xref: /netbsd-src/sys/dev/pci/twe.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: twe.c,v 1.106 2016/09/27 03:33:32 pgoyette Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 2000 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59  */
60 
61 /*
62  * Driver for the 3ware Escalade family of RAID controllers.
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.106 2016/09/27 03:33:32 pgoyette Exp $");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82 #include <sys/module.h>
83 #include <sys/bswap.h>
84 #include <sys/bus.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcidevs.h>
89 #include <dev/pci/twereg.h>
90 #include <dev/pci/twevar.h>
91 #include <dev/pci/tweio.h>
92 
93 #include "locators.h"
94 #include "ioconf.h"
95 
96 #define	PCI_CBIO	0x10
97 
98 static int	twe_aen_get(struct twe_softc *, uint16_t *);
99 static void	twe_aen_handler(struct twe_ccb *, int);
100 static void	twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
101 static uint16_t	twe_aen_dequeue(struct twe_softc *);
102 
103 static void	twe_attach(device_t, device_t, void *);
104 static int	twe_rescan(device_t, const char *, const int *);
105 static int	twe_init_connection(struct twe_softc *);
106 static int	twe_intr(void *);
107 static int	twe_match(device_t, cfdata_t, void *);
108 static int	twe_param_set(struct twe_softc *, int, int, size_t, void *);
109 static void	twe_poll(struct twe_softc *);
110 static int	twe_print(void *, const char *);
111 static int	twe_reset(struct twe_softc *);
112 static int	twe_status_check(struct twe_softc *, u_int);
113 static int	twe_status_wait(struct twe_softc *, u_int, int);
114 static void	twe_describe_controller(struct twe_softc *);
115 static void	twe_clear_pci_abort(struct twe_softc *sc);
116 static void	twe_clear_pci_parity_error(struct twe_softc *sc);
117 
118 static int	twe_add_unit(struct twe_softc *, int);
119 static int	twe_del_unit(struct twe_softc *, int);
120 static int	twe_init_connection(struct twe_softc *);
121 
122 static inline u_int32_t	twe_inl(struct twe_softc *, int);
123 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
124 
125 extern struct	cfdriver twe_cd;
126 
127 CFATTACH_DECL3_NEW(twe, sizeof(struct twe_softc),
128     twe_match, twe_attach, NULL, NULL, twe_rescan, NULL, 0);
129 
130 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
131 const char twever[] = "1.50.01.002";
132 
133 /*
134  * Tables to convert numeric codes to strings.
135  */
136 const struct twe_code_table twe_table_status[] = {
137 	{ 0x00,	"successful completion" },
138 
139 	/* info */
140 	{ 0x42,	"command in progress" },
141 	{ 0x6c,	"retrying interface CRC error from UDMA command" },
142 
143 	/* warning */
144 	{ 0x81,	"redundant/inconsequential request ignored" },
145 	{ 0x8e,	"failed to write zeroes to LBA 0" },
146 	{ 0x8f,	"failed to profile TwinStor zones" },
147 
148 	/* fatal */
149 	{ 0xc1,	"aborted due to system command or reconfiguration" },
150 	{ 0xc4,	"aborted" },
151 	{ 0xc5,	"access error" },
152 	{ 0xc6,	"access violation" },
153 	{ 0xc7,	"device failure" },	/* high byte may be port # */
154 	{ 0xc8,	"controller error" },
155 	{ 0xc9,	"timed out" },
156 	{ 0xcb,	"invalid unit number" },
157 	{ 0xcf,	"unit not available" },
158 	{ 0xd2,	"undefined opcode" },
159 	{ 0xdb,	"request incompatible with unit" },
160 	{ 0xdc,	"invalid request" },
161 	{ 0xff,	"firmware error, reset requested" },
162 
163 	{ 0,	NULL }
164 };
165 
166 const struct twe_code_table twe_table_unitstate[] = {
167 	{ TWE_PARAM_UNITSTATUS_Normal,		"Normal" },
168 	{ TWE_PARAM_UNITSTATUS_Initialising,	"Initializing" },
169 	{ TWE_PARAM_UNITSTATUS_Degraded,	"Degraded" },
170 	{ TWE_PARAM_UNITSTATUS_Rebuilding,	"Rebuilding" },
171 	{ TWE_PARAM_UNITSTATUS_Verifying,	"Verifying" },
172 	{ TWE_PARAM_UNITSTATUS_Corrupt,		"Corrupt" },
173 	{ TWE_PARAM_UNITSTATUS_Missing,		"Missing" },
174 
175 	{ 0,					NULL }
176 };
177 
178 const struct twe_code_table twe_table_unittype[] = {
179 	/* array descriptor configuration */
180 	{ TWE_AD_CONFIG_RAID0,			"RAID0" },
181 	{ TWE_AD_CONFIG_RAID1,			"RAID1" },
182 	{ TWE_AD_CONFIG_TwinStor,		"TwinStor" },
183 	{ TWE_AD_CONFIG_RAID5,			"RAID5" },
184 	{ TWE_AD_CONFIG_RAID10,			"RAID10" },
185 	{ TWE_UD_CONFIG_JBOD,			"JBOD" },
186 
187 	{ 0,					NULL }
188 };
189 
190 const struct twe_code_table twe_table_stripedepth[] = {
191 	{ TWE_AD_STRIPE_4k,			"4K" },
192 	{ TWE_AD_STRIPE_8k,			"8K" },
193 	{ TWE_AD_STRIPE_16k,			"16K" },
194 	{ TWE_AD_STRIPE_32k,			"32K" },
195 	{ TWE_AD_STRIPE_64k,			"64K" },
196 	{ TWE_AD_STRIPE_128k,			"128K" },
197 	{ TWE_AD_STRIPE_256k,			"256K" },
198 	{ TWE_AD_STRIPE_512k,			"512K" },
199 	{ TWE_AD_STRIPE_1024k,			"1024K" },
200 
201 	{ 0,					NULL }
202 };
203 
204 /*
205  * Asynchronous event notification messages are qualified:
206  *	a - not unit/port specific
207  *	u - unit specific
208  *	p - port specific
209  *
210  * They are further qualified with a severity:
211  *	E - LOG_EMERG
212  *	a - LOG_ALERT
213  *	c - LOG_CRIT
214  *	e - LOG_ERR
215  *	w - LOG_WARNING
216  *	n - LOG_NOTICE
217  *	i - LOG_INFO
218  *	d - LOG_DEBUG
219  *	blank - just use printf
220  */
221 const struct twe_code_table twe_table_aen[] = {
222 	{ 0x00,	"a  queue empty" },
223 	{ 0x01,	"a  soft reset" },
224 	{ 0x02,	"uc degraded mode" },
225 	{ 0x03,	"aa controller error" },
226 	{ 0x04,	"uE rebuild fail" },
227 	{ 0x05,	"un rebuild done" },
228 	{ 0x06,	"ue incomplete unit" },
229 	{ 0x07,	"un initialization done" },
230 	{ 0x08,	"uw unclean shutdown detected" },
231 	{ 0x09,	"pe drive timeout" },
232 	{ 0x0a,	"pc drive error" },
233 	{ 0x0b,	"un rebuild started" },
234 	{ 0x0c,	"un initialization started" },
235 	{ 0x0d,	"ui logical unit deleted" },
236 	{ 0x0f,	"pc SMART threshold exceeded" },
237 	{ 0x15,	"a  table undefined" },	/* XXX: Not in FreeBSD's table */
238 	{ 0x21,	"pe ATA UDMA downgrade" },
239 	{ 0x22,	"pi ATA UDMA upgrade" },
240 	{ 0x23,	"pw sector repair occurred" },
241 	{ 0x24,	"aa SBUF integrity check failure" },
242 	{ 0x25,	"pa lost cached write" },
243 	{ 0x26,	"pa drive ECC error detected" },
244 	{ 0x27,	"pe DCB checksum error" },
245 	{ 0x28,	"pn DCB unsupported version" },
246 	{ 0x29,	"ui verify started" },
247 	{ 0x2a,	"ua verify failed" },
248 	{ 0x2b,	"ui verify complete" },
249 	{ 0x2c,	"pw overwrote bad sector during rebuild" },
250 	{ 0x2d,	"pa encountered bad sector during rebuild" },
251 	{ 0x2e,	"pe replacement drive too small" },
252 	{ 0x2f,	"ue array not previously initialized" },
253 	{ 0x30,	"p  drive not supported" },
254 	{ 0xff,	"a  aen queue full" },
255 
256 	{ 0,	NULL },
257 };
258 
259 const char *
260 twe_describe_code(const struct twe_code_table *table, uint32_t code)
261 {
262 
263 	for (; table->string != NULL; table++) {
264 		if (table->code == code)
265 			return (table->string);
266 	}
267 	return (NULL);
268 }
269 
270 static inline u_int32_t
271 twe_inl(struct twe_softc *sc, int off)
272 {
273 
274 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
275 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
276 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
277 }
278 
279 static inline void
280 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
281 {
282 
283 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
284 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
285 	    BUS_SPACE_BARRIER_WRITE);
286 }
287 
288 /*
289  * Match a supported board.
