1 /* $NetBSD: rf_reconstruct.c,v 1.125 2021/02/15 23:27:03 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.125 2021/02/15 23:27:03 oster Exp $"); 37 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 #include <sys/namei.h> /* for pathbuf */ 48 #include <dev/raidframe/raidframevar.h> 49 50 #include <miscfs/specfs/specdev.h> /* for v_rdev */ 51 52 #include "rf_raid.h" 53 #include "rf_reconutil.h" 54 #include "rf_revent.h" 55 #include "rf_reconbuffer.h" 56 #include "rf_acctrace.h" 57 #include "rf_etimer.h" 58 #include "rf_dag.h" 59 #include "rf_desc.h" 60 #include "rf_debugprint.h" 61 #include "rf_general.h" 62 #include "rf_driver.h" 63 #include "rf_utils.h" 64 #include "rf_shutdown.h" 65 66 #include "rf_kintf.h" 67 68 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 69 70 #if RF_DEBUG_RECON 71 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 75 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 76 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 77 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 78 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 79 80 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 81 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 82 83 #else /* RF_DEBUG_RECON */ 84 85 #define Dprintf(s) {} 86 #define Dprintf1(s,a) {} 87 #define Dprintf2(s,a,b) {} 88 #define Dprintf3(s,a,b,c) {} 89 #define Dprintf4(s,a,b,c,d) {} 90 #define Dprintf5(s,a,b,c,d,e) {} 91 #define Dprintf6(s,a,b,c,d,e,f) {} 92 #define Dprintf7(s,a,b,c,d,e,f,g) {} 93 94 #define DDprintf1(s,a) {} 95 #define DDprintf2(s,a,b) {} 96 97 #endif /* RF_DEBUG_RECON */ 98 99 #define RF_RECON_DONE_READS 1 100 #define RF_RECON_READ_ERROR 2 101 #define RF_RECON_WRITE_ERROR 3 102 #define RF_RECON_READ_STOPPED 4 103 #define RF_RECON_WRITE_DONE 5 104 105 #define RF_MAX_FREE_RECONBUFFER 32 106 #define RF_MIN_FREE_RECONBUFFER 16 107 108 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 109 RF_RaidDisk_t *, int, RF_RowCol_t); 110 static void FreeReconDesc(RF_RaidReconDesc_t *); 111 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 112 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 113 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 114 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 115 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 116 RF_SectorNum_t *); 117 static int IssueNextWriteRequest(RF_Raid_t *); 118 static void ReconReadDoneProc(void *, int); 119 static void ReconWriteDoneProc(void *, int); 120 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 121 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 122 RF_RowCol_t, RF_HeadSepLimit_t, 123 RF_ReconUnitNum_t); 124 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 125 RF_ReconParityStripeStatus_t *, 126 RF_PerDiskReconCtrl_t *, 127 RF_RowCol_t, RF_StripeNum_t, 128 RF_ReconUnitNum_t); 129 static void ForceReconReadDoneProc(void *, int); 130 static void rf_ShutdownReconstruction(void *); 131 132 struct RF_ReconDoneProc_s { 133 void (*proc) (RF_Raid_t *, void *); 134 void *arg; 135 RF_ReconDoneProc_t *next; 136 }; 137 138 /************************************************************************** 139 * 140 * sets up the parameters that will be used by the reconstruction process 141 * currently there are none, except for those that the layout-specific 142 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 143 * 144 * in the kernel, we fire off the recon thread. 145 * 146 **************************************************************************/ 147 static void 148 rf_ShutdownReconstruction(void *ignored) 149 { 150 pool_destroy(&rf_pools.reconbuffer); 151 } 152 153 int 154 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 155 { 156 157 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 158 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 159 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 160 161 return (0); 162 } 163 164 static RF_RaidReconDesc_t * 165 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 166 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 167 RF_RowCol_t scol) 168 { 169 170 RF_RaidReconDesc_t *reconDesc; 171 172 reconDesc = RF_Malloc(sizeof(*reconDesc)); 173 reconDesc->raidPtr = raidPtr; 174 reconDesc->col = col; 175 reconDesc->spareDiskPtr = spareDiskPtr; 176 reconDesc->numDisksDone = numDisksDone; 177 reconDesc->scol = scol; 178 reconDesc->next = NULL; 179 180 return (reconDesc); 181 } 182 183 static void 184 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 185 { 186 #if RF_RECON_STATS > 0 187 printf("raid%d: %lu recon event waits, %lu recon delays\n", 188 reconDesc->raidPtr->raidid, 189 (long) reconDesc->numReconEventWaits, 190 (long) reconDesc->numReconExecDelays); 191 #endif /* RF_RECON_STATS > 0 */ 192 printf("raid%d: %lu max exec ticks\n", 193 reconDesc->raidPtr->raidid, 194 (long) reconDesc->maxReconExecTicks); 195 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 196 } 197 198 199 /***************************************************************************** 200 * 201 * primary routine to reconstruct a failed disk. This should be called from 202 * within its own thread. It won't return until reconstruction completes, 203 * fails, or is aborted. 204 *****************************************************************************/ 205 int 206 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 207 { 208 const RF_LayoutSW_t *lp; 209 int rc; 210 211 lp = raidPtr->Layout.map; 212 if (lp->SubmitReconBuffer) { 213 /* 214 * The current infrastructure only supports reconstructing one 215 * disk at a time for each array. 216 */ 217 rf_lock_mutex2(raidPtr->mutex); 218 while (raidPtr->reconInProgress) { 219 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 220 } 221 raidPtr->reconInProgress++; 222 rf_unlock_mutex2(raidPtr->mutex); 223 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 224 rf_lock_mutex2(raidPtr->mutex); 225 raidPtr->reconInProgress--; 226 } else { 227 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 228 lp->parityConfig); 229 rc = EIO; 230 rf_lock_mutex2(raidPtr->mutex); 231 } 232 rf_signal_cond2(raidPtr->waitForReconCond); 233 rf_unlock_mutex2(raidPtr->mutex); 234 return (rc); 235 } 236 237 int 238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 239 { 240 RF_ComponentLabel_t *c_label; 241 RF_RaidDisk_t *spareDiskPtr = NULL; 242 RF_RaidReconDesc_t *reconDesc; 243 RF_RowCol_t scol; 244 int numDisksDone = 0, rc; 245 246 /* first look for a spare drive onto which to reconstruct the data */ 247 /* spare disk descriptors are stored in row 0. This may have to 248 * change eventually */ 249 250 rf_lock_mutex2(raidPtr->mutex); 251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 254 if (raidPtr->status != rf_rs_degraded) { 255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 256 rf_unlock_mutex2(raidPtr->mutex); 257 return (EINVAL); 258 } 259 scol = (-1); 260 } else { 261 #endif 262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 263 if (raidPtr->Disks[scol].status == rf_ds_spare) { 264 spareDiskPtr = &raidPtr->Disks[scol]; 265 spareDiskPtr->status = rf_ds_rebuilding_spare; 266 break; 267 } 268 } 269 if (!spareDiskPtr) { 270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 271 rf_unlock_mutex2(raidPtr->mutex); 272 return (ENOSPC); 273 } 274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 276 } 277 #endif 278 rf_unlock_mutex2(raidPtr->mutex); 279 280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 281 raidPtr->reconDesc = (void *) reconDesc; 282 #if RF_RECON_STATS > 0 283 reconDesc->hsStallCount = 0; 284 reconDesc->numReconExecDelays = 0; 285 reconDesc->numReconEventWaits = 0; 286 #endif /* RF_RECON_STATS > 0 */ 287 reconDesc->reconExecTimerRunning = 0; 288 reconDesc->reconExecTicks = 0; 289 reconDesc->maxReconExecTicks = 0; 290 rc = rf_ContinueReconstructFailedDisk(reconDesc); 291 292 if (!rc) { 293 /* fix up the component label */ 294 /* Don't actually need the read here.. */ 295 c_label = raidget_component_label(raidPtr, scol); 296 297 raid_init_component_label(raidPtr, c_label); 298 c_label->row = 0; 299 c_label->column = col; 300 c_label->clean = RF_RAID_DIRTY; 301 c_label->status = rf_ds_optimal; 302 rf_component_label_set_partitionsize(c_label, 303 raidPtr->Disks[scol].partitionSize); 304 305 /* We've just done a rebuild based on all the other 306 disks, so at this point the parity is known to be 307 clean, even if it wasn't before. */ 308 309 /* XXX doesn't hold for RAID 6!!