1 /* $NetBSD: rf_reconstruct.c,v 1.76 2004/03/18 16:54:54 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.76 2004/03/18 16:54:54 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 98 #define RF_MAX_FREE_RECOND 10 99 #define RF_MIN_FREE_RECOND 4 100 101 #define RF_MAX_FREE_RECONBUFFER 32 102 #define RF_MIN_FREE_RECONBUFFER 16 103 104 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 105 RF_RaidDisk_t *, int, RF_RowCol_t); 106 static void FreeReconDesc(RF_RaidReconDesc_t *); 107 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 108 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 109 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 110 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 111 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 112 RF_SectorNum_t *); 113 static int IssueNextWriteRequest(RF_Raid_t *); 114 static int ReconReadDoneProc(void *, int); 115 static int ReconWriteDoneProc(void *, int); 116 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 117 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 118 RF_RowCol_t, RF_HeadSepLimit_t, 119 RF_ReconUnitNum_t); 120 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 121 RF_ReconParityStripeStatus_t *, 122 RF_PerDiskReconCtrl_t *, 123 RF_RowCol_t, RF_StripeNum_t, 124 RF_ReconUnitNum_t); 125 static void ForceReconReadDoneProc(void *, int); 126 static void rf_ShutdownReconstruction(void *); 127 128 struct RF_ReconDoneProc_s { 129 void (*proc) (RF_Raid_t *, void *); 130 void *arg; 131 RF_ReconDoneProc_t *next; 132 }; 133 134 /************************************************************************** 135 * 136 * sets up the parameters that will be used by the reconstruction process 137 * currently there are none, except for those that the layout-specific 138 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 139 * 140 * in the kernel, we fire off the recon thread. 141 * 142 **************************************************************************/ 143 static void 144 rf_ShutdownReconstruction(void *ignored) 145 { 146 pool_destroy(&rf_pools.recond); 147 pool_destroy(&rf_pools.reconbuffer); 148 } 149 150 int 151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 152 { 153 154 rf_pool_init(&rf_pools.recond, sizeof(RF_RaidReconDesc_t), 155 "rf_recond_pl", RF_MIN_FREE_RECOND, RF_MAX_FREE_RECOND); 156 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 157 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 158 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 159 160 return (0); 161 } 162 163 static RF_RaidReconDesc_t * 164 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 165 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 166 RF_RowCol_t scol) 167 { 168 169 RF_RaidReconDesc_t *reconDesc; 170 171 reconDesc = pool_get(&rf_pools.recond, PR_WAITOK); 172 reconDesc->raidPtr = raidPtr; 173 reconDesc->col = col; 174 reconDesc->spareDiskPtr = spareDiskPtr; 175 reconDesc->numDisksDone = numDisksDone; 176 reconDesc->scol = scol; 177 reconDesc->state = 0; 178 reconDesc->next = NULL; 179 180 return (reconDesc); 181 } 182 183 static void 184 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 185 { 186 #if RF_RECON_STATS > 0 187 printf("raid%d: %lu recon event waits, %lu recon delays\n", 188 reconDesc->raidPtr->raidid, 189 (long) reconDesc->numReconEventWaits, 190 (long) reconDesc->numReconExecDelays); 191 #endif /* RF_RECON_STATS > 0 */ 192 printf("raid%d: %lu max exec ticks\n", 193 reconDesc->raidPtr->raidid, 194 (long) reconDesc->maxReconExecTicks); 195 #if (RF_RECON_STATS > 0) || defined(KERNEL) 196 printf("\n"); 197 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 198 pool_put(&rf_pools.recond, reconDesc); 199 } 200 201 202 /***************************************************************************** 203 * 204 * primary routine to reconstruct a failed disk. This should be called from 205 * within its own thread. It won't return until reconstruction completes, 206 * fails, or is aborted. 207 *****************************************************************************/ 208 int 209 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 210 { 211 const RF_LayoutSW_t *lp; 212 int rc; 213 214 lp = raidPtr->Layout.map; 215 if (lp->SubmitReconBuffer) { 216 /* 217 * The current infrastructure only supports reconstructing one 218 * disk at a time for each array. 219 */ 220 RF_LOCK_MUTEX(raidPtr->mutex); 221 while (raidPtr->reconInProgress) { 222 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 223 } 224 raidPtr->reconInProgress++; 225 RF_UNLOCK_MUTEX(raidPtr->mutex); 226 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 227 RF_LOCK_MUTEX(raidPtr->mutex); 228 raidPtr->reconInProgress--; 229 RF_UNLOCK_MUTEX(raidPtr->mutex); 230 } else { 231 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 232 lp->parityConfig); 233 rc = EIO; 234 } 235 RF_SIGNAL_COND(raidPtr->waitForReconCond); 236 return (rc); 237 } 238 239 int 240 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 241 { 242 RF_ComponentLabel_t c_label; 243 RF_RaidDisk_t *spareDiskPtr = NULL; 244 RF_RaidReconDesc_t *reconDesc; 245 RF_RowCol_t scol; 246 int numDisksDone = 0, rc; 247 248 /* first look for a spare drive onto which to reconstruct the data */ 249 /* spare disk descriptors are stored in row 0. This may have to 250 * change eventually */ 251 252 RF_LOCK_MUTEX(raidPtr->mutex); 253 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 254 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 255 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 256 if (raidPtr->status != rf_rs_degraded) { 257 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 258 RF_UNLOCK_MUTEX(raidPtr->mutex); 259 return (EINVAL); 260 } 261 scol = (-1); 262 } else { 263 #endif 264 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 265 if (raidPtr->Disks[scol].status == rf_ds_spare) { 266 spareDiskPtr = &raidPtr->Disks[scol]; 267 spareDiskPtr->status = rf_ds_used_spare; 268 break; 269 } 270 } 271 if (!spareDiskPtr) { 272 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 273 RF_UNLOCK_MUTEX(raidPtr->mutex); 274 return (ENOSPC); 275 } 276 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 277 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 278 } 279 #endif 280 RF_UNLOCK_MUTEX(raidPtr->mutex); 281 282 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 283 raidPtr->reconDesc = (void *) reconDesc; 284 #if RF_RECON_STATS > 0 285 reconDesc->hsStallCount = 0; 286 reconDesc->numReconExecDelays = 0; 287 reconDesc->numReconEventWaits = 0; 288 #endif /* RF_RECON_STATS > 0 */ 289 reconDesc->reconExecTimerRunning = 0; 290 reconDesc->reconExecTicks = 0; 291 reconDesc->maxReconExecTicks = 0; 292 rc = rf_ContinueReconstructFailedDisk(reconDesc); 293 294 if (!rc) { 295 /* fix up the component label */ 296 /* Don't actually need the read here.. */ 297 raidread_component_label( 298 raidPtr->raid_cinfo[scol].ci_dev, 299 raidPtr->raid_cinfo[scol].ci_vp, 300 &c_label); 301 302 raid_init_component_label( raidPtr, &c_label); 303 c_label.row = 0; 304 c_label.column = col; 305 c_label.clean = RF_RAID_DIRTY; 306 c_label.status = rf_ds_optimal; 307 c_label.partitionSize = raidPtr->Disks[scol].partitionSize; 308 309 /* We've just done a rebuild based on all the other 310 disks, so at this point the parity is known to be 311 clean, even if it wasn't before. */ 312 313 /* XXX doesn't hold for RAID 6!!