xref: /netbsd-src/sys/dev/raidframe/rf_dagutils.c (revision 33cd1faa348fe1cb7947ea59b0556b9bad76cee9)
1 /*	$NetBSD: rf_dagutils.c,v 1.43 2004/03/23 21:53:36 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /******************************************************************************
30  *
31  * rf_dagutils.c -- utility routines for manipulating dags
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.43 2004/03/23 21:53:36 oster Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49 
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51 
52 const RF_RedFuncs_t rf_xorFuncs = {
53 	rf_RegularXorFunc, "Reg Xr",
54 	rf_SimpleXorFunc, "Simple Xr"};
55 
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 	rf_RecoveryXorFunc, "Recovery Xr",
58 	rf_RecoveryXorFunc, "Recovery Xr"};
59 
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 			     RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68 
69 /* The maximum number of nodes in a DAG is bounded by
70 
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 	(1 * 2 * layoutPtr->numParityCol) + 3
73 
74 which is:  2*RF_MAXCOL+1*2+1*2*2+3
75 
76 For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
78 would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
80 */
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82 
83 
84 /******************************************************************************
85  *
86  * InitNode - initialize a dag node
87  *
88  * the size of the propList array is always the same as that of the
89  * successors array.
90  *
91  *****************************************************************************/
92 void
93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94     int (*doFunc) (RF_DagNode_t *node),
95     int (*undoFunc) (RF_DagNode_t *node),
96     int (*wakeFunc) (RF_DagNode_t *node, int status),
97     int nSucc, int nAnte, int nParam, int nResult,
98     RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
99 {
100 	void  **ptrs;
101 	int     nptrs;
102 
103 	if (nAnte > RF_MAX_ANTECEDENTS)
104 		RF_PANIC();
105 	node->status = initstatus;
106 	node->commitNode = commit;
107 	node->doFunc = doFunc;
108 	node->undoFunc = undoFunc;
109 	node->wakeFunc = wakeFunc;
110 	node->numParams = nParam;
111 	node->numResults = nResult;
112 	node->numAntecedents = nAnte;
113 	node->numAntDone = 0;
114 	node->next = NULL;
115 	/* node->list_next = NULL */  /* Don't touch this here!
116 	                                 It may already be
117 					 in use by the caller! */
118 	node->numSuccedents = nSucc;
119 	node->name = name;
120 	node->dagHdr = hdr;
121 	node->big_dag_ptrs = NULL;
122 	node->big_dag_params = NULL;
123 	node->visited = 0;
124 
125 	/* allocate all the pointers with one call to malloc */
126 	nptrs = nSucc + nAnte + nResult + nSucc;
127 
128 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 		/*
130 	         * The dag_ptrs field of the node is basically some scribble
131 	         * space to be used here. We could get rid of it, and always
132 	         * allocate the range of pointers, but that's expensive. So,
133 	         * we pick a "common case" size for the pointer cache. Hopefully,
134 	         * we'll find that:
135 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 	         *     only a little bit (least efficient case)
137 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 	         *     (wasted memory)
139 	         */
140 		ptrs = (void **) node->dag_ptrs;
141 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 		node->big_dag_ptrs = rf_AllocDAGPCache();
143 		ptrs = (void **) node->big_dag_ptrs;
144 	} else {
145 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
146 				(void **), alist);
147 	}
148 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
149 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
150 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
151 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
152 
153 	if (nParam) {
154 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
155 			node->params = (RF_DagParam_t *) node->dag_params;
156 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
157 			node->big_dag_params = rf_AllocDAGPCache();
158 			node->params = node->big_dag_params;
159 		} else {
160 			RF_MallocAndAdd(node->params,
161 					nParam * sizeof(RF_DagParam_t),
162 					(RF_DagParam_t *), alist);
163 		}
164 	} else {
165 		node->params = NULL;
166 	}
167 }
168 
169 
170 
171 /******************************************************************************
172  *
173  * allocation and deallocation routines
174  *
175  *****************************************************************************/
176 
177 void
178 rf_FreeDAG(RF_DagHeader_t *dag_h)
179 {
180 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
181 	RF_PhysDiskAddr_t *pda;
182 	RF_DagNode_t *tmpnode;
183 	RF_VoidPointerListElem_t *tmpiobuf;
184 	RF_DagHeader_t *nextDag;
185 
186 	while (dag_h) {
187 		nextDag = dag_h->next;
188 		rf_FreeAllocList(dag_h->allocList);
189 		for (asmap = dag_h->asmList; asmap;) {
190 			t_asmap = asmap;
191 			asmap = asmap->next;
192 			rf_FreeAccessStripeMap(t_asmap);
193 		}
194 		while (dag_h->pda_cleanup_list) {
195 			pda = dag_h->pda_cleanup_list;
196 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
197 			rf_FreePhysDiskAddr(pda);
198 		}
199 		while (dag_h->iobufs) {