*/ 310 311 rf_lock_mutex2(raidPtr->mutex); 312 /* The failed disk has already been marked as rf_ds_spared 313 (or rf_ds_dist_spared) in 314 rf_ContinueReconstructFailedDisk() 315 so we just update the spare disk as being a used spare 316 */ 317 318 spareDiskPtr->status = rf_ds_used_spare; 319 raidPtr->parity_good = RF_RAID_CLEAN; 320 rf_unlock_mutex2(raidPtr->mutex); 321 322 /* XXXX MORE NEEDED HERE */ 323 324 raidflush_component_label(raidPtr, scol); 325 } else { 326 /* Reconstruct failed. */ 327 328 rf_lock_mutex2(raidPtr->mutex); 329 /* Failed disk goes back to "failed" status */ 330 raidPtr->Disks[col].status = rf_ds_failed; 331 332 /* Spare disk goes back to "spare" status. */ 333 spareDiskPtr->status = rf_ds_spare; 334 rf_unlock_mutex2(raidPtr->mutex); 335 336 } 337 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 338 return (rc); 339 } 340 341 /* 342 343 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 344 and you don't get a spare until the next Monday. With this function 345 (and hot-swappable drives) you can now put your new disk containing 346 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 347 rebuild the data "on the spot". 348 349 */ 350 351 int 352 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 353 { 354 RF_RaidDisk_t *spareDiskPtr = NULL; 355 RF_RaidReconDesc_t *reconDesc; 356 const RF_LayoutSW_t *lp; 357 RF_ComponentLabel_t *c_label; 358 int numDisksDone = 0, rc; 359 uint64_t numsec; 360 unsigned int secsize; 361 struct pathbuf *pb; 362 struct vnode *vp; 363 int retcode; 364 int ac; 365 366 rf_lock_mutex2(raidPtr->mutex); 367 lp = raidPtr->Layout.map; 368 if (!lp->SubmitReconBuffer) { 369 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 370 lp->parityConfig); 371 /* wakeup anyone who might be waiting to do a reconstruct */ 372 rf_signal_cond2(raidPtr->waitForReconCond); 373 rf_unlock_mutex2(raidPtr->mutex); 374 return(EIO); 375 } 376 377 /* 378 * The current infrastructure only supports reconstructing one 379 * disk at a time for each array. 380 */ 381 382 if (raidPtr->Disks[col].status != rf_ds_failed) { 383 /* "It's gone..." */ 384 raidPtr->numFailures++; 385 raidPtr->Disks[col].status = rf_ds_failed; 386 raidPtr->status = rf_rs_degraded; 387 rf_unlock_mutex2(raidPtr->mutex); 388 rf_update_component_labels(raidPtr, 389 RF_NORMAL_COMPONENT_UPDATE); 390 rf_lock_mutex2(raidPtr->mutex); 391 } 392 393 while (raidPtr->reconInProgress) { 394 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 395 } 396 397 raidPtr->reconInProgress++; 398 399 /* first look for a spare drive onto which to reconstruct the 400 data. spare disk descriptors are stored in row 0. This 401 may have to change eventually */ 402 403 /* Actually, we don't care if it's failed or not... On a RAID 404 set with correct parity, this function should be callable 405 on any component without ill effects. */ 406 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 407 408 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 409 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 410 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 411 412 raidPtr->reconInProgress--; 413 rf_signal_cond2(raidPtr->waitForReconCond); 414 rf_unlock_mutex2(raidPtr->mutex); 415 return (EINVAL); 416 } 417 #endif 418 419 /* This device may have been opened successfully the 420 first time. Close it before trying to open it again.. */ 421 422 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 423 #if 0 424 printf("Closed the open device: %s\n", 425 raidPtr->Disks[col].devname); 426 #endif 427 vp = raidPtr->raid_cinfo[col].ci_vp; 428 ac = raidPtr->Disks[col].auto_configured; 429 rf_unlock_mutex2(raidPtr->mutex); 430 rf_close_component(raidPtr, vp, ac); 431 rf_lock_mutex2(raidPtr->mutex); 432 raidPtr->raid_cinfo[col].ci_vp = NULL; 433 } 434 /* note that this disk was *not* auto_configured (any longer)*/ 435 raidPtr->Disks[col].auto_configured = 0; 436 437 #if 0 438 printf("About to (re-)open the device for rebuilding: %s\n", 439 raidPtr->Disks[col].devname); 440 #endif 441 rf_unlock_mutex2(raidPtr->mutex); 442 pb = pathbuf_create(raidPtr->Disks[col].devname); 443 if (pb == NULL) { 444 retcode = ENOMEM; 445 } else { 446 retcode = vn_bdev_openpath(pb, &vp, curlwp); 447 pathbuf_destroy(pb); 448 } 449 450 if (retcode) { 451 printf("raid%d: rebuilding: open device: %s failed: %d!\n",raidPtr->raidid, 452 raidPtr->Disks[col].devname, retcode); 453 454 /* the component isn't responding properly... 455 must be still dead :-( */ 456 rf_lock_mutex2(raidPtr->mutex); 457 raidPtr->reconInProgress--; 458 rf_signal_cond2(raidPtr->waitForReconCond); 459 rf_unlock_mutex2(raidPtr->mutex); 460 return(retcode); 461 } 462 463 /* Ok, so we can at least do a lookup... 464 How about actually getting a vp for it? */ 465 466 retcode = getdisksize(vp, &numsec, &secsize); 467 if (retcode) { 468 vn_close(vp, FREAD | FWRITE, kauth_cred_get()); 469 rf_lock_mutex2(raidPtr->mutex); 470 raidPtr->reconInProgress--; 471 rf_signal_cond2(raidPtr->waitForReconCond); 472 rf_unlock_mutex2(raidPtr->mutex); 473 return(retcode); 474 } 475 rf_lock_mutex2(raidPtr->mutex); 476 raidPtr->Disks[col].blockSize = secsize; 477 raidPtr->Disks[col].numBlocks = numsec - rf_protectedSectors; 478 479 raidPtr->raid_cinfo[col].ci_vp = vp; 480 raidPtr->raid_cinfo[col].ci_dev = vp->v_rdev; 481 482 raidPtr->Disks[col].dev = vp->v_rdev; 483 484 /* we allow the user to specify that only a fraction 485 of the disks should be used this is just for debug: 486 it speeds up * the parity scan */ 487 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 488 rf_sizePercentage / 100; 489 rf_unlock_mutex2(raidPtr->mutex); 490 491 spareDiskPtr = &raidPtr->Disks[col]; 492 spareDiskPtr->status = rf_ds_rebuilding_spare; 493 494 printf("raid%d: initiating in-place reconstruction on column %d\n", 495 raidPtr->raidid, col); 496 497 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 498 numDisksDone, col); 499 raidPtr->reconDesc = (void *) reconDesc; 500 #if RF_RECON_STATS > 0 501 reconDesc->hsStallCount = 0; 502 reconDesc->numReconExecDelays = 0; 503 reconDesc->numReconEventWaits = 0; 504 #endif /* RF_RECON_STATS > 0 */ 505 reconDesc->reconExecTimerRunning = 0; 506 reconDesc->reconExecTicks = 0; 507 reconDesc->maxReconExecTicks = 0; 508 rc = rf_ContinueReconstructFailedDisk(reconDesc); 509 510 if (!rc) { 511 rf_lock_mutex2(raidPtr->mutex); 512 /* Need to set these here, as at this point it'll be claiming 513 that the disk is in rf_ds_spared! But we know better :-) */ 514 515 raidPtr->Disks[col].status = rf_ds_optimal; 516 raidPtr->status = rf_rs_optimal; 517 rf_unlock_mutex2(raidPtr->mutex); 518 519 /* fix up the component label */ 520 /* Don't actually need the read here.. */ 521 c_label = raidget_component_label(raidPtr, col); 522 523 rf_lock_mutex2(raidPtr->mutex); 524 raid_init_component_label(raidPtr, c_label); 525 526 c_label->row = 0; 527 c_label->column = col; 528 529 /* We've just done a rebuild based on all the other 530 disks, so at this point the parity is known to be 531 clean, even if it wasn't before. */ 532 533 /* XXX doesn't hold for RAID 6!!*/ 534 535 raidPtr->parity_good = RF_RAID_CLEAN; 536 rf_unlock_mutex2(raidPtr->mutex); 537 538 raidflush_component_label(raidPtr, col); 539 } else { 540 /* Reconstruct-in-place failed. Disk goes back to 541 "failed" status, regardless of what it was before. */ 542 rf_lock_mutex2(raidPtr->mutex); 543 raidPtr->Disks[col].status = rf_ds_failed; 544 rf_unlock_mutex2(raidPtr->mutex); 545 } 546 547 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 548 549 rf_lock_mutex2(raidPtr->mutex); 550 raidPtr->reconInProgress--; 551 rf_signal_cond2(raidPtr->waitForReconCond); 552 rf_unlock_mutex2(raidPtr->mutex); 553 554 return (rc); 555 } 556 557 558 int 559 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 560 { 561 RF_Raid_t *raidPtr = reconDesc->raidPtr; 562 RF_RowCol_t col = reconDesc->col; 563 RF_RowCol_t scol = reconDesc->scol; 564 RF_ReconMap_t *mapPtr; 565 RF_ReconCtrl_t *tmp_reconctrl; 566 RF_ReconEvent_t *event; 567 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; 568 #if RF_INCLUDE_RAID5_RS > 0 569 RF_StripeCount_t startPSID,endPSID,aPSID,bPSID,offPSID; 570 #endif 571 RF_ReconUnitCount_t RUsPerPU; 572 struct timeval etime, elpsd; 573 unsigned long xor_s, xor_resid_us; 574 int i, ds; 575 int status, done; 576 int recon_error, write_error; 577 578 raidPtr->accumXorTimeUs = 0; 579 #if RF_ACC_TRACE > 0 580 /* create one trace record per physical disk */ 581 raidPtr->recon_tracerecs = 582 RF_Malloc(raidPtr->numCol * sizeof(*raidPtr->recon_tracerecs)); 583 #endif 584 585 /* quiesce the array prior to starting recon. this is needed 586 * to assure no nasty interactions with pending user writes. 