xref: /netbsd-src/sys/dev/pci/ubsec.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: ubsec.c,v 1.44 2018/09/03 16:29:32 riastradh Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.44 2018/09/03 16:29:32 riastradh Exp $");
39 
40 #undef UBSEC_DEBUG
41 
42 /*
43  * uBsec 5[56]01, 58xx hardware crypto accelerator
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51   #define UBSEC_NO_RNG	/* hangs on attach */
52   #define letoh16 htole16
53   #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/module.h>
61 #include <sys/queue.h>
62 #include <sys/sysctl.h>
63 
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66 #ifdef __OpenBSD__
67  #include <dev/rndvar.h>
68  #include <sys/md5k.h>
69 #else
70  #include <sys/cprng.h>
71  #include <sys/md5.h>
72  #include <sys/rndpool.h>
73  #include <sys/rndsource.h>
74 #endif
75 #include <sys/sha1.h>
76 
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80 
81 #include <dev/pci/ubsecreg.h>
82 #include <dev/pci/ubsecvar.h>
83 
84 /*
85  * Prototypes and count for the pci_device structure
86  */
87 static	int  ubsec_probe(device_t, cfdata_t, void *);
88 static	void ubsec_attach(device_t, device_t, void *);
89 static	int  ubsec_detach(device_t, int);
90 static	int  ubsec_sysctl_init(void);
91 static	void ubsec_reset_board(struct ubsec_softc *);
92 static	void ubsec_init_board(struct ubsec_softc *);
93 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
94 static	void ubsec_cleanchip(struct ubsec_softc *);
95 static	void ubsec_totalreset(struct ubsec_softc *);
96 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
97 
98 #ifdef __OpenBSD__
99 struct cfattach ubsec_ca = {
100 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
101 };
102 
103 struct cfdriver ubsec_cd = {
104 	0, "ubsec", DV_DULL
105 };
106 #else
107 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
108 	      ubsec_detach, NULL);
109 extern struct cfdriver ubsec_cd;
110 #endif
111 
112 /* patchable */
113 #ifdef	UBSEC_DEBUG
114 extern int ubsec_debug;
115 int ubsec_debug=1;
116 #endif
117 
118 static	int	ubsec_intr(void *);
119 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
120 static	int	ubsec_freesession(void*, u_int64_t);
121 static	int	ubsec_process(void*, struct cryptop *, int hint);
122 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
123 static	void	ubsec_feed(struct ubsec_softc *);
124 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
125 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
126 static	void	ubsec_feed2(struct ubsec_softc *);
127 static	void	ubsec_feed4(struct ubsec_softc *);
128 #ifndef UBSEC_NO_RNG
129 static  void	ubsec_rng(void *);
130 static  void	ubsec_rng_locked(void *);
131 static  void	ubsec_rng_get(size_t, void *);
132 #endif /* UBSEC_NO_RNG */
133 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
134 				 struct ubsec_dma_alloc *, int);
135 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
136 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
137 
138 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
139 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
140 					 struct cryptkop *, int);
141 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
142 					 struct cryptkop *, int);
143 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
144 				       struct cryptkop *, int);
145 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
146 static	int	ubsec_ksigbits(struct crparam *);
147 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
148 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
149 
150 #ifdef UBSEC_DEBUG
151 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
152 static void	ubsec_dump_mcr(struct ubsec_mcr *);
153 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
154 #endif
155 
156 #define	READ_REG(sc,r) \
157 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
158 
159 #define WRITE_REG(sc,reg,val) \
160 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
161 
162 #define	SWAP32(x) (x) = htole32(ntohl((x)))
163 #ifndef HTOLE32
164  #define	HTOLE32(x) (x) = htole32(x)
165 #endif
166 
167 struct ubsec_stats ubsecstats;
168 
169 static struct sysctllog *ubsec_sysctllog;
170 
171 /*
172  * ubsec_maxbatch controls the number of crypto ops to voluntarily
173  * collect into one submission to the hardware.  This batching happens
174  * when ops are dispatched from the crypto subsystem with a hint that
175  * more are to follow immediately.  These ops must also not be marked
176  * with a ``no delay'' flag.
177  */
178 static	int ubsec_maxbatch = 1;
179 
180 /*
181  * ubsec_maxaggr controls the number of crypto ops to submit to the
182  * hardware as a unit.  This aggregation reduces the number of interrupts
183  * to the host at the expense of increased latency (for all but the last
184  * operation).  For network traffic setting this to one yields the highest
185  * performance but at the expense of more interrupt processing.
186  */
187 static	int ubsec_maxaggr = 1;
188 
189 static const struct ubsec_product {
190 	pci_vendor_id_t		ubsec_vendor;
191 	pci_product_id_t	ubsec_product;
192 	int			ubsec_flags;
193 	int			ubsec_statmask;
194 	int			ubsec_maxaggr;
195 	const char		*ubsec_name;
196 } ubsec_products[] = {
197 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
198 	  0,
199 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
200 	  UBS_MIN_AGGR,
201 	  "Bluesteel 5501"
202 	},
203 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
204 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
205 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
206 	  UBS_MIN_AGGR,
207 	  "Bluesteel 5601"
208 	},
209 
210 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
211 	  0,
212 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
213 	  UBS_MIN_AGGR,
214 	  "Broadcom BCM5801"
215 	},
216 
217 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
218 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
219 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
220 	  UBS_MIN_AGGR,
221 	  "Broadcom BCM5802"
222 	},
223 
224 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
225 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
226 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
227 	  UBS_MIN_AGGR,
228 	  "Broadcom BCM5805"
229 	},
230 
231 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
232 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
233 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
234 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
235 	  UBS_MIN_AGGR,
236 	  "Broadcom BCM5820"
237 	},
238 
239 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
240 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
241 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
242 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
243 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
244 	  UBS_MIN_AGGR,
245 	  "Broadcom BCM5821"
246 	},
247 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
248 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
249 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
250 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
251 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
252 	  UBS_MIN_AGGR,
253 	  "Sun Crypto Accelerator 1000"
254 	},
255 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
256 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
257 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
258 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
259 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
260 	  UBS_MIN_AGGR,
261 	  "Broadcom BCM5821 (Sun)"
262 	},
263 
264 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
265 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
266 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
267 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
268 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
269 	  UBS_MIN_AGGR,
270 	  "Broadcom BCM5822"
271 	},
272 
273 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
274 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
275 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
276 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
277 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
278 	  UBS_MIN_AGGR,
279 	  "Broadcom BCM5823"
280 	},
281 
282 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
283 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
284 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
285 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
286 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
287 	  UBS_MIN_AGGR,
288 	  "Broadcom BCM5825"
289 	},
290 
291 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
292 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
293 	      UBS_FLAGS_LONGCTX |
294 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
295 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
296 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
297 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
298 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
299 	  UBS_MAX_AGGR,
300 	  "Broadcom BCM5860"
301 	},
302 
303 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
304 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
305 	      UBS_FLAGS_LONGCTX |
306 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
307 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
308 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
309 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
310 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
311 	  UBS_MAX_AGGR,
312 	  "Broadcom BCM5861"
313 	},
314 
315 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
316 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
317 	      UBS_FLAGS_LONGCTX |
318 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
319 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
320 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
321 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
322 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
323 	  UBS_MAX_AGGR,
324 	  "Broadcom BCM5862"
325 	},
326 
327 	{ 0,			0,
328 	  0,
329 	  0,
330 	  0,
331 	  NULL
332 	}
333 };
334 
335 static const struct ubsec_product *
336 ubsec_lookup(const struct pci_attach_args *pa)
337 {
338 	const struct ubsec_product *up;
339 
340 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
341 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
342 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
343 			return (up);
344 	}
345 	return (NULL);
346 }
347 
348 static int
349 ubsec_probe(device_t parent, cfdata_t match, void *aux)
350 {
351 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
352 
353 	if (ubsec_lookup(pa) != NULL)
354 		return (1);
355 
356 	return (0);
357 }
358 
359 static void
360 ubsec_attach(device_t parent, device_t self, void *aux)
361 {
362 	struct ubsec_softc *sc = device_private(self);
363 	struct pci_attach_args *pa = aux;
364 	const struct ubsec_product *up;
365 	pci_chipset_tag_t pc = pa->pa_pc;
366 	pci_intr_handle_t ih;
367 	const char *intrstr = NULL;
368 	pcireg_t memtype;
369 	struct ubsec_dma *dmap;
370 	u_int32_t cmd, i;
371 	char intrbuf[PCI_INTRSTR_LEN];
372 
373 	sc->sc_dev = self;
374 	sc->sc_pct = pc;
375 
376 	up = ubsec_lookup(pa);
377 	if (up == NULL) {
378 		printf("\n");
379 		panic("ubsec_attach: impossible");
380 	}
381 
382 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
383 
384 	SIMPLEQ_INIT(&sc->sc_queue);
385 	SIMPLEQ_INIT(&sc->sc_qchip);
386 	SIMPLEQ_INIT(&sc->sc_queue2);
387 	SIMPLEQ_INIT(&sc->sc_qchip2);
388 	SIMPLEQ_INIT(&sc->sc_queue4);
389 	SIMPLEQ_INIT(&sc->sc_qchip4);
390 	SIMPLEQ_INIT(&sc->sc_q2free);
391 
392 	sc->sc_flags = up->ubsec_flags;
393 	sc->sc_statmask = up->ubsec_statmask;
394 	sc->sc_maxaggr = up->ubsec_maxaggr;
395 
396 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
397 	cmd |= PCI_COMMAND_MASTER_ENABLE;
398 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
399 
400 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
401 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
402 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
403 		aprint_error_dev(self, "can't find mem space");
404 		return;
405 	}
406 
407 	sc->sc_dmat = pa->pa_dmat;
408 
409 	if (pci_intr_map(pa, &ih)) {
410 		aprint_error_dev(self, "couldn't map interrupt\n");
411 		return;
412 	}
413 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
414 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
415 	if (sc->sc_ih == NULL) {
416 		aprint_error_dev(self, "couldn't establish interrupt");
417 		if (intrstr != NULL)
418 			aprint_error(" at %s", intrstr);
419 		aprint_error("\n");
420 		return;
421 	}
422 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
423 
424 	sc->sc_cid = crypto_get_driverid(0);
425 	if (sc->sc_cid < 0) {
426 		aprint_error_dev(self, "couldn't get crypto driver id\n");
427 		pci_intr_disestablish(pc, sc->sc_ih);
428 		return;
429 	}
430 
431 	sc->sc_rng_need = RND_POOLBITS / NBBY;
432 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
433 
434 	SIMPLEQ_INIT(&sc->sc_freequeue);