290  */
291 static int
292 twe_match(device_t parent, cfdata_t cfdata, void *aux)
293 {
294 	struct pci_attach_args *pa;
295 
296 	pa = aux;
297 
298 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
299 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
300 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
301 }
302 
303 /*
304  * Attach a supported board.
305  *
306  * XXX This doesn't fail gracefully.
307  */
308 static void
309 twe_attach(device_t parent, device_t self, void *aux)
310 {
311 	struct pci_attach_args *pa;
312 	struct twe_softc *sc;
313 	pci_chipset_tag_t pc;
314 	pci_intr_handle_t ih;
315 	pcireg_t csr;
316 	const char *intrstr;
317 	int s, size, i, rv, rseg;
318 	size_t max_segs, max_xfer;
319 	bus_dma_segment_t seg;
320 	const struct sysctlnode *node;
321 	struct twe_cmd *tc;
322 	struct twe_ccb *ccb;
323 	char intrbuf[PCI_INTRSTR_LEN];
324 
325 	sc = device_private(self);
326 	sc->sc_dev = self;
327 	pa = aux;
328 	pc = pa->pa_pc;
329 	sc->sc_dmat = pa->pa_dmat;
330 	SIMPLEQ_INIT(&sc->sc_ccb_queue);
331 	SLIST_INIT(&sc->sc_ccb_freelist);
332 
333 	aprint_naive(": RAID controller\n");
334 	aprint_normal(": 3ware Escalade\n");
335 
336 
337 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
338 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
339 		aprint_error_dev(self, "can't map i/o space\n");
340 		return;
341 	}
342 
343 	/* Enable the device. */
344 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
345 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
346 	    csr | PCI_COMMAND_MASTER_ENABLE);
347 
348 	/* Map and establish the interrupt. */
349 	if (pci_intr_map(pa, &ih)) {
350 		aprint_error_dev(self, "can't map interrupt\n");
351 		return;
352 	}
353 
354 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
355 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
356 	if (sc->sc_ih == NULL) {
357 		aprint_error_dev(self, "can't establish interrupt%s%s\n",
358 			(intrstr) ? " at " : "",
359 			(intrstr) ? intrstr : "");
360 		return;
361 	}
362 
363 	if (intrstr != NULL)
364 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
365 
366 	/*
367 	 * Allocate and initialise the command blocks and CCBs.
368 	 */
369 	size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
370 
371 	if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
372 	    &rseg, BUS_DMA_NOWAIT)) != 0) {
373 		aprint_error_dev(self,
374 		    "unable to allocate commands, rv = %d\n", rv);
375 		return;
376 	}
377 
378 	if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
379 	    (void **)&sc->sc_cmds,
380 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
381 		aprint_error_dev(self,
382 		    "unable to map commands, rv = %d\n", rv);
383 		return;
384 	}
385 
386 	if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
387 	    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
388 		aprint_error_dev(self,
389 		    "unable to create command DMA map, rv = %d\n", rv);
390 		return;
391 	}
392 
393 	if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
394 	    size, NULL, BUS_DMA_NOWAIT)) != 0) {
395 		aprint_error_dev(self,
396 		    "unable to load command DMA map, rv = %d\n", rv);
397 		return;
398 	}
399 
400 	ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
401 	if (ccb == NULL) {
402 		aprint_error_dev(self, "unable to allocate memory for ccbs\n");
403 		return;
404 	}
405 
406 	sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
407 	memset(sc->sc_cmds, 0, size);
408 
409 	sc->sc_ccbs = ccb;
410 	tc = (struct twe_cmd *)sc->sc_cmds;
411 	max_segs = twe_get_maxsegs();
412 	max_xfer = twe_get_maxxfer(max_segs);
413 
414 	for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
415 		ccb->ccb_cmd = tc;
416 		ccb->ccb_cmdid = i;
417 		ccb->ccb_flags = 0;
418 		rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
419 		    max_segs, PAGE_SIZE, 0,
420 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
421 		    &ccb->ccb_dmamap_xfer);
422 		if (rv != 0) {
423 			aprint_error_dev(self,
424 			    "can't create dmamap, rv = %d\n", rv);
425 			return;
426 		}
427 
428 		/* Save the first CCB for AEN retrieval. */
429 		if (i != 0)
430 			SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
431 			    ccb_chain.slist);
432 	}
433 
434 	/* Wait for the controller to become ready. */
435 	if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
436 		aprint_error_dev(self, "microcontroller not ready\n");
437 		return;
438 	}
439 
440 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
441 
442 	/* Reset the controller. */
443 	s = splbio();
444 	rv = twe_reset(sc);
445 	splx(s);
446 	if (rv) {
447 		aprint_error_dev(self, "reset failed\n");
448 		return;
449 	}
450 
451 	/* Initialise connection with controller. */
452 	twe_init_connection(sc);
453 
454 	twe_describe_controller(sc);
455 
456 	/* Find and attach RAID array units. */
457 	twe_rescan(self, "twe", 0);
458 
459 	/* ...and finally, enable interrupts. */
460 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
461 	    TWE_CTL_UNMASK_RESP_INTR |
462 	    TWE_CTL_ENABLE_INTRS);
463 
464 	/* sysctl set-up for 3ware cli */
465 	if (sysctl_createv(NULL, 0, NULL, &node,
466 				0, CTLTYPE_NODE, device_xname(self),
467 				SYSCTL_DESCR("twe driver information"),
468 				NULL, 0, NULL, 0,
469 				CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
470 		aprint_error_dev(self, "could not create %s.%s sysctl node\n",
471 		    "hw", device_xname(self));
472 		return;
473 	}
474 	if ((i = sysctl_createv(NULL, 0, NULL, NULL,
475 				0, CTLTYPE_STRING, "driver_version",
476 				SYSCTL_DESCR("twe0 driver version"),
477 				NULL, 0, __UNCONST(&twever), 0,
478 				CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
479 				!= 0) {
480 		aprint_error_dev(self,
481 		    "could not create %s.%s.driver_version sysctl\n",
482 		    "hw", device_xname(self));
483 		return;
484 	}
485 }
486 
487 static int
488 twe_rescan(device_t self, const char *attr, const int *flags)
489 {
490 	struct twe_softc *sc;
491 	int i;
492 
493 	sc = device_private(self);
494 	sc->sc_nunits = 0;
495 	for (i = 0; i < TWE_MAX_UNITS; i++)
496 		(void) twe_add_unit(sc, i);
497 	return 0;
498 }
499 
500 
501 void
502 twe_register_callbacks(struct twe_softc *sc, int unit,
503     const struct twe_callbacks *tcb)
504 {
505 
506 	sc->sc_units[unit].td_callbacks = tcb;
507 }
508 
509 static void
510 twe_recompute_openings(struct twe_softc *sc)
511 {
512 	struct twe_drive *td;
513 	int unit, openings;
514 
515 	if (sc->sc_nunits != 0)
516 		openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
517 	else
518 		openings = 0;
519 	if (openings == sc->sc_openings)
520 		return;
521 	sc->sc_openings = openings;
522 
