1 /* $NetBSD: rf_reconstruct.c,v 1.124 2019/12/08 12:14:40 mlelstv Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.124 2019/12/08 12:14:40 mlelstv Exp $"); 37 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 #include <sys/namei.h> /* for pathbuf */ 48 #include <dev/raidframe/raidframevar.h> 49 50 #include <miscfs/specfs/specdev.h> /* for v_rdev */ 51 52 #include "rf_raid.h" 53 #include "rf_reconutil.h" 54 #include "rf_revent.h" 55 #include "rf_reconbuffer.h" 56 #include "rf_acctrace.h" 57 #include "rf_etimer.h" 58 #include "rf_dag.h" 59 #include "rf_desc.h" 60 #include "rf_debugprint.h" 61 #include "rf_general.h" 62 #include "rf_driver.h" 63 #include "rf_utils.h" 64 #include "rf_shutdown.h" 65 66 #include "rf_kintf.h" 67 68 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 69 70 #if RF_DEBUG_RECON 71 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 75 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 76 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 77 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 78 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 79 80 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 81 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 82 83 #else /* RF_DEBUG_RECON */ 84 85 #define Dprintf(s) {} 86 #define Dprintf1(s,a) {} 87 #define Dprintf2(s,a,b) {} 88 #define Dprintf3(s,a,b,c) {} 89 #define Dprintf4(s,a,b,c,d) {} 90 #define Dprintf5(s,a,b,c,d,e) {} 91 #define Dprintf6(s,a,b,c,d,e,f) {} 92 #define Dprintf7(s,a,b,c,d,e,f,g) {} 93 94 #define DDprintf1(s,a) {} 95 #define DDprintf2(s,a,b) {} 96 97 #endif /* RF_DEBUG_RECON */ 98 99 #define RF_RECON_DONE_READS 1 100 #define RF_RECON_READ_ERROR 2 101 #define RF_RECON_WRITE_ERROR 3 102 #define RF_RECON_READ_STOPPED 4 103 #define RF_RECON_WRITE_DONE 5 104 105 #define RF_MAX_FREE_RECONBUFFER 32 106 #define RF_MIN_FREE_RECONBUFFER 16 107 108 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 109 RF_RaidDisk_t *, int, RF_RowCol_t); 110 static void FreeReconDesc(RF_RaidReconDesc_t *); 111 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 112 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 113 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 114 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 115 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 116 RF_SectorNum_t *); 117 static int IssueNextWriteRequest(RF_Raid_t *); 118 static void ReconReadDoneProc(void *, int); 119 static void ReconWriteDoneProc(void *, int); 120 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 121 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 122 RF_RowCol_t, RF_HeadSepLimit_t, 123 RF_ReconUnitNum_t); 124 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 125 RF_ReconParityStripeStatus_t *, 126 RF_PerDiskReconCtrl_t *, 127 RF_RowCol_t, RF_StripeNum_t, 128 RF_ReconUnitNum_t); 129 static void ForceReconReadDoneProc(void *, int); 130 static void rf_ShutdownReconstruction(void *); 131 132 struct RF_ReconDoneProc_s { 133 void (*proc) (RF_Raid_t *, void *); 134 void *arg; 135 RF_ReconDoneProc_t *next; 136 }; 137 138 /************************************************************************** 139 * 140 * sets up the parameters that will be used by the reconstruction process 141 * currently there are none, except for those that the layout-specific 142 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 143 * 144 * in the kernel, we fire off the recon thread. 145 * 146 **************************************************************************/ 147 static void 148 rf_ShutdownReconstruction(void *ignored) 149 { 150 pool_destroy(&rf_pools.reconbuffer); 151 } 152 153 int 154 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 155 { 156 157 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 158 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 159 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 160 161 return (0); 162 } 163 164 static RF_RaidReconDesc_t * 165 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 166 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 167 RF_RowCol_t scol) 168 { 169 170 RF_RaidReconDesc_t *reconDesc; 171 172 reconDesc = RF_Malloc(sizeof(*reconDesc)); 173 reconDesc->raidPtr = raidPtr; 174 reconDesc->col = col; 175 reconDesc->spareDiskPtr = spareDiskPtr; 176 reconDesc->numDisksDone = numDisksDone; 177 reconDesc->scol = scol; 178 reconDesc->next = NULL; 179 180 return (reconDesc); 181 } 182 183 static void 184 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 185 { 186 #if RF_RECON_STATS > 0 187 printf("raid%d: %lu recon event waits, %lu recon delays\n", 188 reconDesc->raidPtr->raidid, 189 (long) reconDesc->numReconEventWaits, 190 (long) reconDesc->numReconExecDelays); 191 #endif /* RF_RECON_STATS > 0 */ 192 printf("raid%d: %lu max exec ticks\n", 193 reconDesc->raidPtr->raidid, 194 (long) reconDesc->maxReconExecTicks); 195 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 196 } 197 198 199 /***************************************************************************** 200 * 201 * primary routine to reconstruct a failed disk. This should be called from 202 * within its own thread. It won't return until reconstruction completes, 203 * fails, or is aborted. 204 *****************************************************************************/ 205 int 206 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 207 { 208 const RF_LayoutSW_t *lp; 209 int rc; 210 211 lp = raidPtr->Layout.map; 212 if (lp->SubmitReconBuffer) { 213 /* 214 * The current infrastructure only supports reconstructing one 215 * disk at a time for each array. 216 */ 217 rf_lock_mutex2(raidPtr->mutex); 218 while (raidPtr->reconInProgress) { 219 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 220 } 221 raidPtr->reconInProgress++; 222 rf_unlock_mutex2(raidPtr->mutex); 223 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 224 rf_lock_mutex2(raidPtr->mutex); 225 raidPtr->reconInProgress--; 226 } else { 227 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 228 lp->parityConfig); 229 rc = EIO; 230 rf_lock_mutex2(raidPtr->mutex); 231 } 232 rf_signal_cond2(raidPtr->waitForReconCond); 233 rf_unlock_mutex2(raidPtr->mutex); 234 return (rc); 235 } 236 237 int 238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 239 { 240 RF_ComponentLabel_t *c_label; 241 RF_RaidDisk_t *spareDiskPtr = NULL; 242 RF_RaidReconDesc_t *reconDesc; 243 RF_RowCol_t scol; 244 int numDisksDone = 0, rc; 245 246 /* first look for a spare drive onto which to reconstruct the data */ 247 /* spare disk descriptors are stored in row 0. This may have to 248 * change eventually */ 249 250 rf_lock_mutex2(raidPtr->mutex); 251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 254 if (raidPtr->status != rf_rs_degraded) { 255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 256 rf_unlock_mutex2(raidPtr->mutex); 257 return (EINVAL); 258 } 259 scol = (-1); 260 } else { 261 #endif 262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 263 if (raidPtr->Disks[scol].status == rf_ds_spare) { 264 spareDiskPtr = &raidPtr->Disks[scol]; 265 spareDiskPtr->status = rf_ds_rebuilding_spare; 266 break; 267 } 268 } 269 if (!spareDiskPtr) { 270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 271 rf_unlock_mutex2(raidPtr->mutex); 272 return (ENOSPC); 273 } 274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 276 } 277 #endif 278 rf_unlock_mutex2(raidPtr->mutex); 279 280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 281 raidPtr->reconDesc = (void *) reconDesc; 282 #if RF_RECON_STATS > 0 283 reconDesc->hsStallCount = 0; 284 reconDesc->numReconExecDelays = 0; 285 reconDesc->numReconEventWaits = 0; 286 #endif /* RF_RECON_STATS > 0 */ 287 reconDesc->reconExecTimerRunning = 0; 288 reconDesc->reconExecTicks = 0; 289 reconDesc->maxReconExecTicks = 0; 290 rc = rf_ContinueReconstructFailedDisk(reconDesc); 291 292 if (!rc) { 293 /* fix up the component label */ 294 /* Don't actually need the read here.. */ 295 c_label = raidget_component_label(raidPtr, scol); 296 297 raid_init_component_label(raidPtr, c_label); 298 c_label->row = 0; 299 c_label->column = col; 300 c_label->clean = RF_RAID_DIRTY; 301 c_label->status = rf_ds_optimal; 302 rf_component_label_set_partitionsize(c_label, 303 raidPtr->Disks[scol].partitionSize); 304 305 /* We've just done a rebuild based on all the other 306 disks, so at this point the parity is known to be 307 clean, even if it wasn't before. */ 308 309 /* XXX doesn't hold for RAID 6!!