1 /* $NetBSD: rf_dagutils.c,v 1.54 2016/01/07 21:57:00 joerg Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /****************************************************************************** 30 * 31 * rf_dagutils.c -- utility routines for manipulating dags 32 * 33 *****************************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.54 2016/01/07 21:57:00 joerg Exp $"); 37 38 #include <dev/raidframe/raidframevar.h> 39 40 #include "rf_archs.h" 41 #include "rf_threadstuff.h" 42 #include "rf_raid.h" 43 #include "rf_dag.h" 44 #include "rf_dagutils.h" 45 #include "rf_dagfuncs.h" 46 #include "rf_general.h" 47 #include "rf_map.h" 48 #include "rf_shutdown.h" 49 50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_))) 51 52 const RF_RedFuncs_t rf_xorFuncs = { 53 rf_RegularXorFunc, "Reg Xr", 54 rf_SimpleXorFunc, "Simple Xr"}; 55 56 const RF_RedFuncs_t rf_xorRecoveryFuncs = { 57 rf_RecoveryXorFunc, "Recovery Xr", 58 rf_RecoveryXorFunc, "Recovery Xr"}; 59 60 #if RF_DEBUG_VALIDATE_DAG 61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int); 62 static void rf_PrintDAG(RF_DagHeader_t *); 63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *, 64 RF_DagNode_t **, int); 65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int); 66 static void rf_ValidateVisitedBits(RF_DagHeader_t *); 67 #endif /* RF_DEBUG_VALIDATE_DAG */ 68 69 /* The maximum number of nodes in a DAG is bounded by 70 71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) + 72 (1 * 2 * layoutPtr->numParityCol) + 3 73 74 which is: 2*RF_MAXCOL+1*2+1*2*2+3 75 76 For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate 77 on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure 78 would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to 79 have a few kicking around. 80 */ 81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *)))) 82 83 84 /****************************************************************************** 85 * 86 * InitNode - initialize a dag node 87 * 88 * the size of the propList array is always the same as that of the 89 * successors array. 90 * 91 *****************************************************************************/ 92 void 93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit, 94 int (*doFunc) (RF_DagNode_t *node), 95 int (*undoFunc) (RF_DagNode_t *node), 96 int (*wakeFunc) (RF_DagNode_t *node, int status), 97 int nSucc, int nAnte, int nParam, int nResult, 98 RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist) 99 { 100 void **ptrs; 101 int nptrs; 102 103 if (nAnte > RF_MAX_ANTECEDENTS) 104 RF_PANIC(); 105 node->status = initstatus; 106 node->commitNode = commit; 107 node->doFunc = doFunc; 108 node->undoFunc = undoFunc; 109 node->wakeFunc = wakeFunc; 110 node->numParams = nParam; 111 node->numResults = nResult; 112 node->numAntecedents = nAnte; 113 node->numAntDone = 0; 114 node->next = NULL; 115 /* node->list_next = NULL */ /* Don't touch this here! 116 It may already be 117 in use by the caller! */ 118 node->numSuccedents = nSucc; 119 node->name = name; 120 node->dagHdr = hdr; 121 node->big_dag_ptrs = NULL; 122 node->big_dag_params = NULL; 123 node->visited = 0; 124 125 /* allocate all the pointers with one call to malloc */ 126 nptrs = nSucc + nAnte + nResult + nSucc; 127 128 if (nptrs <= RF_DAG_PTRCACHESIZE) { 129 /* 130 * The dag_ptrs field of the node is basically some scribble 131 * space to be used here. We could get rid of it, and always 132 * allocate the range of pointers, but that's expensive. So, 133 * we pick a "common case" size for the pointer cache. Hopefully, 134 * we'll find that: 135 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by 136 * only a little bit (least efficient case) 137 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE 138 * (wasted memory) 139 */ 140 ptrs = (void **) node->dag_ptrs; 141 } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) { 142 node->big_dag_ptrs = rf_AllocDAGPCache(); 143 ptrs = (void **) node->big_dag_ptrs; 144 } else { 145 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *), 146 (void **), alist); 147 } 148 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL; 149 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL; 150 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL; 151 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL; 152 153 if (nParam) { 154 if (nParam <= RF_DAG_PARAMCACHESIZE) { 155 node->params = (RF_DagParam_t *) node->dag_params; 156 } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) { 157 node->big_dag_params = rf_AllocDAGPCache(); 158 node->params = node->big_dag_params; 159 } else { 160 RF_MallocAndAdd(node->params, 161 nParam * sizeof(RF_DagParam_t), 162 (RF_DagParam_t *), alist); 163 } 164 } else { 165 node->params = NULL; 166 } 167 } 168 169 170 171 /****************************************************************************** 172 * 173 * allocation and deallocation routines 174 * 175 *****************************************************************************/ 176 177 void 178 rf_FreeDAG(RF_DagHeader_t *dag_h) 179 { 180 RF_AccessStripeMapHeader_t *asmap, *t_asmap; 181 RF_PhysDiskAddr_t *pda; 182 RF_DagNode_t *tmpnode; 183 RF_DagHeader_t *nextDag; 184 185 while (dag_h) { 186 nextDag = dag_h->next; 187 rf_FreeAllocList(dag_h->allocList); 188 for (asmap = dag_h->asmList; asmap;) { 189 t_asmap = asmap; 190 asmap = asmap->next; 191 rf_FreeAccessStripeMap(t_asmap); 192 } 193 while (dag_h->pda_cleanup_list) { 194 pda = dag_h->pda_cleanup_list; 195 dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next; 196 rf_FreePhysDiskAddr(pda); 197 } 198 while (dag_h->nodes) { 199 tmpnode = dag_h->nodes; 200 dag_h->nodes = dag_h->nodes->list_next; 201 rf_FreeDAGNode(tmpnode); 202 } 203 rf_FreeDAGHeader(dag_h); 204 dag_h = nextDag; 205 } 206 } 207 208 #define RF_MAX_FREE_DAGH 128 209 #define RF_MIN_FREE_DAGH 32 210 211 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */ 212 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */ 213 214 #define RF_MAX_FREE_DAGLIST 128 215 #define RF_MIN_FREE_DAGLIST 32 216 217 #define RF_MAX_FREE_DAGPCACHE 128 218 #define RF_MIN_FREE_DAGPCACHE 8 219 220 #define RF_MAX_FREE_FUNCLIST 128 221 #define RF_MIN_FREE_FUNCLIST 32 222 223 #define RF_MAX_FREE_BUFFERS 128 224 #define RF_MIN_FREE_BUFFERS 32 225 226 static void rf_ShutdownDAGs(void *); 227 static void 228 rf_ShutdownDAGs(void *ignored) 229 { 230 pool_destroy(&rf_pools.dagh); 231 pool_destroy(&rf_pools.dagnode); 232 pool_destroy(&rf_pools.daglist); 233 pool_destroy(&rf_pools.dagpcache); 234 pool_destroy(&rf_pools.funclist); 235 } 236 237 int 238 rf_ConfigureDAGs(RF_ShutdownList_t **listp) 239 { 240 241 rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t), 242 "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE); 243 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t), 244 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH); 245 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t), 246 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST); 247 rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE, 248 "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE); 249 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t), 250 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST); 251 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL); 252 253 return (0); 254 } 255 256 RF_DagHeader_t * 257 rf_AllocDAGHeader(void) 258 { 259 RF_DagHeader_t *dh; 260 261 dh = pool_get(&rf_pools.dagh, PR_WAITOK); 262 memset((char *) dh, 0, sizeof(RF_DagHeader_t)); 263 return (dh); 264 } 265 266 void 267 rf_FreeDAGHeader(RF_DagHeader_t * dh) 268 { 269 pool_put(&rf_pools.dagh, dh); 270 } 271 272 RF_DagNode_t * 273 rf_AllocDAGNode(void) 274 { 275 RF_DagNode_t *node; 276 277 node = pool_get(&rf_pools.dagnode, PR_WAITOK); 278 memset(node, 0, sizeof(RF_DagNode_t)); 279 return (node); 280 } 281 282 void 283 rf_FreeDAGNode(RF_DagNode_t *node) 284 { 285 if (node->big_dag_ptrs) { 286 rf_FreeDAGPCache(node->big_dag_ptrs); 287 } 288 if (node->big_dag_params) { 289 rf_FreeDAGPCache(node->big_dag_params); 290 } 291 pool_put(&rf_pools.dagnode, node); 292 } 293 294 RF_DagList_t * 295 rf_AllocDAGList(void) 296 { 297 RF_DagList_t *dagList; 298 299 dagList = pool_get(&rf_pools.daglist, PR_WAITOK); 300 memset(dagList, 0, sizeof(RF_DagList_t)); 301 302 return (dagList); 303 } 304 305 void 306 rf_FreeDAGList(RF_DagList_t *dagList) 307 { 308 pool_put(&rf_pools.daglist, dagList); 309 } 310 311 void * 312 rf_AllocDAGPCache(void) 313 { 314 void *p; 315 p = pool_get(&rf_pools.dagpcache, PR_WAITOK); 316 memset(p, 0, RF_DAGPCACHE_SIZE); 317 318 return (p); 319 } 320 321 void 322 rf_FreeDAGPCache(void *p) 323 { 324 pool_put(&rf_pools.dagpcache, p); 325 } 326 327 RF_FuncList_t * 328 rf_AllocFuncList(void) 329 { 330 RF_FuncList_t *funcList; 331 332 funcList = pool_get(&rf_pools.funclist, PR_WAITOK); 333 memset(funcList, 0, sizeof(RF_FuncList_t)); 334 335 return (funcList); 336 } 337 338 void 339 rf_FreeFuncList(RF_FuncList_t *funcList) 340 { 341 pool_put(&rf_pools.funclist, funcList); 342 } 343 344 /* allocates a stripe buffer -- a buffer large enough to hold all the data 345 in an entire stripe. 346 */ 347 348 void * 349 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, 350 int size) 351 { 352 RF_VoidPointerListElem_t *vple; 353 void *p; 354 355 RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 356 raidPtr->logBytesPerSector)))); 357 358 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 359 raidPtr->logBytesPerSector), 360 M_RAIDFRAME, M_NOWAIT); 361 if (!p) { 362 rf_lock_mutex2(raidPtr->mutex); 363 if (raidPtr->stripebuf_count > 0) { 364 vple = raidPtr->stripebuf; 365 raidPtr->stripebuf = vple->next; 366 p = vple->p; 367 rf_FreeVPListElem(vple); 368 raidPtr->stripebuf_count--; 369 } else { 370 #ifdef DIAGNOSTIC 371 printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid); 372 #endif 373 } 374 rf_unlock_mutex2(raidPtr->mutex); 375 if (!p) { 376 /* We didn't get a buffer... not much we can do other than wait, 377 and hope that someone frees up memory for us.. */ 378 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 379 raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK); 380 } 381 } 382 memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector)); 383 384 vple = rf_AllocVPListElem(); 385 vple->p = p; 386 vple->next = dag_h->desc->stripebufs; 387 dag_h->desc->stripebufs = vple; 388 389 return (p); 390 } 391 392 393 void 394 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple) 395 { 396 rf_lock_mutex2(raidPtr->mutex); 397 if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) { 398 /* just tack it in */ 399 vple->next = raidPtr->stripebuf; 400 raidPtr->stripebuf = vple; 401 raidPtr->stripebuf_count++; 402 } else { 403 free(vple->p, M_RAIDFRAME); 404 rf_FreeVPListElem(vple); 405 } 406 rf_unlock_mutex2(raidPtr->mutex); 407 } 408 409 /* allocates a buffer big enough to hold the data described by the 410 caller (ie. the data of the associated PDA). Glue this buffer 411 into