200 			tmpiobuf = dag_h->iobufs;
201 			dag_h->iobufs = dag_h->iobufs->next;
202 			if (tmpiobuf->p)
203 				rf_FreeIOBuffer(dag_h->raidPtr, tmpiobuf->p);
204 			rf_FreeVPListElem(tmpiobuf);
205 		}
206 		while (dag_h->nodes) {
207 			tmpnode = dag_h->nodes;
208 			dag_h->nodes = dag_h->nodes->list_next;
209 			rf_FreeDAGNode(tmpnode);
210 		}
211 		rf_FreeDAGHeader(dag_h);
212 		dag_h = nextDag;
213 	}
214 }
215 
216 #define RF_MAX_FREE_DAGH 128
217 #define RF_MIN_FREE_DAGH  32
218 
219 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
220 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
221 
222 #define RF_MAX_FREE_DAGLIST 128
223 #define RF_MIN_FREE_DAGLIST  32
224 
225 #define RF_MAX_FREE_DAGPCACHE 128
226 #define RF_MIN_FREE_DAGPCACHE   8
227 
228 #define RF_MAX_FREE_FUNCLIST 128
229 #define RF_MIN_FREE_FUNCLIST  32
230 
231 #define RF_MAX_FREE_BUFFERS 128
232 #define RF_MIN_FREE_BUFFERS  32
233 
234 static void rf_ShutdownDAGs(void *);
235 static void
236 rf_ShutdownDAGs(void *ignored)
237 {
238 	pool_destroy(&rf_pools.dagh);
239 	pool_destroy(&rf_pools.dagnode);
240 	pool_destroy(&rf_pools.daglist);
241 	pool_destroy(&rf_pools.dagpcache);
242 	pool_destroy(&rf_pools.funclist);
243 }
244 
245 int
246 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
247 {
248 
249 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
250 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
251 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
252 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
253 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
254 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
255 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
256 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
257 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
258 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
259 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
260 
261 	return (0);
262 }
263 
264 RF_DagHeader_t *
265 rf_AllocDAGHeader()
266 {
267 	RF_DagHeader_t *dh;
268 
269 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
270 	memset((char *) dh, 0, sizeof(RF_DagHeader_t));
271 	return (dh);
272 }
273 
274 void
275 rf_FreeDAGHeader(RF_DagHeader_t * dh)
276 {
277 	pool_put(&rf_pools.dagh, dh);
278 }
279 
280 RF_DagNode_t *
281 rf_AllocDAGNode()
282 {
283 	RF_DagNode_t *node;
284 
285 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
286 	memset(node, 0, sizeof(RF_DagNode_t));
287 	return (node);
288 }
289 
290 void
291 rf_FreeDAGNode(RF_DagNode_t *node)
292 {
293 	if (node->big_dag_ptrs) {
294 		rf_FreeDAGPCache(node->big_dag_ptrs);
295 	}
296 	if (node->big_dag_params) {
297 		rf_FreeDAGPCache(node->big_dag_params);
298 	}
299 	pool_put(&rf_pools.dagnode, node);
300 }
301 
302 RF_DagList_t *
303 rf_AllocDAGList()
304 {
305 	RF_DagList_t *dagList;
306 
307 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
308 	memset(dagList, 0, sizeof(RF_DagList_t));
309 
310 	return (dagList);
311 }
312 
313 void
314 rf_FreeDAGList(RF_DagList_t *dagList)
315 {
316 	pool_put(&rf_pools.daglist, dagList);
317 }
318 
319 void *
320 rf_AllocDAGPCache()
321 {
322 	void *p;
323 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
324 	memset(p, 0, RF_DAGPCACHE_SIZE);
325 
326 	return (p);
327 }
328 
329 void
330 rf_FreeDAGPCache(void *p)
331 {
332 	pool_put(&rf_pools.dagpcache, p);
333 }
334 
335 RF_FuncList_t *
336 rf_AllocFuncList()
337 {
338 	RF_FuncList_t *funcList;
339 
340 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
341 	memset(funcList, 0, sizeof(RF_FuncList_t));
342 
343 	return (funcList);
344 }
345 
346 void
347 rf_FreeFuncList(RF_FuncList_t *funcList)
348 {
349 	pool_put(&rf_pools.funclist, funcList);
350 }
351 
352 
353 
354 /* allocates a buffer big enough to hold the data described by the
355 caller (ie. the data of the associated PDA).  Glue this buffer
356 into our dag_h cleanup structure. */
357 
358 void *
359 rf_AllocBuffer(RF_Raid_t *raidPtr, int size, RF_AllocListElem_t * allocList)
360 {
361 	void *p;
362 
363 	RF_MallocAndAdd(p, size, (char *), allocList);
364         return ((void *) p);
365 }
366 
367 
368 void   *
369 rf_AllocBuffer2(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
370 {
371 	RF_VoidPointerListElem_t *vple;
372 	void *p;
373 
374 	p = rf_AllocIOBuffer(raidPtr, size);
375 	vple = rf_AllocVPListElem();
376 	vple->p = p;
377 	vple->next = dag_h->iobufs;
378 	dag_h->iobufs = vple;
379 
380 	return (p);
381 }
382 
383 void *
384 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
385 {
386 	void *p;
387 
388 	RF_ASSERT(size <= (raidPtr->Layout.sectorsPerStripeUnit <<
389 			   raidPtr->logBytesPerSector));
390 
391 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
392 				 raidPtr->logBytesPerSector,
393 				 M_RAIDFRAME, M_NOWAIT);
394 	if (!p) {
395 		RF_LOCK_MUTEX(raidPtr->mutex);
396 		if (raidPtr->iobuf_count > 0) {
397 			p = raidPtr->iobuf;
398 			raidPtr->iobuf = raidPtr->iobuf->next;
399 			raidPtr->iobuf_count--;
400 		} else {
401 #ifdef DIAGNOSTIC
402 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
403 #endif
404 		}
405 		RF_UNLOCK_MUTEX(raidPtr->mutex);
406 		if (!p) {
407 			/* We didn't get a buffer... not much we can do other than wait,
408 			   and hope that someone frees up memory for us.. */
409 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
