1 /* $NetBSD: twe.c,v 1.103 2014/07/25 08:10:38 dholland Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 2000 Michael Smith 34 * Copyright (c) 2000 BSDi 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp 59 */ 60 61 /* 62 * Driver for the 3ware Escalade family of RAID controllers. 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.103 2014/07/25 08:10:38 dholland Exp $"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/device.h> 72 #include <sys/queue.h> 73 #include <sys/proc.h> 74 #include <sys/buf.h> 75 #include <sys/endian.h> 76 #include <sys/malloc.h> 77 #include <sys/conf.h> 78 #include <sys/disk.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 #include <sys/kauth.h> 82 83 #include <sys/bswap.h> 84 #include <sys/bus.h> 85 86 #include <dev/pci/pcireg.h> 87 #include <dev/pci/pcivar.h> 88 #include <dev/pci/pcidevs.h> 89 #include <dev/pci/twereg.h> 90 #include <dev/pci/twevar.h> 91 #include <dev/pci/tweio.h> 92 93 #include "locators.h" 94 95 #define PCI_CBIO 0x10 96 97 static int twe_aen_get(struct twe_softc *, uint16_t *); 98 static void twe_aen_handler(struct twe_ccb *, int); 99 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int); 100 static uint16_t twe_aen_dequeue(struct twe_softc *); 101 102 static void twe_attach(device_t, device_t, void *); 103 static int twe_init_connection(struct twe_softc *); 104 static int twe_intr(void *); 105 static int twe_match(device_t, cfdata_t, void *); 106 static int twe_param_set(struct twe_softc *, int, int, size_t, void *); 107 static void twe_poll(struct twe_softc *); 108 static int twe_print(void *, const char *); 109 static int twe_reset(struct twe_softc *); 110 static int twe_status_check(struct twe_softc *, u_int); 111 static int twe_status_wait(struct twe_softc *, u_int, int); 112 static void twe_describe_controller(struct twe_softc *); 113 static void twe_clear_pci_abort(struct twe_softc *sc); 114 static void twe_clear_pci_parity_error(struct twe_softc *sc); 115 116 static int twe_add_unit(struct twe_softc *, int); 117 static int twe_del_unit(struct twe_softc *, int); 118 static int twe_init_connection(struct twe_softc *); 119 120 static inline u_int32_t twe_inl(struct twe_softc *, int); 121 static inline void twe_outl(struct twe_softc *, int, u_int32_t); 122 123 extern struct cfdriver twe_cd; 124 125 CFATTACH_DECL_NEW(twe, sizeof(struct twe_softc), 126 twe_match, twe_attach, NULL, NULL); 127 128 /* FreeBSD driver revision for sysctl expected by the 3ware cli */ 129 const char twever[] = "1.50.01.002"; 130 131 /* 132 * Tables to convert numeric codes to strings. 133 */ 134 const struct twe_code_table twe_table_status[] = { 135 { 0x00, "successful completion" }, 136 137 /* info */ 138 { 0x42, "command in progress" }, 139 { 0x6c, "retrying interface CRC error from UDMA command" }, 140 141 /* warning */ 142 { 0x81, "redundant/inconsequential request ignored" }, 143 { 0x8e, "failed to write zeroes to LBA 0" }, 144 { 0x8f, "failed to profile TwinStor zones" }, 145 146 /* fatal */ 147 { 0xc1, "aborted due to system command or reconfiguration" }, 148 { 0xc4, "aborted" }, 149 { 0xc5, "access error" }, 150 { 0xc6, "access violation" }, 151 { 0xc7, "device failure" }, /* high byte may be port # */ 152 { 0xc8, "controller error" }, 153 { 0xc9, "timed out" }, 154 { 0xcb, "invalid unit number" }, 155 { 0xcf, "unit not available" }, 156 { 0xd2, "undefined opcode" }, 157 { 0xdb, "request incompatible with unit" }, 158 { 0xdc, "invalid request" }, 159 { 0xff, "firmware error, reset requested" }, 160 161 { 0, NULL } 162 }; 163 164 const struct twe_code_table twe_table_unitstate[] = { 165 { TWE_PARAM_UNITSTATUS_Normal, "Normal" }, 166 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" }, 167 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" }, 168 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" }, 169 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" }, 170 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" }, 171 { TWE_PARAM_UNITSTATUS_Missing, "Missing" }, 172 173 { 0, NULL } 174 }; 175 176 const struct twe_code_table