*/ 314 315 RF_LOCK_MUTEX(raidPtr->mutex); 316 raidPtr->parity_good = RF_RAID_CLEAN; 317 RF_UNLOCK_MUTEX(raidPtr->mutex); 318 319 /* XXXX MORE NEEDED HERE */ 320 321 raidwrite_component_label( 322 raidPtr->raid_cinfo[scol].ci_dev, 323 raidPtr->raid_cinfo[scol].ci_vp, 324 &c_label); 325 326 327 rf_update_component_labels(raidPtr, 328 RF_NORMAL_COMPONENT_UPDATE); 329 330 } 331 return (rc); 332 } 333 334 /* 335 336 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 337 and you don't get a spare until the next Monday. With this function 338 (and hot-swappable drives) you can now put your new disk containing 339 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 340 rebuild the data "on the spot". 341 342 */ 343 344 int 345 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 346 { 347 RF_RaidDisk_t *spareDiskPtr = NULL; 348 RF_RaidReconDesc_t *reconDesc; 349 const RF_LayoutSW_t *lp; 350 RF_ComponentLabel_t c_label; 351 int numDisksDone = 0, rc; 352 struct partinfo dpart; 353 struct vnode *vp; 354 struct vattr va; 355 struct proc *proc; 356 int retcode; 357 int ac; 358 359 lp = raidPtr->Layout.map; 360 if (!lp->SubmitReconBuffer) { 361 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 362 lp->parityConfig); 363 /* wakeup anyone who might be waiting to do a reconstruct */ 364 RF_SIGNAL_COND(raidPtr->waitForReconCond); 365 return(EIO); 366 } 367 368 /* 369 * The current infrastructure only supports reconstructing one 370 * disk at a time for each array. 371 */ 372 RF_LOCK_MUTEX(raidPtr->mutex); 373 374 if (raidPtr->Disks[col].status != rf_ds_failed) { 375 /* "It's gone..." */ 376 raidPtr->numFailures++; 377 raidPtr->Disks[col].status = rf_ds_failed; 378 raidPtr->status = rf_rs_degraded; 379 RF_UNLOCK_MUTEX(raidPtr->mutex); 380 rf_update_component_labels(raidPtr, 381 RF_NORMAL_COMPONENT_UPDATE); 382 RF_LOCK_MUTEX(raidPtr->mutex); 383 } 384 385 while (raidPtr->reconInProgress) { 386 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 387 } 388 389 raidPtr->reconInProgress++; 390 391 /* first look for a spare drive onto which to reconstruct the 392 data. spare disk descriptors are stored in row 0. This 393 may have to change eventually */ 394 395 /* Actually, we don't care if it's failed or not... On a RAID 396 set with correct parity, this function should be callable 397 on any component without ill affects. */ 398 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 399 400 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 401 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 402 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 403 404 raidPtr->reconInProgress--; 405 RF_UNLOCK_MUTEX(raidPtr->mutex); 406 RF_SIGNAL_COND(raidPtr->waitForReconCond); 407 return (EINVAL); 408 } 409 #endif 410 proc = raidPtr->engine_thread; 411 412 /* This device may have been opened successfully the 413 first time. Close it before trying to open it again.. */ 414 415 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 416 #if 0 417 printf("Closed the open device: %s\n", 418 raidPtr->Disks[col].devname); 419 #endif 420 vp = raidPtr->raid_cinfo[col].ci_vp; 421 ac = raidPtr->Disks[col].auto_configured; 422 RF_UNLOCK_MUTEX(raidPtr->mutex); 423 rf_close_component(raidPtr, vp, ac); 424 RF_LOCK_MUTEX(raidPtr->mutex); 425 raidPtr->raid_cinfo[col].ci_vp = NULL; 426 } 427 /* note that this disk was *not* auto_configured (any longer)*/ 428 raidPtr->Disks[col].auto_configured = 0; 429 430 #if 0 431 printf("About to (re-)open the device for rebuilding: %s\n", 432 raidPtr->Disks[col].devname); 433 #endif 434 RF_UNLOCK_MUTEX(raidPtr->mutex); 435 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp); 436 437 if (retcode) { 438 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 439 raidPtr->Disks[col].devname, retcode); 440 441 /* the component isn't responding properly... 442 must be still dead :-( */ 443 RF_LOCK_MUTEX(raidPtr->mutex); 444 raidPtr->reconInProgress--; 445 RF_UNLOCK_MUTEX(raidPtr->mutex); 446 RF_SIGNAL_COND(raidPtr->waitForReconCond); 447 return(retcode); 448 } 449 450 /* Ok, so we can at least do a lookup... 451 How about actually getting a vp for it? */ 452 453 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) { 454 RF_LOCK_MUTEX(raidPtr->mutex); 455 raidPtr->reconInProgress--; 456 RF_UNLOCK_MUTEX(raidPtr->mutex); 457 RF_SIGNAL_COND(raidPtr->waitForReconCond); 458 return(retcode); 459 } 460 461 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc); 462 if (retcode) { 463 RF_LOCK_MUTEX(raidPtr->mutex); 464 raidPtr->reconInProgress--; 465 RF_UNLOCK_MUTEX(raidPtr->mutex); 466 RF_SIGNAL_COND(raidPtr->waitForReconCond); 467 return(retcode); 468 } 469 RF_LOCK_MUTEX(raidPtr->mutex); 470 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 471 472 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 473 rf_protectedSectors; 474 475 raidPtr->raid_cinfo[col].ci_vp = vp; 476 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 477 478 raidPtr->Disks[col].dev = va.va_rdev; 479 480 /* we allow the user to specify that only a fraction 481 of the disks should be used this is just for debug: 482 it speeds up * the parity scan */ 483 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 484 rf_sizePercentage / 100; 485 RF_UNLOCK_MUTEX(raidPtr->mutex); 486 487 spareDiskPtr = &raidPtr->Disks[col]; 488 spareDiskPtr->status = rf_ds_used_spare; 489 490 printf("raid%d: initiating in-place reconstruction on column %d\n", 491 raidPtr->raidid, col); 492 493 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 494 numDisksDone, col); 495 raidPtr->reconDesc = (void *) reconDesc; 496 #if RF_RECON_STATS > 0 497 reconDesc->hsStallCount = 0; 498 reconDesc->numReconExecDelays = 0; 499 reconDesc->numReconEventWaits = 0; 500 #endif /* RF_RECON_STATS > 0 */ 501 reconDesc->reconExecTimerRunning = 0; 502 reconDesc->reconExecTicks = 0; 503 reconDesc->maxReconExecTicks = 0; 504 rc = rf_ContinueReconstructFailedDisk(reconDesc); 505 506 RF_LOCK_MUTEX(raidPtr->mutex); 507 raidPtr->reconInProgress--; 508 RF_UNLOCK_MUTEX(raidPtr->mutex); 509 510 if (!rc) { 511 RF_LOCK_MUTEX(raidPtr->mutex); 512 /* Need to set these here, as at this point it'll be claiming 513 that the disk is in rf_ds_spared! But we know better :-) */ 514 515 raidPtr->Disks[col].status = rf_ds_optimal; 516 raidPtr->status = rf_rs_optimal; 517 RF_UNLOCK_MUTEX(raidPtr->mutex); 518 519 /* fix up the component label */ 520 /* Don't actually need the read here.. */ 521 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, 522 raidPtr->raid_cinfo[col].ci_vp, 523 &c_label); 524 525 RF_LOCK_MUTEX(raidPtr->mutex); 526 raid_init_component_label(raidPtr, &c_label); 527 528 c_label.row = 0; 529 c_label.column = col; 530 531 /* We've just done a rebuild based on all the other 532 disks, so at this point the parity is known to be 533 clean, even if it wasn't before. */ 534 535 /* XXX doesn't hold for RAID 6!!