410 				    raidPtr->logBytesPerSector,
411 				    M_RAIDFRAME, M_WAITOK);
412 		}
413 	}
414 	return (p);
415 }
416 
417 void
418 rf_FreeIOBuffer(RF_Raid_t *raidPtr, void *p)
419 {
420 	RF_LOCK_MUTEX(raidPtr->mutex);
421 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
422 		((RF_IOBufHeader_t *)p)->next = raidPtr->iobuf;
423 		raidPtr->iobuf = p;
424 		raidPtr->iobuf_count++;
425 	} else {
426 		free(p, M_RAIDFRAME);
427 	}
428 	RF_UNLOCK_MUTEX(raidPtr->mutex);
429 }
430 
431 
432 
433 #if RF_DEBUG_VALIDATE_DAG
434 /******************************************************************************
435  *
436  * debug routines
437  *
438  *****************************************************************************/
439 
440 char   *
441 rf_NodeStatusString(RF_DagNode_t *node)
442 {
443 	switch (node->status) {
444 	case rf_wait:
445 		return ("wait");
446 	case rf_fired:
447 		return ("fired");
448 	case rf_good:
449 		return ("good");
450 	case rf_bad:
451 		return ("bad");
452 	default:
453 		return ("?");
454 	}
455 }
456 
457 void
458 rf_PrintNodeInfoString(RF_DagNode_t *node)
459 {
460 	RF_PhysDiskAddr_t *pda;
461 	int     (*df) (RF_DagNode_t *) = node->doFunc;
462 	int     i, lk, unlk;
463 	void   *bufPtr;
464 
465 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
466 	    || (df == rf_DiskReadMirrorIdleFunc)
467 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
468 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
469 		bufPtr = (void *) node->params[1].p;
470 		lk = 0;
471 		unlk = 0;
472 		RF_ASSERT(!(lk && unlk));
473 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
474 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
475 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
476 		return;
477 	}
478 	if (df == rf_DiskUnlockFunc) {
479 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
480 		lk = 0;
481 		unlk = 0;
482 		RF_ASSERT(!(lk && unlk));
483 		printf("c %d %s\n", pda->col,
484 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
485 		return;
486 	}
487 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
488 	    || (df == rf_RecoveryXorFunc)) {
489 		printf("result buf 0x%lx\n", (long) node->results[0]);
490 		for (i = 0; i < node->numParams - 1; i += 2) {
491 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
492 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
493 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
494 			    (long) bufPtr, pda->col,
495 			    (long) pda->startSector, (int) pda->numSector);
496 		}
497 		return;
498 	}
499 #if RF_INCLUDE_PARITYLOGGING > 0
500 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
501 		for (i = 0; i < node->numParams - 1; i += 2) {
502 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
503 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
504 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
505 			    pda->col, (long) pda->startSector,
506 			    (int) pda->numSector, (long) bufPtr);
507 		}
508 		return;
509 	}
510 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
511 
512 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
513 		printf("\n");
514 		return;
515 	}
516 	printf("?\n");
517 }
518 #ifdef DEBUG
519 static void
520 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
521 {
522 	char   *anttype;
523 	int     i;
524 
525 	node->visited = (unvisited) ? 0 : 1;
526 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
527 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
528 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
529 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
530 	for (i = 0; i < node->numSuccedents; i++) {
531 		printf("%d%s", node->succedents[i]->nodeNum,
532 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
533 	}
534 	printf("} A{");
535 	for (i = 0; i < node->numAntecedents; i++) {
536 		switch (node->antType[i]) {
537 		case rf_trueData:
538 			anttype = "T";
539 			break;
540 		case rf_antiData:
541 			anttype = "A";
542 			break;
543 		case rf_outputData:
544 			anttype = "O";
545 			break;
546 		case rf_control:
547 			anttype = "C";
548 			break;
549 		default:
550 			anttype = "?";
551 			break;
552 		}
553 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
554 	}
555 	printf("}; ");
556 	rf_PrintNodeInfoString(node);
557 	for (i = 0; i < node->numSuccedents; i++) {
558 		if (node->succedents[i]->visited == unvisited)
559 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
560 	}
561 }
562 
563 static void
564 rf_PrintDAG(RF_DagHeader_t *dag_h)
565 {
566 	int     unvisited, i;
567 	char   *status;
568 
569 	/* set dag status */
570 	switch (dag_h->status) {
571 	case rf_enable:
572 		status = "enable";
573 		break;
574 	case rf_rollForward:
575 		status = "rollForward";
576 		break;
577 	case rf_rollBackward:
578 		status = "rollBackward";
579 		break;
580 	default:
581 		status = "illegal!";
582 		break;
583 	}
584 	/* find out if visited bits are currently set or clear */
585 	unvisited = dag_h->succedents[0]->visited;
586 
587 	printf("DAG type:  %s\n", dag_h->creator);
588 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
589 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
590 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
591 	for (i = 0; i < dag_h->numSuccedents; i++) {
592 		printf("%d%s", dag_h->succedents[i]->nodeNum,