523 #ifdef TWE_DEBUG
524 	printf("%s: %d array%s, %d openings per array\n",
525 	    device_xname(sc->sc_dev), sc->sc_nunits,
526 	    sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
527 #endif
528 
529 	for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
530 		td = &sc->sc_units[unit];
531 		if (td->td_dev != NULL)
532 			(*td->td_callbacks->tcb_openings)(td->td_dev,
533 			    sc->sc_openings);
534 	}
535 }
536 
537 static int
538 twe_add_unit(struct twe_softc *sc, int unit)
539 {
540 	struct twe_param *dtp, *atp;
541 	struct twe_array_descriptor *ad;
542 	struct twe_drive *td;
543 	struct twe_attach_args twea;
544 	uint32_t newsize;
545 	int rv;
546 	uint16_t dsize;
547 	uint8_t newtype, newstripe;
548 	int locs[TWECF_NLOCS];
549 
550 	if (unit < 0 || unit >= TWE_MAX_UNITS)
551 		return (EINVAL);
552 
553 	/* Find attached units. */
554 	rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
555 	    TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
556 	if (rv != 0) {
557 		aprint_error_dev(sc->sc_dev,
558 		    "error %d fetching unit summary\n", rv);
559 		return (rv);
560 	}
561 
562 	/* For each detected unit, collect size and store in an array. */
563 	td = &sc->sc_units[unit];
564 
565 	/* Unit present? */
566 	if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
567 		/*
568 		 * XXX Should we check to see if a device has been
569 		 * XXX attached at this index and detach it if it
570 		 * XXX has?  ("rescan" semantics)
571 		 */
572 		rv = 0;
573 		goto out;
574    	}
575 
576 	rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
577 	    TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
578 	if (rv != 0) {
579 		aprint_error_dev(sc->sc_dev,
580 		    "error %d fetching descriptor size for unit %d\n",
581 		    rv, unit);
582 		goto out;
583 	}
584 
585 	rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
586 	    TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
587 	if (rv != 0) {
588 		aprint_error_dev(sc->sc_dev,
589 		    "error %d fetching array descriptor for unit %d\n",
590 		    rv, unit);
591 		goto out;
592 	}
593 
594 	ad = (struct twe_array_descriptor *)atp->tp_data;
595 	newtype = ad->configuration;
596 	newstripe = ad->stripe_size;
597 	free(atp, M_DEVBUF);
598 
599 	rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
600 	    TWE_PARAM_UNITINFO_Capacity, &newsize);
601 	if (rv != 0) {
602 		aprint_error_dev(sc->sc_dev,
603 		    "error %d fetching capacity for unit %d\n",
604 		    rv, unit);
605 		goto out;
606 	}
607 
608 	/*
609 	 * Have a device, so we need to attach it.  If there is currently
610 	 * something sitting at the slot, and the parameters are different,
611 	 * then we detach the old device before attaching the new one.
612 	 */
613 	if (td->td_dev != NULL &&
614 	    td->td_size == newsize &&
615 	    td->td_type == newtype &&
616 	    td->td_stripe == newstripe) {
617 		/* Same as the old device; just keep using it. */
618 		rv = 0;
619 		goto out;
620 	} else if (td->td_dev != NULL) {
621 		/* Detach the old device first. */
622 		(void) config_detach(td->td_dev, DETACH_FORCE);
623 		td->td_dev = NULL;
624 	} else if (td->td_size == 0)
625 		sc->sc_nunits++;
626 
627 	/*
628 	 * Committed to the new array unit; assign its parameters and
629 	 * recompute the number of available command openings.
630 	 */
631 	td->td_size = newsize;
632 	td->td_type = newtype;
633 	td->td_stripe = newstripe;
634 	twe_recompute_openings(sc);
635 
636 	twea.twea_unit = unit;
637 
638 	locs[TWECF_UNIT] = unit;
639 
640 	td->td_dev = config_found_sm_loc(sc->sc_dev, "twe", locs, &twea,
641 					 twe_print, config_stdsubmatch);
642 
643 	rv = 0;
644  out:
645 	free(dtp, M_DEVBUF);
646 	return (rv);
647 }
648 
649 static int
650 twe_del_unit(struct twe_softc *sc, int unit)
651 {
652 	struct twe_drive *td;
653 
654 	if (unit < 0 || unit >= TWE_MAX_UNITS)
655 		return (EINVAL);
656 
657 	td = &sc->sc_units[unit];
658 	if (td->td_size != 0)
659 		sc->sc_nunits--;
660 	td->td_size = 0;
661 	td->td_type = 0;
662 	td->td_stripe = 0;
663 	if (td->td_dev != NULL) {
664 		(void) config_detach(td->td_dev, DETACH_FORCE);
665 		td->td_dev = NULL;
666 	}
667 	twe_recompute_openings(sc);
668 	return (0);
669 }
670 
671 /*
672  * Reset the controller.
673  * MUST BE CALLED AT splbio()!
674  */
675 static int
676 twe_reset(struct twe_softc *sc)
677 {
678 	uint16_t aen;
679 	u_int status;
680 	int got, rv;
681 
682 	/* Issue a soft reset. */
683 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
684 	    TWE_CTL_CLEAR_HOST_INTR |
685 	    TWE_CTL_CLEAR_ATTN_INTR |
686 	    TWE_CTL_MASK_CMD_INTR |
687 	    TWE_CTL_MASK_RESP_INTR |
688 	    TWE_CTL_CLEAR_ERROR_STS |
689 	    TWE_CTL_DISABLE_INTRS);
690 
691 	/* Wait for attention... */
692 	if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
693 		aprint_error_dev(sc->sc_dev,
694 		    "timeout waiting for attention interrupt\n");
695 		return (-1);
696 	}
697 
698 	/* ...and ACK it. */
699 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
700 
701 	/*
702 	 * Pull AENs out of the controller; look for a soft reset AEN.
703 	 * Open code this, since we want to detect reset even if the
704 	 * queue for management tools is full.
705 	 *
706 	 * Note that since:
707 	 *	- interrupts are blocked
708 	 *	- we have reset the controller
709 	 *	- acknowledged the pending ATTENTION
710 	 * that there is no way a pending asynchronous AEN fetch would
711 	 * finish, so clear the flag.
712 	 */
713 	sc->sc_flags &= ~TWEF_AEN;
714 	for (got = 0;;) {
715 		rv = twe_aen_get(sc, &aen);
716 		if (rv != 0)
717 			printf("%s: error %d while draining event queue\n",
718 			    device_xname(sc->sc_dev), rv);
719 		if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
720 			break;
721 		if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
722 			got = 1;
723 		twe_aen_enqueue(sc, aen, 1);
724 	}
725 
726 	if (!got) {
727 		printf("%s: reset not reported\n", device_xname(sc->sc_dev));
728 		return (-1);
729 	}
730 
731 	/* Check controller status. */
732 	status = twe_inl(sc, TWE_REG_STS);
733 	if (twe_status_check(sc, status)) {
734 		printf("%s: controller errors detected\n",
735 		    device_xname(sc->sc_dev));
736 		return (-1);
737 	}
738 
739 	/* Drain the response queue. */
740 	for (;;) {
741 		status = twe_inl(sc, TWE_REG_STS);
742 		if (twe_status_check(sc, status) != 0) {
743 			aprint_error_dev(sc->sc_dev,
744 			    "can't drain response queue\n");
745 			return (-1);
746 		}
747 		if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
748 			break;
749 		(void)twe_inl(sc, TWE_REG_RESP_QUEUE);
750 	}
751 
752 	return (0);
753 }
754 
755 /*
756  * Print autoconfiguration message for a sub-device.