*/ 310 311 rf_lock_mutex2(raidPtr->mutex); 312 /* The failed disk has already been marked as rf_ds_spared 313 (or rf_ds_dist_spared) in 314 rf_ContinueReconstructFailedDisk() 315 so we just update the spare disk as being a used spare 316 */ 317 318 spareDiskPtr->status = rf_ds_used_spare; 319 raidPtr->parity_good = RF_RAID_CLEAN; 320 rf_unlock_mutex2(raidPtr->mutex); 321 322 /* XXXX MORE NEEDED HERE */ 323 324 raidflush_component_label(raidPtr, scol); 325 } else { 326 /* Reconstruct failed. */ 327 328 rf_lock_mutex2(raidPtr->mutex); 329 /* Failed disk goes back to "failed" status */ 330 raidPtr->Disks[col].status = rf_ds_failed; 331 332 /* Spare disk goes back to "spare" status. */ 333 spareDiskPtr->status = rf_ds_spare; 334 rf_unlock_mutex2(raidPtr->mutex); 335 336 } 337 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 338 return (rc); 339 } 340 341 /* 342 343 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 344 and you don't get a spare until the next Monday. With this function 345 (and hot-swappable drives) you can now put your new disk containing 346 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 347 rebuild the data "on the spot". 348 349 */ 350 351 int 352 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 353 { 354 RF_RaidDisk_t *spareDiskPtr = NULL; 355 RF_RaidReconDesc_t *reconDesc; 356 const RF_LayoutSW_t *lp; 357 RF_ComponentLabel_t *c_label; 358 int numDisksDone = 0, rc; 359 uint64_t numsec; 360 unsigned int secsize; 361 struct pathbuf *pb; 362 struct vnode *vp; 363 int retcode; 364 int ac; 365 366 rf_lock_mutex2(raidPtr->mutex); 367 lp = raidPtr->Layout.map; 368 if (!lp->SubmitReconBuffer) { 369 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 370 lp->parityConfig); 371 /* wakeup anyone who might be waiting to do a reconstruct */ 372 rf_signal_cond2(raidPtr->waitForReconCond); 373 rf_unlock_mutex2(raidPtr->mutex); 374 return(EIO); 375 } 376 377 /* 378 * The current infrastructure only supports reconstructing one 379 * disk at a time for each array. 380 */ 381 382 if (raidPtr->Disks[col].status != rf_ds_failed) { 383 /* "It's gone..." */ 384 raidPtr->numFailures++; 385 raidPtr->Disks[col].status = rf_ds_failed; 386 raidPtr->status = rf_rs_degraded; 387 rf_unlock_mutex2(raidPtr->mutex); 388 rf_update_component_labels(raidPtr, 389 RF_NORMAL_COMPONENT_UPDATE); 390 rf_lock_mutex2(raidPtr->mutex); 391 } 392 393 while (raidPtr->reconInProgress) { 394 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 395 } 396 397 raidPtr->reconInProgress++; 398 399 /* first look for a spare drive onto which to reconstruct the 400 data. spare disk descriptors are stored in row 0. This 401 may have to change eventually */ 402 403 /* Actually, we don't care if it's failed or not... On a RAID 404 set with correct parity, this function should be callable 405 on any component without ill effects. */ 406 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 407 408 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 409 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 410 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 411 412 raidPtr->reconInProgress--; 413 rf_signal_cond2(raidPtr->waitForReconCond); 414 rf_unlock_mutex2(raidPtr->mutex); 415 return (EINVAL); 416 } 417 #endif 418 419 /* This device may have been opened successfully the 420 first time. Close it before trying to open it again.. */ 421 422 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 423 #if 0 424 printf("Closed the open device: %s\n", 425 raidPtr->Disks[col].devname); 426 #endif 427 vp = raidPtr->raid_cinfo[col].ci_vp; 428 ac = raidPtr->Disks[col].auto_configured; 429 rf_unlock_mutex2(raidPtr->mutex); 430 rf_close_component(raidPtr, vp, ac); 431 rf_lock_mutex2(raidPtr->mutex); 432 raidPtr->raid_cinfo[col].ci_vp = NULL; 433 } 434 /* note that this disk was *not* auto_configured (any longer)*/ 435 raidPtr->Disks[col].auto_configured = 0; 436 437 #if 0 438 printf("About to (re-)open the device for rebuilding: %s\n", 439 raidPtr->Disks[col].devname); 440 #endif 441 rf_unlock_mutex2(raidPtr->mutex); 442 pb = pathbuf_create(raidPtr->Disks[col].devname); 443 if (pb == NULL) { 444 retcode = ENOMEM; 445 } else { 446 retcode = vn_bdev_openpath(pb, &vp, curlwp); 447 pathbuf_destroy(pb); 448 } 449 450 if (retcode) { 451 printf("raid%d: rebuilding: open device: %s failed: %d!\n",raidPtr->raidid, 452 raidPtr->Disks[col].devname, retcode); 453 454 /* the component isn't responding properly... 455 must be still dead :-( */ 456 rf_lock_mutex2(raidPtr->mutex); 457 raidPtr->reconInProgress--; 458 rf_signal_cond2(raidPtr->waitForReconCond); 459 rf_unlock_mutex2(raidPtr->mutex); 460 return(retcode); 461 } 462 463 /* Ok, so we can at least do a lookup... 464 How about actually getting a vp for it? */ 465 466 retcode = getdisksize(vp, &numsec, &secsize); 467 if (retcode) { 468 vn_close(vp, FREAD | FWRITE, kauth_cred_get()); 469 rf_lock_mutex2(raidPtr->mutex); 470 raidPtr->reconInProgress--; 471 rf_signal_cond2(raidPtr->waitForReconCond); 472 rf_unlock_mutex2(raidPtr->mutex); 473 return(retcode); 474 } 475 rf_lock_mutex2(raidPtr->mutex); 476 raidPtr->Disks[col].blockSize = secsize; 477 raidPtr->Disks[col].numBlocks = numsec - rf_protectedSectors; 478 479 raidPtr->raid_cinfo[col].ci_vp = vp; 480 raidPtr->raid_cinfo[col].ci_dev = vp->v_rdev; 481 482 raidPtr->Disks[col].dev = vp->v_rdev; 483 484 /* we allow the user to specify that only a fraction 485 of the disks should be used this is just for debug: 486 it speeds up * the parity scan */ 487 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 488 rf_sizePercentage / 100; 489 rf_unlock_mutex2(raidPtr->mutex); 490 491 spareDiskPtr = &raidPtr->Disks[col]; 492 spareDiskPtr->status = rf_ds_rebuilding_spare; 493 494 printf("raid%d: initiating in-place reconstruction on column %d\n", 495 raidPtr->raidid, col); 496 497 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 498 numDisksDone, col); 499 raidPtr->reconDesc = (void *) reconDesc; 500 #if RF_RECON_STATS > 0 501 reconDesc->hsStallCount = 0; 502 reconDesc->numReconExecDelays = 0; 503 reconDesc->numReconEventWaits = 0; 504 #endif /* RF_RECON_STATS > 0 */ 505 reconDesc->reconExecTimerRunning = 0; 506 reconDesc->reconExecTicks = 0; 507 reconDesc->maxReconExecTicks = 0; 508 rc = rf_ContinueReconstructFailedDisk(reconDesc); 509 510 if (!rc) { 511 rf_lock_mutex2(raidPtr->mutex); 512 /* Need to set these here, as at this point it'll be claiming 513 that the disk is in rf_ds_spared! But we know better :-) */ 514 515 raidPtr->Disks[col].status = rf_ds_optimal; 516 raidPtr->status = rf_rs_optimal; 517 rf_unlock_mutex2(raidPtr->mutex); 518 519 /* fix up the component label */ 520 /* Don't actually need the read here.. */ 521 c_label = raidget_component_label(raidPtr, col); 522 523 rf_lock_mutex2(raidPtr->mutex); 524 raid_init_component_label(raidPtr, c_label); 525 526 c_label->row = 0; 527 c_label->column = col; 528 529 /* We've just done a rebuild based on all the other 530 disks, so at this point the parity is known to be 531 clean, even if it wasn't before. */ 532 533 /* XXX doesn't hold for RAID 6!!*/ 534 535 raidPtr->parity_good = RF_RAID_CLEAN; 536 rf_unlock_mutex2(raidPtr->mutex); 537 538 raidflush_component_label(raidPtr, col); 539 } else { 540 /* Reconstruct-in-place failed. Disk goes back to 541 "failed" status, regardless of what it was before. */ 542 rf_lock_mutex2(raidPtr->mutex); 543 raidPtr->Disks[col].status = rf_ds_failed; 544 rf_unlock_mutex2(raidPtr->mutex); 545 } 546 547 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 548 549 rf_lock_mutex2(raidPtr->mutex); 550 raidPtr->reconInProgress--; 551 rf_signal_cond2(raidPtr->waitForReconCond); 552 rf_unlock_mutex2(raidPtr->mutex); 553 554 return (rc); 555 } 556 557 558 int 559 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 560 { 561 RF_Raid_t *raidPtr = reconDesc->raidPtr; 562 RF_RowCol_t col = reconDesc->col; 563 RF_RowCol_t scol = reconDesc->scol; 564 RF_ReconMap_t *mapPtr; 565 RF_ReconCtrl_t *tmp_reconctrl; 566 RF_ReconEvent_t *event; 567 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; 568 #if RF_INCLUDE_RAID5_RS > 0 569 RF_StripeCount_t startPSID,endPSID,aPSID,bPSID,offPSID; 570 #endif 571 RF_ReconUnitCount_t RUsPerPU; 572 struct timeval etime, elpsd; 573 unsigned long xor_s, xor_resid_us; 574 int i, ds; 575 int status, done; 576 int recon_error, write_error; 577 578 raidPtr->accumXorTimeUs = 0; 579 #if RF_ACC_TRACE > 0 580 /* create one trace record per physical disk */ 581 raidPtr->recon_tracerecs = 582 RF_Malloc(raidPtr->numCol * sizeof(*raidPtr->recon_tracerecs)); 583 #endif 584 585 /* quiesce the array prior to starting recon. this is needed 586 * to assure no nasty interactions with pending user writes. 