our dag_h cleanup structure. */ 412 413 void * 414 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size) 415 { 416 RF_VoidPointerListElem_t *vple; 417 void *p; 418 419 p = rf_AllocIOBuffer(raidPtr, size); 420 vple = rf_AllocVPListElem(); 421 vple->p = p; 422 vple->next = dag_h->desc->iobufs; 423 dag_h->desc->iobufs = vple; 424 425 return (p); 426 } 427 428 void * 429 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size) 430 { 431 RF_VoidPointerListElem_t *vple; 432 void *p; 433 434 RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit << 435 raidPtr->logBytesPerSector))); 436 437 p = malloc( raidPtr->Layout.sectorsPerStripeUnit << 438 raidPtr->logBytesPerSector, 439 M_RAIDFRAME, M_NOWAIT); 440 if (!p) { 441 rf_lock_mutex2(raidPtr->mutex); 442 if (raidPtr->iobuf_count > 0) { 443 vple = raidPtr->iobuf; 444 raidPtr->iobuf = vple->next; 445 p = vple->p; 446 rf_FreeVPListElem(vple); 447 raidPtr->iobuf_count--; 448 } else { 449 #ifdef DIAGNOSTIC 450 printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid); 451 #endif 452 } 453 rf_unlock_mutex2(raidPtr->mutex); 454 if (!p) { 455 /* We didn't get a buffer... not much we can do other than wait, 456 and hope that someone frees up memory for us.. */ 457 p = malloc( raidPtr->Layout.sectorsPerStripeUnit << 458 raidPtr->logBytesPerSector, 459 M_RAIDFRAME, M_WAITOK); 460 } 461 } 462 memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector); 463 return (p); 464 } 465 466 void 467 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple) 468 { 469 rf_lock_mutex2(raidPtr->mutex); 470 if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) { 471 /* just tack it in */ 472 vple->next = raidPtr->iobuf; 473 raidPtr->iobuf = vple; 474 raidPtr->iobuf_count++; 475 } else { 476 free(vple->p, M_RAIDFRAME); 477 rf_FreeVPListElem(vple); 478 } 479 rf_unlock_mutex2(raidPtr->mutex); 480 } 481 482 483 484 #if RF_DEBUG_VALIDATE_DAG 485 /****************************************************************************** 486 * 487 * debug routines 488 * 489 *****************************************************************************/ 490 491 char * 492 rf_NodeStatusString(RF_DagNode_t *node) 493 { 494 switch (node->status) { 495 case rf_wait: 496 return ("wait"); 497 case rf_fired: 498 return ("fired"); 499 case rf_good: 500 return ("good"); 501 case rf_bad: 502 return ("bad"); 503 default: 504 return ("?"); 505 } 506 } 507 508 void 509 rf_PrintNodeInfoString(RF_DagNode_t *node) 510 { 511 RF_PhysDiskAddr_t *pda; 512 int (*df) (RF_DagNode_t *) = node->doFunc; 513 int i, lk, unlk; 514 void *bufPtr; 515 516 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc) 517 || (df == rf_DiskReadMirrorIdleFunc) 518 || (df == rf_DiskReadMirrorPartitionFunc)) { 519 pda = (RF_PhysDiskAddr_t *) node->params[0].p; 520 bufPtr = (void *) node->params[1].p; 521 lk = 0; 522 unlk = 0; 523 RF_ASSERT(!(lk && unlk)); 524 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col, 525 (long) pda->startSector, (int) pda->numSector, (long) bufPtr, 526 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " ")); 527 return; 528 } 529 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc) 530 || (df == rf_RecoveryXorFunc)) { 531 printf("result buf 0x%lx\n", (long) node->results[0]); 532 for (i = 0; i < node->numParams - 1; i += 2) { 533 pda = (RF_PhysDiskAddr_t *) node->params[i].p; 534 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; 535 printf(" buf 0x%lx c%d offs %ld nsect %d\n", 536 (long) bufPtr, pda->col, 537 (long) pda->startSector, (int) pda->numSector); 538 } 539 return; 540 } 541 #if RF_INCLUDE_PARITYLOGGING > 0 542 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) { 543 for (i = 0; i < node->numParams - 1; i += 2) { 544 pda = (RF_PhysDiskAddr_t *) node->params[i].p; 545 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; 546 printf(" c%d offs %ld nsect %d buf 0x%lx\n", 547 pda->col, (long) pda->startSector, 548 (int) pda->numSector, (long) bufPtr); 549 } 550 return; 551 } 552 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */ 553 554 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) { 555 printf("\n"); 556 return; 557 } 558 printf("?\n"); 559 } 560 #ifdef DEBUG 561 static void 562 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited) 563 { 564 char *anttype; 565 int i; 566 567 node->visited = (unvisited) ? 0 : 1; 568 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth, 569 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node), 570 node->numSuccedents, node->numSuccFired, node->numSuccDone, 571 node->numAntecedents, node->numAntDone, node->numParams, node->numResults); 572 for (i = 0; i < node->numSuccedents; i++) { 573 printf("%d%s", node->succedents[i]->nodeNum, 574 ((i == node->numSuccedents - 1) ? "\0" : " ")); 575 } 576 printf("} A{"); 577 for (i = 0; i < node->numAntecedents; i++) { 578 switch (node->antType[i]) { 579 case rf_trueData: 580 anttype = "T"; 581 break; 582 case rf_antiData: 583 anttype = "A"; 584 break; 585 case rf_outputData: 586 anttype = "O"; 587 break; 588 case rf_control: 589 anttype = "C"; 590 break; 591 default: 592 anttype = "?"; 593 break; 594 } 595 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " "); 596 } 597 printf("}; "); 598 rf_PrintNodeInfoString(node); 599 for (i = 0; i < node->numSuccedents; i++) { 600 if (node->succedents[i]->visited == unvisited) 601 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited); 602 } 603 } 604 605 static void 606 rf_PrintDAG(RF_DagHeader_t *dag_h) 607 { 608 int