xref: /netbsd-src/sys/dev/raidframe/rf_diskqueue.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: rf_diskqueue.c,v 1.49 2007/03/04 06:02:37 christos Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /****************************************************************************
30  *
31  * rf_diskqueue.c -- higher-level disk queue code
32  *
33  * the routines here are a generic wrapper around the actual queueing
34  * routines.  The code here implements thread scheduling, synchronization,
35  * and locking ops (see below) on top of the lower-level queueing code.
36  *
37  * to support atomic RMW, we implement "locking operations".  When a
38  * locking op is dispatched to the lower levels of the driver, the
39  * queue is locked, and no further I/Os are dispatched until the queue
40  * receives & completes a corresponding "unlocking operation".  This
41  * code relies on the higher layers to guarantee that a locking op
42  * will always be eventually followed by an unlocking op.  The model
43  * is that the higher layers are structured so locking and unlocking
44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
45  * after a locking op reports completion.  There is no good way to
46  * check to see that an unlocking op "corresponds" to the op that
47  * currently has the queue locked, so we make no such attempt.  Since
48  * by definition there can be only one locking op outstanding on a
49  * disk, this should not be a problem.
50  *
51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
52  * to the disk driver.  In order to support locking ops in this
53  * environment, when we decide to do a locking op, we stop dispatching
54  * new I/Os and wait until all dispatched I/Os have completed before
55  * dispatching the locking op.
56  *
57  * Unfortunately, the code is different in the 3 different operating
58  * states (user level, kernel, simulator).  In the kernel, I/O is
59  * non-blocking, and we have no disk threads to dispatch for us.
60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
61  * time of enqueue, and also at the time of completion.  At user
62  * level, I/O is blocking, and so only the disk threads may dispatch
63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
64  * and wake up the disk thread to do the dispatch.
65  *
66  ****************************************************************************/
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.49 2007/03/04 06:02:37 christos Exp $");
70 
71 #include <dev/raidframe/raidframevar.h>
72 
73 #include "rf_threadstuff.h"
74 #include "rf_raid.h"
75 #include "rf_diskqueue.h"
76 #include "rf_alloclist.h"
77 #include "rf_acctrace.h"
78 #include "rf_etimer.h"
79 #include "rf_general.h"
80 #include "rf_debugprint.h"
81 #include "rf_shutdown.h"
82 #include "rf_cvscan.h"
83 #include "rf_sstf.h"
84 #include "rf_fifo.h"
85 #include "rf_kintf.h"
86 
87 static void rf_ShutdownDiskQueueSystem(void *);
88 
89 #ifndef RF_DEBUG_DISKQUEUE
90 #define RF_DEBUG_DISKQUEUE 0
91 #endif
92 
93 #if RF_DEBUG_DISKQUEUE
94 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
95 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
96 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
97 #else
98 #define Dprintf1(s,a)
99 #define Dprintf2(s,a,b)
100 #define Dprintf3(s,a,b,c)
101 #endif
102 
103 /*****************************************************************************
104  *
105  * the disk queue switch defines all the functions used in the
106  * different queueing disciplines queue ID, init routine, enqueue
107  * routine, dequeue routine
108  *
109  ****************************************************************************/
110 
111 static const RF_DiskQueueSW_t diskqueuesw[] = {
112 	{"fifo",		/* FIFO */
113 		rf_FifoCreate,
114 		rf_FifoEnqueue,
115 		rf_FifoDequeue,
116 		rf_FifoPeek,
117 	rf_FifoPromote},
118 