587 * We need to do this before we change the disk or row status. */ 588 589 Dprintf("RECON: begin request suspend\n"); 590 rf_SuspendNewRequestsAndWait(raidPtr); 591 Dprintf("RECON: end request suspend\n"); 592 593 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 594 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 595 596 rf_lock_mutex2(raidPtr->mutex); 597 598 /* create the reconstruction control pointer and install it in 599 * the right slot */ 600 raidPtr->reconControl = tmp_reconctrl; 601 mapPtr = raidPtr->reconControl->reconMap; 602 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 603 raidPtr->reconControl->numRUsComplete = 0; 604 raidPtr->status = rf_rs_reconstructing; 605 raidPtr->Disks[col].status = rf_ds_reconstructing; 606 raidPtr->Disks[col].spareCol = scol; 607 608 rf_unlock_mutex2(raidPtr->mutex); 609 610 RF_GETTIME(raidPtr->reconControl->starttime); 611 612 Dprintf("RECON: resume requests\n"); 613 rf_ResumeNewRequests(raidPtr); 614 615 616 mapPtr = raidPtr->reconControl->reconMap; 617 618 incPSID = RF_RECONMAP_SIZE; 619 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU; 620 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; 621 recon_error = 0; 622 write_error = 0; 623 pending_writes = incPSID; 624 raidPtr->reconControl->lastPSID = incPSID - 1; 625 626 /* bounds check raidPtr->reconControl->lastPSID and 627 pending_writes so that we don't attempt to wait for more IO 628 than can possibly happen */ 629 630 if (raidPtr->reconControl->lastPSID > lastPSID) 631 raidPtr->reconControl->lastPSID = lastPSID; 632 633 if (pending_writes > lastPSID) 634 pending_writes = lastPSID; 635 636 /* start the actual reconstruction */ 637 638 done = 0; 639 while (!done) { 640 641 if (raidPtr->waitShutdown) { 642 /* someone is unconfiguring this array... bail on the reconstruct.. */ 643 recon_error = 1; 644 break; 645 } 646 647 num_writes = 0; 648 649 #if RF_INCLUDE_RAID5_RS > 0 650 /* For RAID5 with Rotated Spares we will be 'short' 651 some number of writes since no writes will get 652 issued for stripes where the spare is on the 653 component being rebuilt. Account for the shortage 654 here so that we don't hang indefinitely below 655 waiting for writes to complete that were never 656 scheduled. 657 658 XXX: Should be fixed for PARITY_DECLUSTERING and 659 others too! 660 661 */ 662 663 if (raidPtr->Layout.numDataCol < 664 raidPtr->numCol - raidPtr->Layout.numParityCol) { 665 /* numDataCol is at least 2 less than numCol, so 666 should be RAID 5 with Rotated Spares */ 667 668 /* XXX need to update for RAID 6 */ 669 670 startPSID = raidPtr->reconControl->lastPSID - pending_writes + 1; 671 endPSID = raidPtr->reconControl->lastPSID; 672 673 offPSID = raidPtr->numCol - col - 1; 674 675 aPSID = startPSID - startPSID % raidPtr->numCol + offPSID; 676 if (aPSID < startPSID) { 677 aPSID += raidPtr->numCol; 678 } 679 680 bPSID = endPSID - ((endPSID - offPSID) % raidPtr->numCol); 681 682 if (aPSID < endPSID) { 683 num_writes = ((bPSID - aPSID) / raidPtr->numCol) + 1; 684 } 685 686 if ((aPSID == endPSID) && (bPSID == endPSID)) { 687 num_writes++; 688 } 689 } 690 #endif 691 692 /* issue a read for each surviving disk */ 693 694 reconDesc->numDisksDone = 0; 695 for (i = 0; i < raidPtr->numCol; i++) { 696 if (i != col) { 697 /* find and issue the next I/O on the 698 * indicated disk */ 699 if (IssueNextReadRequest(raidPtr, i)) { 700 Dprintf1("RECON: done issuing for c%d\n", i); 701 reconDesc->numDisksDone++; 702 } 703 } 704 } 705 706 /* process reconstruction events until all disks report that 707 * they've completed all work */ 708 709 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 710 711 event = rf_GetNextReconEvent(reconDesc); 712 status = ProcessReconEvent(raidPtr, event); 713 714 /* the normal case is that a read completes, and all is well. */ 715 if (status == RF_RECON_DONE_READS) { 716 reconDesc->numDisksDone++; 717 } else if ((status == RF_RECON_READ_ERROR) || 718 (status == RF_RECON_WRITE_ERROR)) { 719 /* an error was encountered while reconstructing... 720 Pretend we've finished this disk. 721 */ 722 recon_error = 1; 723 raidPtr->reconControl->error = 1; 724 725 /* bump the numDisksDone count for reads, 726 but not for writes */ 727 if (status == RF_RECON_READ_ERROR) 728 reconDesc->numDisksDone++; 729 730 /* write errors are special -- when we are 731 done dealing with the reads that are 732 finished, we don't want to wait for any 733 writes */ 734 if (status == RF_RECON_WRITE_ERROR) { 735 write_error = 1; 736 num_writes++; 737 } 738 739 } else if (status == RF_RECON_READ_STOPPED) { 740 /* count this component as being "done" */ 741 reconDesc->numDisksDone++; 742 } else if (status == RF_RECON_WRITE_DONE) { 743 num_writes++; 744 } 745 746 if (recon_error) { 747 /* make sure any stragglers are woken up so that 748 their theads will complete, and we can get out 749 of here with all IO processed */ 750 751 rf_WakeupHeadSepCBWaiters(raidPtr); 752 } 753 754 raidPtr->reconControl->numRUsTotal = 755 mapPtr->totalRUs; 756 raidPtr->reconControl->numRUsComplete = 757 mapPtr->totalRUs - 758 rf_UnitsLeftToReconstruct(mapPtr); 759 760 #if RF_DEBUG_RECON 761 raidPtr->reconControl->percentComplete = 762 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 763 if (rf_prReconSched) { 764 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 765 } 766 #endif 767 } 768 769 /* reads done, wakeup any waiters, and then wait for writes */ 770 771 rf_WakeupHeadSepCBWaiters(raidPtr); 772 773 while (!recon_error && (num_writes < pending_writes)) { 774 event = rf_GetNextReconEvent(reconDesc); 775 status = ProcessReconEvent(raidPtr, event); 776 777 if (status == RF_RECON_WRITE_ERROR) { 778 num_writes++; 779 recon_error = 1; 780 raidPtr->reconControl->error = 1; 781 /* an error was encountered at the very end... bail */ 782 } else if (status == RF_RECON_WRITE_DONE) { 783 num_writes++; 784 } /* else it's something else, and we don't care */ 785 } 786 if (recon_error || 787 (raidPtr->reconControl->lastPSID == lastPSID)) { 788 done = 1; 789 break; 790 } 791 792 prev = raidPtr->reconControl->lastPSID; 793 raidPtr->reconControl->lastPSID += incPSID; 794 795 if (raidPtr->reconControl->lastPSID > lastPSID) { 796 pending_writes = lastPSID - prev; 797 raidPtr->reconControl->lastPSID = lastPSID; 798 } 799 800 /* back down curPSID to get ready for the next round... */ 801 for (i = 0; i < raidPtr->numCol; i++) { 802 if (i != col) { 803 raidPtr->reconControl->perDiskInfo[i].curPSID--; 804 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; 805 } 806 } 807 } 808 809 mapPtr = raidPtr->reconControl->reconMap; 810 if (rf_reconDebug) { 811 printf("RECON: all reads completed\n"); 812 } 813 /* at this point all the reads have completed. We now wait 814 * for any pending writes to complete, and then we're done */ 815 816 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 817 818 event = rf_GetNextReconEvent(reconDesc); 819 status = ProcessReconEvent(raidPtr, event); 820 821 if (status == RF_RECON_WRITE_ERROR) { 822 recon_error = 1; 823 raidPtr->reconControl->error = 1; 824 /* an error was encountered at the very end... bail */ 825 } else { 826 #if RF_DEBUG_RECON 827 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 828 if (rf_prReconSched) { 829 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 830 } 831 #endif 832 } 833 } 834 835 if (recon_error) { 836 /* we've encountered an error in reconstructing. */ 837 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 838 839 /* we start by blocking IO to the RAID set. */ 840 rf_SuspendNewRequestsAndWait(raidPtr); 841 842 rf_lock_mutex2(raidPtr->mutex); 843 /* mark set as being degraded, rather than 844 rf_rs_reconstructing as we were before the problem. 