757  */
758 static int
759 twe_print(void *aux, const char *pnp)
760 {
761 	struct twe_attach_args *twea;
762 
763 	twea = aux;
764 
765 	if (pnp != NULL)
766 		aprint_normal("block device at %s", pnp);
767 	aprint_normal(" unit %d", twea->twea_unit);
768 	return (UNCONF);
769 }
770 
771 /*
772  * Interrupt service routine.
773  */
774 static int
775 twe_intr(void *arg)
776 {
777 	struct twe_softc *sc;
778 	u_int status;
779 	int caught, rv;
780 
781 	sc = arg;
782 	caught = 0;
783 	status = twe_inl(sc, TWE_REG_STS);
784 	twe_status_check(sc, status);
785 
786 	/* Host interrupts - purpose unknown. */
787 	if ((status & TWE_STS_HOST_INTR) != 0) {
788 #ifdef DEBUG
789 		printf("%s: host interrupt\n", device_xname(sc->sc_dev));
790 #endif
791 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
792 		caught = 1;
793 	}
794 
795 	/*
796 	 * Attention interrupts, signalled when a controller or child device
797 	 * state change has occurred.
798 	 */
799 	if ((status & TWE_STS_ATTN_INTR) != 0) {
800 		rv = twe_aen_get(sc, NULL);
801 		if (rv != 0)
802 			aprint_error_dev(sc->sc_dev,
803 			    "unable to retrieve AEN (%d)\n", rv);
804 		else
805 			twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
806 		caught = 1;
807 	}
808 
809 	/*
810 	 * Command interrupts, signalled when the controller can accept more
811 	 * commands.  We don't use this; instead, we try to submit commands
812 	 * when we receive them, and when other commands have completed.
813 	 * Mask it so we don't get another one.
814 	 */
815 	if ((status & TWE_STS_CMD_INTR) != 0) {
816 #ifdef DEBUG
817 		printf("%s: command interrupt\n", device_xname(sc->sc_dev));
818 #endif
819 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
820 		caught = 1;
821 	}
822 
823 	if ((status & TWE_STS_RESP_INTR) != 0) {
824 		twe_poll(sc);
825 		caught = 1;
826 	}
827 
828 	return (caught);
829 }
830 
831 /*
832  * Fetch an AEN.  Even though this is really like parameter
833  * retrieval, we handle this specially, because we issue this
834  * AEN retrieval command from interrupt context, and thus
835  * reserve a CCB for it to avoid resource shortage.
836  *
837  * XXX There are still potential resource shortages we could
838  * XXX encounter.  Consider pre-allocating all AEN-related
839  * XXX resources.
840  *
841  * MUST BE CALLED AT splbio()!
842  */
843 static int
844 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
845 {
846 	struct twe_ccb *ccb;
847 	struct twe_cmd *tc;
848 	struct twe_param *tp;
849 	int rv;
850 
851 	/*
852 	 * If we're already retrieving an AEN, just wait; another
853 	 * retrieval will be chained after the current one completes.
854 	 */
855 	if (sc->sc_flags & TWEF_AEN) {
856 		/*
857 		 * It is a fatal software programming error to attempt
858 		 * to fetch an AEN synchronously when an AEN fetch is
859 		 * already pending.
860 		 */
861 		KASSERT(aenp == NULL);
862 		return (0);
863 	}
864 
865 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
866 	if (tp == NULL)
867 		return (ENOMEM);
868 
869 	ccb = twe_ccb_alloc(sc,
870 	    TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
871 	KASSERT(ccb != NULL);
872 
873 	ccb->ccb_data = tp;
874 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
875 	ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
876 	ccb->ccb_tx.tx_context = tp;
877 	ccb->ccb_tx.tx_dv = sc->sc_dev;
878 
879 	tc = ccb->ccb_cmd;
880 	tc->tc_size = 2;
881 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
882 	tc->tc_unit = 0;
883 	tc->tc_count = htole16(1);
884 
885 	/* Fill in the outbound parameter data. */
886 	tp->tp_table_id = htole16(TWE_PARAM_AEN);
887 	tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
888 	tp->tp_param_size = 2;
889 
890 	/* Map the transfer. */
891 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
892 		twe_ccb_free(sc, ccb);
893 		goto done;
894 	}
895 
896 	/* Enqueue the command and wait. */
897 	if (aenp != NULL) {
898 		rv = twe_ccb_poll(sc, ccb, 5);
899 		twe_ccb_unmap(sc, ccb);
900 		twe_ccb_free(sc, ccb);
901 		if (rv == 0)
902 			*aenp = le16toh(*(uint16_t *)tp->tp_data);
903 		free(tp, M_DEVBUF);
904 	} else {
905 		sc->sc_flags |= TWEF_AEN;
906 		twe_ccb_enqueue(sc, ccb);
907 		rv = 0;
908 	}
909 
910  done:
911 	return (rv);
912 }
913 
914 /*
915  * Handle an AEN returned by the controller.
916  * MUST BE CALLED AT splbio()!
917  */
918 static void
919 twe_aen_handler(struct twe_ccb *ccb, int error)
920 {
921 	struct twe_softc *sc;
922 	struct twe_param *tp;
923 	uint16_t aen;
924 	int rv;
925 
926 	sc = device_private(ccb->ccb_tx.tx_dv);
927 	tp = ccb->ccb_tx.tx_context;
928 	twe_ccb_unmap(sc, ccb);
929 
930 	sc->sc_flags &= ~TWEF_AEN;
931 
932 	if (error) {
933 		aprint_error_dev(sc->sc_dev, "error retrieving AEN\n");
934 		aen = TWE_AEN_QUEUE_EMPTY;
935 	} else
936 		aen = le16toh(*(u_int16_t *)tp->tp_data);
937 	free(tp, M_DEVBUF);
938 	twe_ccb_free(sc, ccb);
939 
940 	if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
941 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
942 		return;
943 	}
944 
945 	twe_aen_enqueue(sc, aen, 0);
946 
947 	/*
948 	 * Chain another retrieval in case interrupts have been
949 	 * coalesced.
950 	 */
951 	rv = twe_aen_get(sc, NULL);
952 	if (rv != 0)
953 		aprint_error_dev(sc->sc_dev,
954 		    "unable to retrieve AEN (%d)\n", rv);
955 }
956 
957 static void
958 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
959 {
960 	const char *str, *msg;
961 	int s, next, nextnext, level;
962 
963 	/*
964 	 * First report the AEN on the console.  Maybe.
965 	 */
966 	if (! quiet) {
967 		str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
968 		if (str == NULL) {
969 			aprint_error_dev(sc->sc_dev,
970 			    "unknown AEN 0x%04x\n", aen);
971 		} else {
972 			msg = str + 3;
973 			switch (str[1]) {
974 			case 'E':	level = LOG_EMERG; break;
975 			case 'a':	level = LOG_ALERT; break;
976 			case 'c':	level = LOG_CRIT; break;
977 			case 'e':	level = LOG_ERR; break;
978 			case 'w':	level = LOG_WARNING; break;
979 			case 'n':	level = LOG_NOTICE; break;
980 			case 'i':	level = LOG_INFO; break;
981 			case 'd':	level = LOG_DEBUG; break;
982 			default:
983 				/* Don't use syslog. */
984 				level = -1;
985 			}
986 
987 			if (level < 0) {
988 				switch (str[0]) {
989 				case 'u':
990 				case 'p':
991 					printf("%s: %s %d: %s\n",
992 					    device_xname(sc->sc_dev),
993 					    str[0] == 'u' ? "unit" : "port",
994 					    TWE_AEN_UNIT(aen), msg);
995 					break;
996 
997 				default:
998 					printf("%s: %s\n",
999 					    device_xname(sc->sc_dev), msg);
1000 				}
1001 			} else {
1002 				switch (str[0]) {
1003 				case 'u':
1004 				case 'p':
1005 					log(level, "%s: %s %d: %s\n",
1006 					    device_xname(sc->sc_dev),
1007 					    str[0] == 'u' ? "unit" : "port",
1008 					    TWE_AEN_UNIT(aen), msg);
1009 					break;
1010 
1011 				default:
1012 					log(level, "%s: %s\n",
1013 					    device_xname(sc->sc_dev), msg);
1014 				}
1015 			}
1016 		}
1017 	}
1018 
1019 	/* Now enqueue the AEN for mangement tools. */
1020 	s = splbio();
1021 
1022 	next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1023 	nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1024 
1025 	/*
1026 	 * If this is the last free slot, then queue up a "queue
1027 	 * full" message.