593 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
594 	}
595 	printf("};\n");
596 	for (i = 0; i < dag_h->numSuccedents; i++) {
597 		if (dag_h->succedents[i]->visited == unvisited)
598 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
599 	}
600 }
601 #endif
602 /* assigns node numbers */
603 int
604 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
605 {
606 	int     unvisited, i, nnum;
607 	RF_DagNode_t *node;
608 
609 	nnum = 0;
610 	unvisited = dag_h->succedents[0]->visited;
611 
612 	dag_h->nodeNum = nnum++;
613 	for (i = 0; i < dag_h->numSuccedents; i++) {
614 		node = dag_h->succedents[i];
615 		if (node->visited == unvisited) {
616 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
617 		}
618 	}
619 	return (nnum);
620 }
621 
622 int
623 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
624 {
625 	int     i;
626 
627 	node->visited = (unvisited) ? 0 : 1;
628 
629 	node->nodeNum = num++;
630 	for (i = 0; i < node->numSuccedents; i++) {
631 		if (node->succedents[i]->visited == unvisited) {
632 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
633 		}
634 	}
635 	return (num);
636 }
637 /* set the header pointers in each node to "newptr" */
638 void
639 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
640 {
641 	int     i;
642 	for (i = 0; i < dag_h->numSuccedents; i++)
643 		if (dag_h->succedents[i]->dagHdr != newptr)
644 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
645 }
646 
647 void
648 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
649 {
650 	int     i;
651 	node->dagHdr = newptr;
652 	for (i = 0; i < node->numSuccedents; i++)
653 		if (node->succedents[i]->dagHdr != newptr)
654 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
655 }
656 
657 
658 void
659 rf_PrintDAGList(RF_DagHeader_t * dag_h)
660 {
661 	int     i = 0;
662 
663 	for (; dag_h; dag_h = dag_h->next) {
664 		rf_AssignNodeNums(dag_h);
665 		printf("\n\nDAG %d IN LIST:\n", i++);
666 		rf_PrintDAG(dag_h);
667 	}
668 }
669 
670 static int
671 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
672 		  RF_DagNode_t **nodes, int unvisited)
673 {
674 	int     i, retcode = 0;
675 
676 	/* construct an array of node pointers indexed by node num */
677 	node->visited = (unvisited) ? 0 : 1;
678 	nodes[node->nodeNum] = node;
679 
680 	if (node->next != NULL) {
681 		printf("INVALID DAG: next pointer in node is not NULL\n");
682 		retcode = 1;
683 	}
684 	if (node->status != rf_wait) {
685 		printf("INVALID DAG: Node status is not wait\n");
686 		retcode = 1;
687 	}
688 	if (node->numAntDone != 0) {
689 		printf("INVALID DAG: numAntDone is not zero\n");
690 		retcode = 1;
691 	}
692 	if (node->doFunc == rf_TerminateFunc) {
693 		if (node->numSuccedents != 0) {
694 			printf("INVALID DAG: Terminator node has succedents\n");
695 			retcode = 1;
696 		}
697 	} else {
698 		if (node->numSuccedents == 0) {
699 			printf("INVALID DAG: Non-terminator node has no succedents\n");
700 			retcode = 1;
701 		}
702 	}
703 	for (i = 0; i < node->numSuccedents; i++) {
704 		if (!node->succedents[i]) {
705 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
706 			retcode = 1;
707 		}
708 		scount[node->succedents[i]->nodeNum]++;
709 	}
710 	for (i = 0; i < node->numAntecedents; i++) {
711 		if (!node->antecedents[i]) {
712 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
713 			retcode = 1;
714 		}
715 		acount[node->antecedents[i]->nodeNum]++;
716 	}
717 	for (i = 0; i < node->numSuccedents; i++) {
718 		if (node->succedents[i]->visited == unvisited) {
719 			if (rf_ValidateBranch(node->succedents[i], scount,
720 				acount, nodes, unvisited)) {
721 				retcode = 1;
722 			}
723 		}
724 	}
725 	return (retcode);
726 }
727 
728 static void
729 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
730 {
731 	int     i;
732 
733 	RF_ASSERT(node->visited == unvisited);
734 	for (i = 0; i < node->numSuccedents; i++) {
735 		if (node->succedents[i] == NULL) {
736 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
737 			RF_ASSERT(0);
738 		}
739 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
740 	}
741 }
742 /* NOTE:  never call this on a big dag, because it is exponential
743  * in execution time
744  */
745 static void
746 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
747 {
748 	int     i, unvisited;
749 
750 	unvisited = dag->succedents[0]->visited;
751 
752 	for (i = 0; i < dag->numSuccedents; i++) {
753 		if (dag->succedents[i] == NULL) {
754 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
755 			RF_ASSERT(0);
756 		}
757 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
758 	}
759 }
760 /* validate a DAG.  _at entry_ verify that:
761  *   -- numNodesCompleted is zero
762  *   -- node queue is null
763  *   -- dag status is rf_enable
764  *   -- next pointer is null on every node
765  *   -- all nodes have status wait
766  *   -- numAntDone is zero in all nodes
767  *   -- terminator node has zero successors
768  *   -- no other node besides terminator has zero successors
769  *   -- no successor or antecedent pointer in a node is NULL
770  *   -- number of times that each node appears as a successor of another node
771  *      is equal to the antecedent count on that node
772  *   -- number of times that each node appears as an antecedent of another node
773  *      is equal to the succedent count on that node
774  *   -- what else?