587 * We need to do this before we change the disk or row status. */ 588 589 Dprintf("RECON: begin request suspend\n"); 590 rf_SuspendNewRequestsAndWait(raidPtr); 591 Dprintf("RECON: end request suspend\n"); 592 593 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 594 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 595 596 rf_lock_mutex2(raidPtr->mutex); 597 598 /* create the reconstruction control pointer and install it in 599 * the right slot */ 600 raidPtr->reconControl = tmp_reconctrl; 601 mapPtr = raidPtr->reconControl->reconMap; 602 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 603 raidPtr->reconControl->numRUsComplete = 0; 604 raidPtr->status = rf_rs_reconstructing; 605 raidPtr->Disks[col].status = rf_ds_reconstructing; 606 raidPtr->Disks[col].spareCol = scol; 607 608 rf_unlock_mutex2(raidPtr->mutex); 609 610 RF_GETTIME(raidPtr->reconControl->starttime); 611 612 Dprintf("RECON: resume requests\n"); 613 rf_ResumeNewRequests(raidPtr); 614 615 616 mapPtr = raidPtr->reconControl->reconMap; 617 618 incPSID = RF_RECONMAP_SIZE; 619 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU - 1; 620 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; 621 recon_error = 0; 622 write_error = 0; 623 pending_writes = incPSID; 624 raidPtr->reconControl->lastPSID = incPSID - 1; 625 626 /* bounds check raidPtr->reconControl->lastPSID and 627 pending_writes so that we don't attempt to wait for more IO 628 than can possibly happen */ 629 630 if (raidPtr->reconControl->lastPSID > lastPSID) 631 raidPtr->reconControl->lastPSID = lastPSID; 632 633 if (pending_writes > lastPSID) 634 pending_writes = lastPSID + 1; 635 636 /* start the actual reconstruction */ 637 638 done = 0; 639 while (!done) { 640 641 if (raidPtr->waitShutdown) { 642 /* someone is unconfiguring this array... bail on the reconstruct.. */ 643 recon_error = 1; 644 break; 645 } 646 647 num_writes = 0; 648 649 #if RF_INCLUDE_RAID5_RS > 0 650 /* For RAID5 with Rotated Spares we will be 'short' 651 some number of writes since no writes will get 652 issued for stripes where the spare is on the 653 component being rebuilt. Account for the shortage 654 here so that we don't hang indefinitely below 655 waiting for writes to complete that were never 656 scheduled. 657 658 XXX: Should be fixed for PARITY_DECLUSTERING and 659 others too! 660 661 */ 662 663 if (raidPtr->Layout.numDataCol < 664 raidPtr->numCol - raidPtr->Layout.numParityCol) { 665 /* numDataCol is at least 2 less than numCol, so 666 should be RAID 5 with Rotated Spares */ 667 668 /* XXX need to update for RAID 6 */ 669 670 startPSID = raidPtr->reconControl->lastPSID - pending_writes + 1; 671 endPSID = raidPtr->reconControl->lastPSID; 672 673 offPSID = raidPtr->numCol - col - 1; 674 675 aPSID = startPSID - startPSID % raidPtr->numCol + offPSID; 676 if (aPSID < startPSID) { 677 aPSID += raidPtr->numCol; 678 } 679 680 bPSID = endPSID - ((endPSID - offPSID) % raidPtr->numCol); 681 682 if (aPSID < endPSID) { 683 num_writes = ((bPSID - aPSID) / raidPtr->numCol) + 1; 684 } 685 686 if ((aPSID == endPSID) && (bPSID == endPSID)) { 687 num_writes++; 688 } 689 } 690 #endif 691 692 /* issue a read for each surviving disk */ 693 694 reconDesc->numDisksDone = 0; 695 for (i = 0; i < raidPtr->numCol; i++) { 696 if (i != col) { 697 /* find and issue the next I/O on the 698 * indicated disk */ 699 if (IssueNextReadRequest(raidPtr, i)) { 700 Dprintf1("RECON: done issuing for c%d\n", i); 701 reconDesc->numDisksDone++; 702 } 703 } 704 } 705 706 /* process reconstruction events until all disks report that 707 * they've completed all work */ 708 709 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 710 711 event = rf_GetNextReconEvent(reconDesc); 712 status = ProcessReconEvent(raidPtr, event); 713 714 /* the normal case is that a read completes, and all is well. */ 715 if (status == RF_RECON_DONE_READS) { 716 reconDesc->numDisksDone++; 717 } else if ((status == RF_RECON_READ_ERROR) || 718 (status == RF_RECON_WRITE_ERROR)) { 719 /* an error was encountered while reconstructing... 720 Pretend we've finished this disk. 721 */ 722 recon_error = 1; 723 raidPtr->reconControl->error = 1; 724 725 /* bump the numDisksDone count for reads, 726 but not for writes */ 727 if (status == RF_RECON_READ_ERROR) 728 reconDesc->numDisksDone++; 729 730 /* write errors are special -- when we are 731 done dealing with the reads that are 732 finished, we don't want to wait for any 733 writes */ 734 if (status == RF_RECON_WRITE_ERROR) { 735 write_error = 1; 736 num_writes++; 737 } 738 739 } else if (status == RF_RECON_READ_STOPPED) { 740 /* count this component as being "done" */ 741 reconDesc->numDisksDone++; 742 } else if (status == RF_RECON_WRITE_DONE) { 743 num_writes++; 744 } 745 746 if (recon_error) { 747 /* make sure any stragglers are woken up so that 748 their theads will complete, and we can get out 749 of here with all IO processed */ 750 751 rf_WakeupHeadSepCBWaiters(raidPtr); 752 } 753 754 raidPtr->reconControl->numRUsTotal = 755 mapPtr->totalRUs; 756 raidPtr->reconControl->numRUsComplete = 757 mapPtr->totalRUs - 758 rf_UnitsLeftToReconstruct(mapPtr); 759 760 #if RF_DEBUG_RECON 761 raidPtr->reconControl->percentComplete = 762 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 763 if (rf_prReconSched) { 764 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 765 } 766 #endif 767 } 768 769 /* reads done, wakeup any waiters, and then wait for writes */ 770 771 rf_WakeupHeadSepCBWaiters(raidPtr); 772 773 while (!recon_error && (num_writes < pending_writes)) { 774 event = rf_GetNextReconEvent(reconDesc); 775 status = ProcessReconEvent(raidPtr, event); 776 777 if (status == RF_RECON_WRITE_ERROR) { 778 num_writes++; 779 recon_error = 1; 780 raidPtr->reconControl->error = 1; 781 /* an error was encountered at the very end... bail */ 782 } else if (status == RF_RECON_WRITE_DONE) { 783 num_writes++; 784 } /* else it's something else, and we don't care */ 785 } 786 if (recon_error || 787 (raidPtr->reconControl->lastPSID == lastPSID)) { 788 done = 1; 789 break; 790 } 791 792 prev = raidPtr->reconControl->lastPSID; 793 raidPtr->reconControl->lastPSID += incPSID; 794 795 if (raidPtr->reconControl->lastPSID > lastPSID) { 796 pending_writes = lastPSID - prev; 797 raidPtr->reconControl->lastPSID = lastPSID; 798 } 799 /* back down curPSID to get ready for the next round... */ 800 for (i = 0; i < raidPtr->numCol; i++) { 801 if (i != col) { 802 raidPtr->reconControl->perDiskInfo[i].curPSID--; 803 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; 804 } 805 } 806 } 807 808 mapPtr = raidPtr->reconControl->reconMap; 809 if (rf_reconDebug) { 810 printf("RECON: all reads completed\n"); 811 } 812 /* at this point all the reads have completed. We now wait 813 * for any pending writes to complete, and then we're done */ 814 815 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 816 817 event = rf_GetNextReconEvent(reconDesc); 818 status = ProcessReconEvent(raidPtr, event); 819 820 if (status == RF_RECON_WRITE_ERROR) { 821 recon_error = 1; 822 raidPtr->reconControl->error = 1; 823 /* an error was encountered at the very end... bail */ 824 } else { 825 #if RF_DEBUG_RECON 826 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 827 if (rf_prReconSched) { 828 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 829 } 830 #endif 831 } 832 } 833 834 if (recon_error) { 835 /* we've encountered an error in reconstructing. */ 836 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 837 838 /* we start by blocking IO to the RAID set. */ 839 rf_SuspendNewRequestsAndWait(raidPtr); 840 841 rf_lock_mutex2(raidPtr->mutex); 842 /* mark set as being degraded, rather than 843 rf_rs_reconstructing as we were before the problem. 