next = NULL;
1897 		rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1898 		rf_FreeCallbackDesc(p);
1899 	}
1900 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1901 	raidPtr->reconControl->rb_lock = 0;
1902 	wakeup(&raidPtr->reconControl->rb_lock);
1903 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1904 
1905 }
1906 
1907