twe_table_unittype[] = { 177 /* array descriptor configuration */ 178 { TWE_AD_CONFIG_RAID0, "RAID0" }, 179 { TWE_AD_CONFIG_RAID1, "RAID1" }, 180 { TWE_AD_CONFIG_TwinStor, "TwinStor" }, 181 { TWE_AD_CONFIG_RAID5, "RAID5" }, 182 { TWE_AD_CONFIG_RAID10, "RAID10" }, 183 { TWE_UD_CONFIG_JBOD, "JBOD" }, 184 185 { 0, NULL } 186 }; 187 188 const struct twe_code_table twe_table_stripedepth[] = { 189 { TWE_AD_STRIPE_4k, "4K" }, 190 { TWE_AD_STRIPE_8k, "8K" }, 191 { TWE_AD_STRIPE_16k, "16K" }, 192 { TWE_AD_STRIPE_32k, "32K" }, 193 { TWE_AD_STRIPE_64k, "64K" }, 194 { TWE_AD_STRIPE_128k, "128K" }, 195 { TWE_AD_STRIPE_256k, "256K" }, 196 { TWE_AD_STRIPE_512k, "512K" }, 197 { TWE_AD_STRIPE_1024k, "1024K" }, 198 199 { 0, NULL } 200 }; 201 202 /* 203 * Asynchronous event notification messages are qualified: 204 * a - not unit/port specific 205 * u - unit specific 206 * p - port specific 207 * 208 * They are further qualified with a severity: 209 * E - LOG_EMERG 210 * a - LOG_ALERT 211 * c - LOG_CRIT 212 * e - LOG_ERR 213 * w - LOG_WARNING 214 * n - LOG_NOTICE 215 * i - LOG_INFO 216 * d - LOG_DEBUG 217 * blank - just use printf 218 */ 219 const struct twe_code_table twe_table_aen[] = { 220 { 0x00, "a queue empty" }, 221 { 0x01, "a soft reset" }, 222 { 0x02, "uc degraded mode" }, 223 { 0x03, "aa controller error" }, 224 { 0x04, "uE rebuild fail" }, 225 { 0x05, "un rebuild done" }, 226 { 0x06, "ue incomplete unit" }, 227 { 0x07, "un initialization done" }, 228 { 0x08, "uw unclean shutdown detected" }, 229 { 0x09, "pe drive timeout" }, 230 { 0x0a, "pc drive error" }, 231 { 0x0b, "un rebuild started" }, 232 { 0x0c, "un initialization started" }, 233 { 0x0d, "ui logical unit deleted" }, 234 { 0x0f, "pc SMART threshold exceeded" }, 235 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */ 236 { 0x21, "pe ATA UDMA downgrade" }, 237 { 0x22, "pi ATA UDMA upgrade" }, 238 { 0x23, "pw sector repair occurred" }, 239 { 0x24, "aa SBUF integrity check failure" }, 240 { 0x25, "pa lost cached write" }, 241 { 0x26, "pa drive ECC error detected" }, 242 { 0x27, "pe DCB checksum error" }, 243 { 0x28, "pn DCB unsupported version" }, 244 { 0x29, "ui verify started" }, 245 { 0x2a, "ua verify failed" }, 246 { 0x2b, "ui verify complete" }, 247 { 0x2c, "pw overwrote bad sector during rebuild" }, 248 { 0x2d, "pa encountered bad sector during rebuild" }, 249 { 0x2e, "pe replacement drive too small" }, 250 { 0x2f, "ue array not previously initialized" }, 251 { 0x30, "p drive not supported" }, 252 { 0xff, "a aen queue full" }, 253 254 { 0, NULL }, 255 }; 256 257 const char * 258 twe_describe_code(const struct twe_code_table *table, uint32_t code) 259 { 260 261 for (; table->string != NULL; table++) { 262 if (table->code == code) 263 return (table->string); 264 } 265 return (NULL); 266 } 267 268 static inline u_int32_t 269 twe_inl(struct twe_softc *sc, int off) 270 { 271 272 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 273 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 274 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off)); 275 } 276 277 static inline void 278 twe_outl(struct twe_softc *sc, int off, u_int32_t val) 279 { 280 281 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val); 282 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 283 BUS_SPACE_BARRIER_WRITE); 284 } 285 286 /* 287 * Match a supported board. 288 */ 289 static int 290 twe_match(device_t parent, cfdata_t cfdata, void *aux) 291 { 292 struct pci_attach_args *pa; 293 294 pa = aux; 295 296 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE && 297 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE || 298 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC)); 299 } 300 301 /* 302 * Attach a supported board. 303 * 304 * XXX This doesn't fail gracefully. 