119 	{"cvscan",		/* cvscan */
120 		rf_CvscanCreate,
121 		rf_CvscanEnqueue,
122 		rf_CvscanDequeue,
123 		rf_CvscanPeek,
124 	rf_CvscanPromote},
125 
126 	{"sstf",		/* shortest seek time first */
127 		rf_SstfCreate,
128 		rf_SstfEnqueue,
129 		rf_SstfDequeue,
130 		rf_SstfPeek,
131 	rf_SstfPromote},
132 
133 	{"scan",		/* SCAN (two-way elevator) */
134 		rf_ScanCreate,
135 		rf_SstfEnqueue,
136 		rf_ScanDequeue,
137 		rf_ScanPeek,
138 	rf_SstfPromote},
139 
140 	{"cscan",		/* CSCAN (one-way elevator) */
141 		rf_CscanCreate,
142 		rf_SstfEnqueue,
143 		rf_CscanDequeue,
144 		rf_CscanPeek,
145 	rf_SstfPromote},
146 
147 };
148 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
149 
150 #define RF_MAX_FREE_DQD 256
151 #define RF_MIN_FREE_DQD  64
152 
153 #include <sys/buf.h>
154 
155 /* configures a single disk queue */
156 
157 int
158 rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
159 		      RF_RowCol_t c, const RF_DiskQueueSW_t *p,
160 		      RF_SectorCount_t sectPerDisk, dev_t dev,
161 		      int maxOutstanding, RF_ShutdownList_t **listp,
162 		      RF_AllocListElem_t *clList)
163 {
164 	diskqueue->col = c;
165 	diskqueue->qPtr = p;
166 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
167 	diskqueue->dev = dev;
168 	diskqueue->numOutstanding = 0;
169 	diskqueue->queueLength = 0;
170 	diskqueue->maxOutstanding = maxOutstanding;
171 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
172 	diskqueue->nextLockingOp = NULL;
173 	diskqueue->flags = 0;
174 	diskqueue->raidPtr = raidPtr;
175 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
176 	rf_mutex_init(&diskqueue->mutex);
177 	diskqueue->cond = 0;
178 	return (0);
179 }
180 
181 static void
182 rf_ShutdownDiskQueueSystem(void *ignored)
183 {
184 	pool_destroy(&rf_pools.dqd);
185 }
186 
187 int
188 rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
189 {
190 
191 	rf_pool_init(&rf_pools.dqd, sizeof(RF_DiskQueueData_t),
192 		     "rf_dqd_pl", RF_MIN_FREE_DQD, RF_MAX_FREE_DQD);
193 	rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
194 
195 	return (0);
196 }
197 
198 int
199 rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
200 		       RF_Config_t *cfgPtr)
201 {
202 	RF_DiskQueue_t *diskQueues, *spareQueues;
203 	const RF_DiskQueueSW_t *p;
204 	RF_RowCol_t r,c;
205 	int     rc, i;
206 
207 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
208 
209 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
210 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
211 			p = &diskqueuesw[i];
212 			break;
213 		}
214 	}
215 	if (p == NULL) {
216 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
217 		p = &diskqueuesw[0];
218 	}
219 	raidPtr->qType = p;
220 
221 	RF_MallocAndAdd(diskQueues,
222 			(raidPtr->numCol + RF_MAXSPARE) *
223 			sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
224 			raidPtr->cleanupList);
225 	if (diskQueues == NULL)
226 		return (ENOMEM);
227 	raidPtr->Queues = diskQueues;
228 
229 	for (c = 0; c < raidPtr->numCol; c++) {
230 		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
231 					   c, p,
232 					   raidPtr->sectorsPerDisk,
233 					   raidPtr->Disks[c].dev,
234 					   cfgPtr->maxOutstandingDiskReqs,
235 					   listp, raidPtr->cleanupList);
236 		if (rc)
237 			return (rc);
238 	}
239 
240 	spareQueues = &raidPtr->Queues[raidPtr->numCol];
241 	for (r = 0; r < raidPtr->numSpare; r++) {
242 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
243 					   raidPtr->numCol + r, p,
244 					   raidPtr->sectorsPerDisk,
245 					   raidPtr->Disks[raidPtr->numCol + r].dev,
246 					   cfgPtr->maxOutstandingDiskReqs, listp,
247 					   raidPtr->cleanupList);
248 		if (rc)
249 			return (rc);
250 	}
251 	return (0);
252 }
253 /* Enqueue a disk I/O
254  *
255  * Unfortunately, we have to do things differently in the different
256  * environments (simulator, user-level, kernel).