775  */
776 int
777 rf_ValidateDAG(RF_DagHeader_t *dag_h)
778 {
779 	int     i, nodecount;
780 	int    *scount, *acount;/* per-node successor and antecedent counts */
781 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
782 	int     retcode = 0;
783 	int     unvisited;
784 	int     commitNodeCount = 0;
785 
786 	if (rf_validateVisitedDebug)
787 		rf_ValidateVisitedBits(dag_h);
788 
789 	if (dag_h->numNodesCompleted != 0) {
790 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
791 		retcode = 1;
792 		goto validate_dag_bad;
793 	}
794 	if (dag_h->status != rf_enable) {
795 		printf("INVALID DAG: not enabled\n");
796 		retcode = 1;
797 		goto validate_dag_bad;
798 	}
799 	if (dag_h->numCommits != 0) {
800 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
801 		retcode = 1;
802 		goto validate_dag_bad;
803 	}
804 	if (dag_h->numSuccedents != 1) {
805 		/* currently, all dags must have only one succedent */
806 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
807 		retcode = 1;
808 		goto validate_dag_bad;
809 	}
810 	nodecount = rf_AssignNodeNums(dag_h);
811 
812 	unvisited = dag_h->succedents[0]->visited;
813 
814 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
815 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
816 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
817 		  (RF_DagNode_t **));
818 	for (i = 0; i < dag_h->numSuccedents; i++) {
819 		if ((dag_h->succedents[i]->visited == unvisited)
820 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
821 			acount, nodes, unvisited)) {
822 			retcode = 1;
823 		}
824 	}
825 	/* start at 1 to skip the header node */
826 	for (i = 1; i < nodecount; i++) {
827 		if (nodes[i]->commitNode)
828 			commitNodeCount++;
829 		if (nodes[i]->doFunc == NULL) {
830 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
831 			retcode = 1;
832 			goto validate_dag_out;
833 		}
834 		if (nodes[i]->undoFunc == NULL) {
835 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
836 			retcode = 1;
837 			goto validate_dag_out;
838 		}
839 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
840 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
841 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
842 			retcode = 1;
843 			goto validate_dag_out;
844 		}
845 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
846 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
847 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
848 			retcode = 1;
849 			goto validate_dag_out;
850 		}
851 	}
852 
853 	if (dag_h->numCommitNodes != commitNodeCount) {
854 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
855 		    dag_h->numCommitNodes, commitNodeCount);
856 		retcode = 1;
857 		goto validate_dag_out;
858 	}
859 validate_dag_out:
860 	RF_Free(scount, nodecount * sizeof(int));
861 	RF_Free(acount, nodecount * sizeof(int));
862 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
863 	if (retcode)
864 		rf_PrintDAGList(dag_h);
865 
866 	if (rf_validateVisitedDebug)
867 		rf_ValidateVisitedBits(dag_h);
868 
869 	return (retcode);
870 
871 validate_dag_bad:
872 	rf_PrintDAGList(dag_h);
873 	return (retcode);
874 }
875 
876 #endif /* RF_DEBUG_VALIDATE_DAG */
877 
878 /******************************************************************************
879  *
880  * misc construction routines
881  *
882  *****************************************************************************/
883 
884 void
885 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
886 {
887 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
888 	int     fcol = raidPtr->reconControl->fcol;
889 	int     scol = raidPtr->reconControl->spareCol;
890 	RF_PhysDiskAddr_t *pda;
891 
892 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
893 	for (pda = asmap->physInfo; pda; pda = pda->next) {
894 		if (pda->col == fcol) {
895 #if RF_DEBUG_DAG
896 			if (rf_dagDebug) {
897 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
898 					pda->startSector)) {
899 					RF_PANIC();
900 				}
901 			}
902 #endif
903 			/* printf("Remapped data for large write\n"); */
904 			if (ds) {
905 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
906 				    &pda->col, &pda->startSector, RF_REMAP);
907 			} else {
908 				pda->col = scol;
909 			}
910 		}
911 	}
912 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
913 		if (pda->col == fcol) {
914 #if RF_DEBUG_DAG
915 			if (rf_dagDebug) {
916 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
917 					RF_PANIC();
918 				}
919 			}
920 #endif
921 		}
922 		if (ds) {
923 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
924 		} else {
925 			pda->col = scol;
926 		}
927 	}
928 }
929 
930 
931 /* this routine allocates read buffers and generates stripe maps for the
932  * regions of the array from the start of the stripe to the start of the
933  * access, and from the end of the access to the end of the stripe.  It also
934  * computes and returns the number of DAG nodes needed to read all this data.