305 */ 306 static void 307 twe_attach(device_t parent, device_t self, void *aux) 308 { 309 struct pci_attach_args *pa; 310 struct twe_softc *sc; 311 pci_chipset_tag_t pc; 312 pci_intr_handle_t ih; 313 pcireg_t csr; 314 const char *intrstr; 315 int s, size, i, rv, rseg; 316 size_t max_segs, max_xfer; 317 bus_dma_segment_t seg; 318 const struct sysctlnode *node; 319 struct twe_cmd *tc; 320 struct twe_ccb *ccb; 321 char intrbuf[PCI_INTRSTR_LEN]; 322 323 sc = device_private(self); 324 sc->sc_dev = self; 325 pa = aux; 326 pc = pa->pa_pc; 327 sc->sc_dmat = pa->pa_dmat; 328 SIMPLEQ_INIT(&sc->sc_ccb_queue); 329 SLIST_INIT(&sc->sc_ccb_freelist); 330 331 aprint_naive(": RAID controller\n"); 332 aprint_normal(": 3ware Escalade\n"); 333 334 335 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 336 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 337 aprint_error_dev(self, "can't map i/o space\n"); 338 return; 339 } 340 341 /* Enable the device. */ 342 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 343 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 344 csr | PCI_COMMAND_MASTER_ENABLE); 345 346 /* Map and establish the interrupt. */ 347 if (pci_intr_map(pa, &ih)) { 348 aprint_error_dev(self, "can't map interrupt\n"); 349 return; 350 } 351 352 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 353 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc); 354 if (sc->sc_ih == NULL) { 355 aprint_error_dev(self, "can't establish interrupt%s%s\n", 356 (intrstr) ? " at " : "", 357 (intrstr) ? intrstr : ""); 358 return; 359 } 360 361 if (intrstr != NULL) 362 aprint_normal_dev(self, "interrupting at %s\n", 363 intrstr); 364 365 /* 366 * Allocate and initialise the command blocks and CCBs. 367 */ 368 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT; 369 370 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, 371 &rseg, BUS_DMA_NOWAIT)) != 0) { 372 aprint_error_dev(self, "unable to allocate commands, rv = %d\n", rv); 373 return; 374 } 375 376 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size, 377 (void **)&sc->sc_cmds, 378 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 379 aprint_error_dev(self, "unable to map commands, rv = %d\n", rv); 380 return; 381 } 382 383 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0, 384 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 385 aprint_error_dev(self, "unable to create command DMA map, rv = %d\n", rv); 386 return; 387 } 388 389 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds, 390 size, NULL, BUS_DMA_NOWAIT)) != 0) { 391 aprint_error_dev(self, "unable to load command DMA map, rv = %d\n", rv); 392 return; 393 } 394 395 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT); 396 if (ccb == NULL) { 397 aprint_error_dev(self, "unable to allocate memory for ccbs\n"); 398 return; 399 } 400 401 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr; 402 memset(sc->sc_cmds, 0, size); 403 404 sc->sc_ccbs = ccb; 405 tc = (struct twe_cmd *)sc->sc_cmds; 406 max_segs = twe_get_maxsegs(); 407 max_xfer = twe_get_maxxfer(max_segs); 408 409 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) { 410 ccb->ccb_cmd = tc; 411 ccb->ccb_cmdid = i; 412 ccb->ccb_flags = 0; 413 rv = bus_dmamap_create(sc->sc_dmat, max_xfer, 414 max_segs, PAGE_SIZE, 0, 415 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 416 &ccb->ccb_dmamap_xfer); 417 if (rv != 0) { 418 aprint_error_dev(self, "can't create dmamap, rv = %d\n", rv); 419 return; 420 } 421 422 /* Save the first CCB for AEN retrieval. */ 423 if (i != 0) 424 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, 425 ccb_chain.slist); 426 } 427 428 /* Wait for the controller to become ready. */ 429 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) { 430 aprint_error_dev(self, "microcontroller not ready\n"); 431 return; 432 } 433 434 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS); 435 436 /* Reset the controller. */ 437 s = splbio(); 438 rv = twe_reset(sc); 439 splx(s); 440 if (rv) { 441 aprint_error_dev(self, "reset failed\n"); 442 return; 443 } 444 445 /* Initialise connection with controller. */ 446 twe_init_connection(sc); 447 448 twe_describe_controller(sc); 449 450 /* Find and attach RAID array units. */ 451 sc->sc_nunits = 0; 452 for (i = 0; i < TWE_MAX_UNITS; i++) 453 (void) twe_add_unit(sc, i); 454 455 /* ...and finally, enable interrupts. */ 456 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR | 457 TWE_CTL_UNMASK_RESP_INTR | 458 TWE_CTL_ENABLE_INTRS); 459 460 /* sysctl set-up for 3ware cli */ 461 if (sysctl_createv(NULL, 0, NULL, &node, 462 0, CTLTYPE_NODE, device_xname(self), 463 SYSCTL_DESCR("twe driver information"), 464 NULL, 0, NULL, 0, 465 CTL_HW, CTL_CREATE, CTL_EOL) != 0) { 466 aprint_error_dev(self, "could not create %s.