*/ 536 537 raidPtr->parity_good = RF_RAID_CLEAN; 538 RF_UNLOCK_MUTEX(raidPtr->mutex); 539 540 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, 541 raidPtr->raid_cinfo[col].ci_vp, 542 &c_label); 543 544 rf_update_component_labels(raidPtr, 545 RF_NORMAL_COMPONENT_UPDATE); 546 547 } 548 RF_SIGNAL_COND(raidPtr->waitForReconCond); 549 return (rc); 550 } 551 552 553 int 554 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 555 { 556 RF_Raid_t *raidPtr = reconDesc->raidPtr; 557 RF_RowCol_t col = reconDesc->col; 558 RF_RowCol_t scol = reconDesc->scol; 559 RF_ReconMap_t *mapPtr; 560 RF_ReconCtrl_t *tmp_reconctrl; 561 RF_ReconEvent_t *event; 562 struct timeval etime, elpsd; 563 unsigned long xor_s, xor_resid_us; 564 int i, ds; 565 566 switch (reconDesc->state) { 567 568 569 case 0: 570 571 raidPtr->accumXorTimeUs = 0; 572 #if RF_ACC_TRACE > 0 573 /* create one trace record per physical disk */ 574 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 575 #endif 576 577 /* quiesce the array prior to starting recon. this is needed 578 * to assure no nasty interactions with pending user writes. 579 * We need to do this before we change the disk or row status. */ 580 reconDesc->state = 1; 581 582 Dprintf("RECON: begin request suspend\n"); 583 rf_SuspendNewRequestsAndWait(raidPtr); 584 Dprintf("RECON: end request suspend\n"); 585 586 /* fall through to state 1 */ 587 588 case 1: 589 590 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 591 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 592 593 RF_LOCK_MUTEX(raidPtr->mutex); 594 595 /* create the reconstruction control pointer and install it in 596 * the right slot */ 597 raidPtr->reconControl = tmp_reconctrl; 598 mapPtr = raidPtr->reconControl->reconMap; 599 raidPtr->status = rf_rs_reconstructing; 600 raidPtr->Disks[col].status = rf_ds_reconstructing; 601 raidPtr->Disks[col].spareCol = scol; 602 603 RF_UNLOCK_MUTEX(raidPtr->mutex); 604 605 RF_GETTIME(raidPtr->reconControl->starttime); 606 607 /* now start up the actual reconstruction: issue a read for 608 * each surviving disk */ 609 610 reconDesc->numDisksDone = 0; 611 for (i = 0; i < raidPtr->numCol; i++) { 612 if (i != col) { 613 /* find and issue the next I/O on the 614 * indicated disk */ 615 if (IssueNextReadRequest(raidPtr, i)) { 616 Dprintf1("RECON: done issuing for c%d\n", i); 617 reconDesc->numDisksDone++; 618 } 619 } 620 } 621 622 case 2: 623 Dprintf("RECON: resume requests\n"); 624 rf_ResumeNewRequests(raidPtr); 625 626 627 reconDesc->state = 3; 628 629 case 3: 630 631 /* process reconstruction events until all disks report that 632 * they've completed all work */ 633 mapPtr = raidPtr->reconControl->reconMap; 634 635 636 637 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 638 639 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 640 RF_ASSERT(event); 641 642 if (ProcessReconEvent(raidPtr, event)) 643 reconDesc->numDisksDone++; 644 raidPtr->reconControl->numRUsTotal = 645 mapPtr->totalRUs; 646 raidPtr->reconControl->numRUsComplete = 647 mapPtr->totalRUs - 648 rf_UnitsLeftToReconstruct(mapPtr); 649 #if RF_DEBUG_RECON 650 raidPtr->reconControl->percentComplete = 651 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 652 if (rf_prReconSched) { 653 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 654 } 655 #endif 656 } 657 658 659 660 reconDesc->state = 4; 661 662 663 case 4: 664 mapPtr = raidPtr->reconControl->reconMap; 665 if (rf_reconDebug) { 666 printf("RECON: all reads completed\n"); 667 } 668 /* at this point all the reads have completed. We now wait 669 * for any pending writes to complete, and then we're done */ 670 671 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 672 673 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 674 RF_ASSERT(event); 675 676 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */ 677 #if RF_DEBUG_RECON 678 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 679 if (rf_prReconSched) { 680 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 681 } 682 #endif 683 } 684 reconDesc->state = 5; 685 686 case 5: 687 /* Success: mark the dead disk as reconstructed. We quiesce 688 * the array here to assure no nasty interactions with pending 689 * user accesses when we free up the psstatus structure as 690 * part of FreeReconControl() */ 691 692 reconDesc->state = 6; 693 694 rf_SuspendNewRequestsAndWait(raidPtr); 695 696 /* fall through to state 6 */ 697 case 6: 698 699 700 701 RF_LOCK_MUTEX(raidPtr->mutex); 702 raidPtr->numFailures--; 703 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 704 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 705 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 706 RF_UNLOCK_MUTEX(raidPtr->mutex); 707 RF_GETTIME(etime); 708 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 709 710 /* XXX -- why is state 7 different from state 6 if there is no 711 * return() here? -- XXX Note that I set elpsd above & use it 712 * below, so if you put a return here you'll have to fix this. 713 * (also, FreeReconControl is called below) */ 714 715 case 7: 716 717 rf_ResumeNewRequests(raidPtr); 718 719 printf("raid%d: Reconstruction of disk at col %d completed\n", 720 raidPtr->raidid, col); 721 xor_s = raidPtr->accumXorTimeUs / 1000000; 722 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 723 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 724 raidPtr->raidid, 725 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 726 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 727 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 728 raidPtr->raidid, 729 (int) raidPtr->reconControl->starttime.tv_sec, 730 (int) raidPtr->reconControl->starttime.tv_usec, 731 (int) etime.tv_sec, (int) etime.tv_usec); 732 733 #if RF_RECON_STATS > 0 734 printf("raid%d: Total head-sep stall count was %d\n", 735 raidPtr->raidid, (int) reconDesc->hsStallCount); 736 #endif /* RF_RECON_STATS > 0 */ 737 rf_FreeReconControl(raidPtr); 738 #if RF_ACC_TRACE > 0 739 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 740 #endif 741 FreeReconDesc(reconDesc); 742 743 } 744 745 return (0); 746 } 747 /***************************************************************************** 748 * do the right thing upon each reconstruction event. 