844 After this is done we can update status of the 845 component disks without worrying about someone 846 trying to read from a failed component. 847 */ 848 raidPtr->status = rf_rs_degraded; 849 rf_unlock_mutex2(raidPtr->mutex); 850 851 /* resume IO */ 852 rf_ResumeNewRequests(raidPtr); 853 854 /* At this point there are two cases: 855 1) If we've experienced a read error, then we've 856 already waited for all the reads we're going to get, 857 and we just need to wait for the writes. 858 859 2) If we've experienced a write error, we've also 860 already waited for all the reads to complete, 861 but there is little point in waiting for the writes -- 862 when they do complete, they will just be ignored. 863 864 So we just wait for writes to complete if we didn't have a 865 write error. 866 */ 867 868 if (!write_error) { 869 /* wait for writes to complete */ 870 while (raidPtr->reconControl->pending_writes > 0) { 871 872 event = rf_GetNextReconEvent(reconDesc); 873 status = ProcessReconEvent(raidPtr, event); 874 875 if (status == RF_RECON_WRITE_ERROR) { 876 raidPtr->reconControl->error = 1; 877 /* an error was encountered at the very end... bail. 878 This will be very bad news for the user, since 879 at this point there will have been a read error 880 on one component, and a write error on another! 881 */ 882 break; 883 } 884 } 885 } 886 887 888 /* cleanup */ 889 890 /* drain the event queue - after waiting for the writes above, 891 there shouldn't be much (if anything!) left in the queue. */ 892 893 rf_DrainReconEventQueue(reconDesc); 894 895 /* XXX As much as we'd like to free the recon control structure 896 and the reconDesc, we have no way of knowing if/when those will 897 be touched by IO that has yet to occur. It is rather poor to be 898 basically causing a 'memory leak' here, but there doesn't seem to be 899 a cleaner alternative at this time. Perhaps when the reconstruct code 900 gets a makeover this problem will go away. 901 */ 902 #if 0 903 rf_FreeReconControl(raidPtr); 904 #endif 905 906 #if RF_ACC_TRACE > 0 907 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 908 #endif 909 /* XXX see comment above */ 910 #if 0 911 FreeReconDesc(reconDesc); 912 #endif 913 914 return (1); 915 } 916 917 /* Success: mark the dead disk as reconstructed. We quiesce 918 * the array here to assure no nasty interactions with pending 919 * user accesses when we free up the psstatus structure as 920 * part of FreeReconControl() */ 921 922 rf_SuspendNewRequestsAndWait(raidPtr); 923 924 rf_lock_mutex2(raidPtr->mutex); 925 raidPtr->numFailures--; 926 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 927 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 928 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 929 rf_unlock_mutex2(raidPtr->mutex); 930 RF_GETTIME(etime); 931 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 932 933 rf_ResumeNewRequests(raidPtr); 934 935 printf("raid%d: Reconstruction of disk at col %d completed\n", 936 raidPtr->raidid, col); 937 xor_s = raidPtr->accumXorTimeUs / 1000000; 938 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 939 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 940 raidPtr->raidid, 941 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 942 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 943 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 944 raidPtr->raidid, 945 (int) raidPtr->reconControl->starttime.tv_sec, 946 (int) raidPtr->reconControl->starttime.tv_usec, 947 (int) etime.tv_sec, (int) etime.tv_usec); 948 #if RF_RECON_STATS > 0 949 printf("raid%d: Total head-sep stall count was %d\n", 950 raidPtr->raidid, (int) reconDesc->hsStallCount); 951 #endif /* RF_RECON_STATS > 0 */ 952 rf_FreeReconControl(raidPtr); 953 #if RF_ACC_TRACE > 0 954 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 955 #endif 956 FreeReconDesc(reconDesc); 957 958 return (0); 959 960 } 961 /***************************************************************************** 962 * do the right thing upon each reconstruction event. 963 *****************************************************************************/ 964 static int 965 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 966 { 967 int retcode = 0, submitblocked; 968 RF_ReconBuffer_t *rbuf; 969 RF_SectorCount_t sectorsPerRU; 970 971 retcode = RF_RECON_READ_STOPPED; 972 973 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 974 975 switch (event->type) { 976 977 /* a read I/O has completed */ 978 case RF_REVENT_READDONE: 979 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 980 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 981 event->col, rbuf->parityStripeID); 982 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 983 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 984 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 985 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 986 if (!raidPtr->reconControl->error) { 987 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 988 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 989 if (!submitblocked) 990 retcode = IssueNextReadRequest(raidPtr, event->col); 991 else 992 retcode = 0; 993 } 994 break; 995 996 /* a write I/O has completed */ 997 case RF_REVENT_WRITEDONE: 998 #if RF_DEBUG_RECON 999 if (rf_floatingRbufDebug) { 1000 rf_CheckFloatingRbufCount(raidPtr, 1); 1001 } 1002 #endif 1003 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1004 rbuf = (RF_ReconBuffer_t *) event->arg; 1005 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1006 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 1007 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 1008 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 1009 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 1010 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 1011 1012 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1013 raidPtr->reconControl->pending_writes--; 1014 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1015 1016 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 1017 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1018 while(raidPtr->reconControl->rb_lock) { 1019 rf_wait_cond2(raidPtr->reconControl->rb_cv, 1020 raidPtr->reconControl->rb_mutex); 1021 } 1022 raidPtr->reconControl->rb_lock = 1; 1023 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1024 1025 raidPtr->numFullReconBuffers--; 1026 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 1027 1028 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1029 raidPtr->reconControl->rb_lock = 0; 1030 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 1031 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1032 } else 1033 if (rbuf->type == RF_RBUF_TYPE_FORCED) 1034 rf_FreeReconBuffer(rbuf); 1035 else 1036 RF_ASSERT(0); 1037 retcode = RF_RECON_WRITE_DONE; 1038 break; 1039 1040 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 1041 * cleared */ 1042 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 1043 if (!raidPtr->reconControl->error) { 1044 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 1045 0, (int) (long) event->arg); 1046 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 1047 * BUFCLEAR event if we 1048 * couldn't submit */ 1049 retcode = IssueNextReadRequest(raidPtr, event->col); 1050 } 1051 break; 1052 1053 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 1054 * blockage has been cleared */ 1055 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 1056 if (!raidPtr->reconControl->error) { 1057 retcode = TryToRead(raidPtr, event->col); 1058 } 1059 break; 1060 1061 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 1062 * reconstruction blockage has been 1063 * cleared */ 1064 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 1065 if (!raidPtr->reconControl->error) { 1066 retcode = TryToRead(raidPtr, event->col); 1067 } 1068 break; 1069 1070 /* a buffer has