%s sysctl node\n", 467 "hw", device_xname(self)); 468 return; 469 } 470 if ((i = sysctl_createv(NULL, 0, NULL, NULL, 471 0, CTLTYPE_STRING, "driver_version", 472 SYSCTL_DESCR("twe0 driver version"), 473 NULL, 0, __UNCONST(&twever), 0, 474 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL)) 475 != 0) { 476 aprint_error_dev(self, "could not create %s.%s.driver_version sysctl\n", 477 "hw", device_xname(self)); 478 return; 479 } 480 } 481 482 void 483 twe_register_callbacks(struct twe_softc *sc, int unit, 484 const struct twe_callbacks *tcb) 485 { 486 487 sc->sc_units[unit].td_callbacks = tcb; 488 } 489 490 static void 491 twe_recompute_openings(struct twe_softc *sc) 492 { 493 struct twe_drive *td; 494 int unit, openings; 495 496 if (sc->sc_nunits != 0) 497 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits; 498 else 499 openings = 0; 500 if (openings == sc->sc_openings) 501 return; 502 sc->sc_openings = openings; 503 504 #ifdef TWE_DEBUG 505 printf("%s: %d array%s, %d openings per array\n", 506 device_xname(sc->sc_dev), sc->sc_nunits, 507 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings); 508 #endif 509 510 for (unit = 0; unit < TWE_MAX_UNITS; unit++) { 511 td = &sc->sc_units[unit]; 512 if (td->td_dev != NULL) 513 (*td->td_callbacks->tcb_openings)(td->td_dev, 514 sc->sc_openings); 515 } 516 } 517 518 static int 519 twe_add_unit(struct twe_softc *sc, int unit) 520 { 521 struct twe_param *dtp, *atp; 522 struct twe_array_descriptor *ad; 523 struct twe_drive *td; 524 struct twe_attach_args twea; 525 uint32_t newsize; 526 int rv; 527 uint16_t dsize; 528 uint8_t newtype, newstripe; 529 int locs[TWECF_NLOCS]; 530 531 if (unit < 0 || unit >= TWE_MAX_UNITS) 532 return (EINVAL); 533 534 /* Find attached units. */ 535 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY, 536 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp); 537 if (rv != 0) { 538 aprint_error_dev(sc->sc_dev, "error %d fetching unit summary\n", 539 rv); 540 return (rv); 541 } 542 543 /* For each detected unit, collect size and store in an array. */ 544 td = &sc->sc_units[unit]; 545 546 /* Unit present? */ 547 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) { 548 /* 549 * XXX Should we check to see if a device has been 550 * XXX attached at this index and detach it if it 551 * XXX has? ("rescan" semantics) 552 */ 553 rv = 0; 554 goto out; 555 } 556 557 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit, 558 TWE_PARAM_UNITINFO_DescriptorSize, &dsize); 559 if (rv != 0) { 560 aprint_error_dev(sc->sc_dev, "error %d fetching descriptor size " 561 "for unit %d\n", rv, unit); 562 goto out; 563 } 564 565 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit, 566 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp); 567 if (rv != 0) { 568 aprint_error_dev(sc->sc_dev, "error %d fetching array descriptor " 569 "for unit %d\n", rv, unit); 570 goto out; 571 } 572 573 ad = (struct twe_array_descriptor *)atp->tp_data; 574 newtype = ad->configuration; 575 newstripe = ad->stripe_size; 576 free(atp, M_DEVBUF); 577 578 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit, 579 TWE_PARAM_UNITINFO_Capacity, &newsize); 580 if (rv != 0) { 581 aprint_error_dev(sc->sc_dev, 582 "error %d fetching capacity for unit %d\n", 583 rv, unit); 584 goto out; 585 } 586 587 /* 588 * Have a device, so we need to attach it. If there is currently 589 * something sitting at the slot, and the parameters are different, 590 * then we detach the old device before attaching the new one. 591 */ 592 if (td->td_dev != NULL && 593 td->td_size == newsize && 594 td->td_type == newtype && 595 td->td_stripe == newstripe) { 596 /* Same as the old device; just keep using it. */ 597 rv = 0; 598 goto out; 599 } else if (td->td_dev != NULL) { 600 /* Detach the old device first. */ 601 (void) config_detach(td->td_dev, DETACH_FORCE); 602 td->td_dev = NULL; 603 } else if (td->td_size == 0) 604 sc->sc_nunits++; 605 606 /* 607 * Committed to the new array unit; assign its parameters and 608 * recompute the number of available command openings. 