unvisited, i; 609 char *status; 610 611 /* set dag status */ 612 switch (dag_h->status) { 613 case rf_enable: 614 status = "enable"; 615 break; 616 case rf_rollForward: 617 status = "rollForward"; 618 break; 619 case rf_rollBackward: 620 status = "rollBackward"; 621 break; 622 default: 623 status = "illegal!"; 624 break; 625 } 626 /* find out if visited bits are currently set or clear */ 627 unvisited = dag_h->succedents[0]->visited; 628 629 printf("DAG type: %s\n", dag_h->creator); 630 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n"); 631 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum, 632 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits); 633 for (i = 0; i < dag_h->numSuccedents; i++) { 634 printf("%d%s", dag_h->succedents[i]->nodeNum, 635 ((i == dag_h->numSuccedents - 1) ? "\0" : " ")); 636 } 637 printf("};\n"); 638 for (i = 0; i < dag_h->numSuccedents; i++) { 639 if (dag_h->succedents[i]->visited == unvisited) 640 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited); 641 } 642 } 643 #endif 644 /* assigns node numbers */ 645 int 646 rf_AssignNodeNums(RF_DagHeader_t * dag_h) 647 { 648 int unvisited, i, nnum; 649 RF_DagNode_t *node; 650 651 nnum = 0; 652 unvisited = dag_h->succedents[0]->visited; 653 654 dag_h->nodeNum = nnum++; 655 for (i = 0; i < dag_h->numSuccedents; i++) { 656 node = dag_h->succedents[i]; 657 if (node->visited == unvisited) { 658 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited); 659 } 660 } 661 return (nnum); 662 } 663 664 int 665 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited) 666 { 667 int i; 668 669 node->visited = (unvisited) ? 0 : 1; 670 671 node->nodeNum = num++; 672 for (i = 0; i < node->numSuccedents; i++) { 673 if (node->succedents[i]->visited == unvisited) { 674 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited); 675 } 676 } 677 return (num); 678 } 679 /* set the header pointers in each node to "newptr" */ 680 void 681 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr) 682 { 683 int i; 684 for (i = 0; i < dag_h->numSuccedents; i++) 685 if (dag_h->succedents[i]->dagHdr != newptr) 686 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr); 687 } 688 689 void 690 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr) 691 { 692 int i; 693 node->dagHdr = newptr; 694 for (i = 0; i < node->numSuccedents; i++) 695 if (node->succedents[i]->dagHdr != newptr) 696 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr); 697 } 698 699 700 void 701 rf_PrintDAGList(RF_DagHeader_t * dag_h) 702 { 703 int i = 0; 704 705 for (; dag_h; dag_h = dag_h->next) { 706 rf_AssignNodeNums(dag_h); 707 printf("\n\nDAG %d IN LIST:\n", i++); 708 rf_PrintDAG(dag_h); 709 } 710 } 711 712 static int 713 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount, 714 RF_DagNode_t **nodes, int unvisited) 715 { 716 int i, retcode = 0; 717 718 /* construct an array of node pointers indexed by node num */ 719 node->visited = (unvisited) ? 0 : 1; 720 nodes[node->nodeNum] = node; 721 722 if (node->next != NULL) { 723 printf("INVALID DAG: next pointer in node is not NULL\n"); 724 retcode = 1; 725 } 726 if (node->status != rf_wait) { 727 printf("INVALID DAG: Node status is not wait\n"); 728 retcode = 1; 729 } 730 if (node->numAntDone != 0) { 731 printf("INVALID DAG: numAntDone is not zero\n"); 732 retcode = 1; 733 } 734 if (node->doFunc == rf_TerminateFunc) { 735 if (node->numSuccedents != 0) { 736 printf("INVALID DAG: Terminator node has succedents\n"); 737 retcode = 1; 738 } 739 } else { 740 if (node->numSuccedents == 0) { 741 printf("INVALID DAG: Non-terminator node has no succedents\n"); 742 retcode = 1; 743 } 744 } 745 for (i = 0; i < node->numSuccedents; i++) { 746 if (!node->succedents[i]) { 747 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name); 748 retcode = 1; 749 } 750 scount[node->succedents[i]->nodeNum]++; 751 } 752 for (i = 0; i < node->numAntecedents; i++) { 753 if (!node->antecedents[i]) { 754 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name); 755 retcode = 1; 756 } 757 acount[node->antecedents[i]->nodeNum]++; 758 } 759 for (i = 0; i < node->numSuccedents; i++) { 760 if (node->succedents[i]->visited == unvisited) { 761 if (rf_ValidateBranch(node->succedents[i], scount, 762 acount, nodes, unvisited)) { 763 retcode = 1; 764 } 765 } 766 } 767 return (retcode); 768 } 769 770 static void 771 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl) 772 { 773 int i; 774 775 RF_ASSERT(node->visited == unvisited); 776 for (i = 0; i < node->numSuccedents; i++) { 777 if (node->succedents[i] == NULL) { 778 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i); 779 RF_ASSERT(0); 780 } 781 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1); 782 } 783 } 784 /* NOTE: never call this on a big dag, because it is exponential 785 * in execution time 786 */ 787 static void 788 rf_ValidateVisitedBits(RF_DagHeader_t *dag) 789 { 790 int i, unvisited; 791 792 unvisited = dag->succedents[0]->visited; 793 794 for (i = 0; i < dag->numSuccedents; i++) { 795 if (dag->succedents[i] == NULL) { 796 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i); 797 RF_ASSERT(0); 798 } 799 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0); 800 } 801 } 802 /* validate a DAG. _at entry_ verify that: 803 * -- numNodesCompleted is zero 804 * -- node queue is null 805 * -- dag status is rf_enable 806 * -- next pointer is null on every node 807 * -- all nodes have status wait 808 * -- numAntDone is zero in all nodes 809 * -- terminator node has