become ready to write */ 1071 case RF_REVENT_BUFREADY: 1072 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 1073 if (!raidPtr->reconControl->error) { 1074 retcode = IssueNextWriteRequest(raidPtr); 1075 #if RF_DEBUG_RECON 1076 if (rf_floatingRbufDebug) { 1077 rf_CheckFloatingRbufCount(raidPtr, 1); 1078 } 1079 #endif 1080 } 1081 break; 1082 1083 /* we need to skip the current RU entirely because it got 1084 * recon'd while we were waiting for something else to happen */ 1085 case RF_REVENT_SKIP: 1086 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 1087 if (!raidPtr->reconControl->error) { 1088 retcode = IssueNextReadRequest(raidPtr, event->col); 1089 } 1090 break; 1091 1092 /* a forced-reconstruction read access has completed. Just 1093 * submit the buffer */ 1094 case RF_REVENT_FORCEDREADDONE: 1095 rbuf = (RF_ReconBuffer_t *) event->arg; 1096 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1097 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 1098 if (!raidPtr->reconControl->error) { 1099 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 1100 RF_ASSERT(!submitblocked); 1101 retcode = 0; 1102 } 1103 break; 1104 1105 /* A read I/O failed to complete */ 1106 case RF_REVENT_READ_FAILED: 1107 retcode = RF_RECON_READ_ERROR; 1108 break; 1109 1110 /* A write I/O failed to complete */ 1111 case RF_REVENT_WRITE_FAILED: 1112 retcode = RF_RECON_WRITE_ERROR; 1113 1114 /* This is an error, but it was a pending write. 1115 Account for it. */ 1116 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1117 raidPtr->reconControl->pending_writes--; 1118 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1119 1120 rbuf = (RF_ReconBuffer_t *) event->arg; 1121 1122 /* cleanup the disk queue data */ 1123 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1124 1125 /* At this point we're erroring out, badly, and floatingRbufs 1126 may not even be valid. Rather than putting this back onto 1127 the floatingRbufs list, just arrange for its immediate 1128 destruction. 1129 */ 1130 rf_FreeReconBuffer(rbuf); 1131 break; 1132 1133 /* a forced read I/O failed to complete */ 1134 case RF_REVENT_FORCEDREAD_FAILED: 1135 retcode = RF_RECON_READ_ERROR; 1136 break; 1137 1138 default: 1139 RF_PANIC(); 1140 } 1141 rf_FreeReconEventDesc(event); 1142 return (retcode); 1143 } 1144 /***************************************************************************** 1145 * 1146 * find the next thing that's needed on the indicated disk, and issue 1147 * a read request for it. We assume that the reconstruction buffer 1148 * associated with this process is free to receive the data. If 1149 * reconstruction is blocked on the indicated RU, we issue a 1150 * blockage-release request instead of a physical disk read request. 1151 * If the current disk gets too far ahead of the others, we issue a 1152 * head-separation wait request and return. 1153 * 1154 * ctrl->{ru_count, curPSID, diskOffset} and 1155 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1156 * we're currently accessing. Note that this deviates from the 1157 * standard C idiom of having counters point to the next thing to be 1158 * accessed. This allows us to easily retry when we're blocked by 1159 * head separation or reconstruction-blockage events. 1160 * 1161 *****************************************************************************/ 1162 static int 1163 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1164 { 1165 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1166 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1167 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1168 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1169 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1170 int do_new_check = 0, retcode = 0, status; 1171 1172 /* if we are currently the slowest disk, mark that we have to do a new 1173 * check */ 1174 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1175 do_new_check = 1; 1176 1177 while (1) { 1178 1179 ctrl->ru_count++; 1180 if (ctrl->ru_count < RUsPerPU) { 1181 ctrl->diskOffset += sectorsPerRU; 1182 rbuf->failedDiskSectorOffset += sectorsPerRU; 1183 } else { 1184 ctrl->curPSID++; 1185 ctrl->ru_count = 0; 1186 /* code left over from when head-sep was based on 1187 * parity stripe id */ 1188 if (ctrl->curPSID > raidPtr->reconControl->lastPSID) { 1189 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1190 return (RF_RECON_DONE_READS); /* finito! */ 1191 } 1192 /* find the disk offsets of the start of the parity 1193 * stripe on both the current disk and the failed 1194 * disk. skip this entire parity stripe if either disk 1195 * does not appear in the indicated PS */ 1196 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1197 &rbuf->spCol, &rbuf->spOffset); 1198 if (status) { 1199 ctrl->ru_count = RUsPerPU - 1; 1200 continue; 1201 } 1202 } 1203 rbuf->which_ru = ctrl->ru_count; 1204 1205 /* skip this RU if it's already been reconstructed */ 1206 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1207 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1208 continue; 1209 } 1210 break; 1211 } 1212 ctrl->headSepCounter++; 1213 if (do_new_check) 1214 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1215 1216 1217 /* at this point, we have definitely decided what to do, and we have 1218 * only to see if we can actually do it now */ 1219 rbuf->parityStripeID = ctrl->curPSID; 1220 rbuf->which_ru = ctrl->ru_count; 1221 #if RF_ACC_TRACE > 0 1222 memset(&raidPtr->recon_tracerecs[col], 0, 1223 sizeof(raidPtr->recon_tracerecs[col])); 1224 raidPtr->recon_tracerecs[col].reconacc = 1; 1225 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1226 #endif 1227 retcode = TryToRead(raidPtr, col); 1228 return (retcode); 1229 } 1230 1231 /* 1232 * tries to issue the next read on the indicated disk. We may be 1233 * blocked by (a) the heads being too far apart, or (b) recon on the 1234 * indicated RU being blocked due to a write by a user thread. In 1235 * this case, we issue a head-sep or blockage wait request, which will 1236 * cause this same routine to be invoked again later when the blockage 1237 * has cleared. 1238 */ 1239 1240 static int 1241 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1242 { 1243 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1244 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1245 RF_StripeNum_t psid = ctrl->curPSID; 1246 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1247 RF_DiskQueueData_t *req; 1248 int status; 1249 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1250 1251 /* if the current disk is too far ahead of the others, issue a 1252 * head-separation wait and return */ 1253 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1254 return (0); 1255 1256 /* allocate a new PSS in case we need it */ 1257 newpssPtr = rf_AllocPSStatus(raidPtr); 1258 1259 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1260 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1261 1262 if (pssPtr != newpssPtr) { 1263 rf_FreePSStatus(raidPtr, newpssPtr); 1264 } 1265 1266 /* if recon is blocked on the indicated parity stripe, issue a 1267 * block-wait request and return. this also must mark the indicated RU 1268 * in the stripe as under reconstruction if not blocked. */ 1269 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1270 if (status == RF_PSS_RECON_BLOCKED) { 1271 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1272 goto out; 1273 } else 1274 if (status == RF_PSS_FORCED_ON_WRITE) { 1275 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1276 goto out; 1277 } 1278 /* make one last check to be sure that the indicated RU didn't get 1279 * reconstructed while we were waiting for something else to happen. 