609 */ 610 td->td_size = newsize; 611 td->td_type = newtype; 612 td->td_stripe = newstripe; 613 twe_recompute_openings(sc); 614 615 twea.twea_unit = unit; 616 617 locs[TWECF_UNIT] = unit; 618 619 td->td_dev = config_found_sm_loc(sc->sc_dev, "twe", locs, &twea, 620 twe_print, config_stdsubmatch); 621 622 rv = 0; 623 out: 624 free(dtp, M_DEVBUF); 625 return (rv); 626 } 627 628 static int 629 twe_del_unit(struct twe_softc *sc, int unit) 630 { 631 struct twe_drive *td; 632 633 if (unit < 0 || unit >= TWE_MAX_UNITS) 634 return (EINVAL); 635 636 td = &sc->sc_units[unit]; 637 if (td->td_size != 0) 638 sc->sc_nunits--; 639 td->td_size = 0; 640 td->td_type = 0; 641 td->td_stripe = 0; 642 if (td->td_dev != NULL) { 643 (void) config_detach(td->td_dev, DETACH_FORCE); 644 td->td_dev = NULL; 645 } 646 twe_recompute_openings(sc); 647 return (0); 648 } 649 650 /* 651 * Reset the controller. 652 * MUST BE CALLED AT splbio()! 653 */ 654 static int 655 twe_reset(struct twe_softc *sc) 656 { 657 uint16_t aen; 658 u_int status; 659 int got, rv; 660 661 /* Issue a soft reset. */ 662 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET | 663 TWE_CTL_CLEAR_HOST_INTR | 664 TWE_CTL_CLEAR_ATTN_INTR | 665 TWE_CTL_MASK_CMD_INTR | 666 TWE_CTL_MASK_RESP_INTR | 667 TWE_CTL_CLEAR_ERROR_STS | 668 TWE_CTL_DISABLE_INTRS); 669 670 /* Wait for attention... */ 671 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) { 672 aprint_error_dev(sc->sc_dev, "timeout waiting for attention interrupt\n"); 673 return (-1); 674 } 675 676 /* ...and ACK it. */ 677 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 678 679 /* 680 * Pull AENs out of the controller; look for a soft reset AEN. 681 * Open code this, since we want to detect reset even if the 682 * queue for management tools is full. 683 * 684 * Note that since: 685 * - interrupts are blocked 686 * - we have reset the controller 687 * - acknowledged the pending ATTENTION 688 * that there is no way a pending asynchronous AEN fetch would 689 * finish, so clear the flag. 690 */ 691 sc->sc_flags &= ~TWEF_AEN; 692 for (got = 0;;) { 693 rv = twe_aen_get(sc, &aen); 694 if (rv != 0) 695 printf("%s: error %d while draining event queue\n", 696 device_xname(sc->sc_dev), rv); 697 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) 698 break; 699 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET) 700 got = 1; 701 twe_aen_enqueue(sc, aen, 1); 702 } 703 704 if (!got) { 705 printf("%s: reset not reported\n", device_xname(sc->sc_dev)); 706 return (-1); 707 } 708 709 /* Check controller status. */ 710 status = twe_inl(sc, TWE_REG_STS); 711 if (twe_status_check(sc, status)) { 712 printf("%s: controller errors detected\n", 713 device_xname(sc->sc_dev)); 714 return (-1); 715 } 716 717 /* Drain the response queue. */ 718 for (;;) { 719 status = twe_inl(sc, TWE_REG_STS); 720 if (twe_status_check(sc, status) != 0) { 721 aprint_error_dev(sc->sc_dev, "can't drain response queue\n"); 722 return (-1); 723 } 724 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0) 725 break; 726 (void)twe_inl(sc, TWE_REG_RESP_QUEUE); 727 } 728 729 return (0); 730 } 731 732 /* 733 * Print autoconfiguration message for a sub-device. 734 */ 735 static int 736 twe_print(void *aux, const char *pnp) 737 { 738 struct twe_attach_args *twea; 739 740 twea = aux; 741 742 if (pnp != NULL) 743 aprint_normal("block device at %s", pnp); 744 aprint_normal(" unit %d", twea->twea_unit); 745 return (UNCONF); 746 } 747 748 /* 749 * Interrupt service routine. 