zero successors 810 * -- no other node besides terminator has zero successors 811 * -- no successor or antecedent pointer in a node is NULL 812 * -- number of times that each node appears as a successor of another node 813 * is equal to the antecedent count on that node 814 * -- number of times that each node appears as an antecedent of another node 815 * is equal to the succedent count on that node 816 * -- what else? 817 */ 818 int 819 rf_ValidateDAG(RF_DagHeader_t *dag_h) 820 { 821 int i, nodecount; 822 int *scount, *acount;/* per-node successor and antecedent counts */ 823 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */ 824 int retcode = 0; 825 int unvisited; 826 int commitNodeCount = 0; 827 828 if (rf_validateVisitedDebug) 829 rf_ValidateVisitedBits(dag_h); 830 831 if (dag_h->numNodesCompleted != 0) { 832 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted); 833 retcode = 1; 834 goto validate_dag_bad; 835 } 836 if (dag_h->status != rf_enable) { 837 printf("INVALID DAG: not enabled\n"); 838 retcode = 1; 839 goto validate_dag_bad; 840 } 841 if (dag_h->numCommits != 0) { 842 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits); 843 retcode = 1; 844 goto validate_dag_bad; 845 } 846 if (dag_h->numSuccedents != 1) { 847 /* currently, all dags must have only one succedent */ 848 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents); 849 retcode = 1; 850 goto validate_dag_bad; 851 } 852 nodecount = rf_AssignNodeNums(dag_h); 853 854 unvisited = dag_h->succedents[0]->visited; 855 856 RF_Malloc(scount, nodecount * sizeof(int), (int *)); 857 RF_Malloc(acount, nodecount * sizeof(int), (int *)); 858 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *), 859 (RF_DagNode_t **)); 860 for (i = 0; i < dag_h->numSuccedents; i++) { 861 if ((dag_h->succedents[i]->visited == unvisited) 862 && rf_ValidateBranch(dag_h->succedents[i], scount, 863 acount, nodes, unvisited)) { 864 retcode = 1; 865 } 866 } 867 /* start at 1 to skip the header node */ 868 for (i = 1; i < nodecount; i++) { 869 if (nodes[i]->commitNode) 870 commitNodeCount++; 871 if (nodes[i]->doFunc == NULL) { 872 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); 873 retcode = 1; 874 goto validate_dag_out; 875 } 876 if (nodes[i]->undoFunc == NULL) { 877 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); 878 retcode = 1; 879 goto validate_dag_out; 880 } 881 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) { 882 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n", 883 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]); 884 retcode = 1; 885 goto validate_dag_out; 886 } 887 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) { 888 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n", 889 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]); 890 retcode = 1; 891 goto validate_dag_out; 892 } 893 } 894 895 if (dag_h->numCommitNodes != commitNodeCount) { 896 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n", 897 dag_h->numCommitNodes, commitNodeCount); 898 retcode = 1; 899 goto validate_dag_out; 900 } 901 validate_dag_out: 902 RF_Free(scount, nodecount * sizeof(int)); 903 RF_Free(acount, nodecount * sizeof(int)); 904 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *)); 905 if (retcode) 906 rf_PrintDAGList(dag_h); 907 908 if (rf_validateVisitedDebug) 909 rf_ValidateVisitedBits(dag_h); 910 911 return (retcode); 912 913 validate_dag_bad: 914 rf_PrintDAGList(dag_h); 915 return (retcode); 916 } 917 918 #endif /* RF_DEBUG_VALIDATE_DAG */ 919 920 /****************************************************************************** 921 * 922 * misc construction routines 923 * 924 *****************************************************************************/ 925 926 void 927 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 928 { 929 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0; 930 int fcol = raidPtr->reconControl->fcol; 931 int scol = raidPtr->reconControl->spareCol; 932 RF_PhysDiskAddr_t *pda; 933 934 RF_ASSERT(raidPtr->status == rf_rs_reconstructing); 935 for (pda = asmap->physInfo; pda; pda = pda->next) { 936 if (pda->col == fcol) { 937 #if RF_DEBUG_DAG 938 if (rf_dagDebug) { 939 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, 940 pda->startSector)) { 941 RF_PANIC(); 942 } 943 } 944 #endif 945 /* printf("Remapped data for large write\n"); */ 946 if (ds) { 947 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress, 948 &pda->col, &pda->startSector, RF_REMAP); 949 } else { 950 pda->col = scol; 951 } 952 } 953 } 954 for (pda = asmap->parityInfo; pda; pda = pda->next) { 955 if (pda->col == fcol) { 956 #if RF_DEBUG_DAG 957 if (rf_dagDebug) { 958 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) { 959 RF_PANIC(); 960 } 961 } 962 #endif 963 } 964 if (ds) { 965 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP); 966 } else { 967 pda->col = scol; 968 } 969 } 970 } 971 972 973 /* this routine allocates read buffers and generates stripe maps for the 974 * regions of the array from the start of the stripe to the start of the 975 * access, and from the end of the access to the end of the stripe. It also 976 * computes and returns the number of DAG nodes needed to read all this data. 977 * Note that this routine does the wrong thing if the access is fully 978 * contained within one stripe unit, so we RF_ASSERT against this case at the 979 * start. 