935  * Note that this routine does the wrong thing if the access is fully
936  * contained within one stripe unit, so we RF_ASSERT against this case at the
937  * start.
938  *
939  * layoutPtr - in: layout information
940  * asmap     - in: access stripe map
941  * dag_h     - in: header of the dag to create
942  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
943  * nRodNodes - out: num nodes to be generated to read unaccessed data
944  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
945  */
946 void
947 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
948 				RF_RaidLayout_t *layoutPtr,
949 				RF_AccessStripeMap_t *asmap,
950 				RF_DagHeader_t *dag_h,
951 				RF_AccessStripeMapHeader_t **new_asm_h,
952 				int *nRodNodes,
953 				char **sosBuffer, char **eosBuffer,
954 				RF_AllocListElem_t *allocList)
955 {
956 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
957 	RF_SectorNum_t sosNumSector, eosNumSector;
958 
959 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
960 	/* generate an access map for the region of the array from start of
961 	 * stripe to start of access */
962 	new_asm_h[0] = new_asm_h[1] = NULL;
963 	*nRodNodes = 0;
964 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
965 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
966 		sosNumSector = asmap->raidAddress - sosRaidAddress;
967 		*sosBuffer = rf_AllocBuffer(raidPtr, rf_RaidAddressToByte(raidPtr, sosNumSector), allocList);
968 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
969 		new_asm_h[0]->next = dag_h->asmList;
970 		dag_h->asmList = new_asm_h[0];
971 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
972 
973 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
974 		/* we're totally within one stripe here */
975 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
976 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
977 	}
978 	/* generate an access map for the region of the array from end of
979 	 * access to end of stripe */
980 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
981 		eosRaidAddress = asmap->endRaidAddress;
982 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
983 		*eosBuffer = rf_AllocBuffer(raidPtr, rf_RaidAddressToByte(raidPtr, eosNumSector), allocList);
984 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
985 		new_asm_h[1]->next = dag_h->asmList;
986 		dag_h->asmList = new_asm_h[1];
987 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
988 
989 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
990 		/* we're totally within one stripe here */
991 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
992 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
993 	}
994 }
995 
996 
997 
998 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
999 int
1000 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1001 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1002 {
1003 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1004 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1005 	/* use -1 to be sure we stay within SU */
1006 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1007 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1008 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1009 }
1010 
1011 
1012 /* GenerateFailedAccessASMs
1013  *
1014  * this routine figures out what portion of the stripe needs to be read
1015  * to effect the degraded read or write operation.  It's primary function
1016  * is to identify everything required to recover the data, and then
1017  * eliminate anything that is already being accessed by the user.
1018  *
1019  * The main result is two new ASMs, one for the region from the start of the
1020  * stripe to the start of the access, and one for the region from the end of
1021  * the access to the end of the stripe.  These ASMs describe everything that
1022  * needs to be read to effect the degraded access.  Other results are:
1023  *    nXorBufs -- the total number of buffers that need to be XORed together to
1024  *                recover the lost data,
1025  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
1026  *                at entry, not allocated.
1027  *    overlappingPDAs --
1028  *                describes which of the non-failed PDAs in the user access
1029  *                overlap data that needs to be read to effect recovery.
1030  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
1031  *                PDA, the ith pda in the input asm overlaps data that needs
1032  *                to be read for recovery.