435 	dmap = sc->sc_dmaa;
436 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
437 		struct ubsec_q *q;
438 
439 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
440 		    M_DEVBUF, M_ZERO|M_NOWAIT);
441 		if (q == NULL) {
442 			aprint_error_dev(self,
443 			    "can't allocate queue buffers\n");
444 			break;
445 		}
446 
447 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
448 		    &dmap->d_alloc, 0)) {
449 			aprint_error_dev(self, "can't allocate dma buffers\n");
450 			free(q, M_DEVBUF);
451 			break;
452 		}
453 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
454 
455 		q->q_dma = dmap;
456 		sc->sc_queuea[i] = q;
457 
458 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
459 	}
460 
461 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
462 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
463 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
464 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
465 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
466 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
467 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
468 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
469 	if (sc->sc_flags & UBS_FLAGS_AES) {
470 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
471 		    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
472 	}
473 
474 	/*
475 	 * Reset Broadcom chip
476 	 */
477 	ubsec_reset_board(sc);
478 
479 	/*
480 	 * Init Broadcom specific PCI settings
481 	 */
482 	ubsec_init_pciregs(pa);
483 
484 	/*
485 	 * Init Broadcom chip
486 	 */
487 	ubsec_init_board(sc);
488 
489 #ifndef UBSEC_NO_RNG
490 	if (sc->sc_flags & UBS_FLAGS_RNG) {
491 		if (sc->sc_flags & UBS_FLAGS_RNG4)
492 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
493 		else
494 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
495 
496 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
497 		    &sc->sc_rng.rng_q.q_mcr, 0))
498 			goto skip_rng;
499 
500 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
501 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
502 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
503 			goto skip_rng;
504 		}
505 
506 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
507 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
508 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
509 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
510 			goto skip_rng;
511 		}
512 
513 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
514 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
515 				  RND_TYPE_RNG,
516 				  RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
517 		if (hz >= 100)
518 			sc->sc_rnghz = hz / 100;
519 		else
520 			sc->sc_rnghz = 1;
521 #ifdef __OpenBSD__
522 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
523 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
524 #else
525 		callout_init(&sc->sc_rngto, 0);
526 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
527 		callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
528 #endif
529  skip_rng:
530 		if (sc->sc_rnghz)
531 			aprint_normal_dev(self,
532 			    "random number generator enabled\n");
533 		else
534 			aprint_error_dev(self,
535 			    "WARNING: random number generator disabled\n");
536 	}
537 #endif /* UBSEC_NO_RNG */
538 
539 	if (sc->sc_flags & UBS_FLAGS_KEY) {
540 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
541 
542 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
543 				 ubsec_kprocess, sc);
544 #if 0
545 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
546 				 ubsec_kprocess, sc);
547 #endif
548 	}
549 }
550 
551 static int
552 ubsec_detach(device_t self, int flags)
553 {
554 	struct ubsec_softc *sc = device_private(self);
555 	struct ubsec_q *q, *qtmp;
556 	volatile u_int32_t ctrl;
557 
558 	/* disable interrupts */
559 	/* XXX wait/abort current ops? where is DMAERR enabled? */
560 	ctrl = READ_REG(sc, BS_CTRL);
561 
562 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
563 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
564 		ctrl &= ~BS_CTRL_MCR4INT;
565 
566 	WRITE_REG(sc, BS_CTRL, ctrl);
567 
568 #ifndef UBSEC_NO_RNG
569 	if (sc->sc_flags & UBS_FLAGS_RNG) {
570 		callout_halt(&sc->sc_rngto, NULL);
571 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
572 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
573 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
574 		rnd_detach_source(&sc->sc_rnd_source);
575 	}
576 #endif /* UBSEC_NO_RNG */
577 
578 	crypto_unregister_all(sc->sc_cid);
579 
580 	mutex_spin_enter(&sc->sc_mtx);
581 
582 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
583 
584 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
585 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
586 		if (q->q_src_map != NULL)
587 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
588 		if (q->q_cached_dst_map != NULL)
589 			bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
590 		free(q, M_DEVBUF);
591 	}
592 
593 	mutex_spin_exit(&sc->sc_mtx);
594 
595 	if (sc->sc_ih != NULL) {
596 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
597 		sc->sc_ih = NULL;
598 	}
599 
600 	if (sc->sc_memsize != 0) {
601 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
602 		sc->sc_memsize = 0;
603 	}
604 
605 	return 0;
606 }
607 
608 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
609 
610 #ifdef _MODULE
611 #include "ioconf.c"
612 #endif
613 
614 static int
615 ubsec_modcmd(modcmd_t cmd, void *data)
616 {
617 	int error = 0;
618 
619 	switch (cmd) {
620 	case MODULE_CMD_INIT:
621 #ifdef _MODULE
622 		error = config_init_component(cfdriver_ioconf_ubsec,
623 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
624 #endif
625 		if (error == 0)
626 			error = ubsec_sysctl_init();
627 		return error;
628 	case MODULE_CMD_FINI:
629 		if (ubsec_sysctllog != NULL)
630 			sysctl_teardown(&ubsec_sysctllog);
631 #ifdef _MODULE
632 		error = config_fini_component(cfdriver_ioconf_ubsec,
633 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
634 #endif
635 		return error;
636 	default:
637 		return ENOTTY;
638 	}
639 }
640 
641 static int
642 ubsec_sysctl_init(void)
643 {
644 	const struct sysctlnode *node = NULL;
645 
646 	ubsec_sysctllog = NULL;
647 
648 	sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
649 		CTLFLAG_PERMANENT,
650 		CTLTYPE_NODE, "ubsec",
651 		SYSCTL_DESCR("ubsec opetions"),
652 		NULL, 0, NULL, 0,
653 		CTL_HW, CTL_CREATE, CTL_EOL);
654 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
655 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
656 		CTLTYPE_INT, "maxbatch",
657 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
658 		NULL, 0, &ubsec_maxbatch, 0,
659 		CTL_CREATE, CTL_EOL);
660 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
661 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
662 		CTLTYPE_INT, "maxaggr",
663 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
664 		NULL, 0, &ubsec_maxaggr, 0,
665 		CTL_CREATE, CTL_EOL);
666 
667 	return 0;
668 }
669 
670 /*
671  * UBSEC Interrupt routine
672  */
673 static int
674 ubsec_intr(void *arg)
675 {
676 	struct ubsec_softc *sc = arg;
677 	volatile u_int32_t stat;
678 	struct ubsec_q *q;
679 	struct ubsec_dma *dmap;
680 	int flags;
681 	int npkts = 0, i;
682 
683 	mutex_spin_enter(&sc->sc_mtx);
684 	stat = READ_REG(sc, BS_STAT);
685 	stat &= sc->sc_statmask;
686 	if (stat == 0) {
687 		mutex_spin_exit(&sc->sc_mtx);
688 		return (0);
689 	}
690 
691 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
692 
693 	/*
694 	 * Check to see if we have any packets waiting for us
695 	 */
696 	if ((stat & BS_STAT_MCR1_DONE)) {
697 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
698 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
699 			dmap = q->q_dma;
700 
701 			if ((dmap->d_dma->d_mcr.mcr_flags
702 			    & htole16(UBS_MCR_DONE)) == 0)
703 				break;
704 
705 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
706 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
707 
708 			npkts = q->q_nstacked_mcrs;
709 			sc->sc_nqchip -= 1+npkts;
710 			/*
711 			 * search for further sc_qchip ubsec_q's that share
712 			 * the same MCR, and complete them too, they must be
713 			 * at the top.
714 			 */
715 			for (i = 0; i < npkts; i++) {
716 				if(q->q_stacked_mcr[i])
717 					ubsec_callback(sc, q->q_stacked_mcr[i]);
718 				else
719 					break;
720 			}
721 			ubsec_callback(sc, q);
722 		}
723 
724 		/*
725 		 * Don't send any more packet to chip if there has been
726 		 * a DMAERR.
727 		 */
728 		if (!(stat & BS_STAT_DMAERR))
729 			ubsec_feed(sc);
730 	}
731 
732 	/*
733 	 * Check to see if we have any key setups/rng's waiting for us
734 	 */
735 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
736 	    (stat & BS_STAT_MCR2_DONE)) {
737 		struct ubsec_q2 *q2;
738 		struct ubsec_mcr *mcr;
739 
740 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
741 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
742 
743 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
744 			    0, q2->q_mcr.dma_map->dm_mapsize,
745 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
746 
747 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
748 
749 			/* A bug in new devices requires to swap this field */
750 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
751 				flags = htole16(mcr->mcr_flags);
752 			else
753 				flags = mcr->mcr_flags;
754 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
755 				bus_dmamap_sync(sc->sc_dmat,
756 				    q2->q_mcr.dma_map, 0,
757 				    q2->q_mcr.dma_map->dm_mapsize,
758 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759 				break;
760 			}
761 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
762 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
763 			ubsec_callback2(sc, q2);
764 			/*
765 			 * Don't send any more packet to chip if there has been
766 			 * a DMAERR.
767 			 */
768 			if (!(stat & BS_STAT_DMAERR))
769 				ubsec_feed2(sc);
770 		}
771 	}
772 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
773 		struct ubsec_q2 *q2;
774 		struct ubsec_mcr *mcr;
775 
776 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
777 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
778 
779 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
780 			    0, q2->q_mcr.dma_map->dm_mapsize,
781 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
782 
783 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
784 
785 			/* A bug in new devices requires to swap this field */
786 			flags = htole16(mcr->mcr_flags);
787 
788 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
789 				bus_dmamap_sync(sc->sc_dmat,
790 				    q2->q_mcr.dma_map, 0,
791 				    q2->q_mcr.dma_map->dm_mapsize,
792 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
793 				break;
794 			}
795 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
796 			ubsec_callback2(sc, q2);
797 			/*
798 			 * Don't send any more packet to chip if there has been
799 			 * a DMAERR.
800 			 */
801 			if (!(stat & BS_STAT_DMAERR))
802 				ubsec_feed4(sc);
803 		}
804 	}
805 
806 	/*
807 	 * Check to see if we got any DMA Error
808 	 */
809 	if (stat & BS_STAT_DMAERR) {
810 #ifdef UBSEC_DEBUG
811 		if (ubsec_debug) {
812 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
813 
814 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
815 			    (a & BS_ERR_READ) ? "read" : "write",
816 			       a & BS_ERR_ADDR);
817 		}
818 #endif /* UBSEC_DEBUG */
819 		ubsecstats.hst_dmaerr++;
820 		ubsec_totalreset(sc);
821 		ubsec_feed(sc);
822 	}
823 
824 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
825 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
826 #ifdef UBSEC_DEBUG
827 		if (ubsec_debug)
828 			printf("%s: wakeup crypto (%x)\n",
829 			    device_xname(sc->sc_dev), sc->sc_needwakeup);
830 #endif /* UBSEC_DEBUG */
831 		sc->sc_needwakeup &= ~wkeup;
832 		crypto_unblock(sc->sc_cid, wkeup);
833 	}
834 	mutex_spin_exit(&sc->sc_mtx);
835 	return (1);
836 }
837 
838 /*
839  * ubsec_feed() - aggregate and post requests to chip
840  * OpenBSD comments:
841  *		  It is assumed that the caller set splnet()
842  */
843 static void
844 ubsec_feed(struct ubsec_softc *sc)
845 {
846 	struct ubsec_q *q, *q2;
847 	int npkts, i;
848 	void *v;
849 	u_int32_t stat;
850 #ifdef UBSEC_DEBUG
851 	static int max;
852 #endif /* UBSEC_DEBUG */
853 
854 	npkts = sc->sc_nqueue;
855 	if (npkts > ubsecstats.hst_maxqueue)
856 		ubsecstats.hst_maxqueue = npkts;
857 	if (npkts < 2)
858 		goto feed1;
859 
860 	/*
861 	 * Decide how many ops to combine in a single MCR.  We cannot
862 	 * aggregate more than UBS_MAX_AGGR because this is the number
863 	 * of slots defined in the data structure.  Otherwise we clamp
864 	 * based on the tunable parameter ubsec_maxaggr.  Note that
865 	 * aggregation can happen in two ways: either by batching ops
866 	 * from above or because the h/w backs up and throttles us.
867 	 * Aggregating ops reduces the number of interrupts to the host
868 	 * but also (potentially) increases the latency for processing
869 	 * completed ops as we only get an interrupt when all aggregated
870 	 * ops have completed.