1028 	 */
1029 	if (nextnext == sc->sc_aen_tail)
1030 		aen = TWE_AEN_QUEUE_FULL;
1031 
1032 	if (next != sc->sc_aen_tail) {
1033 		sc->sc_aen_queue[sc->sc_aen_head] = aen;
1034 		sc->sc_aen_head = next;
1035 	}
1036 
1037 	if (sc->sc_flags & TWEF_AENQ_WAIT) {
1038 		sc->sc_flags &= ~TWEF_AENQ_WAIT;
1039 		wakeup(&sc->sc_aen_queue);
1040 	}
1041 
1042 	splx(s);
1043 }
1044 
1045 /* NOTE: Must be called at splbio(). */
1046 static uint16_t
1047 twe_aen_dequeue(struct twe_softc *sc)
1048 {
1049 	uint16_t aen;
1050 
1051 	if (sc->sc_aen_tail == sc->sc_aen_head)
1052 		aen = TWE_AEN_QUEUE_EMPTY;
1053 	else {
1054 		aen = sc->sc_aen_queue[sc->sc_aen_tail];
1055 		sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1056 	}
1057 
1058 	return (aen);
1059 }
1060 
1061 /*
1062  * These are short-hand functions that execute TWE_OP_GET_PARAM to
1063  * fetch 1, 2, and 4 byte parameter values, respectively.
1064  */
1065 int
1066 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1067     uint8_t *valp)
1068 {
1069 	struct twe_param *tp;
1070 	int rv;
1071 
1072 	rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1073 	if (rv != 0)
1074 		return (rv);
1075 	*valp = *(uint8_t *)tp->tp_data;
1076 	free(tp, M_DEVBUF);
1077 	return (0);
1078 }
1079 
1080 int
1081 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1082     uint16_t *valp)
1083 {
1084 	struct twe_param *tp;
1085 	int rv;
1086 
1087 	rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1088 	if (rv != 0)
1089 		return (rv);
1090 	*valp = le16toh(*(uint16_t *)tp->tp_data);
1091 	free(tp, M_DEVBUF);
1092 	return (0);
1093 }
1094 
1095 int
1096 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1097     uint32_t *valp)
1098 {
1099 	struct twe_param *tp;
1100 	int rv;
1101 
1102 	rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1103 	if (rv != 0)
1104 		return (rv);
1105 	*valp = le32toh(*(uint32_t *)tp->tp_data);
1106 	free(tp, M_DEVBUF);
1107 	return (0);
1108 }
1109 
1110 /*
1111  * Execute a TWE_OP_GET_PARAM command.  If a callback function is provided,
1112  * it will be called with generated context when the command has completed.
1113  * If no callback is provided, the command will be executed synchronously
1114  * and a pointer to a buffer containing the data returned.
1115  *
1116  * The caller or callback is responsible for freeing the buffer.
1117  *
1118  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1119  */
1120 int
1121 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1122 	      void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1123 {
1124 	struct twe_ccb *ccb;
1125 	struct twe_cmd *tc;
1126 	struct twe_param *tp;
1127 	int rv, s;
1128 
1129 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1130 	if (tp == NULL)
1131 		return ENOMEM;
1132 
1133 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1134 	KASSERT(ccb != NULL);
1135 
1136 	ccb->ccb_data = tp;
1137 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1138 	ccb->ccb_tx.tx_handler = func;
1139 	ccb->ccb_tx.tx_context = tp;
1140 	ccb->ccb_tx.tx_dv = sc->sc_dev;
1141 
1142 	tc = ccb->ccb_cmd;
1143 	tc->tc_size = 2;
1144 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1145 	tc->tc_unit = 0;
1146 	tc->tc_count = htole16(1);
1147 
1148 	/* Fill in the outbound parameter data. */
1149 	tp->tp_table_id = htole16(table_id);
1150 	tp->tp_param_id = param_id;
1151 	tp->tp_param_size = size;
1152 
1153 	/* Map the transfer. */
1154 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1155 		twe_ccb_free(sc, ccb);
1156 		goto done;
1157 	}
1158 
1159 	/* Submit the command and either wait or let the callback handle it. */
1160 	if (func == NULL) {
1161 		s = splbio();
1162 		rv = twe_ccb_poll(sc, ccb, 5);
1163 		twe_ccb_unmap(sc, ccb);
1164 		twe_ccb_free(sc, ccb);
1165 		splx(s);
1166 	} else {
1167 #ifdef DEBUG
1168 		if (pbuf != NULL)
1169 			panic("both func and pbuf defined");
1170 #endif
1171 		twe_ccb_enqueue(sc, ccb);
1172 		return 0;
1173 	}
1174 
1175 done:
1176 	if (pbuf == NULL || rv != 0)
1177 		free(tp, M_DEVBUF);
1178 	else if (pbuf != NULL && rv == 0)
1179 		*pbuf = tp;
1180 	return rv;
1181 }
1182 
1183 /*
1184  * Execute a TWE_OP_SET_PARAM command.
1185  *
1186  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1187  */
1188 static int
1189 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1190 	      void *sbuf)
1191 {
1192 	struct twe_ccb *ccb;
1193 	struct twe_cmd *tc;
1194 	struct twe_param *tp;
1195 	int rv, s;
1196 
1197 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1198 	if (tp == NULL)
1199 		return ENOMEM;
1200 
1201 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1202 	KASSERT(ccb != NULL);
1203 
1204 	ccb->ccb_data = tp;
1205 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1206 	ccb->ccb_tx.tx_handler = 0;
1207 	ccb->ccb_tx.tx_context = tp;
1208 	ccb->ccb_tx.tx_dv = sc->sc_dev;
1209 
1210 	tc = ccb->ccb_cmd;
1211 	tc->tc_size = 2;
1212 	tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1213 	tc->tc_unit = 0;
1214 	tc->tc_count = htole16(1);
1215 
1216 	/* Fill in the outbound parameter data. */
1217 	tp->tp_table_id = htole16(table_id);
1218 	tp->tp_param_id = param_id;
1219 	tp->tp_param_size = size;
1220 	memcpy(tp->tp_data, sbuf, size);
1221 
1222 	/* Map the transfer. */
1223 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1224 		twe_ccb_free(sc, ccb);
1225 		goto done;
1226 	}
1227 
1228 	/* Submit the command and wait. */
1229 	s = splbio();
1230 	rv = twe_ccb_poll(sc, ccb, 5);
1231 	twe_ccb_unmap(sc, ccb);
1232 	twe_ccb_free(sc, ccb);
1233 	splx(s);
1234 done:
1235 	free(tp, M_DEVBUF);
1236 	return (rv);
1237 }
1238 
1239 /*
1240  * Execute a TWE_OP_INIT_CONNECTION command.  Return non-zero on error.
1241  * Must be called with interrupts blocked.