1033  */
1034  /* in: asm - ASM for the actual access, one stripe only */
1035  /* in: failedPDA - which component of the access has failed */
1036  /* in: dag_h - header of the DAG we're going to create */
1037  /* out: new_asm_h - the two new ASMs */
1038  /* out: nXorBufs - the total number of xor bufs required */
1039  /* out: rpBufPtr - a buffer for the parity read */
1040 void
1041 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1042 			    RF_PhysDiskAddr_t *failedPDA,
1043 			    RF_DagHeader_t *dag_h,
1044 			    RF_AccessStripeMapHeader_t **new_asm_h,
1045 			    int *nXorBufs, char **rpBufPtr,
1046 			    char *overlappingPDAs,
1047 			    RF_AllocListElem_t *allocList)
1048 {
1049 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1050 
1051 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1052 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1053 	RF_PhysDiskAddr_t *pda;
1054 	int     foundit, i;
1055 
1056 	foundit = 0;
1057 	/* first compute the following raid addresses: start of stripe,
1058 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
1059 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
1060 	 * stripe (i.e. start of next stripe)   (eosAddr) */
1061 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1062 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1063 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1064 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1065 
1066 	/* now generate access stripe maps for each of the above regions of
1067 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
1068 
1069 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1070 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1071 
1072 	/* walk through the PDAs and range-restrict each SU to the region of
1073 	 * the SU touched on the failed PDA.  also compute total data buffer
1074 	 * space requirements in this step.  Ignore the parity for now. */
1075 	/* Also count nodes to find out how many bufs need to be xored together */
1076 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
1077 				 * case, 1 is for failed data */
1078 
1079 	if (new_asm_h[0]) {
1080 		new_asm_h[0]->next = dag_h->asmList;
1081 		dag_h->asmList = new_asm_h[0];
1082 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1083 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1084 			pda->bufPtr = rf_AllocBuffer(raidPtr, pda->numSector << raidPtr->logBytesPerSector, allocList);
1085 		}
1086 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1087 	}
1088 	if (new_asm_h[1]) {
1089 		new_asm_h[1]->next = dag_h->asmList;
1090 		dag_h->asmList = new_asm_h[1];
1091 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1092 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1093 			pda->bufPtr = rf_AllocBuffer(raidPtr, pda->numSector << raidPtr->logBytesPerSector, allocList);
1094 		}
1095 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1096 	}
1097 
1098 	/* allocate a buffer for parity */
1099 	if (rpBufPtr)
1100 		*rpBufPtr = rf_AllocBuffer(raidPtr, failedPDA->numSector << raidPtr->logBytesPerSector, allocList);
1101 
1102 	/* the last step is to figure out how many more distinct buffers need
1103 	 * to get xor'd to produce the missing unit.  there's one for each
1104 	 * user-data read node that overlaps the portion of the failed unit
1105 	 * being accessed */
1106 
1107 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1108 		if (pda == failedPDA) {
1109 			i--;
1110 			foundit = 1;
1111 			continue;
1112 		}
1113 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1114 			overlappingPDAs[i] = 1;
1115 			(*nXorBufs)++;
1116 		}
1117 	}
1118 	if (!foundit) {
1119 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1120 		RF_ASSERT(0);
1121 	}
1122 #if RF_DEBUG_DAG
1123 	if (rf_degDagDebug) {
1124 		if (new_asm_h[0]) {
1125 			printf("First asm:\n");
1126 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1127 		}
1128 		if (new_asm_h[1]) {
1129 			printf("Second asm:\n");
1130 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1131 		}
1132 	}
1133 #endif
1134 }
1135 
1136 
1137 /* adjusts the offset and number of sectors in the destination pda so that
1138  * it covers at most the region of the SU covered by the source PDA.  This
1139  * is exclusively a restriction:  the number of sectors indicated by the
1140  * target PDA can only shrink.
1141  *
1142  * For example:  s = sectors within SU indicated by source PDA
1143  *               d = sectors within SU indicated by dest PDA
1144  *               r = results, stored in dest PDA
1145  *
1146  * |--------------- one stripe unit ---------------------|
1147  * |           sssssssssssssssssssssssssssssssss         |
1148  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
1149  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
1150  *
1151  * Another example:
1152  *
1153  * |--------------- one stripe unit ---------------------|
1154  * |           sssssssssssssssssssssssssssssssss         |
1155  * |    ddddddddddddddddddddddd                          |
1156  * |           rrrrrrrrrrrrrrrr                          |
1157  *
1158  */
1159 void
1160 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1161 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1162 {
1163 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1164 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1165 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1166 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
1167 													 * stay within SU */
1168 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1169 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
1170 
1171 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
1172 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1173 
1174 	if (dobuffer)
1175 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1176 	if (doraidaddr) {
1177 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1178 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
1179 	}
1180 }
1181 
1182 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1183 
1184 /*
1185  * Want the highest of these primes to be the largest one
1186  * less than the max expected number of columns (won't hurt
1187  * to be too small or too large, but won't be optimal, either)
1188  * --jimz
1189  */
1190 #define NLOWPRIMES 8
1191 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1192 /*****************************************************************************
1193  * compute the workload shift factor.  (chained declustering)
1194  *
1195  * return nonzero if access should shift to secondary, otherwise,
1196  * access is to primary
1197  *****************************************************************************/
1198 int
1199 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1200 {
1201 	/*
1202          * variables:
1203          *  d   = column of disk containing primary
1204          *  f   = column of failed disk
1205          *  n   = number of disks in array
1206          *  sd  = "shift distance" (number of columns that d is to the right of f)
1207          *  v   = numerator of redirection ratio
1208          *  k   = denominator of redirection ratio
1209          */
1210 	RF_RowCol_t d, f, sd, n;
1211 	int     k, v, ret, i;
1212 
1213 	n = raidPtr->numCol;
1214 
1215 	/* assign column of primary copy to d */
1216 	d = pda->col;
1217 
1218 	/* assign column of dead disk to f */
1219 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1220 
1221 	RF_ASSERT(f < n);
1222 	RF_ASSERT(f != d);
1223 
1224 	sd = (f > d) ? (n + d - f) : (d - f);
1225 	RF_ASSERT(sd < n);
1226 
1227 	/*
1228          * v of every k accesses should be redirected
1229          *
1230          * v/k := (n-1-sd)/(n-1)
1231          */
1232 	v = (n - 1 - sd);
1233 	k = (n - 1);
1234 
1235 #if 1
1236 	/*
1237          * XXX
1238          * Is this worth it?