750 */ 751 static int 752 twe_intr(void *arg) 753 { 754 struct twe_softc *sc; 755 u_int status; 756 int caught, rv; 757 758 sc = arg; 759 caught = 0; 760 status = twe_inl(sc, TWE_REG_STS); 761 twe_status_check(sc, status); 762 763 /* Host interrupts - purpose unknown. */ 764 if ((status & TWE_STS_HOST_INTR) != 0) { 765 #ifdef DEBUG 766 printf("%s: host interrupt\n", device_xname(sc->sc_dev)); 767 #endif 768 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR); 769 caught = 1; 770 } 771 772 /* 773 * Attention interrupts, signalled when a controller or child device 774 * state change has occurred. 775 */ 776 if ((status & TWE_STS_ATTN_INTR) != 0) { 777 rv = twe_aen_get(sc, NULL); 778 if (rv != 0) 779 aprint_error_dev(sc->sc_dev, "unable to retrieve AEN (%d)\n", rv); 780 else 781 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 782 caught = 1; 783 } 784 785 /* 786 * Command interrupts, signalled when the controller can accept more 787 * commands. We don't use this; instead, we try to submit commands 788 * when we receive them, and when other commands have completed. 789 * Mask it so we don't get another one. 790 */ 791 if ((status & TWE_STS_CMD_INTR) != 0) { 792 #ifdef DEBUG 793 printf("%s: command interrupt\n", device_xname(sc->sc_dev)); 794 #endif 795 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR); 796 caught = 1; 797 } 798 799 if ((status & TWE_STS_RESP_INTR) != 0) { 800 twe_poll(sc); 801 caught = 1; 802 } 803 804 return (caught); 805 } 806 807 /* 808 * Fetch an AEN. Even though this is really like parameter 809 * retrieval, we handle this specially, because we issue this 810 * AEN retrieval command from interrupt context, and thus 811 * reserve a CCB for it to avoid resource shortage. 812 * 813 * XXX There are still potential resource shortages we could 814 * XXX encounter. Consider pre-allocating all AEN-related 815 * XXX resources. 816 * 817 * MUST BE CALLED AT splbio()! 818 */ 819 static int 820 twe_aen_get(struct twe_softc *sc, uint16_t *aenp) 821 { 822 struct twe_ccb *ccb; 823 struct twe_cmd *tc; 824 struct twe_param *tp; 825 int rv; 826 827 /* 828 * If we're already retrieving an AEN, just wait; another 829 * retrieval will be chained after the current one completes. 830 */ 831 if (sc->sc_flags & TWEF_AEN) { 832 /* 833 * It is a fatal software programming error to attempt 834 * to fetch an AEN synchronously when an AEN fetch is 835 * already pending. 836 */ 837 KASSERT(aenp == NULL); 838 return (0); 839 } 840 841 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 842 if (tp == NULL) 843 return (ENOMEM); 844 845 ccb = twe_ccb_alloc(sc, 846 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 847 KASSERT(ccb != NULL); 848 849 ccb->ccb_data = tp; 850 ccb->ccb_datasize = TWE_SECTOR_SIZE; 851 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL; 852 ccb->ccb_tx.tx_context = tp; 853 ccb->ccb_tx.tx_dv = sc->sc_dev; 854 855 tc = ccb->ccb_cmd; 856 tc->tc_size = 2; 857 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 858 tc->tc_unit = 0; 859 tc->tc_count = htole16(1); 860 861 /* Fill in the outbound parameter data. */ 862 tp->tp_table_id = htole16(TWE_PARAM_AEN); 863 tp->tp_param_id = TWE_PARAM_AEN_UnitCode; 864 tp->tp_param_size = 2; 865 866 /* Map the transfer. */ 867 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 868 twe_ccb_free(sc, ccb); 869 goto done; 870 } 871 872 /* Enqueue the command and wait. */ 873 if (aenp != NULL) { 874 rv = twe_ccb_poll(sc, ccb, 5); 875 twe_ccb_unmap(sc, ccb); 876 twe_ccb_free(sc, ccb); 877 if (rv == 0) 878 *aenp = le16toh(*(uint16_t *)tp->tp_data); 879 free(tp, M_DEVBUF); 880 } else { 881 sc->sc_flags |= TWEF_AEN; 882 twe_ccb_enqueue(sc, ccb); 883 rv = 0; 884 } 885 886 done: 887 return (rv); 888 } 889 890 /* 891 * Handle an AEN returned by the controller. 892 * MUST BE CALLED AT splbio()! 893 */ 894 static void 895 twe_aen_handler(struct twe_ccb *ccb, int error) 896 { 897 struct twe_softc *sc; 898 struct twe_param *tp; 899 uint16_t aen; 900 int rv; 901 902 sc = device_private(ccb->ccb_tx.tx_dv); 903 tp = ccb->ccb_tx.tx_context; 904 twe_ccb_unmap(sc, ccb); 905 906 sc->sc_flags &= ~TWEF_AEN; 907 908 if (error) { 909 aprint_error_dev(sc->sc_dev, "error retrieving AEN\n"); 910 aen = TWE_AEN_QUEUE_EMPTY; 911 } else 912 aen = le16toh(*(u_int16_t *)tp->tp_data); 913 free(tp, M_DEVBUF); 914 twe_ccb_free(sc, ccb); 915 916 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) { 917 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 918 return; 919 } 920 921 twe_aen_enqueue(sc, aen, 0); 922 923 /* 924 * Chain another retrieval in case interrupts have been 925 * coalesced. 