749 * returns nonzero if and only if there is nothing left unread on the 750 * indicated disk 751 *****************************************************************************/ 752 static int 753 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 754 { 755 int retcode = 0, submitblocked; 756 RF_ReconBuffer_t *rbuf; 757 RF_SectorCount_t sectorsPerRU; 758 759 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 760 switch (event->type) { 761 762 /* a read I/O has completed */ 763 case RF_REVENT_READDONE: 764 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 765 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 766 event->col, rbuf->parityStripeID); 767 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 768 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 769 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 770 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 771 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 772 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 773 if (!submitblocked) 774 retcode = IssueNextReadRequest(raidPtr, event->col); 775 break; 776 777 /* a write I/O has completed */ 778 case RF_REVENT_WRITEDONE: 779 #if RF_DEBUG_RECON 780 if (rf_floatingRbufDebug) { 781 rf_CheckFloatingRbufCount(raidPtr, 1); 782 } 783 #endif 784 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 785 rbuf = (RF_ReconBuffer_t *) event->arg; 786 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 787 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 788 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 789 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 790 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 791 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 792 793 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 794 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 795 while(raidPtr->reconControl->rb_lock) { 796 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 797 &raidPtr->reconControl->rb_mutex); 798 } 799 raidPtr->reconControl->rb_lock = 1; 800 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 801 802 raidPtr->numFullReconBuffers--; 803 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 804 805 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 806 raidPtr->reconControl->rb_lock = 0; 807 wakeup(&raidPtr->reconControl->rb_lock); 808 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 809 } else 810 if (rbuf->type == RF_RBUF_TYPE_FORCED) 811 rf_FreeReconBuffer(rbuf); 812 else 813 RF_ASSERT(0); 814 break; 815 816 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 817 * cleared */ 818 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 819 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 820 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 821 * BUFCLEAR event if we 822 * couldn't submit */ 823 retcode = IssueNextReadRequest(raidPtr, event->col); 824 break; 825 826 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 827 * blockage has been cleared */ 828 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 829 retcode = TryToRead(raidPtr, event->col); 830 break; 831 832 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 833 * reconstruction blockage has been 834 * cleared */ 835 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 836 retcode = TryToRead(raidPtr, event->col); 837 break; 838 839 /* a buffer has become ready to write */ 840 case RF_REVENT_BUFREADY: 841 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 842 retcode = IssueNextWriteRequest(raidPtr); 843 #if RF_DEBUG_RECON 844 if (rf_floatingRbufDebug) { 845 rf_CheckFloatingRbufCount(raidPtr, 1); 846 } 847 #endif 848 break; 849 850 /* we need to skip the current RU entirely because it got 851 * recon'd while we were waiting for something else to happen */ 852 case RF_REVENT_SKIP: 853 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 854 retcode = IssueNextReadRequest(raidPtr, event->col); 855 break; 856 857 /* a forced-reconstruction read access has completed. Just 858 * submit the buffer */ 859 case RF_REVENT_FORCEDREADDONE: 860 rbuf = (RF_ReconBuffer_t *) event->arg; 861 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 862 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 863 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 864 RF_ASSERT(!submitblocked); 865 break; 866 867 /* A read I/O failed to complete */ 868 case RF_REVENT_READ_FAILED: 869 /* fallthru to panic... */ 870 871 /* A write I/O failed to complete */ 872 case RF_REVENT_WRITE_FAILED: 873 /* fallthru to panic... */ 874 875 /* a forced read I/O failed to complete */ 876 case RF_REVENT_FORCEDREAD_FAILED: 877 /* fallthru to panic... */ 878 879 default: 880 RF_PANIC(); 881 } 882 rf_FreeReconEventDesc(event); 883 return (retcode); 884 } 885 /***************************************************************************** 886 * 887 * find the next thing that's needed on the indicated disk, and issue 888 * a read request for it. We assume that the reconstruction buffer 889 * associated with this process is free to receive the data. If 890 * reconstruction is blocked on the indicated RU, we issue a 891 * blockage-release request instead of a physical disk read request. 892 * If the current disk gets too far ahead of the others, we issue a 893 * head-separation wait request and return. 894 * 895 * ctrl->{ru_count, curPSID, diskOffset} and 896 * rbuf->failedDiskSectorOffset are maintained to point to the unit 897 * we're currently accessing. Note that this deviates from the 898 * standard C idiom of having counters point to the next thing to be 899 * accessed. This allows us to easily retry when we're blocked by 900 * head separation or reconstruction-blockage events. 