257  * At user level, all I/O is blocking, so we have 1 or more threads/disk
258  * and the thread that enqueues is different from the thread that dequeues.
259  * In the kernel, I/O is non-blocking and so we'd like to have multiple
260  * I/Os outstanding on the physical disks when possible.
261  *
262  * when any request arrives at a queue, we have two choices:
263  *    dispatch it to the lower levels
264  *    queue it up
265  *
266  * kernel rules for when to do what:
267  *    locking request:  queue empty => dispatch and lock queue,
268  *                      else queue it
269  *    unlocking req  :  always dispatch it
270  *    normal req     :  queue empty => dispatch it & set priority
271  *                      queue not full & priority is ok => dispatch it
272  *                      else queue it
273  *
274  * user-level rules:
275  *    always enqueue.  In the special case of an unlocking op, enqueue
276  *    in a special way that will cause the unlocking op to be the next
277  *    thing dequeued.
278  *
279  * simulator rules:
280  *    Do the same as at user level, with the sleeps and wakeups suppressed.
281  */
282 void
283 rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
284 {
285 	RF_ETIMER_START(req->qtime);
286 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
287 	req->priority = pri;
288 
289 #if RF_DEBUG_DISKQUEUE
290 	if (rf_queueDebug && (req->numSector == 0)) {
291 		printf("Warning: Enqueueing zero-sector access\n");
292 	}
293 #endif
294 	/*
295          * kernel
296          */
297 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
298 	/* locking request */
299 	if (RF_LOCKING_REQ(req)) {
300 		if (RF_QUEUE_EMPTY(queue)) {
301 			Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
302 			RF_LOCK_QUEUE(queue);
303 			rf_DispatchKernelIO(queue, req);
304 		} else {
305 			queue->queueLength++;	/* increment count of number
306 						 * of requests waiting in this
307 						 * queue */
308 			Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
309 			req->queue = (void *) queue;
310 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
311 		}
312 	}
313 	/* unlocking request */
314 	else
315 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
316 						 * when this I/O completes */
317 			Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
318 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
319 			rf_DispatchKernelIO(queue, req);
320 		}
321 	/* normal request */
322 		else
323 			if (RF_OK_TO_DISPATCH(queue, req)) {
324 				Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
325 				rf_DispatchKernelIO(queue, req);
326 			} else {
327 				queue->queueLength++;	/* increment count of
328 							 * number of requests
329 							 * waiting in this queue */
330 				Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
331 				req->queue = (void *) queue;
332 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
333 			}
334 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
335 }
336 
337 
338 /* get the next set of I/Os started, kernel version only */
339 void
340 rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
341 {
342 	int     done = 0;
343 
344 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
345 
346 	/* unlock the queue: (1) after an unlocking req completes (2) after a
347 	 * locking req fails */
348 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
349 		Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
350 		RF_ASSERT(RF_QUEUE_LOCKED(queue));
351 		RF_UNLOCK_QUEUE(queue);
352 	}
353 	queue->numOutstanding--;
354 	RF_ASSERT(queue->numOutstanding >= 0);
355 
356 	/* dispatch requests to the disk until we find one that we can't. */
357 	/* no reason to continue once we've filled up the queue */
358 	/* no reason to even start if the queue is locked */
359 
360 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
361 		if (queue->nextLockingOp) {
362 			req = queue->nextLockingOp;
363 			queue->nextLockingOp = NULL;
364 			Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
365 		} else {
366 			req = (queue->qPtr->Dequeue) (queue->qHdr);
367 			if (req != NULL) {