871 	 */
872 	if (npkts > sc->sc_maxaggr)
873 		npkts = sc->sc_maxaggr;
874 	if (npkts > ubsec_maxaggr)
875 		npkts = ubsec_maxaggr;
876 	if (npkts > ubsecstats.hst_maxbatch)
877 		ubsecstats.hst_maxbatch = npkts;
878 	if (npkts < 2)
879 		goto feed1;
880 	ubsecstats.hst_totbatch += npkts-1;
881 
882 	if ((stat = READ_REG(sc, BS_STAT))
883 	    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
884 		if (stat & BS_STAT_DMAERR) {
885 			ubsec_totalreset(sc);
886 			ubsecstats.hst_dmaerr++;
887 		} else {
888 			ubsecstats.hst_mcr1full++;
889 		}
890 		return;
891 	}
892 
893 #ifdef UBSEC_DEBUG
894 	if (ubsec_debug)
895 	    printf("merging %d records\n", npkts);
896 	/* XXX temporary aggregation statistics reporting code */
897 	if (max < npkts) {
898 		max = npkts;
899 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev),
900 		    max);
901 	}
902 #endif /* UBSEC_DEBUG */
903 
904 	q = SIMPLEQ_FIRST(&sc->sc_queue);
905 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
906 	--sc->sc_nqueue;
907 
908 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
909 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
910 	if (q->q_dst_map != NULL)
911 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
912 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
913 
914 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
915 
916 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
917 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
918 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
919 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
920 		if (q2->q_dst_map != NULL)
921 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
922 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
923 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
924 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
925 		--sc->sc_nqueue;
926 
927 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
928 		v = (char*)v + (sizeof(struct ubsec_mcr) -
929 				 sizeof(struct ubsec_mcr_add));
930 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v,
931 		    sizeof(struct ubsec_mcr_add));
932 		q->q_stacked_mcr[i] = q2;
933 	}
934 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
935 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
936 	sc->sc_nqchip += npkts;
937 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
938 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
939 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
940 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
941 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
942 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
943 	    offsetof(struct ubsec_dmachunk, d_mcr));
944 	return;
945 
946 feed1:
947 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
948 		if ((stat = READ_REG(sc, BS_STAT))
949 		    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
950 			if (stat & BS_STAT_DMAERR) {
951 				ubsec_totalreset(sc);
952 				ubsecstats.hst_dmaerr++;
953 			} else {
954 				ubsecstats.hst_mcr1full++;
955 			}
956 			break;
957 		}
958 
959 		q = SIMPLEQ_FIRST(&sc->sc_queue);
960 
961 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
962 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
963 		if (q->q_dst_map != NULL)
964 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
965 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
966 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
967 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
968 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
969 
970 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
971 		    offsetof(struct ubsec_dmachunk, d_mcr));
972 #ifdef UBSEC_DEBUG
973 		if (ubsec_debug)
974 			printf("feed: q->chip %p %08x stat %08x\n",
975  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
976 			       stat);
977 #endif /* UBSEC_DEBUG */
978 		q = SIMPLEQ_FIRST(&sc->sc_queue);
979 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
980 		--sc->sc_nqueue;
981 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
982 		sc->sc_nqchip++;
983 	}
984 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
985 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
986 }
987 
988 /*
989  * Allocate a new 'session' and return an encoded session id.  'sidp'
990  * contains our registration id, and should contain an encoded session
991  * id on successful allocation.
992  */
993 static int
994 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
995 {
996 	struct cryptoini *c, *encini = NULL, *macini = NULL;
997 	struct ubsec_softc *sc;
998 	struct ubsec_session *ses = NULL;
999 	MD5_CTX md5ctx;
1000 	SHA1_CTX sha1ctx;
1001 	int i, sesn;
1002 
1003 	sc = arg;
1004 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
1005 
1006 	if (sidp == NULL || cri == NULL || sc == NULL)
1007 		return (EINVAL);
1008 
1009 	for (c = cri; c != NULL; c = c->cri_next) {
1010 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
1011 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
1012 			if (macini)
1013 				return (EINVAL);
1014 			macini = c;
1015 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
1016 		    c->cri_alg == CRYPTO_3DES_CBC ||
1017 		    c->cri_alg == CRYPTO_AES_CBC) {
1018 			if (encini)
1019 				return (EINVAL);
1020 			encini = c;
1021 		} else
1022 			return (EINVAL);
1023 	}
1024 	if (encini == NULL && macini == NULL)
1025 		return (EINVAL);
1026 
1027 	if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
1028 		switch (encini->cri_klen) {
1029 		case 128:
1030 		case 192:
1031 		case 256:
1032 			break;
1033 		default:
1034 			return (EINVAL);
1035 		}
1036 	}
1037 
1038 	if (sc->sc_sessions == NULL) {
1039 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1040 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1041 		if (ses == NULL)
1042 			return (ENOMEM);
1043 		sesn = 0;
1044 		sc->sc_nsessions = 1;
1045 	} else {
1046 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1047 			if (sc->sc_sessions[sesn].ses_used == 0) {
1048 				ses = &sc->sc_sessions[sesn];
1049 				break;
1050 			}
1051 		}
1052 
1053 		if (ses == NULL) {
1054 			sesn = sc->sc_nsessions;
1055 			ses = (struct ubsec_session *)malloc((sesn + 1) *
1056 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1057 			if (ses == NULL)
1058 				return (ENOMEM);
1059 			memcpy(ses, sc->sc_sessions, sesn *
1060 			    sizeof(struct ubsec_session));
1061 			memset(sc->sc_sessions, 0, sesn *
1062 			    sizeof(struct ubsec_session));
1063 			free(sc->sc_sessions, M_DEVBUF);
1064 			sc->sc_sessions = ses;
1065 			ses = &sc->sc_sessions[sesn];
1066 			sc->sc_nsessions++;
1067 		}
1068 	}
1069 
1070 	memset(ses, 0, sizeof(struct ubsec_session));
1071 	ses->ses_used = 1;
1072 	if (encini) {
1073 		/* get an IV, network byte order */
1074 #ifdef __NetBSD__
1075 		cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1076 #else
1077 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1078 #endif
1079 
1080 		/* Go ahead and compute key in ubsec's byte order */
1081 		if (encini->cri_alg == CRYPTO_AES_CBC) {
1082 			memcpy(ses->ses_key, encini->cri_key,
1083 			    encini->cri_klen / 8);
1084 		}
1085 		if (encini->cri_alg == CRYPTO_DES_CBC) {
1086 			memcpy(&ses->ses_key[0], encini->cri_key, 8);
1087 			memcpy(&ses->ses_key[2], encini->cri_key, 8);
1088 			memcpy(&ses->ses_key[4], encini->cri_key, 8);
1089 		} else
1090 			memcpy(ses->ses_key, encini->cri_key, 24);
1091 
1092 		SWAP32(ses->ses_key[0]);
1093 		SWAP32(ses->ses_key[1]);
1094 		SWAP32(ses->ses_key[2]);
1095 		SWAP32(ses->ses_key[3]);
1096 		SWAP32(ses->ses_key[4]);
1097 		SWAP32(ses->ses_key[5]);
1098 	}
1099 
1100 	if (macini) {
1101 		for (i = 0; i < macini->cri_klen / 8; i++)
1102 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
1103 
1104 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1105 			MD5Init(&md5ctx);
1106 			MD5Update(&md5ctx, macini->cri_key,
1107 			    macini->cri_klen / 8);
1108 			MD5Update(&md5ctx, hmac_ipad_buffer,
1109 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1110 			memcpy(ses->ses_hminner, md5ctx.state,
1111 			    sizeof(md5ctx.state));
1112 		} else {
1113 			SHA1Init(&sha1ctx);
1114 			SHA1Update(&sha1ctx, macini->cri_key,
1115 			    macini->cri_klen / 8);
1116 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1117 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1118 			memcpy(ses->ses_hminner, sha1ctx.state,
1119 			    sizeof(sha1ctx.state));
1120 		}
1121 
1122 		for (i = 0; i < macini->cri_klen / 8; i++)
1123 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1124 
1125 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1126 			MD5Init(&md5ctx);
1127 			MD5Update(&md5ctx, macini->cri_key,
1128 			    macini->cri_klen / 8);
1129 			MD5Update(&md5ctx, hmac_opad_buffer,
1130 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1131 			memcpy(ses->ses_hmouter, md5ctx.state,
1132 			    sizeof(md5ctx.state));
1133 		} else {
1134 			SHA1Init(&sha1ctx);
1135 			SHA1Update(&sha1ctx, macini->cri_key,
1136 			    macini->cri_klen / 8);
1137 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1138 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1139 			memcpy(ses->ses_hmouter, sha1ctx.state,
1140 			    sizeof(sha1ctx.state));
1141 		}
1142 
1143 		for (i = 0; i < macini->cri_klen / 8; i++)
1144 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1145 	}
1146 
1147 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1148 	return (0);
1149 }
1150 
1151 /*
1152  * Deallocate a session.