926 */ 927 rv = twe_aen_get(sc, NULL); 928 if (rv != 0) 929 aprint_error_dev(sc->sc_dev, "unable to retrieve AEN (%d)\n", rv); 930 } 931 932 static void 933 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet) 934 { 935 const char *str, *msg; 936 int s, next, nextnext, level; 937 938 /* 939 * First report the AEN on the console. Maybe. 940 */ 941 if (! quiet) { 942 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen)); 943 if (str == NULL) { 944 aprint_error_dev(sc->sc_dev, "unknown AEN 0x%04x\n", aen); 945 } else { 946 msg = str + 3; 947 switch (str[1]) { 948 case 'E': level = LOG_EMERG; break; 949 case 'a': level = LOG_ALERT; break; 950 case 'c': level = LOG_CRIT; break; 951 case 'e': level = LOG_ERR; break; 952 case 'w': level = LOG_WARNING; break; 953 case 'n': level = LOG_NOTICE; break; 954 case 'i': level = LOG_INFO; break; 955 case 'd': level = LOG_DEBUG; break; 956 default: 957 /* Don't use syslog. */ 958 level = -1; 959 } 960 961 if (level < 0) { 962 switch (str[0]) { 963 case 'u': 964 case 'p': 965 printf("%s: %s %d: %s\n", 966 device_xname(sc->sc_dev), 967 str[0] == 'u' ? "unit" : "port", 968 TWE_AEN_UNIT(aen), msg); 969 break; 970 971 default: 972 printf("%s: %s\n", 973 device_xname(sc->sc_dev), msg); 974 } 975 } else { 976 switch (str[0]) { 977 case 'u': 978 case 'p': 979 log(level, "%s: %s %d: %s\n", 980 device_xname(sc->sc_dev), 981 str[0] == 'u' ? "unit" : "port", 982 TWE_AEN_UNIT(aen), msg); 983 break; 984 985 default: 986 log(level, "%s: %s\n", 987 device_xname(sc->sc_dev), msg); 988 } 989 } 990 } 991 } 992 993 /* Now enqueue the AEN for mangement tools. */ 994 s = splbio(); 995 996 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH; 997 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH; 998 999 /* 1000 * If this is the last free slot, then queue up a "queue 1001 * full" message. 1002 */ 1003 if (nextnext == sc->sc_aen_tail) 1004 aen = TWE_AEN_QUEUE_FULL; 1005 1006 if (next != sc->sc_aen_tail) { 1007 sc->sc_aen_queue[sc->sc_aen_head] = aen; 1008 sc->sc_aen_head = next; 1009 } 1010 1011 if (sc->sc_flags & TWEF_AENQ_WAIT) { 1012 sc->sc_flags &= ~TWEF_AENQ_WAIT; 1013 wakeup(&sc->sc_aen_queue); 1014 } 1015 1016 splx(s); 1017 } 1018 1019 /* NOTE: Must be called at splbio(). */ 1020 static uint16_t 1021 twe_aen_dequeue(struct twe_softc *sc) 1022 { 1023 uint16_t aen; 1024 1025 if (sc->sc_aen_tail == sc->sc_aen_head) 1026 aen = TWE_AEN_QUEUE_EMPTY; 1027 else { 1028 aen = sc->sc_aen_queue[sc->sc_aen_tail]; 1029 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH; 1030 } 1031 1032 return (aen); 1033 } 1034 1035 /* 1036 * These are short-hand functions that execute TWE_OP_GET_PARAM to 1037 * fetch 1, 2, and 4 byte parameter values, respectively. 1038 */ 1039 int 1040 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id, 1041 uint8_t *valp) 1042 { 1043 struct twe_param *tp; 1044 int rv; 1045 1046 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp); 1047 if (rv != 0) 1048 return (rv); 1049 *valp = *(uint8_t *)tp->tp_data; 1050 free(tp, M_DEVBUF); 1051 return (0); 1052 } 1053 1054 int 1055 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id, 1056 uint16_t *valp) 1057 { 1058 struct twe_param *tp; 1059 int rv; 1060 1061 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp); 1062 if (rv != 0) 1063 return (rv); 1064 *valp = le16toh(*(uint16_t *)tp->tp_data); 1065 free(tp, M_DEVBUF); 1066 return (0); 1067 } 1068 1069 int 1070 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id, 1071 uint32_t *valp) 1072 { 1073 struct twe_param *tp; 1074 int rv; 1075 1076 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp); 1077 if (rv != 0) 1078 return (rv); 1079 *valp = le32toh(*(uint32_t *)tp->tp_data); 1080 free(tp, M_DEVBUF); 1081 return (0); 1082 } 1083 1084 /* 1085 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided, 1086 * it will be called with generated context when the command has completed. 