980 * 981 * layoutPtr - in: layout information 982 * asmap - in: access stripe map 983 * dag_h - in: header of the dag to create 984 * new_asm_h - in: ptr to array of 2 headers. to be filled in 985 * nRodNodes - out: num nodes to be generated to read unaccessed data 986 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer 987 */ 988 void 989 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr, 990 RF_RaidLayout_t *layoutPtr, 991 RF_AccessStripeMap_t *asmap, 992 RF_DagHeader_t *dag_h, 993 RF_AccessStripeMapHeader_t **new_asm_h, 994 int *nRodNodes, 995 char **sosBuffer, char **eosBuffer, 996 RF_AllocListElem_t *allocList) 997 { 998 RF_RaidAddr_t sosRaidAddress, eosRaidAddress; 999 RF_SectorNum_t sosNumSector, eosNumSector; 1000 1001 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2)); 1002 /* generate an access map for the region of the array from start of 1003 * stripe to start of access */ 1004 new_asm_h[0] = new_asm_h[1] = NULL; 1005 *nRodNodes = 0; 1006 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) { 1007 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 1008 sosNumSector = asmap->raidAddress - sosRaidAddress; 1009 *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector)); 1010 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP); 1011 new_asm_h[0]->next = dag_h->asmList; 1012 dag_h->asmList = new_asm_h[0]; 1013 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; 1014 1015 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL); 1016 /* we're totally within one stripe here */ 1017 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) 1018 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap); 1019 } 1020 /* generate an access map for the region of the array from end of 1021 * access to end of stripe */ 1022 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) { 1023 eosRaidAddress = asmap->endRaidAddress; 1024 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress; 1025 *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector)); 1026 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP); 1027 new_asm_h[1]->next = dag_h->asmList; 1028 dag_h->asmList = new_asm_h[1]; 1029 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; 1030 1031 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL); 1032 /* we're totally within one stripe here */ 1033 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) 1034 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap); 1035 } 1036 } 1037 1038 1039 1040 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */ 1041 int 1042 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr, 1043 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest) 1044 { 1045 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); 1046 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); 1047 /* use -1 to be sure we stay within SU */ 1048 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); 1049 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); 1050 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0); 1051 } 1052 1053 1054 /* GenerateFailedAccessASMs 1055 * 1056 * this routine figures out what portion of the stripe needs to be read 1057 * to effect the degraded read or write operation. It's primary function 1058 * is to identify everything required to recover the data, and then 1059 * eliminate anything that is already being accessed by the user. 1060 * 1061 * The main result is two new ASMs, one for the region from the start of the 1062 * stripe to the start of the access, and one for the region from the end of 1063 * the access to the end of the stripe. These ASMs describe everything that 1064 * needs to be read to effect the degraded access. Other results are: 1065 * nXorBufs -- the total number of buffers that need to be XORed together to 1066 * recover the lost data, 1067 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL 1068 * at entry, not allocated. 1069 * overlappingPDAs -- 1070 * describes which of the non-failed PDAs in the user access 1071 * overlap data that needs to be read to effect recovery. 1072 * overlappingPDAs[i]==1 if and only if, neglecting the failed 1073 * PDA, the ith pda in the input asm overlaps data that needs 1074 * to be read for recovery. 1075 */ 1076 /* in: asm - ASM for the actual access, one stripe only */ 1077 /* in: failedPDA - which component of the access has failed */ 1078 /* in: dag_h - header of the DAG we're going to create */ 1079 /* out: new_asm_h - the two new ASMs */ 1080 /* out: nXorBufs - the total number of xor bufs required */ 1081 /* out: rpBufPtr - a buffer for the parity read */ 1082 void 1083 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1084 RF_PhysDiskAddr_t *failedPDA, 1085 RF_DagHeader_t *dag_h, 1086 RF_AccessStripeMapHeader_t **new_asm_h, 1087 int *nXorBufs, char **rpBufPtr, 1088 char *overlappingPDAs, 1089 RF_AllocListElem_t *allocList) 1090 { 1091 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); 1092 1093 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */ 1094 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr; 1095 RF_PhysDiskAddr_t *pda; 1096 int foundit, i; 1097 1098 foundit = 0; 1099 /* first compute the following raid addresses: start of stripe, 1100 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr) 1101 * MAX(end of access, end of failed SU), (eosStartAddr) end of 1102 * stripe (i.e. start of next stripe) (eosAddr) */ 1103 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 1104 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); 1105 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); 1106 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress); 