1153  */
1154 static int
1155 ubsec_freesession(void *arg, u_int64_t tid)
1156 {
1157 	struct ubsec_softc *sc;
1158 	int session;
1159 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1160 
1161 	sc = arg;
1162 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1163 
1164 	session = UBSEC_SESSION(sid);
1165 	if (session >= sc->sc_nsessions)
1166 		return (EINVAL);
1167 
1168 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1169 	return (0);
1170 }
1171 
1172 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1173 static void
1174 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1175     int error)
1176 {
1177 	struct ubsec_operand *op = arg;
1178 
1179 	KASSERT(nsegs <= UBS_MAX_SCATTER
1180 		/*, ("Too many DMA segments returned when mapping operand")*/);
1181 #ifdef UBSEC_DEBUG
1182 	if (ubsec_debug)
1183 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1184 			(u_int) mapsize, nsegs);
1185 #endif
1186 	op->mapsize = mapsize;
1187 	op->nsegs = nsegs;
1188 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1189 }
1190 #endif
1191 
1192 static int
1193 ubsec_process(void *arg, struct cryptop *crp, int hint)
1194 {
1195 	struct ubsec_q *q = NULL;
1196 #ifdef	__OpenBSD__
1197 	int card;
1198 #endif
1199 	int err = 0, i, j, nicealign;
1200 	struct ubsec_softc *sc;
1201 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1202 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1203 	int sskip, dskip, stheend, dtheend;
1204 	int16_t coffset;
1205 	struct ubsec_session *ses, key;
1206 	struct ubsec_dma *dmap = NULL;
1207 	u_int16_t flags = 0;
1208 	int ivlen = 0, keylen = 0;
1209 
1210 	sc = arg;
1211 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1212 
1213 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1214 		ubsecstats.hst_invalid++;
1215 		return (EINVAL);
1216 	}
1217 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1218 		ubsecstats.hst_badsession++;
1219 		return (EINVAL);
1220 	}
1221 
1222 	mutex_spin_enter(&sc->sc_mtx);
1223 
1224 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1225 		ubsecstats.hst_queuefull++;
1226 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1227 		mutex_spin_exit(&sc->sc_mtx);
1228 		return(ERESTART);
1229 	}
1230 
1231 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1232 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1233 	mutex_spin_exit(&sc->sc_mtx);
1234 
1235 	dmap = q->q_dma; /* Save dma pointer */
1236 	/* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
1237 	memset(q, 0, offsetof(struct ubsec_q, q_src_map));
1238 	memset(&key, 0, sizeof(key));
1239 
1240 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1241 	q->q_dma = dmap;
1242 	ses = &sc->sc_sessions[q->q_sesn];
1243 
1244 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1245 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1246 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1247 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1248 		q->q_src_io = (struct uio *)crp->crp_buf;
1249 		q->q_dst_io = (struct uio *)crp->crp_buf;
1250 	} else {
1251 		ubsecstats.hst_badflags++;
1252 		err = EINVAL;
1253 		goto errout;	/* XXX we don't handle contiguous blocks! */
1254 	}
1255 
1256 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1257 
1258 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1259 	dmap->d_dma->d_mcr.mcr_flags = 0;
1260 	q->q_crp = crp;
1261 
1262 	crd1 = crp->crp_desc;
1263 	if (crd1 == NULL) {
1264 		ubsecstats.hst_nodesc++;
1265 		err = EINVAL;
1266 		goto errout;
1267 	}
1268 	crd2 = crd1->crd_next;
1269 
1270 	if (crd2 == NULL) {
1271 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1272 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1273 			maccrd = crd1;
1274 			enccrd = NULL;
1275 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1276 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1277 		    crd1->crd_alg == CRYPTO_AES_CBC) {
1278 			maccrd = NULL;
1279 			enccrd = crd1;
1280 		} else {
1281 			ubsecstats.hst_badalg++;
1282 			err = EINVAL;
1283 			goto errout;
1284 		}
1285 	} else {
1286 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1287 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1288 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1289 		    crd2->crd_alg == CRYPTO_3DES_CBC ||
1290 		    crd2->crd_alg == CRYPTO_AES_CBC) &&
1291 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1292 			maccrd = crd1;
1293 			enccrd = crd2;
1294 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1295 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1296 		    crd1->crd_alg == CRYPTO_AES_CBC) &&
1297 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1298 		    crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1299 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1300 			enccrd = crd1;
1301 			maccrd = crd2;
1302 		} else {
1303 			/*
1304 			 * We cannot order the ubsec as requested
1305 			 */
1306 			ubsecstats.hst_badalg++;
1307 			err = EINVAL;
1308 			goto errout;
1309 		}
1310 	}
1311 
1312 	if (enccrd) {
1313 		if (enccrd->crd_alg == CRYPTO_AES_CBC) {
1314 			if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
1315 				/*
1316 				 * We cannot order the ubsec as requested
1317 				 */
1318 				ubsecstats.hst_badalg++;
1319 				err = EINVAL;
1320 				goto errout;
1321 			}
1322 			flags |= htole16(UBS_PKTCTX_ENC_AES);
1323 			switch (enccrd->crd_klen) {
1324 			case 128:
1325 			case 192:
1326 			case 256:
1327 				keylen = enccrd->crd_klen / 8;
1328 				break;
1329 			default:
1330 				err = EINVAL;
1331 				goto errout;
1332 			}
1333 			ivlen = 16;
1334 		} else {
1335 			flags |= htole16(UBS_PKTCTX_ENC_3DES);
1336 			ivlen = 8;
1337 			keylen = 24;
1338 		}
1339 
1340 		encoffset = enccrd->crd_skip;
1341 
1342 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1343 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1344 
1345 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1346 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1347 			else {
1348 				for (i = 0; i < (ivlen / 4); i++)
1349 					key.ses_iv[i] = ses->ses_iv[i];
1350 			}
1351 
1352 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1353 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1354 					m_copyback(q->q_src_m,
1355 					    enccrd->crd_inject,
1356 					    ivlen, (void *)key.ses_iv);
1357 				else if (crp->crp_flags & CRYPTO_F_IOV)
1358 					cuio_copyback(q->q_src_io,
1359 					    enccrd->crd_inject,
1360 					    ivlen, (void *)key.ses_iv);
1361 			}
1362 		} else {
1363 			flags |= htole16(UBS_PKTCTX_INBOUND);
1364 
1365 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1366 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1367 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1368 				m_copydata(q->q_src_m, enccrd->crd_inject,
1369 				    ivlen, (void *)key.ses_iv);
1370 			else if (crp->crp_flags & CRYPTO_F_IOV)
1371 				cuio_copydata(q->q_src_io,
1372 				    enccrd->crd_inject, 8,
1373 				    (void *)key.ses_iv);
1374 		}
1375 
1376 		for (i = 0; i < (keylen / 4); i++)
1377 			key.ses_key[i] = ses->ses_key[i];
1378 		for (i = 0; i < (ivlen / 4); i++)
1379 			SWAP32(key.ses_iv[i]);
1380 	}
1381 
1382 	if (maccrd) {
1383 		macoffset = maccrd->crd_skip;
1384 
1385 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1386 			flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1387 		else
1388 			flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1389 
1390 		for (i = 0; i < 5; i++) {
1391 			key.ses_hminner[i] = ses->ses_hminner[i];
1392 			key.ses_hmouter[i] = ses->ses_hmouter[i];
1393 
1394 			HTOLE32(key.ses_hminner[i]);
1395 			HTOLE32(key.ses_hmouter[i]);
1396 		}
1397 	}
1398 
1399 	if (enccrd && maccrd) {
1400 		/*
1401 		 * ubsec cannot handle packets where the end of encryption
1402 		 * and authentication are not the same, or where the
1403 		 * encrypted part begins before the authenticated part.
1404 		 */
1405 		if ((encoffset + enccrd->crd_len) !=
1406 		    (macoffset + maccrd->crd_len)) {
1407 			ubsecstats.hst_lenmismatch++;
1408 			err = EINVAL;
1409 			goto errout;
1410 		}
1411 		if (enccrd->crd_skip < maccrd->crd_skip) {
1412 			ubsecstats.hst_skipmismatch++;
1413 			err = EINVAL;
1414 			goto errout;
1415 		}
1416 		sskip = maccrd->crd_skip;
1417 		cpskip = dskip = enccrd->crd_skip;
1418 		stheend = maccrd->crd_len;
1419 		dtheend = enccrd->crd_len;
1420 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1421 		cpoffset = cpskip + dtheend;
1422 #ifdef UBSEC_DEBUG
1423 		if (ubsec_debug) {
1424 			printf("mac: skip %d, len %d, inject %d\n",
1425 			    maccrd->crd_skip, maccrd->crd_len,
1426 			    maccrd->crd_inject);
1427 			printf("enc: skip %d, len %d, inject %d\n",
1428 			    enccrd->crd_skip, enccrd->crd_len,
1429 			    enccrd->crd_inject);
1430 			printf("src: skip %d, len %d\n", sskip, stheend);
1431 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1432 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1433 			       coffset, stheend, cpskip, cpoffset);
1434 		}
1435 #endif
1436 	} else {
1437 		cpskip = dskip = sskip = macoffset + encoffset;
1438 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1439 		cpoffset = cpskip + dtheend;
1440 		coffset = 0;
1441 	}
1442 
1443 	if (q->q_src_map == NULL) {
1444 		/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1445 		if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1446 			0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1447 			err = ENOMEM;
1448 			goto errout;
1449 		}
1450 	}
1451 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1452 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1453 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1454 			ubsecstats.hst_noload++;
1455 			err = ENOMEM;
1456 			goto errout;
1457 		}
1458 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1459 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1460 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1461 			ubsecstats.hst_noload++;
1462 			err = ENOMEM;
1463 			goto errout;
1464 		}
1465 	}
1466 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1467 
1468 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1469 
1470 #ifdef UBSEC_DEBUG
1471 	if (ubsec_debug)
1472 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1473 #endif
1474 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1475 		struct ubsec_pktbuf *pb;
1476 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1477 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1478 
1479 		if (sskip >= packl) {
1480 			sskip -= packl;
1481 			continue;
1482 		}
1483 
1484 		packl -= sskip;
1485 		packp += sskip;
1486 		sskip = 0;
1487 
1488 		if (packl > 0xfffc) {
1489 			err = EIO;
1490 			goto errout;
1491 		}
1492 
1493 		if (j == 0)
1494 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1495 		else
1496 			pb = &dmap->d_dma->d_sbuf[j - 1];
1497 
1498 		pb->pb_addr = htole32(packp);
1499 
1500 		if (stheend) {
1501 			if (packl > stheend) {
1502 				pb->pb_len = htole32(stheend);
1503 				stheend = 0;
1504 			} else {
1505 				pb->pb_len = htole32(packl);
1506 				stheend -= packl;
1507 			}
1508 		} else
1509 			pb->pb_len = htole32(packl);
1510 
1511 		if ((i + 1) == q->q_src_map->dm_nsegs)
1512 			pb->pb_next = 0;
1513 		else
1514 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1515 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1516 		j++;
1517 	}
1518 
1519 	if (enccrd == NULL && maccrd != NULL) {
1520 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1521 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1522 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1523 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1524 #ifdef UBSEC_DEBUG
1525 		if (ubsec_debug)
1526 			printf("opkt: %x %x %x\n",
1527 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1528 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1529 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1530 
1531 #endif
1532 	} else {
1533 		if (crp->crp_flags & CRYPTO_F_IOV) {
1534 			if (!nicealign) {
1535 				ubsecstats.hst_iovmisaligned++;
1536 				err = EINVAL;
1537 				goto errout;
1538 			}
1539 			if (q->q_dst_map == NULL) {
1540 				if (q->q_cached_dst_map == NULL) {
1541 					/*
1542 					 * XXX: ``what the heck's that''
1543 					 * 0xfff0?