1280 * This is unfortunate in that it causes us to make this check twice 1281 * in the normal case. Might want to make some attempt to re-work 1282 * this so that we only do this check if we've definitely blocked on 1283 * one of the above checks. When this condition is detected, we may 1284 * have just created a bogus status entry, which we need to delete. */ 1285 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1286 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1287 if (pssPtr == newpssPtr) 1288 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1289 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1290 goto out; 1291 } 1292 /* found something to read. issue the I/O */ 1293 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1294 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1295 #if RF_ACC_TRACE > 0 1296 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1297 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1298 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1299 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1300 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1301 #endif 1302 /* should be ok to use a NULL proc pointer here, all the bufs we use 1303 * should be in kernel space */ 1304 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1305 ReconReadDoneProc, (void *) ctrl, 1306 #if RF_ACC_TRACE > 0 1307 &raidPtr->recon_tracerecs[col], 1308 #else 1309 NULL, 1310 #endif 1311 (void *) raidPtr, 0, NULL, PR_WAITOK); 1312 1313 ctrl->rbuf->arg = (void *) req; 1314 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1315 pssPtr->issued[col] = 1; 1316 1317 out: 1318 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1319 return (0); 1320 } 1321 1322 1323 /* 1324 * given a parity stripe ID, we want to find out whether both the 1325 * current disk and the failed disk exist in that parity stripe. If 1326 * not, we want to skip this whole PS. If so, we want to find the 1327 * disk offset of the start of the PS on both the current disk and the 1328 * failed disk. 1329 * 1330 * this works by getting a list of disks comprising the indicated 1331 * parity stripe, and searching the list for the current and failed 1332 * disks. Once we've decided they both exist in the parity stripe, we 1333 * need to decide whether each is data or parity, so that we'll know 1334 * which mapping function to call to get the corresponding disk 1335 * offsets. 1336 * 1337 * this is kind of unpleasant, but doing it this way allows the 1338 * reconstruction code to use parity stripe IDs rather than physical 1339 * disks address to march through the failed disk, which greatly 1340 * simplifies a lot of code, as well as eliminating the need for a 1341 * reverse-mapping function. I also think it will execute faster, 1342 * since the calls to the mapping module are kept to a minimum. 1343 * 1344 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1345 * THE STRIPE IN THE CORRECT ORDER 1346 * 1347 * raidPtr - raid descriptor 1348 * psid - parity stripe identifier 1349 * col - column of disk to find the offsets for 1350 * spCol - out: col of spare unit for failed unit 1351 * spOffset - out: offset into disk containing spare unit 1352 * 1353 */ 1354 1355 1356 static int 1357 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1358 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1359 RF_SectorNum_t *outFailedDiskSectorOffset, 1360 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1361 { 1362 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1363 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1364 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1365 RF_RowCol_t *diskids; 1366 u_int i, j, k, i_offset, j_offset; 1367 RF_RowCol_t pcol; 1368 int testcol; 1369 RF_SectorNum_t poffset; 1370 char i_is_parity = 0, j_is_parity = 0; 1371 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1372 1373 /* get a listing of the disks comprising that stripe */ 1374 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1375 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1376 RF_ASSERT(diskids); 1377 1378 /* reject this entire parity stripe if it does not contain the 1379 * indicated disk or it does not contain the failed disk */ 1380 1381 for (i = 0; i < stripeWidth; i++) { 1382 if (col == diskids[i]) 1383 break; 1384 } 1385 if (i == stripeWidth) 1386 goto skipit; 1387 for (j = 0; j < stripeWidth; j++) { 1388 if (fcol == diskids[j]) 1389 break; 1390 } 1391 if (j == stripeWidth) { 1392 goto skipit; 1393 } 1394 /* find out which disk the parity is on */ 1395 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1396 1397 /* find out if either the current RU or the failed RU is parity */ 1398 /* also, if the parity occurs in this stripe prior to the data and/or 1399 * failed col, we need to decrement i and/or j */ 1400 for (k = 0; k < stripeWidth; k++) 1401 if (diskids[k] == pcol) 1402 break; 1403 RF_ASSERT(k < stripeWidth); 1404 i_offset = i; 1405 j_offset = j; 1406 if (k < i) 1407 i_offset--; 1408 else 1409 if (k == i) { 1410 i_is_parity = 1; 1411 i_offset = 0; 1412 } /* set offsets to zero to disable multiply 1413 * below */ 1414 if (k < j) 1415 j_offset--; 1416 else 1417 if (k == j) { 1418 j_is_parity = 1; 1419 j_offset = 0; 1420 } 1421 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1422 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1423 * tells us how far into the stripe the [current,failed] disk is. */ 1424 1425 /* call the mapping routine to get the offset into the current disk, 1426 * repeat for failed disk. */ 1427 if (i_is_parity) 1428 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1429 else 1430 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1431 1432 RF_ASSERT(col == testcol); 1433 1434 if (j_is_parity) 1435 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1436 else 1437 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1438 RF_ASSERT(fcol == testcol); 1439 1440 /* now locate the spare unit for the failed unit */ 1441 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1442 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1443 if (j_is_parity) 1444 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1445 else 1446 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1447 } else { 1448 #endif 1449 *spCol = raidPtr->reconControl->spareCol; 1450 *spOffset = *outFailedDiskSectorOffset; 1451 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1452 } 1453 #endif 1454 return (0); 1455 1456 skipit: 1457 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n", 1458 psid, col); 1459 return (1); 1460 } 1461 /* this is called when a buffer has become ready to write to the replacement disk */ 1462 static int 1463 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1464 { 1465 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1466 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1467 #if RF_ACC_TRACE > 0 1468 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1469 #endif 1470 RF_ReconBuffer_t *rbuf; 1471 RF_DiskQueueData_t *req; 1472 1473 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1474 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1475 * have gotten the event that sent us here */ 1476 RF_ASSERT(rbuf->pssPtr); 1477 1478 rbuf->pssPtr->writeRbuf = rbuf; 1479 rbuf->pssPtr = NULL; 1480 1481 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1482 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1483 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1484 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1485 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1486 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1487 1488 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1489 * kernel space */ 1490 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1491 sectorsPerRU, rbuf->buffer, 1492 rbuf->parityStripeID, rbuf->which_ru, 1493 ReconWriteDoneProc, (void *) rbuf, 1494 #if RF_ACC_TRACE > 0 1495 &raidPtr->recon_tracerecs[fcol], 1496 #else 1497 NULL, 1498 #endif 1499 (void *) raidPtr, 0, NULL, PR_WAITOK); 1500 1501 rbuf->arg = (void *) req; 1502 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1503 raidPtr->reconControl->pending_writes++; 1504 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1505 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1506 1507 return (0); 1508 } 1509 1510 /* 1511 * this gets called upon the completion of a reconstruction read 1512 * operation the arg is a pointer to the per-disk reconstruction 1513 * control structure for the process that just finished a read. 1514 * 1515 * called at interrupt context in the kernel, so don't do anything 1516 * illegal here. 1517 */ 1518 static void 1519 ReconReadDoneProc(void *arg, int status) 1520 { 1521 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1522 RF_Raid_t *raidPtr; 1523 1524 /* Detect that reconCtrl is no longer valid, and if that 1525 is the case, bail without calling rf_CauseReconEvent(). 