1107 1108 /* now generate access stripe maps for each of the above regions of 1109 * the stripe. Use a dummy (NULL) buf ptr for now */ 1110 1111 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL; 1112 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL; 1113 1114 /* walk through the PDAs and range-restrict each SU to the region of 1115 * the SU touched on the failed PDA. also compute total data buffer 1116 * space requirements in this step. Ignore the parity for now. */ 1117 /* Also count nodes to find out how many bufs need to be xored together */ 1118 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write 1119 * case, 1 is for failed data */ 1120 1121 if (new_asm_h[0]) { 1122 new_asm_h[0]->next = dag_h->asmList; 1123 dag_h->asmList = new_asm_h[0]; 1124 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) { 1125 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); 1126 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); 1127 } 1128 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; 1129 } 1130 if (new_asm_h[1]) { 1131 new_asm_h[1]->next = dag_h->asmList; 1132 dag_h->asmList = new_asm_h[1]; 1133 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) { 1134 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); 1135 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); 1136 } 1137 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; 1138 } 1139 1140 /* allocate a buffer for parity */ 1141 if (rpBufPtr) 1142 *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector); 1143 1144 /* the last step is to figure out how many more distinct buffers need 1145 * to get xor'd to produce the missing unit. there's one for each 1146 * user-data read node that overlaps the portion of the failed unit 1147 * being accessed */ 1148 1149 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) { 1150 if (pda == failedPDA) { 1151 i--; 1152 foundit = 1; 1153 continue; 1154 } 1155 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) { 1156 overlappingPDAs[i] = 1; 1157 (*nXorBufs)++; 1158 } 1159 } 1160 if (!foundit) { 1161 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n"); 1162 RF_ASSERT(0); 1163 } 1164 #if RF_DEBUG_DAG 1165 if (rf_degDagDebug) { 1166 if (new_asm_h[0]) { 1167 printf("First asm:\n"); 1168 rf_PrintFullAccessStripeMap(new_asm_h[0], 1); 1169 } 1170 if (new_asm_h[1]) { 1171 printf("Second asm:\n"); 1172 rf_PrintFullAccessStripeMap(new_asm_h[1], 1); 1173 } 1174 } 1175 #endif 1176 } 1177 1178 1179 /* adjusts the offset and number of sectors in the destination pda so that 1180 * it covers at most the region of the SU covered by the source PDA. This 1181 * is exclusively a restriction: the number of sectors indicated by the 1182 * target PDA can only shrink. 1183 * 1184 * For example: s = sectors within SU indicated by source PDA 1185 * d = sectors within SU indicated by dest PDA 1186 * r = results, stored in dest PDA 1187 * 1188 * |--------------- one stripe unit ---------------------| 1189 * | sssssssssssssssssssssssssssssssss | 1190 * | ddddddddddddddddddddddddddddddddddddddddddddd | 1191 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr | 1192 * 1193 * Another example: 1194 * 1195 * |--------------- one stripe unit ---------------------| 1196 * | sssssssssssssssssssssssssssssssss | 1197 * | ddddddddddddddddddddddd | 1198 * | rrrrrrrrrrrrrrrr | 1199 * 1200 */ 1201 void 1202 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src, 1203 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr) 1204 { 1205 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1206 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); 1207 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); 1208 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we 1209 * stay within SU */ 1210 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); 1211 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */ 1212 1213 dest->startSector = subAddr + RF_MAX(soffs, doffs); 1214 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector; 1215 1216 if (dobuffer) 1217 dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0); 1218 if (doraidaddr) { 1219 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) + 1220 rf_StripeUnitOffset(layoutPtr, dest->startSector); 1221 } 1222 } 1223 1224 #if (RF_INCLUDE_CHAINDECLUSTER > 0) 1225 1226 /* 1227 * Want the highest of these primes to be the largest one 1228 * less than the max expected number of columns (won't hurt 1229 * to be too small or too large, but won't be optimal, either) 1230 * --jimz 1231 */ 1232 #define NLOWPRIMES 8 1233 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19}; 1234 /***************************************************************************** 1235 * compute the workload shift factor. (chained declustering) 1236 * 1237 * return nonzero if access should shift to secondary, otherwise, 1238 * access is to primary 1239 *****************************************************************************/ 1240 int 1241 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda) 1242 { 1243 /* 1244 * variables: 1245 * d = column of disk containing primary 1246 * f = column of failed disk 1247 * n = number of disks in array 1248 * sd = "shift distance" (number of columns that d is to the right of f) 1249 * v = numerator of redirection ratio 1250 * k = denominator of redirection ratio 1251 */ 1252 RF_RowCol_t d, f, sd, n; 1253 int k, v, ret, i; 1254 1255 n = raidPtr->numCol; 1256 1257 /* assign column of primary copy to d */ 1258 d = pda->col; 1259 1260 /* assign column of dead disk to f */ 1261 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++) 1262 continue; 1263 1264 RF_ASSERT(f < n); 1265 RF_ASSERT(f != d); 1266 1267 sd = (f > d) ? (n + d - f) : (d - f); 1268 RF_ASSERT(sd < n); 1269 1270 /* 1271 * v of every k accesses should be redirected 1272 * 1273 * v/k := (n-1-sd)/(n-1) 1274 */ 1275 v = (n - 1 - sd); 1276 k = (n - 1); 1277 1278 #if 1 1279 /* 1280 * XXX 1281 * Is this worth it? 1282 * 1283 * Now reduce the fraction, by repeatedly factoring 1284 * out primes (just like they teach in elementary school!) 