845 After this is done we can update status of the 846 component disks without worrying about someone 847 trying to read from a failed component. 848 */ 849 raidPtr->status = rf_rs_degraded; 850 rf_unlock_mutex2(raidPtr->mutex); 851 852 /* resume IO */ 853 rf_ResumeNewRequests(raidPtr); 854 855 /* At this point there are two cases: 856 1) If we've experienced a read error, then we've 857 already waited for all the reads we're going to get, 858 and we just need to wait for the writes. 859 860 2) If we've experienced a write error, we've also 861 already waited for all the reads to complete, 862 but there is little point in waiting for the writes -- 863 when they do complete, they will just be ignored. 864 865 So we just wait for writes to complete if we didn't have a 866 write error. 867 */ 868 869 if (!write_error) { 870 /* wait for writes to complete */ 871 while (raidPtr->reconControl->pending_writes > 0) { 872 873 event = rf_GetNextReconEvent(reconDesc); 874 status = ProcessReconEvent(raidPtr, event); 875 876 if (status == RF_RECON_WRITE_ERROR) { 877 raidPtr->reconControl->error = 1; 878 /* an error was encountered at the very end... bail. 879 This will be very bad news for the user, since 880 at this point there will have been a read error 881 on one component, and a write error on another! 882 */ 883 break; 884 } 885 } 886 } 887 888 889 /* cleanup */ 890 891 /* drain the event queue - after waiting for the writes above, 892 there shouldn't be much (if anything!) left in the queue. */ 893 894 rf_DrainReconEventQueue(reconDesc); 895 896 /* XXX As much as we'd like to free the recon control structure 897 and the reconDesc, we have no way of knowing if/when those will 898 be touched by IO that has yet to occur. It is rather poor to be 899 basically causing a 'memory leak' here, but there doesn't seem to be 900 a cleaner alternative at this time. Perhaps when the reconstruct code 901 gets a makeover this problem will go away. 902 */ 903 #if 0 904 rf_FreeReconControl(raidPtr); 905 #endif 906 907 #if RF_ACC_TRACE > 0 908 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 909 #endif 910 /* XXX see comment above */ 911 #if 0 912 FreeReconDesc(reconDesc); 913 #endif 914 915 return (1); 916 } 917 918 /* Success: mark the dead disk as reconstructed. We quiesce 919 * the array here to assure no nasty interactions with pending 920 * user accesses when we free up the psstatus structure as 921 * part of FreeReconControl() */ 922 923 rf_SuspendNewRequestsAndWait(raidPtr); 924 925 rf_lock_mutex2(raidPtr->mutex); 926 raidPtr->numFailures--; 927 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 928 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 929 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 930 rf_unlock_mutex2(raidPtr->mutex); 931 RF_GETTIME(etime); 932 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 933 934 rf_ResumeNewRequests(raidPtr); 935 936 printf("raid%d: Reconstruction of disk at col %d completed\n", 937 raidPtr->raidid, col); 938 xor_s = raidPtr->accumXorTimeUs / 1000000; 939 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 940 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 941 raidPtr->raidid, 942 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 943 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 944 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 945 raidPtr->raidid, 946 (int) raidPtr->reconControl->starttime.tv_sec, 947 (int) raidPtr->reconControl->starttime.tv_usec, 948 (int) etime.tv_sec, (int) etime.tv_usec); 949 #if RF_RECON_STATS > 0 950 printf("raid%d: Total head-sep stall count was %d\n", 951 raidPtr->raidid, (int) reconDesc->hsStallCount); 952 #endif /* RF_RECON_STATS > 0 */ 953 rf_FreeReconControl(raidPtr); 954 #if RF_ACC_TRACE > 0 955 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 956 #endif 957 FreeReconDesc(reconDesc); 958 959 return (0); 960 961 } 962 /***************************************************************************** 963 * do the right thing upon each reconstruction event. 964 *****************************************************************************/ 965 static int 966 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 967 { 968 int retcode = 0, submitblocked; 969 RF_ReconBuffer_t *rbuf; 970 RF_SectorCount_t sectorsPerRU; 971 972 retcode = RF_RECON_READ_STOPPED; 973 974 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 975 976 switch (event->type) { 977 978 /* a read I/O has completed */ 979 case RF_REVENT_READDONE: 980 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 981 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 982 event->col, rbuf->parityStripeID); 983 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 984 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 985 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 986 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 987 if (!raidPtr->reconControl->error) { 988 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 989 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 990 if (!submitblocked) 991 retcode = IssueNextReadRequest(raidPtr, event->col); 992 else 993 retcode = 0; 994 } 995 break; 996 997 /* a write I/O has completed */ 998 case RF_REVENT_WRITEDONE: 999 #if RF_DEBUG_RECON 1000 if (rf_floatingRbufDebug) { 1001 rf_CheckFloatingRbufCount(raidPtr, 1); 1002 } 1003 #endif 1004 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1005 rbuf = (RF_ReconBuffer_t *) event->arg; 1006 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1007 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 1008 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 1009 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 1010 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 1011 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 1012 1013 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1014 raidPtr->reconControl->pending_writes--; 1015 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1016 1017 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 1018 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1019 while(raidPtr->reconControl->rb_lock) { 1020 rf_wait_cond2(raidPtr->reconControl->rb_cv, 1021 raidPtr->reconControl->rb_mutex); 1022 } 1023 raidPtr->reconControl->rb_lock = 1; 1024 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1025 1026 raidPtr->numFullReconBuffers--; 1027 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 1028 1029 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1030 raidPtr->reconControl->rb_lock = 0; 1031 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 1032 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1033 } else 1034 if (rbuf->type == RF_RBUF_TYPE_FORCED) 1035 rf_FreeReconBuffer(rbuf); 1036 else 1037 RF_ASSERT(0); 1038 retcode = RF_RECON_WRITE_DONE; 1039 break; 1040 1041 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 1042 * cleared */ 1043 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 1044 if (!raidPtr->reconControl->error) { 1045 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 1046 0, (int) (long) event->arg); 1047 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 1048 * BUFCLEAR event if we 1049 * couldn't submit */ 1050 retcode = IssueNextReadRequest(raidPtr, event->col); 1051 } 1052 break; 1053 1054 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 1055 * blockage has been cleared */ 1056 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 1057 if (!raidPtr->reconControl->error) { 1058 retcode = TryToRead(raidPtr, event->col); 1059 } 1060 break; 1061 1062 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 1063 * reconstruction blockage has been 1064 * cleared */ 1065 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 1066 if (!raidPtr->reconControl->error) { 1067 retcode = TryToRead(raidPtr, event->col); 1068 } 1069 break; 1070 1071 /* a buffer has