1544 					 */
1545 					if (bus_dmamap_create(sc->sc_dmat,
1546 					    0xfff0, UBS_MAX_SCATTER, 0xfff0, 0,
1547 					    BUS_DMA_NOWAIT,
1548 					    &q->q_cached_dst_map) != 0) {
1549 						ubsecstats.hst_nomap++;
1550 						err = ENOMEM;
1551 						goto errout;
1552 					}
1553 				}
1554 				q->q_dst_map = q->q_cached_dst_map;
1555 			}
1556 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1557 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1558 				ubsecstats.hst_noload++;
1559 				err = ENOMEM;
1560 				goto errout;
1561 			}
1562 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1563 			if (nicealign) {
1564 				q->q_dst_m = q->q_src_m;
1565 				q->q_dst_map = q->q_src_map;
1566 			} else {
1567 				int totlen, len;
1568 				struct mbuf *m, *top, **mp;
1569 
1570 				ubsecstats.hst_unaligned++;
1571 				totlen = q->q_src_map->dm_mapsize;
1572 				if (q->q_src_m->m_flags & M_PKTHDR) {
1573 					len = MHLEN;
1574 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1575 					/*XXX FIXME: m_dup_pkthdr */
1576 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1577 						m_free(m);
1578 						m = NULL;
1579 					}
1580 				} else {
1581 					len = MLEN;
1582 					MGET(m, M_DONTWAIT, MT_DATA);
1583 				}
1584 				if (m == NULL) {
1585 					ubsecstats.hst_nombuf++;
1586 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1587 					goto errout;
1588 				}
1589 				if (len == MHLEN)
1590 				  /*XXX was M_DUP_PKTHDR*/
1591 				  M_COPY_PKTHDR(m, q->q_src_m);
1592 				if (totlen >= MINCLSIZE) {
1593 					MCLGET(m, M_DONTWAIT);
1594 					if ((m->m_flags & M_EXT) == 0) {
1595 						m_free(m);
1596 						ubsecstats.hst_nomcl++;
1597 						err = sc->sc_nqueue
1598 						    ? ERESTART : ENOMEM;
1599 						goto errout;
1600 					}
1601 					len = MCLBYTES;
1602 				}
1603 				m->m_len = len;
1604 				top = NULL;
1605 				mp = &top;
1606 
1607 				while (totlen > 0) {
1608 					if (top) {
1609 						MGET(m, M_DONTWAIT, MT_DATA);
1610 						if (m == NULL) {
1611 							m_freem(top);
1612 							ubsecstats.hst_nombuf++;
1613 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1614 							goto errout;
1615 						}
1616 						len = MLEN;
1617 					}
1618 					if (top && totlen >= MINCLSIZE) {
1619 						MCLGET(m, M_DONTWAIT);
1620 						if ((m->m_flags & M_EXT) == 0) {
1621 							*mp = m;
1622 							m_freem(top);
1623 							ubsecstats.hst_nomcl++;
1624 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1625 							goto errout;
1626 						}
1627 						len = MCLBYTES;
1628 					}
1629 					m->m_len = len = uimin(totlen, len);
1630 					totlen -= len;
1631 					*mp = m;
1632 					mp = &m->m_next;
1633 				}
1634 				q->q_dst_m = top;
1635 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1636 				    cpskip, cpoffset);
1637 				if (q->q_dst_map == NULL) {
1638 					if (q->q_cached_dst_map == NULL) {
1639 						/* XXX again, what the heck is that 0xfff0? */
1640 						if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1641 						    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1642 						    &q->q_cached_dst_map) != 0) {
1643 							ubsecstats.hst_nomap++;
1644 							err = ENOMEM;
1645 							goto errout;
1646 						}
1647 					}
1648 					q->q_dst_map = q->q_cached_dst_map;
1649 				}
1650 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1651 				    q->q_dst_map, q->q_dst_m,
1652 				    BUS_DMA_NOWAIT) != 0) {
1653 					ubsecstats.hst_noload++;
1654 					err = ENOMEM;
1655 					goto errout;
1656 				}
1657 			}
1658 		} else {
1659 			ubsecstats.hst_badflags++;
1660 			err = EINVAL;
1661 			goto errout;
1662 		}
1663 
1664 #ifdef UBSEC_DEBUG
1665 		if (ubsec_debug)
1666 			printf("dst skip: %d\n", dskip);
1667 #endif
1668 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1669 			struct ubsec_pktbuf *pb;
1670 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1671 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1672 
1673 			if (dskip >= packl) {
1674 				dskip -= packl;
1675 				continue;
1676 			}
1677 
1678 			packl -= dskip;
1679 			packp += dskip;
1680 			dskip = 0;
1681 
1682 			if (packl > 0xfffc) {
1683 				err = EIO;
1684 				goto errout;
1685 			}
1686 
1687 			if (j == 0)
1688 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1689 			else
1690 				pb = &dmap->d_dma->d_dbuf[j - 1];
1691 
1692 			pb->pb_addr = htole32(packp);
1693 
1694 			if (dtheend) {
1695 				if (packl > dtheend) {
1696 					pb->pb_len = htole32(dtheend);
1697 					dtheend = 0;
1698 				} else {
1699 					pb->pb_len = htole32(packl);
1700 					dtheend -= packl;
1701 				}
1702 			} else
1703 				pb->pb_len = htole32(packl);
1704 
1705 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1706 				if (maccrd)
1707 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1708 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1709 				else
1710 					pb->pb_next = 0;
1711 			} else
1712 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1713 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1714 			j++;
1715 		}
1716 	}
1717 
1718 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1719 	    offsetof(struct ubsec_dmachunk, d_ctx));
1720 
1721 	if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
1722 		struct ubsec_pktctx_aes128	*aes128;
1723 		struct ubsec_pktctx_aes192	*aes192;
1724 		struct ubsec_pktctx_aes256	*aes256;
1725 		struct ubsec_pktctx_hdr		*ph;
1726 		u_int8_t			*ctx;
1727 
1728 		ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1729 		    offsetof(struct ubsec_dmachunk, d_ctx);
1730 
1731 		ph = (struct ubsec_pktctx_hdr *)ctx;
1732 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1733 		ph->ph_flags = flags;
1734 		ph->ph_offset = htole16(coffset >> 2);
1735 
1736 		switch (enccrd->crd_klen) {
1737 		case 128:
1738 			aes128 = (struct ubsec_pktctx_aes128 *)ctx;
1739  			ph->ph_len = htole16(sizeof(*aes128));
1740 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
1741 			for (i = 0; i < 4; i++)
1742 				aes128->pc_aeskey[i] = key.ses_key[i];
1743 			for (i = 0; i < 5; i++)
1744 				aes128->pc_hminner[i] = key.ses_hminner[i];
1745 			for (i = 0; i < 5; i++)
1746 				aes128->pc_hmouter[i] = key.ses_hmouter[i];
1747 			for (i = 0; i < 4; i++)
1748 				aes128->pc_iv[i] = key.ses_iv[i];
1749 			break;
1750 		case 192:
1751 			aes192 = (struct ubsec_pktctx_aes192 *)ctx;
1752 			ph->ph_len = htole16(sizeof(*aes192));
1753 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
1754 			for (i = 0; i < 6; i++)
1755 				aes192->pc_aeskey[i] = key.ses_key[i];
1756 			for (i = 0; i < 5; i++)
1757 				aes192->pc_hminner[i] = key.ses_hminner[i];
1758 			for (i = 0; i < 5; i++)
1759 				aes192->pc_hmouter[i] = key.ses_hmouter[i];
1760 			for (i = 0; i < 4; i++)
1761 				aes192->pc_iv[i] = key.ses_iv[i];
1762 			break;
1763 		case 256:
1764 			aes256 = (struct ubsec_pktctx_aes256 *)ctx;
1765 			ph->ph_len = htole16(sizeof(*aes256));
1766 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
1767 			for (i = 0; i < 8; i++)
1768 				aes256->pc_aeskey[i] = key.ses_key[i];
1769 			for (i = 0; i < 5; i++)
1770 				aes256->pc_hminner[i] = key.ses_hminner[i];
1771 			for (i = 0; i < 5; i++)
1772 				aes256->pc_hmouter[i] = key.ses_hmouter[i];
1773 			for (i = 0; i < 4; i++)
1774 				aes256->pc_iv[i] = key.ses_iv[i];
1775 			break;
1776 		}
1777 	} else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1778 		struct ubsec_pktctx_3des	*ctx;
1779 		struct ubsec_pktctx_hdr		*ph;
1780 
1781 		ctx = (struct ubsec_pktctx_3des *)
1782 		    ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1783 		    offsetof(struct ubsec_dmachunk, d_ctx));
1784 
1785 		ph = (struct ubsec_pktctx_hdr *)ctx;
1786 		ph->ph_len = htole16(sizeof(*ctx));
1787 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
1788 		ph->ph_flags = flags;
1789 		ph->ph_offset = htole16(coffset >> 2);
1790 
1791 		for (i = 0; i < 6; i++)
1792 			ctx->pc_deskey[i] = key.ses_key[i];
1793 		for (i = 0; i < 5; i++)
1794 			ctx->pc_hminner[i] = key.ses_hminner[i];
1795 		for (i = 0; i < 5; i++)
1796 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1797 		for (i = 0; i < 2; i++)
1798 			ctx->pc_iv[i] = key.ses_iv[i];
1799 	} else {
1800 		struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
1801 		    ((u_int8_t *)dmap->d_alloc.dma_vaddr +
1802 		    offsetof(struct ubsec_dmachunk, d_ctx));
1803 
1804 		ctx->pc_flags = flags;
1805 		ctx->pc_offset = htole16(coffset >> 2);
1806 		for (i = 0; i < 6; i++)
1807 			ctx->pc_deskey[i] = key.ses_key[i];
1808 		for (i = 0; i < 5; i++)
1809 			ctx->pc_hminner[i] = key.ses_hminner[i];
1810 		for (i = 0; i < 5; i++)
1811 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1812 		for (i = 0; i < 2; i++)
1813 			ctx->pc_iv[i] = key.ses_iv[i];
1814 	}
1815 
1816 	mutex_spin_enter(&sc->sc_mtx);
1817 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1818 	sc->sc_nqueue++;
1819 	ubsecstats.hst_ipackets++;
1820 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1821 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1822 		ubsec_feed(sc);
1823 	mutex_spin_exit(&sc->sc_mtx);
1824 	return (0);
1825 
1826 errout:
1827 	if (q != NULL) {
1828 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1829 			m_freem(q->q_dst_m);
1830 
1831 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1832 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1833 		}
1834 		if (q->q_src_map != NULL) {
1835 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1836 		}
1837 
1838 		mutex_spin_enter(&sc->sc_mtx);
1839 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1840 		mutex_spin_exit(&sc->sc_mtx);
1841 	}
1842 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1843 	if (err == EINVAL)
1844 		ubsecstats.hst_invalid++;
1845 	else
1846 		ubsecstats.hst_nomem++;
1847 #endif
1848 	if (err != ERESTART) {
1849 		crp->crp_etype = err;
1850 		crypto_done(crp);
1851 	} else {
1852 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1853 	}
1854 	return (err);
1855 }
1856 
1857 static void
1858 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1859 {
1860 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1861 	struct cryptodesc *crd;
1862 	struct ubsec_dma *dmap = q->q_dma;
1863 
1864 	ubsecstats.hst_opackets++;
1865 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1866 
1867 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1868 	    dmap->d_alloc.dma_map->dm_mapsize,
1869 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1870 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1871 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1872 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1873 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1874 	}
1875 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1876 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1877 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1878 
1879 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1880 		m_freem(q->q_src_m);
1881 		crp->crp_buf = (void *)q->q_dst_m;
1882 	}
1883 
1884 	/* copy out IV for future use */
1885 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1886 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1887 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1888 			    crd->crd_alg != CRYPTO_3DES_CBC &&
1889 			    crd->crd_alg != CRYPTO_AES_CBC)
1890 				continue;
1891 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1892 				m_copydata((struct mbuf *)crp->crp_buf,
1893 				    crd->crd_skip + crd->crd_len - 8, 8,
1894 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1895 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1896 				cuio_copydata((struct uio *)crp->crp_buf,
1897 				    crd->crd_skip + crd->crd_len - 8, 8,
1898 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1899 			}
1900 			break;
1901 		}
1902 	}
1903 
1904 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1905 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1906 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1907 			continue;
1908 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1909 			m_copyback((struct mbuf *)crp->crp_buf,
1910 			    crd->crd_inject, 12,
1911 			    (void *)dmap->d_dma->d_macbuf);
1912 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1913 			bcopy((void *)dmap->d_dma->d_macbuf,
1914 			    crp->crp_mac, 12);
1915 		break;
1916 	}
1917 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1918 	crypto_done(crp);
1919 }
1920 
1921 static void
1922 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1923 {
1924 	int i, j, dlen, slen;
1925 	char *dptr, *sptr;
1926 
1927 	j = 0;
1928 	sptr = srcm->m_data;
1929 	slen = srcm->m_len;
1930 	dptr = dstm->m_data;
1931 	dlen = dstm->m_len;
1932 
1933 	while (1) {
1934 		for (i = 0; i < uimin(slen, dlen); i++) {
1935 			if (j < hoffset || j >= toffset)
1936 				*dptr++ = *sptr++;
1937 			slen--;
1938 			dlen--;
1939 			j++;
1940 		}
1941 		if (slen == 0) {
1942 			srcm = srcm->m_next;
1943 			if (srcm == NULL)
1944 				return;
1945 			sptr = srcm->m_data;
1946 			slen = srcm->m_len;
1947 		}
1948 		if (dlen == 0) {
1949 			dstm = dstm->m_next;
1950 			if (dstm == NULL)
1951 				return;
1952 			dptr = dstm->m_data;
1953 			dlen = dstm->m_len;
1954 		}
1955 	}
1956 }
1957 
1958 /*
1959  * feed the key generator, must be called at splnet() or higher.