1239          *
1240          * Now reduce the fraction, by repeatedly factoring
1241          * out primes (just like they teach in elementary school!)
1242          */
1243 	for (i = 0; i < NLOWPRIMES; i++) {
1244 		if (lowprimes[i] > v)
1245 			break;
1246 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1247 			v /= lowprimes[i];
1248 			k /= lowprimes[i];
1249 		}
1250 	}
1251 #endif
1252 
1253 	raidPtr->hist_diskreq[d]++;
1254 	if (raidPtr->hist_diskreq[d] > v) {
1255 		ret = 0;	/* do not redirect */
1256 	} else {
1257 		ret = 1;	/* redirect */
1258 	}
1259 
1260 #if 0
1261 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1262 	    raidPtr->hist_diskreq[d]);
1263 #endif
1264 
1265 	if (raidPtr->hist_diskreq[d] >= k) {
1266 		/* reset counter */
1267 		raidPtr->hist_diskreq[d] = 0;
1268 	}
1269 	return (ret);
1270 }
1271 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1272 
1273 /*
1274  * Disk selection routines
1275  */
1276 
1277 /*
1278  * Selects the disk with the shortest queue from a mirror pair.
1279  * Both the disk I/Os queued in RAIDframe as well as those at the physical
1280  * disk are counted as members of the "queue"
1281  */
1282 void
1283 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1284 {
1285 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1286 	RF_RowCol_t colData, colMirror;
1287 	int     dataQueueLength, mirrorQueueLength, usemirror;
1288 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1289 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1290 	RF_PhysDiskAddr_t *tmp_pda;
1291 	RF_RaidDisk_t *disks = raidPtr->Disks;
1292 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1293 
1294 	/* return the [row col] of the disk with the shortest queue */
1295 	colData = data_pda->col;
1296 	colMirror = mirror_pda->col;
1297 	dataQueue = &(dqs[colData]);
1298 	mirrorQueue = &(dqs[colMirror]);
1299 
1300 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1301 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1302 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1303 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1304 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1305 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1306 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1307 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1308 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1309 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1310 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1311 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1312 
1313 	usemirror = 0;
1314 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1315 		usemirror = 0;
1316 	} else
1317 		if (RF_DEAD_DISK(disks[colData].status)) {
1318 			usemirror = 1;
1319 		} else
1320 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1321 				/* Trust only the main disk */
1322 				usemirror = 0;
1323 			} else
1324 				if (dataQueueLength < mirrorQueueLength) {
1325 					usemirror = 0;
1326 				} else
1327 					if (mirrorQueueLength < dataQueueLength) {
1328 						usemirror = 1;
1329 					} else {
1330 						/* queues are equal length. attempt
1331 						 * cleverness. */
1332 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1333 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1334 							usemirror = 0;
1335 						} else {
1336 							usemirror = 1;
1337 						}
1338 					}
1339 
1340 	if (usemirror) {
1341 		/* use mirror (parity) disk, swap params 0 & 4 */
1342 		tmp_pda = data_pda;
1343 		node->params[0].p = mirror_pda;
1344 		node->params[4].p = tmp_pda;
1345 	} else {
1346 		/* use data disk, leave param 0 unchanged */
1347 	}
1348 	/* printf("dataQueueLength %d, mirrorQueueLength
1349 	 * %d\n",dataQueueLength, mirrorQueueLength); */
1350 }
1351 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1352 /*
1353  * Do simple partitioning. This assumes that
1354  * the data and parity disks are laid out identically.
1355  */
1356 void
1357 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1358 {
1359 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1360 	RF_RowCol_t colData, colMirror;
1361 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1362 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1363 	RF_PhysDiskAddr_t *tmp_pda;
1364 	RF_RaidDisk_t *disks = raidPtr->Disks;
1365 	int     usemirror;
1366 
1367 	/* return the [row col] of the disk with the shortest queue */
1368 	colData = data_pda->col;
1369 	colMirror = mirror_pda->col;
1370 
1371 	usemirror = 0;
1372 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1373 		usemirror = 0;
1374 	} else
1375 		if (RF_DEAD_DISK(disks[colData].status)) {
1376 			usemirror = 1;
1377 		} else
1378 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1379 				/* Trust only the main disk */
1380 				usemirror = 0;
1381 			} else
1382 				if (data_pda->startSector <
1383 				    (disks[colData].numBlocks / 2)) {
1384 					usemirror = 0;
1385 				} else {
1386 					usemirror = 1;
1387 				}
1388 
1389 	if (usemirror) {
1390 		/* use mirror (parity) disk, swap params 0 & 4 */
1391 		tmp_pda = data_pda;
1392 		node->params[0].p = mirror_pda;
1393 		node->params[4].p = tmp_pda;
1394 	} else {
1395 		/* use data disk, leave param 0 unchanged */
1396 	}
1397 }
1398 #endif
1399