become ready to write */ 1072 case RF_REVENT_BUFREADY: 1073 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 1074 if (!raidPtr->reconControl->error) { 1075 retcode = IssueNextWriteRequest(raidPtr); 1076 #if RF_DEBUG_RECON 1077 if (rf_floatingRbufDebug) { 1078 rf_CheckFloatingRbufCount(raidPtr, 1); 1079 } 1080 #endif 1081 } 1082 break; 1083 1084 /* we need to skip the current RU entirely because it got 1085 * recon'd while we were waiting for something else to happen */ 1086 case RF_REVENT_SKIP: 1087 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 1088 if (!raidPtr->reconControl->error) { 1089 retcode = IssueNextReadRequest(raidPtr, event->col); 1090 } 1091 break; 1092 1093 /* a forced-reconstruction read access has completed. Just 1094 * submit the buffer */ 1095 case RF_REVENT_FORCEDREADDONE: 1096 rbuf = (RF_ReconBuffer_t *) event->arg; 1097 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1098 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 1099 if (!raidPtr->reconControl->error) { 1100 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 1101 RF_ASSERT(!submitblocked); 1102 retcode = 0; 1103 } 1104 break; 1105 1106 /* A read I/O failed to complete */ 1107 case RF_REVENT_READ_FAILED: 1108 retcode = RF_RECON_READ_ERROR; 1109 break; 1110 1111 /* A write I/O failed to complete */ 1112 case RF_REVENT_WRITE_FAILED: 1113 retcode = RF_RECON_WRITE_ERROR; 1114 1115 /* This is an error, but it was a pending write. 1116 Account for it. */ 1117 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1118 raidPtr->reconControl->pending_writes--; 1119 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1120 1121 rbuf = (RF_ReconBuffer_t *) event->arg; 1122 1123 /* cleanup the disk queue data */ 1124 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1125 1126 /* At this point we're erroring out, badly, and floatingRbufs 1127 may not even be valid. Rather than putting this back onto 1128 the floatingRbufs list, just arrange for its immediate 1129 destruction. 1130 */ 1131 rf_FreeReconBuffer(rbuf); 1132 break; 1133 1134 /* a forced read I/O failed to complete */ 1135 case RF_REVENT_FORCEDREAD_FAILED: 1136 retcode = RF_RECON_READ_ERROR; 1137 break; 1138 1139 default: 1140 RF_PANIC(); 1141 } 1142 rf_FreeReconEventDesc(event); 1143 return (retcode); 1144 } 1145 /***************************************************************************** 1146 * 1147 * find the next thing that's needed on the indicated disk, and issue 1148 * a read request for it. We assume that the reconstruction buffer 1149 * associated with this process is free to receive the data. If 1150 * reconstruction is blocked on the indicated RU, we issue a 1151 * blockage-release request instead of a physical disk read request. 1152 * If the current disk gets too far ahead of the others, we issue a 1153 * head-separation wait request and return. 1154 * 1155 * ctrl->{ru_count, curPSID, diskOffset} and 1156 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1157 * we're currently accessing. Note that this deviates from the 1158 * standard C idiom of having counters point to the next thing to be 1159 * accessed. This allows us to easily retry when we're blocked by 1160 * head separation or reconstruction-blockage events. 1161 * 1162 *****************************************************************************/ 1163 static int 1164 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1165 { 1166 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1167 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1168 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1169 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1170 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1171 int do_new_check = 0, retcode = 0, status; 1172 1173 /* if we are currently the slowest disk, mark that we have to do a new 1174 * check */ 1175 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1176 do_new_check = 1; 1177 1178 while (1) { 1179 1180 ctrl->ru_count++; 1181 if (ctrl->ru_count < RUsPerPU) { 1182 ctrl->diskOffset += sectorsPerRU; 1183 rbuf->failedDiskSectorOffset += sectorsPerRU; 1184 } else { 1185 ctrl->curPSID++; 1186 ctrl->ru_count = 0; 1187 /* code left over from when head-sep was based on 1188 * parity stripe id */ 1189 if (ctrl->curPSID > raidPtr->reconControl->lastPSID) { 1190 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1191 return (RF_RECON_DONE_READS); /* finito! */ 1192 } 1193 /* find the disk offsets of the start of the parity 1194 * stripe on both the current disk and the failed 1195 * disk. skip this entire parity stripe if either disk 1196 * does not appear in the indicated PS */ 1197 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1198 &rbuf->spCol, &rbuf->spOffset); 1199 if (status) { 1200 ctrl->ru_count = RUsPerPU - 1; 1201 continue; 1202 } 1203 } 1204 rbuf->which_ru = ctrl->ru_count; 1205 1206 /* skip this RU if it's already been reconstructed */ 1207 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1208 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1209 continue; 1210 } 1211 break; 1212 } 1213 ctrl->headSepCounter++; 1214 if (do_new_check) 1215 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1216 1217 1218 /* at this point, we have definitely decided what to do, and we have 1219 * only to see if we can actually do it now */ 1220 rbuf->parityStripeID = ctrl->curPSID; 1221 rbuf->which_ru = ctrl->ru_count; 1222 #if RF_ACC_TRACE > 0 1223 memset(&raidPtr->recon_tracerecs[col], 0, 1224 sizeof(raidPtr->recon_tracerecs[col])); 1225 raidPtr->recon_tracerecs[col].reconacc = 1; 1226 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1227 #endif 1228 retcode = TryToRead(raidPtr, col); 1229 return (retcode); 1230 } 1231 1232 /* 1233 * tries to issue the next read on the indicated disk. We may be 1234 * blocked by (a) the heads being too far apart, or (b) recon on the 1235 * indicated RU being blocked due to a write by a user thread. In 1236 * this case, we issue a head-sep or blockage wait request, which will 1237 * cause this same routine to be invoked again later when the blockage 1238 * has cleared. 1239 */ 1240 1241 static int 1242 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1243 { 1244 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1245 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1246 RF_StripeNum_t psid = ctrl->curPSID; 1247 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1248 RF_DiskQueueData_t *req; 1249 int status; 1250 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1251 1252 /* if the current disk is too far ahead of the others, issue a 1253 * head-separation wait and return */ 1254 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1255 return (0); 1256 1257 /* allocate a new PSS in case we need it */ 1258 newpssPtr = rf_AllocPSStatus(raidPtr); 1259 1260 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1261 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1262 1263 if (pssPtr != newpssPtr) { 1264 rf_FreePSStatus(raidPtr, newpssPtr); 1265 } 1266 1267 /* if recon is blocked on the indicated parity stripe, issue a 1268 * block-wait request and return. this also must mark the indicated RU 1269 * in the stripe as under reconstruction if not blocked. */ 1270 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1271 if (status == RF_PSS_RECON_BLOCKED) { 1272 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1273 goto out; 1274 } else 1275 if (status == RF_PSS_FORCED_ON_WRITE) { 1276 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1277 goto out; 1278 } 1279 /* make one last check to be sure that the indicated RU didn't get 1280 * reconstructed while we were waiting for something else to happen. 