901 * 902 * returns nonzero if and only if there is nothing left unread on the 903 * indicated disk 904 * 905 *****************************************************************************/ 906 static int 907 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 908 { 909 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 910 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 911 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 912 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 913 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 914 int do_new_check = 0, retcode = 0, status; 915 916 /* if we are currently the slowest disk, mark that we have to do a new 917 * check */ 918 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 919 do_new_check = 1; 920 921 while (1) { 922 923 ctrl->ru_count++; 924 if (ctrl->ru_count < RUsPerPU) { 925 ctrl->diskOffset += sectorsPerRU; 926 rbuf->failedDiskSectorOffset += sectorsPerRU; 927 } else { 928 ctrl->curPSID++; 929 ctrl->ru_count = 0; 930 /* code left over from when head-sep was based on 931 * parity stripe id */ 932 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 933 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 934 return (1); /* finito! */ 935 } 936 /* find the disk offsets of the start of the parity 937 * stripe on both the current disk and the failed 938 * disk. skip this entire parity stripe if either disk 939 * does not appear in the indicated PS */ 940 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 941 &rbuf->spCol, &rbuf->spOffset); 942 if (status) { 943 ctrl->ru_count = RUsPerPU - 1; 944 continue; 945 } 946 } 947 rbuf->which_ru = ctrl->ru_count; 948 949 /* skip this RU if it's already been reconstructed */ 950 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 951 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 952 continue; 953 } 954 break; 955 } 956 ctrl->headSepCounter++; 957 if (do_new_check) 958 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 959 960 961 /* at this point, we have definitely decided what to do, and we have 962 * only to see if we can actually do it now */ 963 rbuf->parityStripeID = ctrl->curPSID; 964 rbuf->which_ru = ctrl->ru_count; 965 #if RF_ACC_TRACE > 0 966 memset((char *) &raidPtr->recon_tracerecs[col], 0, 967 sizeof(raidPtr->recon_tracerecs[col])); 968 raidPtr->recon_tracerecs[col].reconacc = 1; 969 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 970 #endif 971 retcode = TryToRead(raidPtr, col); 972 return (retcode); 973 } 974 975 /* 976 * tries to issue the next read on the indicated disk. We may be 977 * blocked by (a) the heads being too far apart, or (b) recon on the 978 * indicated RU being blocked due to a write by a user thread. In 979 * this case, we issue a head-sep or blockage wait request, which will 980 * cause this same routine to be invoked again later when the blockage 981 * has cleared. 982 */ 983 984 static int 985 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 986 { 987 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 988 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 989 RF_StripeNum_t psid = ctrl->curPSID; 990 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 991 RF_DiskQueueData_t *req; 992 int status; 993 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 994 995 /* if the current disk is too far ahead of the others, issue a 996 * head-separation wait and return */ 997 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 998 return (0); 999 1000 /* allocate a new PSS in case we need it */ 1001 newpssPtr = rf_AllocPSStatus(raidPtr); 1002 1003 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1004 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1005 1006 if (pssPtr != newpssPtr) { 1007 rf_FreePSStatus(raidPtr, newpssPtr); 1008 } 1009 1010 /* if recon is blocked on the indicated parity stripe, issue a 1011 * block-wait request and return. this also must mark the indicated RU 1012 * in the stripe as under reconstruction if not blocked. */ 1013 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1014 if (status == RF_PSS_RECON_BLOCKED) { 1015 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1016 goto out; 1017 } else 1018 if (status == RF_PSS_FORCED_ON_WRITE) { 1019 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1020 goto out; 1021 } 1022 /* make one last check to be sure that the indicated RU didn't get 1023 * reconstructed while we were waiting for something else to happen. 1024 * This is unfortunate in that it causes us to make this check twice 1025 * in the normal case. Might want to make some attempt to re-work 1026 * this so that we only do this check if we've definitely blocked on 1027 * one of the above checks. When this condition is detected, we may 1028 * have just created a bogus status entry, which we need to delete. */ 1029 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1030 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1031 if (pssPtr == newpssPtr) 1032 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1033 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1034 goto out; 1035 } 1036 /* found something to read. issue the I/O */ 1037 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1038 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1039 #if RF_ACC_TRACE > 0 1040 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1041 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1042 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1043 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1044 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1045 #endif 1046 /* should be ok to use a NULL proc pointer here, all the bufs we use 1047 * should be in kernel space */ 1048 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1049 ReconReadDoneProc, (void *) ctrl, NULL, 1050 #if RF_ACC_TRACE > 0 1051 &raidPtr->recon_tracerecs[col], 1052 #else 1053 NULL, 1054 #endif 1055 (void *) raidPtr, 0, NULL); 1056 1057 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1058 1059 ctrl->rbuf->arg = (void *) req; 1060 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1061 pssPtr->issued[col] = 1; 1062 1063 out: 1064 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1065 return (0); 1066 } 1067 1068 1069 /* 1070 * given a parity stripe ID, we want to find out whether both the 1071 * current disk and the failed disk exist in that parity stripe. If 1072 * not, we want to skip this whole PS. If so, we want to find the 1073 * disk offset of the start of the PS on both the current disk and the 1074 * failed disk. 1075 * 1076 * this works by getting a list of disks comprising the indicated 1077 * parity stripe, and searching the list for the current and failed 1078 * disks. Once we've decided they both exist in the parity stripe, we 1079 * need to decide whether each is data or parity, so that we'll know 1080 * which mapping function to call to get the corresponding disk 1081 * offsets. 1082 * 1083 * this is kind of unpleasant, but doing it this way allows the 1084 * reconstruction code to use parity stripe IDs rather than physical 1085 * disks address to march through the failed disk, which greatly 1086 * simplifies a lot of code, as well as eliminating the need for a 1087 * reverse-mapping function. I also think it will execute faster, 1088 * since the calls to the mapping module are kept to a minimum. 