1960  */
1961 static void
1962 ubsec_feed2(struct ubsec_softc *sc)
1963 {
1964 	struct ubsec_q2 *q;
1965 
1966 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1967 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1968 			break;
1969 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1970 
1971 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1972 		    q->q_mcr.dma_map->dm_mapsize,
1973 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1974 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1975 		    q->q_ctx.dma_map->dm_mapsize,
1976 		    BUS_DMASYNC_PREWRITE);
1977 
1978 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1979 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1980 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1981 		--sc->sc_nqueue2;
1982 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1983 	}
1984 }
1985 
1986 /*
1987  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1988  */
1989 void
1990 ubsec_feed4(struct ubsec_softc *sc)
1991 {
1992 	struct ubsec_q2 *q;
1993 
1994 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1995 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1996 			break;
1997 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
1998 
1999 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
2000 		    q->q_mcr.dma_map->dm_mapsize,
2001 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2002 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
2003 		    q->q_ctx.dma_map->dm_mapsize,
2004 		    BUS_DMASYNC_PREWRITE);
2005 
2006 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
2007 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
2008 		--sc->sc_nqueue4;
2009 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
2010 	}
2011 }
2012 
2013 /*
2014  * Callback for handling random numbers
2015  */
2016 static void
2017 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
2018 {
2019 	struct cryptkop *krp;
2020 	struct ubsec_ctx_keyop *ctx;
2021 
2022 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
2023 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
2024 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2025 
2026 	switch (q->q_type) {
2027 #ifndef UBSEC_NO_RNG
2028 	case UBS_CTXOP_RNGSHA1:
2029 	case UBS_CTXOP_RNGBYPASS: {
2030 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
2031 		u_int32_t *p;
2032 		int i;
2033 
2034 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2035 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2036 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
2037 #ifndef __NetBSD__
2038 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
2039 			add_true_randomness(letoh32(*p));
2040 #else
2041 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
2042 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
2043 		sc->sc_rng_need -= i;
2044 #endif
2045 		rng->rng_used = 0;
2046 #ifdef __OpenBSD__
2047 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2048 #else
2049 		if (sc->sc_rng_need > 0) {
2050 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2051 		}
2052 #endif
2053 		break;
2054 	}
2055 #endif
2056 	case UBS_CTXOP_MODEXP: {
2057 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2058 		u_int rlen, clen;
2059 
2060 		krp = me->me_krp;
2061 		rlen = (me->me_modbits + 7) / 8;
2062 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
2063 
2064 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2065 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2066 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2067 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2068 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2069 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2070 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2071 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2072 
2073 		if (clen < rlen)
2074 			krp->krp_status = E2BIG;
2075 		else {
2076 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
2077 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
2078 				    (krp->krp_param[krp->krp_iparams].crp_nbits
2079 					+ 7) / 8);
2080 				bcopy(me->me_C.dma_vaddr,
2081 				    krp->krp_param[krp->krp_iparams].crp_p,
2082 				    (me->me_modbits + 7) / 8);
2083 			} else
2084 				ubsec_kshift_l(me->me_shiftbits,
2085 				    me->me_C.dma_vaddr, me->me_normbits,
2086 				    krp->krp_param[krp->krp_iparams].crp_p,
2087 				    krp->krp_param[krp->krp_iparams].crp_nbits);
2088 		}
2089 
2090 		crypto_kdone(krp);
2091 
2092 		/* bzero all potentially sensitive data */
2093 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2094 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2095 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2096 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2097 
2098 		/* Can't free here, so put us on the free list. */
2099 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
2100 		break;
2101 	}
2102 	case UBS_CTXOP_RSAPRIV: {
2103 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2104 		u_int len;
2105 
2106 		krp = rp->rpr_krp;
2107 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
2108 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2109 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
2110 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2111 
2112 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7)
2113 		    / 8;
2114 		bcopy(rp->rpr_msgout.dma_vaddr,
2115 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
2116 
2117 		crypto_kdone(krp);
2118 
2119 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2120 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2121 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
2122 
2123 		/* Can't free here, so put us on the free list. */
2124 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
2125 		break;
2126 	}
2127 	default:
2128 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
2129 		    letoh16(ctx->ctx_op));
2130 		break;
2131 	}
2132 }
2133 
2134 #ifndef UBSEC_NO_RNG
2135 
2136 static void
2137 ubsec_rng_get(size_t bytes, void *vsc)
2138 {
2139 	struct ubsec_softc *sc = vsc;
2140 
2141 	mutex_spin_enter(&sc->sc_mtx);
2142 	sc->sc_rng_need = bytes;
2143 	ubsec_rng_locked(sc);
2144 	mutex_spin_exit(&sc->sc_mtx);
2145 
2146 }
2147 
2148 static void
2149 ubsec_rng(void *vsc)
2150 {
2151 	struct ubsec_softc *sc = vsc;
2152 	mutex_spin_enter(&sc->sc_mtx);
2153 	ubsec_rng_locked(sc);
2154 	mutex_spin_exit(&sc->sc_mtx);
2155 }
2156 
2157 static void
2158 ubsec_rng_locked(void *vsc)
2159 {
2160 	struct ubsec_softc *sc = vsc;
2161 	struct ubsec_q2_rng *rng = &sc->sc_rng;
2162 	struct ubsec_mcr *mcr;
2163 	struct ubsec_ctx_rngbypass *ctx;
2164 	int *nqueue;
2165 
2166 	/* Caller is responsible to lock and release sc_mtx. */
2167 	KASSERT(mutex_owned(&sc->sc_mtx));
2168 
2169 	if (rng->rng_used) {
2170 		return;
2171 	}
2172 
2173 	if (sc->sc_rng_need < 1) {
2174 		callout_stop(&sc->sc_rngto);
2175 		return;
2176 	}
2177 
2178 	if (sc->sc_flags & UBS_FLAGS_RNG4)
2179 		nqueue = &sc->sc_nqueue4;
2180 	else
2181 		nqueue = &sc->sc_nqueue2;
2182 
2183 	(*nqueue)++;
2184 	if (*nqueue >= UBS_MAX_NQUEUE)
2185  		goto out;
2186 
2187 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2188 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2189 
2190 	mcr->mcr_pkts = htole16(1);
2191 	mcr->mcr_flags = 0;
2192 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2193 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2194 	mcr->mcr_ipktbuf.pb_len = 0;
2195 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2196 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2197 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2198 	    UBS_PKTBUF_LEN);
2199 	mcr->mcr_opktbuf.pb_next = 0;
2200 
2201 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2202 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2203 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2204 
2205 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2206 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2207 
2208 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
2209 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2210 		ubsec_feed4(sc);
2211 	} else {
2212 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2213 		ubsec_feed2(sc);
2214 	}
2215 	rng->rng_used = 1;
2216 	ubsecstats.hst_rng++;
2217 
2218 	return;
2219 
2220 out:
2221 	/*
2222 	 * Something weird happened, generate our own call back.
2223 	 */
2224 	(*nqueue)--;
2225 #ifdef __OpenBSD__
2226 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2227 #else
2228 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2229 #endif
2230 }
2231 #endif /* UBSEC_NO_RNG */
2232 
2233 static int
2234 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2235 		 struct ubsec_dma_alloc *dma,int mapflags)
2236 {
2237 	int r;
2238 
2239 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2240 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2241 		goto fail_0;
2242 
2243 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2244 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2245 		goto fail_1;
2246 
2247 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2248 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2249 		goto fail_2;
2250 
2251 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2252 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
2253 		goto fail_3;
2254 
2255 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2256 	dma->dma_size = size;
2257 	return (0);
2258 
2259 fail_3:
2260 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2261 fail_2:
2262 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2263 fail_1:
2264 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2265 fail_0:
2266 	dma->dma_map = NULL;
2267 	return (r);
2268 }
2269 
2270 static void
2271 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2272 {
2273 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2274 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2275 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2276 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2277 }
2278 
2279 /*
2280  * Resets the board.  Values in the regesters are left as is
2281  * from the reset (i.e. initial values are assigned elsewhere).
2282  */
2283 static void
2284 ubsec_reset_board(struct ubsec_softc *sc)
2285 {
2286 	volatile u_int32_t ctrl;
2287 
2288 	ctrl = READ_REG(sc, BS_CTRL);
2289 	ctrl |= BS_CTRL_RESET;
2290 	WRITE_REG(sc, BS_CTRL, ctrl);
2291 
2292 	/*
2293 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2294 	*/
2295 	DELAY(10);
2296 
2297 	/* Enable RNG and interrupts on newer devices */
2298 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2299 #ifndef UBSEC_NO_RNG
2300 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2301 #endif
2302 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2303 	}
2304 }
2305 
2306 /*
2307  * Init Broadcom registers
2308  */
2309 static void
2310 ubsec_init_board(struct ubsec_softc *sc)
2311 {
2312 	u_int32_t ctrl;
2313 
2314 	ctrl = READ_REG(sc, BS_CTRL);
2315 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2316 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2317 
2318 	/*
2319 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2320 	 * anyone got hw docs?
2321 	 */
2322 	if (sc->sc_flags & UBS_FLAGS_KEY)
2323 		ctrl |= BS_CTRL_MCR2INT;
2324 	else
2325 		ctrl &= ~BS_CTRL_MCR2INT;
2326 
2327 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2328 		ctrl &= ~BS_CTRL_SWNORM;
2329 
2330 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2331 		ctrl |= BS_CTRL_BSIZE240;
2332 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2333 
2334 		if (sc->sc_flags & UBS_FLAGS_RNG4)
2335 			ctrl |= BS_CTRL_MCR4INT;
2336 		else
2337 			ctrl &= ~BS_CTRL_MCR4INT;
2338 	}
2339 
2340 	WRITE_REG(sc, BS_CTRL, ctrl);
2341 }
2342 
2343 /*
2344  * Init Broadcom PCI registers
2345  */
2346 static void
2347 ubsec_init_pciregs(struct pci_attach_args *pa)
2348 {
2349 	pci_chipset_tag_t pc = pa->pa_pc;
2350 	u_int32_t misc;
2351 
2352 	/*
2353 	 * This will set the cache line size to 1, this will
2354 	 * force the BCM58xx chip just to do burst read/writes.
2355 	 * Cache line read/writes are to slow
2356 	 */
2357 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2358 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2359 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2360 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2361 }
2362 
2363 /*
2364  * Clean up after a chip crash.
2365  * It is assumed that the caller in splnet()
2366  */
2367 static void
2368 ubsec_cleanchip(struct ubsec_softc *sc)
2369 {
2370 	struct ubsec_q *q;
2371 
2372 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2373 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2374 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2375 		ubsec_free_q(sc, q);
2376 	}
2377 	sc->sc_nqchip = 0;
2378 }
2379 
2380 /*
2381  * free a ubsec_q
2382  * It is assumed that the caller is within splnet()
2383  */
2384 static int
2385 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2386 {
2387 	struct ubsec_q *q2;
2388 	struct cryptop *crp;
2389 	int npkts;
2390 	int i;
2391 
2392 	npkts = q->q_nstacked_mcrs;
2393 
2394 	for (i = 0; i < npkts; i++) {
2395 		if(q->q_stacked_mcr[i]) {
2396 			q2 = q->q_stacked_mcr[i];
2397 
2398 			if ((q2->q_dst_m != NULL)
2399 			    && (q2->q_src_m != q2->q_dst_m))
2400 				m_freem(q2->q_dst_m);
2401 
2402 			crp = (struct cryptop *)q2->q_crp;
2403 
2404 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2405 
2406 			crp->crp_etype = EFAULT;
2407 			crypto_done(crp);
2408 		} else {
2409 			break;
2410 		}
2411 	}
2412 
2413 	/*
2414 	 * Free header MCR
2415 	 */
2416 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2417 		m_freem(q->q_dst_m);
2418 
2419 	crp = (struct cryptop *)q->q_crp;
2420 
2421 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2422 
2423 	crp->crp_etype = EFAULT;
2424 	crypto_done(crp);
2425 	return(0);
2426 }
2427 
2428 /*
2429  * Routine to reset the chip and clean up.