1281 * This is unfortunate in that it causes us to make this check twice 1282 * in the normal case. Might want to make some attempt to re-work 1283 * this so that we only do this check if we've definitely blocked on 1284 * one of the above checks. When this condition is detected, we may 1285 * have just created a bogus status entry, which we need to delete. */ 1286 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1287 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1288 if (pssPtr == newpssPtr) 1289 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1290 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1291 goto out; 1292 } 1293 /* found something to read. issue the I/O */ 1294 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1295 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1296 #if RF_ACC_TRACE > 0 1297 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1298 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1299 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1300 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1301 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1302 #endif 1303 /* should be ok to use a NULL proc pointer here, all the bufs we use 1304 * should be in kernel space */ 1305 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1306 ReconReadDoneProc, (void *) ctrl, 1307 #if RF_ACC_TRACE > 0 1308 &raidPtr->recon_tracerecs[col], 1309 #else 1310 NULL, 1311 #endif 1312 (void *) raidPtr, 0, NULL, PR_WAITOK); 1313 1314 ctrl->rbuf->arg = (void *) req; 1315 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1316 pssPtr->issued[col] = 1; 1317 1318 out: 1319 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1320 return (0); 1321 } 1322 1323 1324 /* 1325 * given a parity stripe ID, we want to find out whether both the 1326 * current disk and the failed disk exist in that parity stripe. If 1327 * not, we want to skip this whole PS. If so, we want to find the 1328 * disk offset of the start of the PS on both the current disk and the 1329 * failed disk. 1330 * 1331 * this works by getting a list of disks comprising the indicated 1332 * parity stripe, and searching the list for the current and failed 1333 * disks. Once we've decided they both exist in the parity stripe, we 1334 * need to decide whether each is data or parity, so that we'll know 1335 * which mapping function to call to get the corresponding disk 1336 * offsets. 1337 * 1338 * this is kind of unpleasant, but doing it this way allows the 1339 * reconstruction code to use parity stripe IDs rather than physical 1340 * disks address to march through the failed disk, which greatly 1341 * simplifies a lot of code, as well as eliminating the need for a 1342 * reverse-mapping function. I also think it will execute faster, 1343 * since the calls to the mapping module are kept to a minimum. 1344 * 1345 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1346 * THE STRIPE IN THE CORRECT ORDER 1347 * 1348 * raidPtr - raid descriptor 1349 * psid - parity stripe identifier 1350 * col - column of disk to find the offsets for 1351 * spCol - out: col of spare unit for failed unit 1352 * spOffset - out: offset into disk containing spare unit 1353 * 1354 */ 1355 1356 1357 static int 1358 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1359 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1360 RF_SectorNum_t *outFailedDiskSectorOffset, 1361 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1362 { 1363 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1364 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1365 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1366 RF_RowCol_t *diskids; 1367 u_int i, j, k, i_offset, j_offset; 1368 RF_RowCol_t pcol; 1369 int testcol; 1370 RF_SectorNum_t poffset; 1371 char i_is_parity = 0, j_is_parity = 0; 1372 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1373 1374 /* get a listing of the disks comprising that stripe */ 1375 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1376 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1377 RF_ASSERT(diskids); 1378 1379 /* reject this entire parity stripe if it does not contain the 1380 * indicated disk or it does not contain the failed disk */ 1381 1382 for (i = 0; i < stripeWidth; i++) { 1383 if (col == diskids[i]) 1384 break; 1385 } 1386 if (i == stripeWidth) 1387 goto skipit; 1388 for (j = 0; j < stripeWidth; j++) { 1389 if (fcol == diskids[j]) 1390 break; 1391 } 1392 if (j == stripeWidth) { 1393 goto skipit; 1394 } 1395 /* find out which disk the parity is on */ 1396 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1397 1398 /* find out if either the current RU or the failed RU is parity */ 1399 /* also, if the parity occurs in this stripe prior to the data and/or 1400 * failed col, we need to decrement i and/or j */ 1401 for (k = 0; k < stripeWidth; k++) 1402 if (diskids[k] == pcol) 1403 break; 1404 RF_ASSERT(k < stripeWidth); 1405 i_offset = i; 1406 j_offset = j; 1407 if (k < i) 1408 i_offset--; 1409 else 1410 if (k == i) { 1411 i_is_parity = 1; 1412 i_offset = 0; 1413 } /* set offsets to zero to disable multiply 1414 * below */ 1415 if (k < j) 1416 j_offset--; 1417 else 1418 if (k == j) { 1419 j_is_parity = 1; 1420 j_offset = 0; 1421 } 1422 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1423 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1424 * tells us how far into the stripe the [current,failed] disk is. */ 1425 1426 /* call the mapping routine to get the offset into the current disk, 1427 * repeat for failed disk. */ 1428 if (i_is_parity) 1429 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1430 else 1431 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1432 1433 RF_ASSERT(col == testcol); 1434 1435 if (j_is_parity) 1436 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1437 else 1438 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1439 RF_ASSERT(fcol == testcol); 1440 1441 /* now locate the spare unit for the failed unit */ 1442 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1443 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1444 if (j_is_parity) 1445 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1446 else 1447 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1448 } else { 1449 #endif 1450 *spCol = raidPtr->reconControl->spareCol; 1451 *spOffset = *outFailedDiskSectorOffset; 1452 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1453 } 1454 #endif 1455 return (0); 1456 1457 skipit: 1458 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n", 1459 psid, col); 1460 return (1); 1461 } 1462 /* this is called when a buffer has become ready to write to the replacement disk */ 1463 static int 1464 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1465 { 1466 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1467 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1468 #if RF_ACC_TRACE > 0 1469 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1470 #endif 1471 RF_ReconBuffer_t *rbuf; 1472 RF_DiskQueueData_t *req; 1473 1474 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1475 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1476 * have gotten the event that sent us here */ 1477 RF_ASSERT(rbuf->pssPtr); 1478 1479 rbuf->pssPtr->writeRbuf = rbuf; 1480 rbuf->pssPtr = NULL; 1481 1482 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1483 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1484 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1485 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1486 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1487 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1488 1489 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1490 * kernel space */ 1491 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1492 sectorsPerRU, rbuf->buffer, 1493 rbuf->parityStripeID, rbuf->which_ru, 1494 ReconWriteDoneProc, (void *) rbuf, 1495 #if RF_ACC_TRACE > 0 1496 &raidPtr->recon_tracerecs[fcol], 1497 #else 1498 NULL, 1499 #endif 1500 (void *) raidPtr, 0, NULL, PR_WAITOK); 1501 1502 rbuf->arg = (void *) req; 1503 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1504 raidPtr->reconControl->pending_writes++; 1505 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1506 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1507 1508 return (0); 1509 } 1510 1511 /* 1512 * this gets called upon the completion of a reconstruction read 1513 * operation the arg is a pointer to the per-disk reconstruction 1514 * control structure for the process that just finished a read. 1515 * 1516 * called at interrupt context in the kernel, so don't do anything 1517 * illegal here. 1518 */ 1519 static void 1520 ReconReadDoneProc(void *arg, int status) 1521 { 1522 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1523 RF_Raid_t *raidPtr; 1524 1525 /* Detect that reconCtrl is no longer valid, and if that 1526 is the case, bail without calling rf_CauseReconEvent(). 