1089 * 1090 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1091 * THE STRIPE IN THE CORRECT ORDER 1092 * 1093 * raidPtr - raid descriptor 1094 * psid - parity stripe identifier 1095 * col - column of disk to find the offsets for 1096 * spCol - out: col of spare unit for failed unit 1097 * spOffset - out: offset into disk containing spare unit 1098 * 1099 */ 1100 1101 1102 static int 1103 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1104 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1105 RF_SectorNum_t *outFailedDiskSectorOffset, 1106 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1107 { 1108 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1109 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1110 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1111 RF_RowCol_t *diskids; 1112 u_int i, j, k, i_offset, j_offset; 1113 RF_RowCol_t pcol; 1114 int testcol; 1115 RF_SectorNum_t poffset; 1116 char i_is_parity = 0, j_is_parity = 0; 1117 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1118 1119 /* get a listing of the disks comprising that stripe */ 1120 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1121 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1122 RF_ASSERT(diskids); 1123 1124 /* reject this entire parity stripe if it does not contain the 1125 * indicated disk or it does not contain the failed disk */ 1126 1127 for (i = 0; i < stripeWidth; i++) { 1128 if (col == diskids[i]) 1129 break; 1130 } 1131 if (i == stripeWidth) 1132 goto skipit; 1133 for (j = 0; j < stripeWidth; j++) { 1134 if (fcol == diskids[j]) 1135 break; 1136 } 1137 if (j == stripeWidth) { 1138 goto skipit; 1139 } 1140 /* find out which disk the parity is on */ 1141 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1142 1143 /* find out if either the current RU or the failed RU is parity */ 1144 /* also, if the parity occurs in this stripe prior to the data and/or 1145 * failed col, we need to decrement i and/or j */ 1146 for (k = 0; k < stripeWidth; k++) 1147 if (diskids[k] == pcol) 1148 break; 1149 RF_ASSERT(k < stripeWidth); 1150 i_offset = i; 1151 j_offset = j; 1152 if (k < i) 1153 i_offset--; 1154 else 1155 if (k == i) { 1156 i_is_parity = 1; 1157 i_offset = 0; 1158 } /* set offsets to zero to disable multiply 1159 * below */ 1160 if (k < j) 1161 j_offset--; 1162 else 1163 if (k == j) { 1164 j_is_parity = 1; 1165 j_offset = 0; 1166 } 1167 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1168 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1169 * tells us how far into the stripe the [current,failed] disk is. */ 1170 1171 /* call the mapping routine to get the offset into the current disk, 1172 * repeat for failed disk. */ 1173 if (i_is_parity) 1174 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1175 else 1176 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1177 1178 RF_ASSERT(col == testcol); 1179 1180 if (j_is_parity) 1181 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1182 else 1183 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1184 RF_ASSERT(fcol == testcol); 1185 1186 /* now locate the spare unit for the failed unit */ 1187 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1188 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1189 if (j_is_parity) 1190 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1191 else 1192 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1193 } else { 1194 #endif 1195 *spCol = raidPtr->reconControl->spareCol; 1196 *spOffset = *outFailedDiskSectorOffset; 1197 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1198 } 1199 #endif 1200 return (0); 1201 1202 skipit: 1203 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1204 psid, col); 1205 return (1); 1206 } 1207 /* this is called when a buffer has become ready to write to the replacement disk */ 1208 static int 1209 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1210 { 1211 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1212 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1213 #if RF_ACC_TRACE > 0 1214 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1215 #endif 1216 RF_ReconBuffer_t *rbuf; 1217 RF_DiskQueueData_t *req; 1218 1219 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1220 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1221 * have gotten the event that sent us here */ 1222 RF_ASSERT(rbuf->pssPtr); 1223 1224 rbuf->pssPtr->writeRbuf = rbuf; 1225 rbuf->pssPtr = NULL; 1226 1227 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1228 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1229 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1230 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1231 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1232 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1233 1234 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1235 * kernel space */ 1236 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1237 sectorsPerRU, rbuf->buffer, 1238 rbuf->parityStripeID, rbuf->which_ru, 1239 ReconWriteDoneProc, (void *) rbuf, NULL, 1240 #if RF_ACC_TRACE > 0 1241 &raidPtr->recon_tracerecs[fcol], 1242 #else 1243 NULL, 1244 #endif 1245 (void *) raidPtr, 0, NULL); 1246 1247 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1248 1249 rbuf->arg = (void *) req; 1250 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1251 1252 return (0); 1253 } 1254 1255 /* 1256 * this gets called upon the completion of a reconstruction read 1257 * operation the arg is a pointer to the per-disk reconstruction 1258 * control structure for the process that just finished a read. 1259 * 1260 * called at interrupt context in the kernel, so don't do anything 1261 * illegal here. 1262 */ 1263 static int 1264 ReconReadDoneProc(void *arg, int status) 1265 { 1266 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1267 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1268 1269 if (status) { 1270 printf("raid%d: Recon read failed!\n", raidPtr->raidid); 1271 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1272 return(0); 1273 } 1274 #if RF_ACC_TRACE > 0 1275 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1276 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1277 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1278 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1279 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1280 #endif 1281 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1282 return (0); 1283 } 1284 /* this gets called upon the completion of a reconstruction write operation. 