2430  * It is assumed that the caller is in splnet()
2431  */
2432 static void
2433 ubsec_totalreset(struct ubsec_softc *sc)
2434 {
2435 	ubsec_reset_board(sc);
2436 	ubsec_init_board(sc);
2437 	ubsec_cleanchip(sc);
2438 }
2439 
2440 static int
2441 ubsec_dmamap_aligned(bus_dmamap_t map)
2442 {
2443 	int i;
2444 
2445 	for (i = 0; i < map->dm_nsegs; i++) {
2446 		if (map->dm_segs[i].ds_addr & 3)
2447 			return (0);
2448 		if ((i != (map->dm_nsegs - 1)) &&
2449 		    (map->dm_segs[i].ds_len & 3))
2450 			return (0);
2451 	}
2452 	return (1);
2453 }
2454 
2455 #ifdef __OpenBSD__
2456 struct ubsec_softc *
2457 ubsec_kfind(struct cryptkop *krp)
2458 {
2459 	struct ubsec_softc *sc;
2460 	int i;
2461 
2462 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2463 		sc = ubsec_cd.cd_devs[i];
2464 		if (sc == NULL)
2465 			continue;
2466 		if (sc->sc_cid == krp->krp_hid)
2467 			return (sc);
2468 	}
2469 	return (NULL);
2470 }
2471 #endif
2472 
2473 static void
2474 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2475 {
2476 	switch (q->q_type) {
2477 	case UBS_CTXOP_MODEXP: {
2478 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2479 
2480 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2481 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2482 		ubsec_dma_free(sc, &me->me_M);
2483 		ubsec_dma_free(sc, &me->me_E);
2484 		ubsec_dma_free(sc, &me->me_C);
2485 		ubsec_dma_free(sc, &me->me_epb);
2486 		free(me, M_DEVBUF);
2487 		break;
2488 	}
2489 	case UBS_CTXOP_RSAPRIV: {
2490 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2491 
2492 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2493 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2494 		ubsec_dma_free(sc, &rp->rpr_msgin);
2495 		ubsec_dma_free(sc, &rp->rpr_msgout);
2496 		free(rp, M_DEVBUF);
2497 		break;
2498 	}
2499 	default:
2500 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2501 		    q->q_type);
2502 		break;
2503 	}
2504 }
2505 
2506 static int
2507 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2508 {
2509 	struct ubsec_softc *sc;
2510 	int r;
2511 
2512 	if (krp == NULL || krp->krp_callback == NULL)
2513 		return (EINVAL);
2514 #ifdef __OpenBSD__
2515 	if ((sc = ubsec_kfind(krp)) == NULL)
2516 		return (EINVAL);
2517 #else
2518 	sc = arg;
2519 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2520 #endif
2521 
2522 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2523 		struct ubsec_q2 *q;
2524 
2525 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2526 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2527 		ubsec_kfree(sc, q);
2528 	}
2529 
2530 	switch (krp->krp_op) {
2531 	case CRK_MOD_EXP:
2532 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2533 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2534 		else
2535 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2536 		break;
2537 	case CRK_MOD_EXP_CRT:
2538 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
2539 		break;
2540 	default:
2541 		printf("%s: kprocess: invalid op 0x%x\n",
2542 		    device_xname(sc->sc_dev), krp->krp_op);
2543 		krp->krp_status = EOPNOTSUPP;
2544 		crypto_kdone(krp);
2545 		r = 0;
2546 	}
2547 	return (r);
2548 }
2549 
2550 /*
2551  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2552  */
2553 static int
2554 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2555 			 int hint)
2556 {
2557 	struct ubsec_q2_modexp *me;
2558 	struct ubsec_mcr *mcr;
2559 	struct ubsec_ctx_modexp *ctx;
2560 	struct ubsec_pktbuf *epb;
2561 	int err = 0;
2562 	u_int nbits, normbits, mbits, shiftbits, ebits;
2563 
2564 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2565 	if (me == NULL) {
2566 		err = ENOMEM;
2567 		goto errout;
2568 	}
2569 	memset(me, 0, sizeof *me);
2570 	me->me_krp = krp;
2571 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2572 
2573 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2574 	if (nbits <= 512)
2575 		normbits = 512;
2576 	else if (nbits <= 768)
2577 		normbits = 768;
2578 	else if (nbits <= 1024)
2579 		normbits = 1024;
2580 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2581 		normbits = 1536;
2582 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2583 		normbits = 2048;
2584 	else {
2585 		err = E2BIG;
2586 		goto errout;
2587 	}
2588 
2589 	shiftbits = normbits - nbits;
2590 
2591 	me->me_modbits = nbits;
2592 	me->me_shiftbits = shiftbits;
2593 	me->me_normbits = normbits;
2594 
2595 	/* Sanity check: result bits must be >= true modulus bits. */
2596 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2597 		err = ERANGE;
2598 		goto errout;
2599 	}
2600 
2601 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2602 	    &me->me_q.q_mcr, 0)) {
2603 		err = ENOMEM;
2604 		goto errout;
2605 	}
2606 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2607 
2608 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2609 	    &me->me_q.q_ctx, 0)) {
2610 		err = ENOMEM;
2611 		goto errout;
2612 	}
2613 
2614 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2615 	if (mbits > nbits) {
2616 		err = E2BIG;
2617 		goto errout;
2618 	}
2619 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2620 		err = ENOMEM;
2621 		goto errout;
2622 	}
2623 	ubsec_kshift_r(shiftbits,
2624 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2625 	    me->me_M.dma_vaddr, normbits);
2626 
2627 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2628 		err = ENOMEM;
2629 		goto errout;
2630 	}
2631 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2632 
2633 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2634 	if (ebits > nbits) {
2635 		err = E2BIG;
2636 		goto errout;
2637 	}
2638 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2639 		err = ENOMEM;
2640 		goto errout;
2641 	}
2642 	ubsec_kshift_r(shiftbits,
2643 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2644 	    me->me_E.dma_vaddr, normbits);
2645 
2646 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2647 	    &me->me_epb, 0)) {
2648 		err = ENOMEM;
2649 		goto errout;
2650 	}
2651 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2652 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2653 	epb->pb_next = 0;
2654 	epb->pb_len = htole32(normbits / 8);
2655 
2656 #ifdef UBSEC_DEBUG
2657 	if (ubsec_debug) {
2658 		printf("Epb ");
2659 		ubsec_dump_pb(epb);
2660 	}
2661 #endif
2662 
2663 	mcr->mcr_pkts = htole16(1);
2664 	mcr->mcr_flags = 0;
2665 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2666 	mcr->mcr_reserved = 0;
2667 	mcr->mcr_pktlen = 0;
2668 
2669 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2670 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2671 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2672 
2673 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2674 	mcr->mcr_opktbuf.pb_next = 0;
2675 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2676 
2677 #ifdef DIAGNOSTIC
2678 	/* Misaligned output buffer will hang the chip. */
2679 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2680 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2681 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2682 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2683 		panic("%s: modexp invalid len 0x%x",  device_xname(sc->sc_dev),
2684 		    letoh32(mcr->mcr_opktbuf.pb_len));
2685 #endif
2686 
2687 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2688 	memset(ctx, 0, sizeof(*ctx));
2689 	ubsec_kshift_r(shiftbits,
2690 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2691 	    ctx->me_N, normbits);
2692 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2693 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2694 	ctx->me_E_len = htole16(nbits);
2695 	ctx->me_N_len = htole16(nbits);
2696 
2697 #ifdef UBSEC_DEBUG
2698 	if (ubsec_debug) {
2699 		ubsec_dump_mcr(mcr);
2700 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2701 	}
2702 #endif
2703 
2704 	/*
2705 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2706 	 * everything else.
2707 	 */
2708 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2709 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2710 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2711 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2712 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2713 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2714 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2715 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2716 
2717 	/* Enqueue and we're done... */
2718 	mutex_spin_enter(&sc->sc_mtx);
2719 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2720 	ubsec_feed2(sc);
2721 	ubsecstats.hst_modexp++;
2722 	mutex_spin_exit(&sc->sc_mtx);
2723 
2724 	return (0);
2725 
2726 errout:
2727 	if (me != NULL) {
2728 		if (me->me_q.q_mcr.dma_map != NULL)
2729 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2730 		if (me->me_q.q_ctx.dma_map != NULL) {
2731 			memset(me->me_q.q_ctx.dma_vaddr, 0,
2732 			    me->me_q.q_ctx.dma_size);
2733 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2734 		}
2735 		if (me->me_M.dma_map != NULL) {
2736 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2737 			ubsec_dma_free(sc, &me->me_M);
2738 		}
2739 		if (me->me_E.dma_map != NULL) {
2740 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2741 			ubsec_dma_free(sc, &me->me_E);
2742 		}
2743 		if (me->me_C.dma_map != NULL) {
2744 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2745 			ubsec_dma_free(sc, &me->me_C);
2746 		}
2747 		if (me->me_epb.dma_map != NULL)
2748 			ubsec_dma_free(sc, &me->me_epb);
2749 		free(me, M_DEVBUF);
2750 	}
2751 	krp->krp_status = err;
2752 	crypto_kdone(krp);
2753 	return (0);
2754 }
2755 
2756 /*
2757  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2758  */
2759 static int
2760 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2761 			 int hint)
2762 {
2763 	struct ubsec_q2_modexp *me;
2764 	struct ubsec_mcr *mcr;
2765 	struct ubsec_ctx_modexp *ctx;
2766 	struct ubsec_pktbuf *epb;
2767 	int err = 0;
2768 	u_int nbits, normbits, mbits, shiftbits, ebits;
2769 
2770 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2771 	if (me == NULL) {
2772 		err = ENOMEM;
2773 		goto errout;
2774 	}
2775 	memset(me, 0, sizeof *me);
2776 	me->me_krp = krp;
2777 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2778 
2779 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2780 	if (nbits <= 512)
2781 		normbits = 512;
2782 	else if (nbits <= 768)
2783 		normbits = 768;
2784 	else if (nbits <= 1024)
2785 		normbits = 1024;
2786 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2787 		normbits = 1536;
2788 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2789 		normbits = 2048;
2790 	else {
2791 		err = E2BIG;
2792 		goto errout;
2793 	}
2794 
2795 	shiftbits = normbits - nbits;
2796 
2797 	/* XXX ??? */
2798 	me->me_modbits = nbits;
2799 	me->me_shiftbits = shiftbits;
2800 	me->me_normbits = normbits;
2801 
2802 	/* Sanity check: result bits must be >= true modulus bits. */
2803 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2804 		err = ERANGE;
2805 		goto errout;
2806 	}
2807 
2808 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2809 	    &me->me_q.q_mcr, 0)) {
2810 		err = ENOMEM;
2811 		goto errout;
2812 	}
2813 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2814 
2815 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2816 	    &me->me_q.q_ctx, 0)) {
2817 		err = ENOMEM;
2818 		goto errout;
2819 	}
2820 
2821 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2822 	if (mbits > nbits) {
2823 		err = E2BIG;
2824 		goto errout;
2825 	}
2826 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2827 		err = ENOMEM;
2828 		goto errout;
2829 	}
2830 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
2831 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2832 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2833 
2834 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2835 		err = ENOMEM;
2836 		goto errout;
2837 	}
2838 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2839 
2840 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2841 	if (ebits > nbits) {
2842 		err = E2BIG;
2843 		goto errout;
2844 	}
2845 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2846 		err = ENOMEM;
2847 		goto errout;
2848 	}
2849 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
2850 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2851 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2852 
2853 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2854 	    &me->me_epb, 0)) {
2855 		err = ENOMEM;
2856 		goto errout;
2857 	}
2858 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2859 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2860 	epb->pb_next = 0;
2861 	epb->pb_len = htole32((ebits + 7) / 8);
2862 
2863 #ifdef UBSEC_DEBUG
2864 	if (ubsec_debug) {
2865 		printf("Epb ");
2866 		ubsec_dump_pb(epb);
2867 	}
2868 #endif
2869 
2870 	mcr->mcr_pkts = htole16(1);
2871 	mcr->mcr_flags = 0;
2872 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2873 	mcr->mcr_reserved = 0;
2874 	mcr->mcr_pktlen = 0;
2875 
2876 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2877 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2878 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2879 
2880 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2881 	mcr->mcr_opktbuf.pb_next = 0;
2882 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2883 
2884 #ifdef DIAGNOSTIC
2885 	/* Misaligned output buffer will hang the chip. */
2886 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2887 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2888 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2889 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2890 		panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
2891 		    letoh32(mcr->mcr_opktbuf.pb_len));
2892 #endif
2893 
2894 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2895 	memset(ctx, 0, sizeof(*ctx));
2896 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2897 	    (nbits + 7) / 8);
2898 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2899 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2900 	ctx->me_E_len = htole16(ebits);
2901 	ctx->me_N_len = htole16(nbits);
2902 
2903 #ifdef UBSEC_DEBUG
2904 	if (ubsec_debug) {
2905 		ubsec_dump_mcr(mcr);
2906 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2907 	}
2908 #endif
2909 
2910 	/*
2911 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2912 	 * everything else.