1527 There won't be anyone listening for this event anyway */ 1528 1529 if (ctrl->reconCtrl == NULL) 1530 return; 1531 1532 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1533 1534 if (status) { 1535 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status); 1536 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1537 return; 1538 } 1539 #if RF_ACC_TRACE > 0 1540 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1541 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1542 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1543 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1544 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1545 #endif 1546 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1547 return; 1548 } 1549 /* this gets called upon the completion of a reconstruction write operation. 1550 * the arg is a pointer to the rbuf that was just written 1551 * 1552 * called at interrupt context in the kernel, so don't do anything illegal here. 1553 */ 1554 static void 1555 ReconWriteDoneProc(void *arg, int status) 1556 { 1557 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1558 1559 /* Detect that reconControl is no longer valid, and if that 1560 is the case, bail without calling rf_CauseReconEvent(). 1561 There won't be anyone listening for this event anyway */ 1562 1563 if (rbuf->raidPtr->reconControl == NULL) 1564 return; 1565 1566 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1567 if (status) { 1568 printf("raid%d: Recon write failed (status %d(0x%x))!\n", rbuf->raidPtr->raidid,status,status); 1569 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1570 return; 1571 } 1572 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1573 } 1574 1575 1576 /* 1577 * computes a new minimum head sep, and wakes up anyone who needs to 1578 * be woken as a result 1579 */ 1580 static void 1581 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1582 { 1583 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1584 RF_HeadSepLimit_t new_min; 1585 RF_RowCol_t i; 1586 RF_CallbackValueDesc_t *p; 1587 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1588 * of a minimum */ 1589 1590 1591 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1592 while(reconCtrlPtr->rb_lock) { 1593 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1594 } 1595 reconCtrlPtr->rb_lock = 1; 1596 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1597 1598 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1599 for (i = 0; i < raidPtr->numCol; i++) 1600 if (i != reconCtrlPtr->fcol) { 1601 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1602 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1603 } 1604 /* set the new minimum and wake up anyone who can now run again */ 1605 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1606 reconCtrlPtr->minHeadSepCounter = new_min; 1607 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1608 while (reconCtrlPtr->headSepCBList) { 1609 if (reconCtrlPtr->headSepCBList->v > new_min) 1610 break; 1611 p = reconCtrlPtr->headSepCBList; 1612 reconCtrlPtr->headSepCBList = p->next; 1613 p->next = NULL; 1614 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1615 rf_FreeCallbackValueDesc(p); 1616 } 1617 1618 } 1619 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1620 reconCtrlPtr->rb_lock = 0; 1621 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1622 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1623 } 1624 1625 /* 1626 * checks to see that the maximum head separation will not be violated 1627 * if we initiate a reconstruction I/O on the indicated disk. 1628 * Limiting the maximum head separation between two disks eliminates 1629 * the nasty buffer-stall conditions that occur when one disk races 1630 * ahead of the others and consumes all of the floating recon buffers. 1631 * This code is complex and unpleasant but it's necessary to avoid 1632 * some very nasty, albeit fairly rare, reconstruction behavior. 1633 * 1634 * returns non-zero if and only if we have to stop working on the 1635 * indicated disk due to a head-separation delay. 1636 */ 1637 static int 1638 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1639 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1640 RF_ReconUnitNum_t which_ru) 1641 { 1642 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1643 RF_CallbackValueDesc_t *cb, *p, *pt; 1644 int retval = 0; 1645 1646 /* if we're too far ahead of the slowest disk, stop working on this 1647 * disk until the slower ones catch up. We do this by scheduling a 1648 * wakeup callback for the time when the slowest disk has caught up. 1649 * We define "caught up" with 20% hysteresis, i.e. the head separation 1650 * must have fallen to at most 80% of the max allowable head 1651 * separation before we'll wake up. 1652 * 1653 */ 1654 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1655 while(reconCtrlPtr->rb_lock) { 1656 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1657 } 1658 reconCtrlPtr->rb_lock = 1; 1659 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1660 if ((raidPtr->headSepLimit >= 0) && 1661 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1662 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1663 raidPtr->raidid, col, ctrl->headSepCounter, 1664 reconCtrlPtr->minHeadSepCounter, 1665 raidPtr->headSepLimit); 1666 cb = rf_AllocCallbackValueDesc(); 1667 /* the minHeadSepCounter value we have to get to before we'll 1668 * wake up. build in 20% hysteresis. */ 1669 cb->v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1670 cb->col = col; 1671 cb->next = NULL; 1672 1673 /* insert this callback descriptor into the sorted list of 1674 * pending head-sep callbacks */ 1675 p = reconCtrlPtr->headSepCBList; 1676 if (!p) 1677 reconCtrlPtr->headSepCBList = cb; 1678 else 1679 if (cb->v < p->v) { 1680 cb->next = reconCtrlPtr->headSepCBList; 1681 reconCtrlPtr->headSepCBList = cb; 1682 } else { 1683 for (pt = p, p = p->next; p && (p->v < cb->v); pt = p, p = p->next); 1684 cb->next = p; 1685 pt->next = cb; 1686 } 1687 retval = 1; 1688 #if RF_RECON_STATS > 0 1689 ctrl->reconCtrl->reconDesc->hsStallCount++; 1690 #endif /* RF_RECON_STATS > 0 */ 1691 } 1692 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1693 reconCtrlPtr->rb_lock = 0; 1694 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1695 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1696 1697 return (retval); 1698 } 1699 /* 1700 * checks to see if reconstruction has been either forced or blocked 1701 * by a user operation. if forced, we skip this RU entirely. else if 1702 * blocked, put ourselves on the wait list. else return 0. 1703 * 1704 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1705 */ 1706 static int 1707 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1708 RF_ReconParityStripeStatus_t *pssPtr, 1709 RF_PerDiskReconCtrl_t *ctrl, 1710 RF_RowCol_t col, 1711 RF_StripeNum_t psid, 1712 RF_ReconUnitNum_t which_ru) 1713 { 1714 RF_CallbackValueDesc_t *cb; 1715 int retcode = 0; 1716 1717 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1718 retcode = RF_PSS_FORCED_ON_WRITE; 1719 else 1720 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1721 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1722 cb = rf_AllocCallbackValueDesc(); /* append ourselves to 1723 * the blockage-wait 1724 * list */ 1725 cb->col = col; 1726 cb->next = pssPtr->blockWaitList; 1727 pssPtr->blockWaitList = cb; 1728 retcode = RF_PSS_RECON_BLOCKED; 1729 } 1730 if (!retcode) 1731 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1732 * reconstruction */ 1733 1734 return (retcode); 1735 } 1736 /* 1737 * if reconstruction is currently ongoing for the indicated stripeID, 1738 * reconstruction is forced to completion and we return non-zero to 1739 * indicate that the caller must wait. If not, then reconstruction is 1740 * blocked on the indicated stripe and the routine returns zero. If 1741 * and only if we return non-zero, we'll cause the cbFunc to get 1742 * invoked with the cbArg when the reconstruction has completed. 