368 				Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
369 			} else {
370 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
371 			}
372 		}
373 		if (req) {
374 			queue->queueLength--;	/* decrement count of number
375 						 * of requests waiting in this
376 						 * queue */
377 			RF_ASSERT(queue->queueLength >= 0);
378 		}
379 		if (!req)
380 			done = 1;
381 		else
382 			if (RF_LOCKING_REQ(req)) {
383 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
384 					Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
385 					RF_LOCK_QUEUE(queue);
386 					rf_DispatchKernelIO(queue, req);
387 					done = 1;
388 				} else {	/* put it aside to wait for
389 						 * the queue to drain */
390 					Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
391 					RF_ASSERT(queue->nextLockingOp == NULL);
392 					queue->nextLockingOp = req;
393 					done = 1;
394 				}
395 			} else
396 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
397 								 * unlocking ops should
398 								 * not get queued */
399 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
400 										 * the future */
401 					Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
402 					rf_DispatchKernelIO(queue, req);
403 					done = 1;
404 				} else
405 					if (RF_OK_TO_DISPATCH(queue, req)) {
406 						Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
407 						rf_DispatchKernelIO(queue, req);
408 					} else {	/* we can't dispatch it,
409 							 * so just re-enqueue
410 							 * it.  */
411 						/* potential trouble here if
412 						 * disk queues batch reqs */
413 						Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
414 						queue->queueLength++;
415 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
416 						done = 1;
417 					}
418 	}
419 
420 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
421 }
422 /* promotes accesses tagged with the given parityStripeID from low priority
423  * to normal priority.  This promotion is optional, meaning that a queue
424  * need not implement it.  If there is no promotion routine associated with
425  * a queue, this routine does nothing and returns -1.
426  */
427 int
428 rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
429 		 RF_ReconUnitNum_t which_ru)
430 {
431 	int     retval;
432 
433 	if (!queue->qPtr->Promote)
434 		return (-1);
435 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
436 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
437 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
438 	return (retval);
439 }
440 
441 RF_DiskQueueData_t *
442 rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
443 		       RF_SectorCount_t nsect, void *bf,
444 		       RF_StripeNum_t parityStripeID,
445 		       RF_ReconUnitNum_t which_ru,
446 		       int (*wakeF) (void *, int), void *arg,
447 		       RF_AccTraceEntry_t *tracerec, RF_Raid_t *raidPtr,
448 		       RF_DiskQueueDataFlags_t flags, void *kb_proc,
449 		       int waitflag)
450 {
451 	RF_DiskQueueData_t *p;
452 	int s;
453 
454 	s = splbio();
455 	p = pool_get(&rf_pools.dqd, waitflag);
456 	splx(s);
457 	if (p == NULL)
458 		return (NULL);
459 
460 	memset(p, 0, sizeof(RF_DiskQueueData_t));
461 	if (waitflag == PR_WAITOK) {
462 		p->bp = getiobuf();
463 	} else {
464 		p->bp = getiobuf_nowait();
465 	}
466 	if (p->bp == NULL) {
467 		/* no memory for the buffer!?!? */
468 		s = splbio();
469 		pool_put(&rf_pools.dqd, p);
470 		splx(s);
471 		return (NULL);
472 	}
473 
474 	p->sectorOffset = ssect + rf_protectedSectors;
475 	p->numSector = nsect;
476 	p->type = typ;
477 	p->buf = bf;
478 	p->parityStripeID = parityStripeID;
479 	p->which_ru = which_ru;
480 	p->CompleteFunc = wakeF;
481 	p->argument = arg;
482 	p->next = NULL;
483 	p->tracerec = tracerec;
484 	p->priority = RF_IO_NORMAL_PRIORITY;
485 	p->raidPtr = raidPtr;
486 	p->flags = flags;
487 	p->b_proc = kb_proc;
488 	return (p);
489 }
490 
491 void
492 rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
493 {
494 	int s;
495 	s = splbio();		/* XXX protect only pool_put, or neither? */
496 	putiobuf(p->bp);
497 	pool_put(&rf_pools.dqd, p);
498 	splx(s);
499 }
500