2913 	 */
2914 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2915 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2916 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2917 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2918 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2919 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2920 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2921 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2922 
2923 	/* Enqueue and we're done... */
2924 	mutex_spin_enter(&sc->sc_mtx);
2925 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2926 	ubsec_feed2(sc);
2927 	mutex_spin_exit(&sc->sc_mtx);
2928 
2929 	return (0);
2930 
2931 errout:
2932 	if (me != NULL) {
2933 		if (me->me_q.q_mcr.dma_map != NULL)
2934 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2935 		if (me->me_q.q_ctx.dma_map != NULL) {
2936 			memset(me->me_q.q_ctx.dma_vaddr, 0,
2937 			    me->me_q.q_ctx.dma_size);
2938 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2939 		}
2940 		if (me->me_M.dma_map != NULL) {
2941 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2942 			ubsec_dma_free(sc, &me->me_M);
2943 		}
2944 		if (me->me_E.dma_map != NULL) {
2945 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2946 			ubsec_dma_free(sc, &me->me_E);
2947 		}
2948 		if (me->me_C.dma_map != NULL) {
2949 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2950 			ubsec_dma_free(sc, &me->me_C);
2951 		}
2952 		if (me->me_epb.dma_map != NULL)
2953 			ubsec_dma_free(sc, &me->me_epb);
2954 		free(me, M_DEVBUF);
2955 	}
2956 	krp->krp_status = err;
2957 	crypto_kdone(krp);
2958 	return (0);
2959 }
2960 
2961 static int
2962 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2963 		       int hint)
2964 {
2965 	struct ubsec_q2_rsapriv *rp = NULL;
2966 	struct ubsec_mcr *mcr;
2967 	struct ubsec_ctx_rsapriv *ctx;
2968 	int err = 0;
2969 	u_int padlen, msglen;
2970 
2971 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2972 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2973 	if (msglen > padlen)
2974 		padlen = msglen;
2975 
2976 	if (padlen <= 256)
2977 		padlen = 256;
2978 	else if (padlen <= 384)
2979 		padlen = 384;
2980 	else if (padlen <= 512)
2981 		padlen = 512;
2982 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2983 		padlen = 768;
2984 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2985 		padlen = 1024;
2986 	else {
2987 		err = E2BIG;
2988 		goto errout;
2989 	}
2990 
2991 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2992 		err = E2BIG;
2993 		goto errout;
2994 	}
2995 
2996 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2997 		err = E2BIG;
2998 		goto errout;
2999 	}
3000 
3001 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
3002 		err = E2BIG;
3003 		goto errout;
3004 	}
3005 
3006 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
3007 	if (rp == NULL)
3008 		return (ENOMEM);
3009 	rp->rpr_krp = krp;
3010 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
3011 
3012 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
3013 	    &rp->rpr_q.q_mcr, 0)) {
3014 		err = ENOMEM;
3015 		goto errout;
3016 	}
3017 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
3018 
3019 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
3020 	    &rp->rpr_q.q_ctx, 0)) {
3021 		err = ENOMEM;
3022 		goto errout;
3023 	}
3024 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
3025 	memset(ctx, 0, sizeof *ctx);
3026 
3027 	/* Copy in p */
3028 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
3029 	    &ctx->rpr_buf[0 * (padlen / 8)],
3030 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
3031 
3032 	/* Copy in q */
3033 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
3034 	    &ctx->rpr_buf[1 * (padlen / 8)],
3035 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
3036 
3037 	/* Copy in dp */
3038 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
3039 	    &ctx->rpr_buf[2 * (padlen / 8)],
3040 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
3041 
3042 	/* Copy in dq */
3043 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
3044 	    &ctx->rpr_buf[3 * (padlen / 8)],
3045 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
3046 
3047 	/* Copy in pinv */
3048 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
3049 	    &ctx->rpr_buf[4 * (padlen / 8)],
3050 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
3051 
3052 	msglen = padlen * 2;
3053 
3054 	/* Copy in input message (aligned buffer/length). */
3055 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
3056 		/* Is this likely? */
3057 		err = E2BIG;
3058 		goto errout;
3059 	}
3060 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
3061 		err = ENOMEM;
3062 		goto errout;
3063 	}
3064 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
3065 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
3066 	    rp->rpr_msgin.dma_vaddr,
3067 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
3068 
3069 	/* Prepare space for output message (aligned buffer/length). */
3070 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
3071 		/* Is this likely? */
3072 		err = E2BIG;
3073 		goto errout;
3074 	}
3075 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
3076 		err = ENOMEM;
3077 		goto errout;
3078 	}
3079 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
3080 
3081 	mcr->mcr_pkts = htole16(1);
3082 	mcr->mcr_flags = 0;
3083 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
3084 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
3085 	mcr->mcr_ipktbuf.pb_next = 0;
3086 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
3087 	mcr->mcr_reserved = 0;
3088 	mcr->mcr_pktlen = htole16(msglen);
3089 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
3090 	mcr->mcr_opktbuf.pb_next = 0;
3091 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
3092 
3093 #ifdef DIAGNOSTIC
3094 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
3095 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
3096 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
3097 		    (u_long) rp->rpr_msgin.dma_size);
3098 	}
3099 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
3100 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
3101 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
3102 		    (u_long) rp->rpr_msgout.dma_size);
3103 	}
3104 #endif
3105 
3106 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
3107 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
3108 	ctx->rpr_q_len = htole16(padlen);
3109 	ctx->rpr_p_len = htole16(padlen);
3110 
3111 	/*
3112 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
3113 	 * everything else.
3114 	 */
3115 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
3116 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3117 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
3118 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
3119 
3120 	/* Enqueue and we're done... */
3121 	mutex_spin_enter(&sc->sc_mtx);
3122 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
3123 	ubsec_feed2(sc);
3124 	ubsecstats.hst_modexpcrt++;
3125 	mutex_spin_exit(&sc->sc_mtx);
3126 	return (0);
3127 
3128 errout:
3129 	if (rp != NULL) {
3130 		if (rp->rpr_q.q_mcr.dma_map != NULL)
3131 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
3132 		if (rp->rpr_msgin.dma_map != NULL) {
3133 			memset(rp->rpr_msgin.dma_vaddr, 0,
3134 			    rp->rpr_msgin.dma_size);
3135 			ubsec_dma_free(sc, &rp->rpr_msgin);
3136 		}
3137 		if (rp->rpr_msgout.dma_map != NULL) {
3138 			memset(rp->rpr_msgout.dma_vaddr, 0,
3139 			    rp->rpr_msgout.dma_size);
3140 			ubsec_dma_free(sc, &rp->rpr_msgout);
3141 		}
3142 		free(rp, M_DEVBUF);
3143 	}
3144 	krp->krp_status = err;
3145 	crypto_kdone(krp);
3146 	return (0);
3147 }
3148 
3149 #ifdef UBSEC_DEBUG
3150 static void
3151 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3152 {
3153 	printf("addr 0x%x (0x%x) next 0x%x\n",
3154 	    pb->pb_addr, pb->pb_len, pb->pb_next);
3155 }
3156 
3157 static void
3158 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3159 {
3160 	printf("CTX (0x%x):\n", c->ctx_len);
3161 	switch (letoh16(c->ctx_op)) {
3162 	case UBS_CTXOP_RNGBYPASS:
3163 	case UBS_CTXOP_RNGSHA1:
3164 		break;
3165 	case UBS_CTXOP_MODEXP:
3166 	{
3167 		struct ubsec_ctx_modexp *cx = (void *)c;
3168 		int i, len;
3169 
3170 		printf(" Elen %u, Nlen %u\n",
3171 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3172 		len = (cx->me_N_len + 7)/8;
3173 		for (i = 0; i < len; i++)
3174 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3175 		printf("\n");
3176 		break;
3177 	}
3178 	default:
3179 		printf("unknown context: %x\n", c->ctx_op);
3180 	}
3181 	printf("END CTX\n");
3182 }
3183 
3184 static void
3185 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3186 {
3187 	volatile struct ubsec_mcr_add *ma;
3188 	int i;
3189 
3190 	printf("MCR:\n");
3191 	printf(" pkts: %u, flags 0x%x\n",
3192 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3193 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3194 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3195 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3196 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3197 		    letoh16(ma->mcr_reserved));
3198 		printf(" %d: ipkt ", i);
3199 		ubsec_dump_pb(&ma->mcr_ipktbuf);
3200 		printf(" %d: opkt ", i);
3201 		ubsec_dump_pb(&ma->mcr_opktbuf);
3202 		ma++;
3203 	}
3204 	printf("END MCR\n");
3205 }
3206 #endif /* UBSEC_DEBUG */
3207 
3208 /*
3209  * Return the number of significant bits of a big number.
3210  */
3211 static int
3212 ubsec_ksigbits(struct crparam *cr)
3213 {
3214 	u_int plen = (cr->crp_nbits + 7) / 8;
3215 	int i, sig = plen * 8;
3216 	u_int8_t c, *p = cr->crp_p;
3217 
3218 	for (i = plen - 1; i >= 0; i--) {
3219 		c = p[i];
3220 		if (c != 0) {
3221 			while ((c & 0x80) == 0) {
3222 				sig--;
3223 				c <<= 1;
3224 			}
3225 			break;
3226 		}
3227 		sig -= 8;
3228 	}
3229 	return (sig);
3230 }
3231 
3232 static void
3233 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3234     u_int8_t *dst, u_int dstbits)
3235 {
3236 	u_int slen, dlen;
3237 	int i, si, di, n;
3238 
3239 	slen = (srcbits + 7) / 8;
3240 	dlen = (dstbits + 7) / 8;
3241 
3242 	for (i = 0; i < slen; i++)
3243 		dst[i] = src[i];
3244 	for (i = 0; i < dlen - slen; i++)
3245 		dst[slen + i] = 0;
3246 
3247 	n = shiftbits / 8;
3248 	if (n != 0) {
3249 		si = dlen - n - 1;
3250 		di = dlen - 1;
3251 		while (si >= 0)
3252 			dst[di--] = dst[si--];
3253 		while (di >= 0)
3254 			dst[di--] = 0;
3255 	}
3256 
3257 	n = shiftbits % 8;
3258 	if (n != 0) {
3259 		for (i = dlen - 1; i > 0; i--)
3260 			dst[i] = (dst[i] << n) |
3261 			    (dst[i - 1] >> (8 - n));
3262 		dst[0] = dst[0] << n;
3263 	}
3264 }
3265 
3266 static void
3267 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3268     u_int8_t *dst, u_int dstbits)
3269 {
3270 	int slen, dlen, i, n;
3271 
3272 	slen = (srcbits + 7) / 8;
3273 	dlen = (dstbits + 7) / 8;
3274 
3275 	n = shiftbits / 8;
3276 	for (i = 0; i < slen; i++)
3277 		dst[i] = src[i + n];
3278 	for (i = 0; i < dlen - slen; i++)
3279 		dst[slen + i] = 0;
3280 
3281 	n = shiftbits % 8;
3282 	if (n != 0) {
3283 		for (i = 0; i < (dlen - 1); i++)
3284 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3285 		dst[dlen - 1] = dst[dlen - 1] >> n;
3286 	}
3287 }
3288