1743 */ 1744 int 1745 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1746 void (*cbFunc)(void *), void *cbArg) 1747 { 1748 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1749 * forcing recon on */ 1750 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1751 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1752 * stripe status structure */ 1753 RF_StripeNum_t psid; /* parity stripe id */ 1754 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1755 * offset */ 1756 RF_RowCol_t *diskids; 1757 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1758 RF_RowCol_t fcol, diskno, i; 1759 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1760 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1761 RF_CallbackFuncDesc_t *cb; 1762 int nPromoted; 1763 1764 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1765 1766 /* allocate a new PSS in case we need it */ 1767 newpssPtr = rf_AllocPSStatus(raidPtr); 1768 1769 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1770 1771 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1772 1773 if (pssPtr != newpssPtr) { 1774 rf_FreePSStatus(raidPtr, newpssPtr); 1775 } 1776 1777 /* if recon is not ongoing on this PS, just return */ 1778 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1779 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1780 return (0); 1781 } 1782 /* otherwise, we have to wait for reconstruction to complete on this 1783 * RU. */ 1784 /* In order to avoid waiting for a potentially large number of 1785 * low-priority accesses to complete, we force a normal-priority (i.e. 1786 * not low-priority) reconstruction on this RU. */ 1787 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1788 DDprintf1("Forcing recon on psid %ld\n", psid); 1789 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1790 * forced recon */ 1791 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1792 * that we just set */ 1793 fcol = raidPtr->reconControl->fcol; 1794 1795 /* get a listing of the disks comprising the indicated stripe */ 1796 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1797 1798 /* For previously issued reads, elevate them to normal 1799 * priority. If the I/O has already completed, it won't be 1800 * found in the queue, and hence this will be a no-op. For 1801 * unissued reads, allocate buffers and issue new reads. The 1802 * fact that we've set the FORCED bit means that the regular 1803 * recon procs will not re-issue these reqs */ 1804 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1805 if ((diskno = diskids[i]) != fcol) { 1806 if (pssPtr->issued[diskno]) { 1807 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1808 if (rf_reconDebug && nPromoted) 1809 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1810 } else { 1811 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1812 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1813 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1814 * location */ 1815 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1816 new_rbuf->which_ru = which_ru; 1817 new_rbuf->failedDiskSectorOffset = fd_offset; 1818 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1819 1820 /* use NULL b_proc b/c all addrs 1821 * should be in kernel space */ 1822 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1823 psid, which_ru, 1824 ForceReconReadDoneProc, 1825 (void *) new_rbuf, 1826 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1827 1828 new_rbuf->arg = req; 1829 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1830 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1831 } 1832 } 1833 /* if the write is sitting in the disk queue, elevate its 1834 * priority */ 1835 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1836 if (rf_reconDebug) 1837 printf("raid%d: promoted write to col %d\n", 1838 raidPtr->raidid, fcol); 1839 } 1840 /* install a callback descriptor to be invoked when recon completes on 1841 * this parity stripe. */ 1842 cb = rf_AllocCallbackFuncDesc(); 1843 cb->callbackFunc = cbFunc; 1844 cb->callbackArg = cbArg; 1845 cb->next = pssPtr->procWaitList; 1846 pssPtr->procWaitList = cb; 1847 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1848 raidPtr->raidid, psid); 1849 1850 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1851 return (1); 1852 } 1853 /* called upon the completion of a forced reconstruction read. 1854 * all we do is schedule the FORCEDREADONE event. 1855 * called at interrupt context in the kernel, so don't do anything illegal here. 1856 */ 1857 static void 1858 ForceReconReadDoneProc(void *arg, int status) 1859 { 1860 RF_ReconBuffer_t *rbuf = arg; 1861 1862 /* Detect that reconControl is no longer valid, and if that 1863 is the case, bail without calling rf_CauseReconEvent(). 1864 There won't be anyone listening for this event anyway */ 1865 1866 if (rbuf->raidPtr->reconControl == NULL) 1867 return; 1868 1869 if (status) { 1870 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1871 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1872 return; 1873 } 1874 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1875 } 1876 /* releases a block on the reconstruction of the indicated stripe */ 1877 int 1878 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1879 { 1880 RF_StripeNum_t stripeID = asmap->stripeID; 1881 RF_ReconParityStripeStatus_t *pssPtr; 1882 RF_ReconUnitNum_t which_ru; 1883 RF_StripeNum_t psid; 1884 RF_CallbackValueDesc_t *cb; 1885 1886 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1887 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1888 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1889 1890 /* When recon is forced, the pss desc can get deleted before we get 1891 * back to unblock recon. But, this can _only_ happen when recon is 1892 * forced. It would be good to put some kind of sanity check here, but 1893 * how to decide if recon was just forced or not? */ 1894 if (!pssPtr) { 1895 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1896 * RU %d\n",psid,which_ru); */ 1897 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1898 if (rf_reconDebug || rf_pssDebug) 1899 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1900 #endif 1901 goto out; 1902 } 1903 pssPtr->blockCount--; 1904 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1905 raidPtr->raidid, psid, pssPtr->blockCount); 1906 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1907 1908 /* unblock recon before calling CauseReconEvent in case 1909 * CauseReconEvent causes us to try to issue a new read before 1910 * returning here. */ 1911 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1912 1913 1914 while (pssPtr->blockWaitList) { 1915 /* spin through the block-wait list and 1916 release all the waiters */ 1917 cb = pssPtr->blockWaitList; 1918 pssPtr->blockWaitList = cb->next; 1919 cb->next = NULL; 1920 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1921 rf_FreeCallbackValueDesc(cb); 1922 } 1923 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1924 /* if no recon was requested while recon was blocked */ 1925 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1926 } 1927 } 1928 out: 1929 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1930 return (0); 1931 } 1932 1933 void 1934 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) 1935 { 1936 RF_CallbackValueDesc_t *p; 1937 1938 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1939 while(raidPtr->reconControl->rb_lock) { 1940 rf_wait_cond2(raidPtr->reconControl->rb_cv, 1941 raidPtr->reconControl->rb_mutex); 1942 } 1943 1944 raidPtr->reconControl->rb_lock = 1; 1945 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1946 1947 while (raidPtr->reconControl->headSepCBList) { 1948 p = raidPtr->reconControl->headSepCBList; 1949 raidPtr->reconControl->headSepCBList = p->next; 1950 p->next = NULL; 1951 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1952 rf_FreeCallbackValueDesc(p); 1953 } 1954 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1955 raidPtr->reconControl->rb_lock = 0; 1956 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 1957 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1958 1959 } 1960 1961