1242  */
1243 static int
1244 twe_init_connection(struct twe_softc *sc)
1245 {
1246 	struct twe_ccb *ccb;
1247 	struct twe_cmd *tc;
1248 	int rv;
1249 
1250 	if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1251 		return (EAGAIN);
1252 
1253 	/* Build the command. */
1254 	tc = ccb->ccb_cmd;
1255 	tc->tc_size = 3;
1256 	tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1257 	tc->tc_unit = 0;
1258 	tc->tc_count = htole16(TWE_MAX_CMDS);
1259 	tc->tc_args.init_connection.response_queue_pointer = 0;
1260 
1261 	/* Submit the command for immediate execution. */
1262 	rv = twe_ccb_poll(sc, ccb, 5);
1263 	twe_ccb_free(sc, ccb);
1264 	return (rv);
1265 }
1266 
1267 /*
1268  * Poll the controller for completed commands.  Must be called with
1269  * interrupts blocked.
1270  */
1271 static void
1272 twe_poll(struct twe_softc *sc)
1273 {
1274 	struct twe_ccb *ccb;
1275 	int found;
1276 	u_int status, cmdid;
1277 
1278 	found = 0;
1279 
1280 	for (;;) {
1281 		status = twe_inl(sc, TWE_REG_STS);
1282 		twe_status_check(sc, status);
1283 
1284 		if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1285 			break;
1286 
1287 		found = 1;
1288 		cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1289 		cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1290 		if (cmdid >= TWE_MAX_QUEUECNT) {
1291 			aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid);
1292 			continue;
1293 		}
1294 
1295 		ccb = sc->sc_ccbs + cmdid;
1296 		if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1297 			printf("%s: CCB for cmdid %d not active\n",
1298 			    device_xname(sc->sc_dev), cmdid);
1299 			continue;
1300 		}
1301 		ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1302 
1303 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1304 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1305 		    sizeof(struct twe_cmd),
1306 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1307 
1308 		/* Pass notification to upper layers. */
1309 		if (ccb->ccb_tx.tx_handler != NULL)
1310 			(*ccb->ccb_tx.tx_handler)(ccb,
1311 			    ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1312 	}
1313 
1314 	/* If any commands have completed, run the software queue. */
1315 	if (found)
1316 		twe_ccb_enqueue(sc, NULL);
1317 }
1318 
1319 /*
1320  * Wait for `status' to be set in the controller status register.  Return
1321  * zero if found, non-zero if the operation timed out.
1322  */
1323 static int
1324 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1325 {
1326 
1327 	for (timo *= 10; timo != 0; timo--) {
1328 		if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1329 			break;
1330 		delay(100000);
1331 	}
1332 
1333 	return (timo == 0);
1334 }
1335 
1336 /*
1337  * Clear a PCI parity error.
1338  */
1339 static void
1340 twe_clear_pci_parity_error(struct twe_softc *sc)
1341 {
1342 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0,
1343 	    TWE_CTL_CLEAR_PARITY_ERROR);
1344 
1345 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1346 }
1347 
1348 
1349 /*
1350  * Clear a PCI abort.
1351  */
1352 static void
1353 twe_clear_pci_abort(struct twe_softc *sc)
1354 {
1355 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1356 
1357 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1358 }
1359 
1360 /*
1361  * Complain if the status bits aren't what we expect.
1362  */
1363 static int
1364 twe_status_check(struct twe_softc *sc, u_int status)
1365 {
1366 	int rv;
1367 
1368 	rv = 0;
1369 
1370 	if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1371 		aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n",
1372 		    status & ~TWE_STS_EXPECTED_BITS);
1373 		rv = -1;
1374 	}
1375 
1376 	if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1377 		aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n",
1378 		    status & TWE_STS_UNEXPECTED_BITS);
1379 		rv = -1;
1380 		if (status & TWE_STS_PCI_PARITY_ERROR) {
1381 			aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat"
1382 			    " card, move card or buggy device present.\n");
1383 			twe_clear_pci_parity_error(sc);
1384 		}
1385 		if (status & TWE_STS_PCI_ABORT) {
1386 			aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n");
1387 			twe_clear_pci_abort(sc);
1388 		}
1389 	}
1390 
1391 	return (rv);
1392 }
1393 
1394 /*
1395  * Allocate and initialise a CCB.
1396  */
1397 static inline void
1398 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1399 {
1400 	struct twe_cmd *tc;
1401 
1402 	ccb->ccb_tx.tx_handler = NULL;
1403 	ccb->ccb_flags = flags;
1404 	tc = ccb->ccb_cmd;
1405 	tc->tc_status = 0;
1406 	tc->tc_flags = 0;
1407 	tc->tc_cmdid = ccb->ccb_cmdid;
1408 }
1409 
1410 struct twe_ccb *
1411 twe_ccb_alloc(struct twe_softc *sc, int flags)
1412 {
1413 	struct twe_ccb *ccb;
1414 	int s;
1415 
1416 	s = splbio();
1417 	if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1418 		/* Use the reserved CCB. */
1419 		ccb = sc->sc_ccbs;
1420 	} else {
1421 		/* Allocate a CCB and command block. */
1422 		if (__predict_false((ccb =
1423 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1424 			splx(s);
1425 			return (NULL);
1426 		}
1427 		SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1428 	}
1429 #ifdef DIAGNOSTIC
1430 	if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1431 		panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1432 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1433 		panic("twe_ccb_alloc: CCB %ld already allocated",
1434 		    (long)(ccb - sc->sc_ccbs));
1435 	flags |= TWE_CCB_ALLOCED;
1436 #endif
1437 	splx(s);
1438 
1439 	twe_ccb_init(sc, ccb, flags);
1440 	return (ccb);
1441 }
1442 
1443 struct twe_ccb *
1444 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1445 {
1446 	struct twe_ccb *ccb;
1447 	int s;
1448 
1449 	KASSERT((flags & TWE_CCB_AEN) == 0);
1450 
1451 	s = splbio();
1452 	while (__predict_false((ccb =
1453 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1454 		sc->sc_flags |= TWEF_WAIT_CCB;
1455 		(void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1456 	}
1457 	SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1458 #ifdef DIAGNOSTIC
1459 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1460 		panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1461 		    (long)(ccb - sc->sc_ccbs));
1462 	flags |= TWE_CCB_ALLOCED;
1463 #endif
1464 	splx(s);
1465 
1466 	twe_ccb_init(sc, ccb, flags);
1467 	return (ccb);
1468 }
1469 
1470 /*
1471  * Free a CCB.
1472  */
1473 void
1474 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1475 {
1476 	int s;
1477 
1478 	s = splbio();
1479 	if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1480 		SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1481 		if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1482 			sc->sc_flags &= ~TWEF_WAIT_CCB;
1483 			wakeup(&sc->sc_ccb_freelist);
1484 		}
1485 	}
1486 	ccb->ccb_flags = 0;
1487 	splx(s);
1488 }
1489 
1490 /*
1491  * Map the specified CCB's command block and data buffer (if any) into
1492  * controller visible space.  Perform DMA synchronisation.
1493  */
1494 int
1495 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1496 {
1497 	struct twe_cmd *tc;
1498 	int flags, nsegs, i, s, rv;
1499 	void *data;
1500 
1501 	/*
1502 	 * The data as a whole must be 512-byte aligned.
1503 	 */
1504 	if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1505 		s = splvm();
1506 		/* XXX */
1507 		rv = uvm_km_kmem_alloc(kmem_va_arena,
1508 		    ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT),
1509 		    (vmem_addr_t *)&ccb->ccb_abuf);
1510 		splx(s);
1511 		data = (void *)ccb->ccb_abuf;
1512 		if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1513 			memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1514 	} else {
1515 		ccb->ccb_abuf = (vaddr_t)0;
1516 		data = ccb->ccb_data;
1517 	}
1518 
1519 	/*
1520 	 * Map the data buffer into bus space and build the S/G list.