1285 * the arg is a pointer to the rbuf that was just written 1286 * 1287 * called at interrupt context in the kernel, so don't do anything illegal here. 1288 */ 1289 static int 1290 ReconWriteDoneProc(void *arg, int status) 1291 { 1292 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1293 1294 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1295 if (status) { 1296 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1297 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1298 return(0); 1299 } 1300 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1301 return (0); 1302 } 1303 1304 1305 /* 1306 * computes a new minimum head sep, and wakes up anyone who needs to 1307 * be woken as a result 1308 */ 1309 static void 1310 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1311 { 1312 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1313 RF_HeadSepLimit_t new_min; 1314 RF_RowCol_t i; 1315 RF_CallbackDesc_t *p; 1316 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1317 * of a minimum */ 1318 1319 1320 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1321 while(reconCtrlPtr->rb_lock) { 1322 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1323 } 1324 reconCtrlPtr->rb_lock = 1; 1325 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1326 1327 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1328 for (i = 0; i < raidPtr->numCol; i++) 1329 if (i != reconCtrlPtr->fcol) { 1330 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1331 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1332 } 1333 /* set the new minimum and wake up anyone who can now run again */ 1334 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1335 reconCtrlPtr->minHeadSepCounter = new_min; 1336 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1337 while (reconCtrlPtr->headSepCBList) { 1338 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1339 break; 1340 p = reconCtrlPtr->headSepCBList; 1341 reconCtrlPtr->headSepCBList = p->next; 1342 p->next = NULL; 1343 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1344 rf_FreeCallbackDesc(p); 1345 } 1346 1347 } 1348 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1349 reconCtrlPtr->rb_lock = 0; 1350 wakeup(&reconCtrlPtr->rb_lock); 1351 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1352 } 1353 1354 /* 1355 * checks to see that the maximum head separation will not be violated 1356 * if we initiate a reconstruction I/O on the indicated disk. 1357 * Limiting the maximum head separation between two disks eliminates 1358 * the nasty buffer-stall conditions that occur when one disk races 1359 * ahead of the others and consumes all of the floating recon buffers. 1360 * This code is complex and unpleasant but it's necessary to avoid 1361 * some very nasty, albeit fairly rare, reconstruction behavior. 1362 * 1363 * returns non-zero if and only if we have to stop working on the 1364 * indicated disk due to a head-separation delay. 1365 */ 1366 static int 1367 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1368 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1369 RF_ReconUnitNum_t which_ru) 1370 { 1371 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1372 RF_CallbackDesc_t *cb, *p, *pt; 1373 int retval = 0; 1374 1375 /* if we're too far ahead of the slowest disk, stop working on this 1376 * disk until the slower ones catch up. We do this by scheduling a 1377 * wakeup callback for the time when the slowest disk has caught up. 1378 * We define "caught up" with 20% hysteresis, i.e. the head separation 1379 * must have fallen to at most 80% of the max allowable head 1380 * separation before we'll wake up. 1381 * 1382 */ 1383 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1384 while(reconCtrlPtr->rb_lock) { 1385 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1386 } 1387 reconCtrlPtr->rb_lock = 1; 1388 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1389 if ((raidPtr->headSepLimit >= 0) && 1390 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1391 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1392 raidPtr->raidid, col, ctrl->headSepCounter, 1393 reconCtrlPtr->minHeadSepCounter, 1394 raidPtr->headSepLimit); 1395 cb = rf_AllocCallbackDesc(); 1396 /* the minHeadSepCounter value we have to get to before we'll 1397 * wake up. build in 20% hysteresis. */ 1398 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1399 cb->col = col; 1400 cb->next = NULL; 1401 1402 /* insert this callback descriptor into the sorted list of 1403 * pending head-sep callbacks */ 1404 p = reconCtrlPtr->headSepCBList; 1405 if (!p) 1406 reconCtrlPtr->headSepCBList = cb; 1407 else 1408 if (cb->callbackArg.v < p->callbackArg.v) { 1409 cb->next = reconCtrlPtr->headSepCBList; 1410 reconCtrlPtr->headSepCBList = cb; 1411 } else { 1412 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1413 cb->next = p; 1414 pt->next = cb; 1415 } 1416 retval = 1; 1417 #if RF_RECON_STATS > 0 1418 ctrl->reconCtrl->reconDesc->hsStallCount++; 1419 #endif /* RF_RECON_STATS > 0 */ 1420 } 1421 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1422 reconCtrlPtr->rb_lock = 0; 1423 wakeup(&reconCtrlPtr->rb_lock); 1424 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1425 1426 return (retval); 1427 } 1428 /* 1429 * checks to see if reconstruction has been either forced or blocked 1430 * by a user operation. if forced, we skip this RU entirely. else if 1431 * blocked, put ourselves on the wait list. else return 0. 1432 * 1433 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1434 */ 1435 static int 1436 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1437 RF_ReconParityStripeStatus_t *pssPtr, 1438 RF_PerDiskReconCtrl_t *ctrl, 1439 RF_RowCol_t col, RF_StripeNum_t psid, 1440 RF_ReconUnitNum_t which_ru) 1441 { 1442 RF_CallbackDesc_t *cb; 1443 int retcode = 0; 1444 1445 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1446 retcode = RF_PSS_FORCED_ON_WRITE; 1447 else 1448 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1449 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1450 cb = rf_AllocCallbackDesc(); /* append ourselves to 1451 * the blockage-wait 1452 * list */ 1453 cb->col = col; 1454 cb->next = pssPtr->blockWaitList; 1455 pssPtr->blockWaitList = cb; 1456 retcode = RF_PSS_RECON_BLOCKED; 1457 } 1458 if (!retcode) 1459 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1460 * reconstruction */ 1461 1462 return (retcode); 1463 } 1464 /* 1465 * if reconstruction is currently ongoing for the indicated stripeID, 1466 * reconstruction is forced to completion and we return non-zero to 1467 * indicate that the caller must wait. If not, then reconstruction is 1468 * blocked on the indicated stripe and the routine returns zero. If 1469 * and only if we return non-zero, we'll cause the cbFunc to get 1470 * invoked with the cbArg when the reconstruction has completed. 