1526 There won't be anyone listening for this event anyway */ 1527 1528 if (ctrl->reconCtrl == NULL) 1529 return; 1530 1531 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1532 1533 if (status) { 1534 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status); 1535 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1536 return; 1537 } 1538 #if RF_ACC_TRACE > 0 1539 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1540 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1541 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1542 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1543 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1544 #endif 1545 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1546 return; 1547 } 1548 /* this gets called upon the completion of a reconstruction write operation. 1549 * the arg is a pointer to the rbuf that was just written 1550 * 1551 * called at interrupt context in the kernel, so don't do anything illegal here. 1552 */ 1553 static void 1554 ReconWriteDoneProc(void *arg, int status) 1555 { 1556 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1557 1558 /* Detect that reconControl is no longer valid, and if that 1559 is the case, bail without calling rf_CauseReconEvent(). 1560 There won't be anyone listening for this event anyway */ 1561 1562 if (rbuf->raidPtr->reconControl == NULL) 1563 return; 1564 1565 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1566 if (status) { 1567 printf("raid%d: Recon write failed (status %d(0x%x))!\n", rbuf->raidPtr->raidid,status,status); 1568 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1569 return; 1570 } 1571 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1572 } 1573 1574 1575 /* 1576 * computes a new minimum head sep, and wakes up anyone who needs to 1577 * be woken as a result 1578 */ 1579 static void 1580 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1581 { 1582 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1583 RF_HeadSepLimit_t new_min; 1584 RF_RowCol_t i; 1585 RF_CallbackValueDesc_t *p; 1586 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1587 * of a minimum */ 1588 1589 1590 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1591 while(reconCtrlPtr->rb_lock) { 1592 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1593 } 1594 reconCtrlPtr->rb_lock = 1; 1595 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1596 1597 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1598 for (i = 0; i < raidPtr->numCol; i++) 1599 if (i != reconCtrlPtr->fcol) { 1600 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1601 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1602 } 1603 /* set the new minimum and wake up anyone who can now run again */ 1604 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1605 reconCtrlPtr->minHeadSepCounter = new_min; 1606 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1607 while (reconCtrlPtr->headSepCBList) { 1608 if (reconCtrlPtr->headSepCBList->v > new_min) 1609 break; 1610 p = reconCtrlPtr->headSepCBList; 1611 reconCtrlPtr->headSepCBList = p->next; 1612 p->next = NULL; 1613 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1614 rf_FreeCallbackValueDesc(p); 1615 } 1616 1617 } 1618 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1619 reconCtrlPtr->rb_lock = 0; 1620 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1621 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1622 } 1623 1624 /* 1625 * checks to see that the maximum head separation will not be violated 1626 * if we initiate a reconstruction I/O on the indicated disk. 1627 * Limiting the maximum head separation between two disks eliminates 1628 * the nasty buffer-stall conditions that occur when one disk races 1629 * ahead of the others and consumes all of the floating recon buffers. 1630 * This code is complex and unpleasant but it's necessary to avoid 1631 * some very nasty, albeit fairly rare, reconstruction behavior. 1632 * 1633 * returns non-zero if and only if we have to stop working on the 1634 * indicated disk due to a head-separation delay. 1635 */ 1636 static int 1637 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1638 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1639 RF_ReconUnitNum_t which_ru) 1640 { 1641 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1642 RF_CallbackValueDesc_t *cb, *p, *pt; 1643 int retval = 0; 1644 1645 /* if we're too far ahead of the slowest disk, stop working on this 1646 * disk until the slower ones catch up. We do this by scheduling a 1647 * wakeup callback for the time when the slowest disk has caught up. 1648 * We define "caught up" with 20% hysteresis, i.e. the head separation 1649 * must have fallen to at most 80% of the max allowable head 1650 * separation before we'll wake up. 1651 * 1652 */ 1653 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1654 while(reconCtrlPtr->rb_lock) { 1655 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1656 } 1657 reconCtrlPtr->rb_lock = 1; 1658 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1659 if ((raidPtr->headSepLimit >= 0) && 1660 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1661 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1662 raidPtr->raidid, col, ctrl->headSepCounter, 1663 reconCtrlPtr->minHeadSepCounter, 1664 raidPtr->headSepLimit); 1665 cb = rf_AllocCallbackValueDesc(); 1666 /* the minHeadSepCounter value we have to get to before we'll 1667 * wake up. build in 20% hysteresis. */ 1668 cb->v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1669 cb->col = col; 1670 cb->next = NULL; 1671 1672 /* insert this callback descriptor into the sorted list of 1673 * pending head-sep callbacks */ 1674 p = reconCtrlPtr->headSepCBList; 1675 if (!p) 1676 reconCtrlPtr->headSepCBList = cb; 1677 else 1678 if (cb->v < p->v) { 1679 cb->next = reconCtrlPtr->headSepCBList; 1680 reconCtrlPtr->headSepCBList = cb; 1681 } else { 1682 for (pt = p, p = p->next; p && (p->v < cb->v); pt = p, p = p->next); 1683 cb->next = p; 1684 pt->next = cb; 1685 } 1686 retval = 1; 1687 #if RF_RECON_STATS > 0 1688 ctrl->reconCtrl->reconDesc->hsStallCount++; 1689 #endif /* RF_RECON_STATS > 0 */ 1690 } 1691 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1692 reconCtrlPtr->rb_lock = 0; 1693 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1694 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1695 1696 return (retval); 1697 } 1698 /* 1699 * checks to see if reconstruction has been either forced or blocked 1700 * by a user operation. if forced, we skip this RU entirely. else if 1701 * blocked, put ourselves on the wait list. else return 0. 1702 * 1703 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1704 */ 1705 static int 1706 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1707 RF_ReconParityStripeStatus_t *pssPtr, 1708 RF_PerDiskReconCtrl_t *ctrl, 1709 RF_RowCol_t col, 1710 RF_StripeNum_t psid, 1711 RF_ReconUnitNum_t which_ru) 1712 { 1713 RF_CallbackValueDesc_t *cb; 1714 int retcode = 0; 1715 1716 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1717 retcode = RF_PSS_FORCED_ON_WRITE; 1718 else 1719 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1720 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1721 cb = rf_AllocCallbackValueDesc(); /* append ourselves to 1722 * the blockage-wait 1723 * list */ 1724 cb->col = col; 1725 cb->next = pssPtr->blockWaitList; 1726 pssPtr->blockWaitList = cb; 1727 retcode = RF_PSS_RECON_BLOCKED; 1728 } 1729 if (!retcode) 1730 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1731 * reconstruction */ 1732 1733 return (retcode); 1734 } 1735 /* 1736 * if reconstruction is currently ongoing for the indicated stripeID, 1737 * reconstruction is forced to completion and we return non-zero to 1738 * indicate that the caller must wait. If not, then reconstruction is 1739 * blocked on the indicated stripe and the routine returns zero. If 1740 * and only if we return non-zero, we'll cause the cbFunc to get 1741 * invoked with the cbArg when the reconstruction has completed. 