1521 	 */
1522 	rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1523 	    ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1524 	    ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1525 	    BUS_DMA_READ : BUS_DMA_WRITE));
1526 	if (rv != 0) {
1527 		if (ccb->ccb_abuf != (vaddr_t)0) {
1528 			s = splvm();
1529 			/* XXX */
1530 			uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1531 			    ccb->ccb_datasize);
1532 			splx(s);
1533 		}
1534 		return (rv);
1535 	}
1536 
1537 	nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1538 	tc = ccb->ccb_cmd;
1539 	tc->tc_size += 2 * nsegs;
1540 
1541 	/* The location of the S/G list is dependent upon command type. */
1542 	switch (tc->tc_opcode >> 5) {
1543 	case 2:
1544 		for (i = 0; i < nsegs; i++) {
1545 			tc->tc_args.param.sgl[i].tsg_address =
1546 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1547 			tc->tc_args.param.sgl[i].tsg_length =
1548 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1549 		}
1550 		/* XXX Needed? */
1551 		for (; i < TWE_SG_SIZE; i++) {
1552 			tc->tc_args.param.sgl[i].tsg_address = 0;
1553 			tc->tc_args.param.sgl[i].tsg_length = 0;
1554 		}
1555 		break;
1556 	case 3:
1557 		for (i = 0; i < nsegs; i++) {
1558 			tc->tc_args.io.sgl[i].tsg_address =
1559 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1560 			tc->tc_args.io.sgl[i].tsg_length =
1561 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1562 		}
1563 		/* XXX Needed? */
1564 		for (; i < TWE_SG_SIZE; i++) {
1565 			tc->tc_args.io.sgl[i].tsg_address = 0;
1566 			tc->tc_args.io.sgl[i].tsg_length = 0;
1567 		}
1568 		break;
1569 	default:
1570 		/*
1571 		 * In all likelihood, this is a command passed from
1572 		 * management tools in userspace where no S/G list is
1573 		 * necessary because no data is being passed.
1574 		 */
1575 		break;
1576 	}
1577 
1578 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1579 		flags = BUS_DMASYNC_PREREAD;
1580 	else
1581 		flags = 0;
1582 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1583 		flags |= BUS_DMASYNC_PREWRITE;
1584 
1585 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1586 	    ccb->ccb_datasize, flags);
1587 	return (0);
1588 }
1589 
1590 /*
1591  * Unmap the specified CCB's command block and data buffer (if any) and
1592  * perform DMA synchronisation.
1593  */
1594 void
1595 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1596 {
1597 	int flags, s;
1598 
1599 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1600 		flags = BUS_DMASYNC_POSTREAD;
1601 	else
1602 		flags = 0;
1603 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1604 		flags |= BUS_DMASYNC_POSTWRITE;
1605 
1606 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1607 	    ccb->ccb_datasize, flags);
1608 	bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1609 
1610 	if (ccb->ccb_abuf != (vaddr_t)0) {
1611 		if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1612 			memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1613 			    ccb->ccb_datasize);
1614 		s = splvm();
1615 		/* XXX */
1616 		uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1617 		    ccb->ccb_datasize);
1618 		splx(s);
1619 	}
1620 }
1621 
1622 /*
1623  * Submit a command to the controller and poll on completion.  Return
1624  * non-zero on timeout (but don't check status, as some command types don't
1625  * return status).  Must be called with interrupts blocked.
1626  */
1627 int
1628 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1629 {
1630 	int rv;
1631 
1632 	if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1633 		return (rv);
1634 
1635 	for (timo *= 1000; timo != 0; timo--) {
1636 		twe_poll(sc);
1637 		if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1638 			break;
1639 		DELAY(100);
1640 	}
1641 
1642 	return (timo == 0);
1643 }
1644 
1645 /*
1646  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1647  * the order that they were enqueued and try to submit their command blocks
1648  * to the controller for execution.
1649  */
1650 void
1651 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1652 {
1653 	int s;
1654 
1655 	s = splbio();
1656 
1657 	if (ccb != NULL)
1658 		SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1659 
1660 	while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1661 		if (twe_ccb_submit(sc, ccb))
1662 			break;
1663 		SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1664 	}
1665 
1666 	splx(s);
1667 }
1668 
1669 /*
1670  * Submit the command block associated with the specified CCB to the
1671  * controller for execution.  Must be called with interrupts blocked.
1672  */
1673 int
1674 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1675 {
1676 	bus_addr_t pa;
1677 	int rv;
1678 	u_int status;
1679 
1680 	/* Check to see if we can post a command. */
1681 	status = twe_inl(sc, TWE_REG_STS);
1682 	twe_status_check(sc, status);
1683 
1684 	if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1685 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1686 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1687 		    sizeof(struct twe_cmd),
1688 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1689 #ifdef DIAGNOSTIC
1690 		if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1691 			panic("%s: CCB %ld not ALLOCED\n",
1692 			    device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs));
1693 #endif
1694 		ccb->ccb_flags |= TWE_CCB_ACTIVE;
1695 		pa = sc->sc_cmds_paddr +
1696 		    ccb->ccb_cmdid * sizeof(struct twe_cmd);
1697 		twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1698 		rv = 0;
1699 	} else
1700 		rv = EBUSY;
1701 
1702 	return (rv);
1703 }
1704 
1705 
1706 /*
1707  * Accept an open operation on the control device.
1708  */
1709 static int
1710 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1711 {
1712 	struct twe_softc *twe;
1713 
1714 	if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1715 		return (ENXIO);
1716 	if ((twe->sc_flags & TWEF_OPEN) != 0)
1717 		return (EBUSY);
1718 
1719 	twe->sc_flags |= TWEF_OPEN;
1720 	return (0);
1721 }
1722 
1723 /*
1724  * Accept the last close on the control device.
1725  */
1726 static int
1727 tweclose(dev_t dev, int flag, int mode,
1728     struct lwp *l)
1729 {
1730 	struct twe_softc *twe;
1731 
1732 	twe = device_lookup_private(&twe_cd, minor(dev));
1733 	twe->sc_flags &= ~TWEF_OPEN;
1734 	return (0);
1735 }
1736 
1737 void
1738 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1739 {
1740 
1741 	/* Just wake up the sleeper. */
1742 	wakeup(ccb);
1743 }
1744 
1745 /*
1746  * Handle control operations.
1747  */
1748 static int
1749 tweioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1750 {
1751 	struct twe_softc *twe;
1752 	struct twe_ccb *ccb;
1753 	struct twe_param *param;
1754 	struct twe_usercommand *tu;
1755 	struct twe_paramcommand *tp;
1756 	struct twe_drivecommand *td;
1757 	void *pdata = NULL;
1758 	int s, error = 0;
1759 	u_int8_t cmdid;
1760 
1761 	twe = device_lookup_private(&twe_cd, minor(dev));
1762 	tu = (struct twe_usercommand *)data;
1763 	tp = (struct twe_paramcommand *)data;
1764 	td = (struct twe_drivecommand *)data;
1765 
1766 	/* This is intended to be compatible with the FreeBSD interface. */
1767 	switch (cmd) {
1768 	case TWEIO_COMMAND:
1769 		error = kauth_authorize_device_passthru(l->l_cred, dev,
1770 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1771 		if (error)
1772 			return (error);
1773 
1774 		/* XXX mutex */
1775 		if (tu->tu_size > 0) {
1776 			/*
1777 			 * XXX Handle > TWE_SECTOR_SIZE?  Let's see if
1778 			 * it's really necessary, first.