1471 */ 1472 int 1473 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1474 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1475 { 1476 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1477 * forcing recon on */ 1478 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1479 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1480 * stripe status structure */ 1481 RF_StripeNum_t psid; /* parity stripe id */ 1482 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1483 * offset */ 1484 RF_RowCol_t *diskids; 1485 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1486 RF_RowCol_t fcol, diskno, i; 1487 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1488 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1489 RF_CallbackDesc_t *cb; 1490 int nPromoted; 1491 1492 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1493 1494 /* allocate a new PSS in case we need it */ 1495 newpssPtr = rf_AllocPSStatus(raidPtr); 1496 1497 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1498 1499 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1500 1501 if (pssPtr != newpssPtr) { 1502 rf_FreePSStatus(raidPtr, newpssPtr); 1503 } 1504 1505 /* if recon is not ongoing on this PS, just return */ 1506 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1507 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1508 return (0); 1509 } 1510 /* otherwise, we have to wait for reconstruction to complete on this 1511 * RU. */ 1512 /* In order to avoid waiting for a potentially large number of 1513 * low-priority accesses to complete, we force a normal-priority (i.e. 1514 * not low-priority) reconstruction on this RU. */ 1515 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1516 DDprintf1("Forcing recon on psid %ld\n", psid); 1517 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1518 * forced recon */ 1519 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1520 * that we just set */ 1521 fcol = raidPtr->reconControl->fcol; 1522 1523 /* get a listing of the disks comprising the indicated stripe */ 1524 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1525 1526 /* For previously issued reads, elevate them to normal 1527 * priority. If the I/O has already completed, it won't be 1528 * found in the queue, and hence this will be a no-op. For 1529 * unissued reads, allocate buffers and issue new reads. The 1530 * fact that we've set the FORCED bit means that the regular 1531 * recon procs will not re-issue these reqs */ 1532 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1533 if ((diskno = diskids[i]) != fcol) { 1534 if (pssPtr->issued[diskno]) { 1535 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1536 if (rf_reconDebug && nPromoted) 1537 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1538 } else { 1539 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1540 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1541 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1542 * location */ 1543 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1544 new_rbuf->which_ru = which_ru; 1545 new_rbuf->failedDiskSectorOffset = fd_offset; 1546 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1547 1548 /* use NULL b_proc b/c all addrs 1549 * should be in kernel space */ 1550 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1551 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1552 NULL, (void *) raidPtr, 0, NULL); 1553 1554 RF_ASSERT(req); /* XXX -- fix this -- 1555 * XXX */ 1556 1557 new_rbuf->arg = req; 1558 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1559 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1560 } 1561 } 1562 /* if the write is sitting in the disk queue, elevate its 1563 * priority */ 1564 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1565 printf("raid%d: promoted write to col %d\n", 1566 raidPtr->raidid, fcol); 1567 } 1568 /* install a callback descriptor to be invoked when recon completes on 1569 * this parity stripe. */ 1570 cb = rf_AllocCallbackDesc(); 1571 /* XXX the following is bogus.. These functions don't really match!! 1572 * GO */ 1573 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1574 cb->callbackArg.p = (void *) cbArg; 1575 cb->next = pssPtr->procWaitList; 1576 pssPtr->procWaitList = cb; 1577 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1578 raidPtr->raidid, psid); 1579 1580 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1581 return (1); 1582 } 1583 /* called upon the completion of a forced reconstruction read. 1584 * all we do is schedule the FORCEDREADONE event. 1585 * called at interrupt context in the kernel, so don't do anything illegal here. 1586 */ 1587 static void 1588 ForceReconReadDoneProc(void *arg, int status) 1589 { 1590 RF_ReconBuffer_t *rbuf = arg; 1591 1592 if (status) { 1593 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1594 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1595 } 1596 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1597 } 1598 /* releases a block on the reconstruction of the indicated stripe */ 1599 int 1600 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1601 { 1602 RF_StripeNum_t stripeID = asmap->stripeID; 1603 RF_ReconParityStripeStatus_t *pssPtr; 1604 RF_ReconUnitNum_t which_ru; 1605 RF_StripeNum_t psid; 1606 RF_CallbackDesc_t *cb; 1607 1608 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1609 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1610 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1611 1612 /* When recon is forced, the pss desc can get deleted before we get 1613 * back to unblock recon. But, this can _only_ happen when recon is 1614 * forced. It would be good to put some kind of sanity check here, but 1615 * how to decide if recon was just forced or not? */ 1616 if (!pssPtr) { 1617 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1618 * RU %d\n",psid,which_ru); */ 1619 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1620 if (rf_reconDebug || rf_pssDebug) 1621 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1622 #endif 1623 goto out; 1624 } 1625 pssPtr->blockCount--; 1626 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1627 raidPtr->raidid, psid, pssPtr->blockCount); 1628 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1629 1630 /* unblock recon before calling CauseReconEvent in case 1631 * CauseReconEvent causes us to try to issue a new read before 1632 * returning here. */ 1633 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1634 1635 1636 while (pssPtr->blockWaitList) { 1637 /* spin through the block-wait list and 1638 release all the waiters */ 1639 cb = pssPtr->blockWaitList; 1640 pssPtr->blockWaitList = cb->next; 1641 cb->next = NULL; 1642 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1643 rf_FreeCallbackDesc(cb); 1644 } 1645 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1646 /* if no recon was requested while recon was blocked */ 1647 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1648 } 1649 } 1650 out: 1651 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1652 return (0); 1653 } 1654