1742 */ 1743 int 1744 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1745 void (*cbFunc)(void *), void *cbArg) 1746 { 1747 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1748 * forcing recon on */ 1749 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1750 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1751 * stripe status structure */ 1752 RF_StripeNum_t psid; /* parity stripe id */ 1753 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1754 * offset */ 1755 RF_RowCol_t *diskids; 1756 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1757 RF_RowCol_t fcol, diskno, i; 1758 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1759 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1760 RF_CallbackFuncDesc_t *cb; 1761 int nPromoted; 1762 1763 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1764 1765 /* allocate a new PSS in case we need it */ 1766 newpssPtr = rf_AllocPSStatus(raidPtr); 1767 1768 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1769 1770 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1771 1772 if (pssPtr != newpssPtr) { 1773 rf_FreePSStatus(raidPtr, newpssPtr); 1774 } 1775 1776 /* if recon is not ongoing on this PS, just return */ 1777 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1778 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1779 return (0); 1780 } 1781 /* otherwise, we have to wait for reconstruction to complete on this 1782 * RU. */ 1783 /* In order to avoid waiting for a potentially large number of 1784 * low-priority accesses to complete, we force a normal-priority (i.e. 1785 * not low-priority) reconstruction on this RU. */ 1786 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1787 DDprintf1("Forcing recon on psid %ld\n", psid); 1788 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1789 * forced recon */ 1790 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1791 * that we just set */ 1792 fcol = raidPtr->reconControl->fcol; 1793 1794 /* get a listing of the disks comprising the indicated stripe */ 1795 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1796 1797 /* For previously issued reads, elevate them to normal 1798 * priority. If the I/O has already completed, it won't be 1799 * found in the queue, and hence this will be a no-op. For 1800 * unissued reads, allocate buffers and issue new reads. The 1801 * fact that we've set the FORCED bit means that the regular 1802 * recon procs will not re-issue these reqs */ 1803 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1804 if ((diskno = diskids[i]) != fcol) { 1805 if (pssPtr->issued[diskno]) { 1806 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1807 if (rf_reconDebug && nPromoted) 1808 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1809 } else { 1810 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1811 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1812 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1813 * location */ 1814 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1815 new_rbuf->which_ru = which_ru; 1816 new_rbuf->failedDiskSectorOffset = fd_offset; 1817 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1818 1819 /* use NULL b_proc b/c all addrs 1820 * should be in kernel space */ 1821 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1822 psid, which_ru, 1823 ForceReconReadDoneProc, 1824 (void *) new_rbuf, 1825 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1826 1827 new_rbuf->arg = req; 1828 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1829 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1830 } 1831 } 1832 /* if the write is sitting in the disk queue, elevate its 1833 * priority */ 1834 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1835 if (rf_reconDebug) 1836 printf("raid%d: promoted write to col %d\n", 1837 raidPtr->raidid, fcol); 1838 } 1839 /* install a callback descriptor to be invoked when recon completes on 1840 * this parity stripe. */ 1841 cb = rf_AllocCallbackFuncDesc(); 1842 cb->callbackFunc = cbFunc; 1843 cb->callbackArg = cbArg; 1844 cb->next = pssPtr->procWaitList; 1845 pssPtr->procWaitList = cb; 1846 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1847 raidPtr->raidid, psid); 1848 1849 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1850 return (1); 1851 } 1852 /* called upon the completion of a forced reconstruction read. 1853 * all we do is schedule the FORCEDREADONE event. 1854 * called at interrupt context in the kernel, so don't do anything illegal here. 1855 */ 1856 static void 1857 ForceReconReadDoneProc(void *arg, int status) 1858 { 1859 RF_ReconBuffer_t *rbuf = arg; 1860 1861 /* Detect that reconControl is no longer valid, and if that 1862 is the case, bail without calling rf_CauseReconEvent(). 1863 There won't be anyone listening for this event anyway */ 1864 1865 if (rbuf->raidPtr->reconControl == NULL) 1866 return; 1867 1868 if (status) { 1869 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1870 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1871 return; 1872 } 1873 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1874 } 1875 /* releases a block on the reconstruction of the indicated stripe */ 1876 int 1877 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1878 { 1879 RF_StripeNum_t stripeID = asmap->stripeID; 1880 RF_ReconParityStripeStatus_t *pssPtr; 1881 RF_ReconUnitNum_t which_ru; 1882 RF_StripeNum_t psid; 1883 RF_CallbackValueDesc_t *cb; 1884 1885 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1886 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1887 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1888 1889 /* When recon is forced, the pss desc can get deleted before we get 1890 * back to unblock recon. But, this can _only_ happen when recon is 1891 * forced. It would be good to put some kind of sanity check here, but 1892 * how to decide if recon was just forced or not? */ 1893 if (!pssPtr) { 1894 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1895 * RU %d\n",psid,which_ru); */ 1896 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1897 if (rf_reconDebug || rf_pssDebug) 1898 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1899 #endif 1900 goto out; 1901 } 1902 pssPtr->blockCount--; 1903 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1904 raidPtr->raidid, psid, pssPtr->blockCount); 1905 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1906 1907 /* unblock recon before calling CauseReconEvent in case 1908 * CauseReconEvent causes us to try to issue a new read before 1909 * returning here. */ 1910 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1911 1912 1913 while (pssPtr->blockWaitList) { 1914 /* spin through the block-wait list and 1915 release all the waiters */ 1916 cb = pssPtr->blockWaitList; 1917 pssPtr->blockWaitList = cb->next; 1918 cb->next = NULL; 1919 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1920 rf_FreeCallbackValueDesc(cb); 1921 } 1922 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1923 /* if no recon was requested while recon was blocked */ 1924 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1925 } 1926 } 1927 out: 1928 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1929 return (0); 1930 } 1931 1932 void 1933 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) 1934 { 1935 RF_CallbackValueDesc_t *p; 1936 1937 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1938 while(raidPtr->reconControl->rb_lock) { 1939 rf_wait_cond2(raidPtr->reconControl->rb_cv, 1940 raidPtr->reconControl->rb_mutex); 1941 } 1942 1943 raidPtr->reconControl->rb_lock = 1; 1944 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1945 1946 while (raidPtr->reconControl->headSepCBList) { 1947 p = raidPtr->reconControl->headSepCBList; 1948 raidPtr->reconControl->headSepCBList = p->next; 1949 p->next = NULL; 1950 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1951 rf_FreeCallbackValueDesc(p); 1952 } 1953 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1954 raidPtr->reconControl->rb_lock = 0; 1955 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 1956 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1957 1958 } 1959 1960