1779 			 */
1780 			if (tu->tu_size > TWE_SECTOR_SIZE) {
1781 #ifdef TWE_DEBUG
1782 				printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
1783 				    device_xname(twe->sc_dev), tu->tu_size);
1784 #endif
1785 				return EINVAL;
1786 			}
1787 			pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1788 			error = copyin(tu->tu_data, pdata, tu->tu_size);
1789 			if (error != 0)
1790 				goto done;
1791 			ccb = twe_ccb_alloc_wait(twe,
1792 			    TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1793 			KASSERT(ccb != NULL);
1794 			ccb->ccb_data = pdata;
1795 			ccb->ccb_datasize = TWE_SECTOR_SIZE;
1796 		} else {
1797 			ccb = twe_ccb_alloc_wait(twe, 0);
1798 			KASSERT(ccb != NULL);
1799 		}
1800 
1801 		ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1802 		ccb->ccb_tx.tx_context = NULL;
1803 		ccb->ccb_tx.tx_dv = twe->sc_dev;
1804 
1805 		cmdid = ccb->ccb_cmdid;
1806 		memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1807 		ccb->ccb_cmd->tc_cmdid = cmdid;
1808 
1809 		/* Map the transfer. */
1810 		if ((error = twe_ccb_map(twe, ccb)) != 0) {
1811 			twe_ccb_free(twe, ccb);
1812 			goto done;
1813 		}
1814 
1815 		/* Submit the command and wait up to 1 minute. */
1816 		error = 0;
1817 		twe_ccb_enqueue(twe, ccb);
1818 		s = splbio();
1819 		while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1820 			if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1821 					    60 * hz)) != 0)
1822 				break;
1823 		splx(s);
1824 
1825 		/* Copy the command back to the ioctl argument. */
1826 		memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1827 #ifdef TWE_DEBUG
1828 		printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1829 		    "tc_status = 0x%02x\n", device_xname(twe->sc_dev),
1830 		    tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1831 #endif
1832 
1833 		s = splbio();
1834 		twe_ccb_free(twe, ccb);
1835 		splx(s);
1836 
1837 		if (tu->tu_size > 0)
1838 			error = copyout(pdata, tu->tu_data, tu->tu_size);
1839 		goto done;
1840 
1841 	case TWEIO_STATS:
1842 		return (ENOENT);
1843 
1844 	case TWEIO_AEN_POLL:
1845 		s = splbio();
1846 		*(u_int *)data = twe_aen_dequeue(twe);
1847 		splx(s);
1848 		return (0);
1849 
1850 	case TWEIO_AEN_WAIT:
1851 		s = splbio();
1852 		while ((*(u_int *)data =
1853 		    twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1854 			twe->sc_flags |= TWEF_AENQ_WAIT;
1855 			error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1856 			    "tweaen", 0);
1857 			if (error == EINTR) {
1858 				splx(s);
1859 				return (error);
1860 			}
1861 		}
1862 		splx(s);
1863 		return (0);
1864 
1865 	case TWEIO_GET_PARAM:
1866 		error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1867 		    tp->tp_size, 0, &param);
1868 		if (error != 0)
1869 			return (error);
1870 		if (param->tp_param_size > tp->tp_size) {
1871 			error = EFAULT;
1872 			goto done;
1873 		}
1874 		error = copyout(param->tp_data, tp->tp_data,
1875 		    param->tp_param_size);
1876 		free(param, M_DEVBUF);
1877 		goto done;
1878 
1879 	case TWEIO_SET_PARAM:
1880 		pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1881 		if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1882 			goto done;
1883 		error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1884 		    tp->tp_size, pdata);
1885 		goto done;
1886 
1887 	case TWEIO_RESET:
1888 		s = splbio();
1889 		twe_reset(twe);
1890 		splx(s);
1891 		return (0);
1892 
1893 	case TWEIO_ADD_UNIT:
1894 		/* XXX mutex */
1895 		return (twe_add_unit(twe, td->td_unit));
1896 
1897 	case TWEIO_DEL_UNIT:
1898 		/* XXX mutex */
1899 		return (twe_del_unit(twe, td->td_unit));
1900 
1901 	default:
1902 		return EINVAL;
1903 	}
1904 done:
1905 	if (pdata)
1906 		free(pdata, M_DEVBUF);
1907 	return error;
1908 }
1909 
1910 const struct cdevsw twe_cdevsw = {
1911 	.d_open = tweopen,
1912 	.d_close = tweclose,
1913 	.d_read = noread,
1914 	.d_write = nowrite,
1915 	.d_ioctl = tweioctl,
1916 	.d_stop = nostop,
1917 	.d_tty = notty,
1918 	.d_poll = nopoll,
1919 	.d_mmap = nommap,
1920 	.d_kqfilter = nokqfilter,
1921 	.d_discard = nodiscard,
1922 	.d_flag = D_OTHER
1923 };
1924 
1925 /*
1926  * Print some information about the controller
1927  */
1928 static void
1929 twe_describe_controller(struct twe_softc *sc)
1930 {
1931 	struct twe_param *p[6];
1932 	int i, rv = 0;
1933 	uint32_t dsize;
1934 	uint8_t ports;
1935 
1936 	ports = 0;
1937 
1938 	/* get the port count */
1939 	rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1940 		TWE_PARAM_CONTROLLER_PortCount, &ports);
1941 
1942 	/* get version strings */
1943 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1944 		16, NULL, &p[0]);
1945 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1946 		16, NULL, &p[1]);
1947 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1948 		16, NULL, &p[2]);
1949 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1950 		8, NULL, &p[3]);
1951 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1952 		8, NULL, &p[4]);
1953 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1954 		8, NULL, &p[5]);
1955 
1956 	if (rv) {
1957 		/* some error occurred */
1958 		aprint_error_dev(sc->sc_dev,
1959 		    "failed to fetch version information\n");
1960 		return;
1961 	}
1962 
1963 	aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n",
1964 	    ports, p[1]->tp_data, p[2]->tp_data);
1965 
1966 	aprint_verbose_dev(sc->sc_dev,
1967 	    "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1968 	    p[0]->tp_data, p[3]->tp_data,
1969 	    p[4]->tp_data, p[5]->tp_data);
1970 
1971 	free(p[0], M_DEVBUF);
1972 	free(p[1], M_DEVBUF);
1973 	free(p[2], M_DEVBUF);
1974 	free(p[3], M_DEVBUF);
1975 	free(p[4], M_DEVBUF);
1976 	free(p[5], M_DEVBUF);
1977 
1978 	rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1979 	    TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1980 	if (rv) {
1981 		aprint_error_dev(sc->sc_dev,
1982 		    "failed to get drive status summary\n");
1983 		return;
1984 	}
1985 	for (i = 0; i < ports; i++) {
1986 		if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1987 			continue;
1988 		rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1989 		    TWE_PARAM_DRIVEINFO_Size, &dsize);
1990 		if (rv) {
1991 			aprint_error_dev(sc->sc_dev,
1992 			    "unable to get drive size for port %d\n", i);
1993 			continue;
1994 		}
1995 		rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1996 		    TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1997 		if (rv) {
1998 			aprint_error_dev(sc->sc_dev,
1999 			    "unable to get drive model for port %d\n", i);
2000 			continue;
2001 		}
2002 		aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n",
2003 		    i, p[1]->tp_data, dsize / 2048);
2004 		free(p[1], M_DEVBUF);
2005 	}
2006 	free(p[0], M_DEVBUF);
2007 }
2008 
2009 MODULE(MODULE_CLASS_DRIVER, twe, "pci");
2010 
2011 #ifdef _MODULE
2012 #include "ioconf.c"
2013 #endif
2014 
2015 static int
2016 twe_modcmd(modcmd_t cmd, void *opaque)
2017 {
2018 	int error = 0;
2019 
2020 #ifdef _MODULE
2021 	switch (cmd) {
2022 	case MODULE_CMD_INIT:
2023 		error = config_init_component(cfdriver_ioconf_twe,
2024 		    cfattach_ioconf_twe, cfdata_ioconf_twe);
2025 		break;
2026 	case MODULE_CMD_FINI:
2027 		error = config_fini_component(cfdriver_ioconf_twe,
2028 		    cfattach_ioconf_twe, cfdata_ioconf_twe);
2029 		break;
2030 	default:
2031 		error = ENOTTY;
2032 		break;
2033 	}
2034 #endif
2035 
2036 	return error;
2037 }
2038