1285 */ 1286 for (i = 0; i < NLOWPRIMES; i++) { 1287 if (lowprimes[i] > v) 1288 break; 1289 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) { 1290 v /= lowprimes[i]; 1291 k /= lowprimes[i]; 1292 } 1293 } 1294 #endif 1295 1296 raidPtr->hist_diskreq[d]++; 1297 if (raidPtr->hist_diskreq[d] > v) { 1298 ret = 0; /* do not redirect */ 1299 } else { 1300 ret = 1; /* redirect */ 1301 } 1302 1303 #if 0 1304 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret, 1305 raidPtr->hist_diskreq[d]); 1306 #endif 1307 1308 if (raidPtr->hist_diskreq[d] >= k) { 1309 /* reset counter */ 1310 raidPtr->hist_diskreq[d] = 0; 1311 } 1312 return (ret); 1313 } 1314 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */ 1315 1316 /* 1317 * Disk selection routines 1318 */ 1319 1320 /* 1321 * Selects the disk with the shortest queue from a mirror pair. 1322 * Both the disk I/Os queued in RAIDframe as well as those at the physical 1323 * disk are counted as members of the "queue" 1324 */ 1325 void 1326 rf_SelectMirrorDiskIdle(RF_DagNode_t * node) 1327 { 1328 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; 1329 RF_RowCol_t colData, colMirror; 1330 int dataQueueLength, mirrorQueueLength, usemirror; 1331 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; 1332 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; 1333 RF_PhysDiskAddr_t *tmp_pda; 1334 RF_RaidDisk_t *disks = raidPtr->Disks; 1335 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue; 1336 1337 /* return the [row col] of the disk with the shortest queue */ 1338 colData = data_pda->col; 1339 colMirror = mirror_pda->col; 1340 dataQueue = &(dqs[colData]); 1341 mirrorQueue = &(dqs[colMirror]); 1342 1343 #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1344 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); 1345 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1346 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding; 1347 #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1348 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); 1349 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); 1350 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1351 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding; 1352 #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1353 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); 1354 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1355 1356 usemirror = 0; 1357 if (RF_DEAD_DISK(disks[colMirror].status)) { 1358 usemirror = 0; 1359 } else 1360 if (RF_DEAD_DISK(disks[colData].status)) { 1361 usemirror = 1; 1362 } else 1363 if (raidPtr->parity_good == RF_RAID_DIRTY) { 1364 /* Trust only the main disk */ 1365 usemirror = 0; 1366 } else 1367 if (dataQueueLength < mirrorQueueLength) { 1368 usemirror = 0; 1369 } else 1370 if (mirrorQueueLength < dataQueueLength) { 1371 usemirror = 1; 1372 } else { 1373 /* queues are equal length. attempt 1374 * cleverness. */ 1375 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector) 1376 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) { 1377 usemirror = 0; 1378 } else { 1379 usemirror = 1; 1380 } 1381 } 1382 1383 if (usemirror) { 1384 /* use mirror (parity) disk, swap params 0 & 4 */ 1385 tmp_pda = data_pda; 1386 node->params[0].p = mirror_pda; 1387 node->params[4].p = tmp_pda; 1388 } else { 1389 /* use data disk, leave param 0 unchanged */ 1390 } 1391 /* printf("dataQueueLength %d, mirrorQueueLength 1392 * %d\n",dataQueueLength, mirrorQueueLength); */ 1393 } 1394 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0) 1395 /* 1396 * Do simple partitioning. This assumes that 1397 * the data and parity disks are laid out identically. 1398 */ 1399 void 1400 rf_SelectMirrorDiskPartition(RF_DagNode_t * node) 1401 { 1402 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; 1403 RF_RowCol_t colData, colMirror; 1404 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; 1405 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; 1406 RF_PhysDiskAddr_t *tmp_pda; 1407 RF_RaidDisk_t *disks = raidPtr->Disks; 1408 int usemirror; 1409 1410 /* return the [row col] of the disk with the shortest queue */ 1411 colData = data_pda->col; 1412 colMirror = mirror_pda->col; 1413 1414 usemirror = 0; 1415 if (RF_DEAD_DISK(disks[colMirror].status)) { 1416 usemirror = 0; 1417 } else 1418 if (RF_DEAD_DISK(disks[colData].status)) { 1419 usemirror = 1; 1420 } else 1421 if (raidPtr->parity_good == RF_RAID_DIRTY) { 1422 /* Trust only the main disk */ 1423 usemirror = 0; 1424 } else 1425 if (data_pda->startSector < 1426 (disks[colData].numBlocks / 2)) { 1427 usemirror = 0; 1428 } else { 1429 usemirror = 1; 1430 } 1431 1432 if (usemirror) { 1433 /* use mirror (parity) disk, swap params 0 & 4 */ 1434 tmp_pda = data_pda; 1435 node->params[0].p = mirror_pda; 1436 node->params[4].p = tmp_pda; 1437 } else { 1438 /* use data disk, leave param 0 unchanged */ 1439 } 1440 } 1441 #endif 1442