1087 * If no callback is provided, the command will be executed synchronously 1088 * and a pointer to a buffer containing the data returned. 1089 * 1090 * The caller or callback is responsible for freeing the buffer. 1091 * 1092 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1093 */ 1094 int 1095 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size, 1096 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf) 1097 { 1098 struct twe_ccb *ccb; 1099 struct twe_cmd *tc; 1100 struct twe_param *tp; 1101 int rv, s; 1102 1103 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1104 if (tp == NULL) 1105 return ENOMEM; 1106 1107 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1108 KASSERT(ccb != NULL); 1109 1110 ccb->ccb_data = tp; 1111 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1112 ccb->ccb_tx.tx_handler = func; 1113 ccb->ccb_tx.tx_context = tp; 1114 ccb->ccb_tx.tx_dv = sc->sc_dev; 1115 1116 tc = ccb->ccb_cmd; 1117 tc->tc_size = 2; 1118 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 1119 tc->tc_unit = 0; 1120 tc->tc_count = htole16(1); 1121 1122 /* Fill in the outbound parameter data. */ 1123 tp->tp_table_id = htole16(table_id); 1124 tp->tp_param_id = param_id; 1125 tp->tp_param_size = size; 1126 1127 /* Map the transfer. */ 1128 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1129 twe_ccb_free(sc, ccb); 1130 goto done; 1131 } 1132 1133 /* Submit the command and either wait or let the callback handle it. */ 1134 if (func == NULL) { 1135 s = splbio(); 1136 rv = twe_ccb_poll(sc, ccb, 5); 1137 twe_ccb_unmap(sc, ccb); 1138 twe_ccb_free(sc, ccb); 1139 splx(s); 1140 } else { 1141 #ifdef DEBUG 1142 if (pbuf != NULL) 1143 panic("both func and pbuf defined"); 1144 #endif 1145 twe_ccb_enqueue(sc, ccb); 1146 return 0; 1147 } 1148 1149 done: 1150 if (pbuf == NULL || rv != 0) 1151 free(tp, M_DEVBUF); 1152 else if (pbuf != NULL && rv == 0) 1153 *pbuf = tp; 1154 return rv; 1155 } 1156 1157 /* 1158 * Execute a TWE_OP_SET_PARAM command. 1159 * 1160 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1161 */ 1162 static int 1163 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size, 1164 void *sbuf) 1165 { 1166 struct twe_ccb *ccb; 1167 struct twe_cmd *tc; 1168 struct twe_param *tp; 1169 int rv, s; 1170 1171 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1172 if (tp == NULL) 1173 return ENOMEM; 1174 1175 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1176 KASSERT(ccb != NULL); 1177 1178 ccb->ccb_data = tp; 1179 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1180 ccb->ccb_tx.tx_handler = 0; 1181 ccb->ccb_tx.tx_context = tp; 1182 ccb->ccb_tx.tx_dv = sc->sc_dev; 1183 1184 tc = ccb->ccb_cmd; 1185 tc->tc_size = 2; 1186 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5); 1187 tc->tc_unit = 0; 1188 tc->tc_count = htole16(1); 1189 1190 /* Fill in the outbound parameter data. */ 1191 tp->tp_table_id = htole16(table_id); 1192 tp->tp_param_id = param_id; 1193 tp->tp_param_size = size; 1194 memcpy(tp->tp_data, sbuf, size); 1195 1196 /* Map the transfer. */ 1197 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1198 twe_ccb_free(sc, ccb); 1199 goto done; 1200 } 1201 1202 /* Submit the command and wait. */ 1203 s = splbio(); 1204 rv = twe_ccb_poll(sc, ccb, 5); 1205 twe_ccb_unmap(sc, ccb); 1206 twe_ccb_free(sc, ccb); 1207 splx(s); 1208 done: 1209 free(tp, M_DEVBUF); 1210 return (rv); 1211 } 1212 1213 /* 1214 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error. 1215 * Must be called with interrupts blocked. 1216 */ 1217 static int 1218 twe_init_connection(struct twe_softc *sc) 1219 { 1220 struct twe_ccb *ccb; 1221 struct twe_cmd *tc; 1222 int rv; 1223 1224 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL) 1225 return (EAGAIN); 1226 1227 /* Build the command. */ 1228 tc = ccb->ccb_cmd; 1229 tc->tc_size = 3; 1230 tc->tc_opcode = TWE_OP_INIT_CONNECTION; 1231 tc->tc_unit = 0; 1232 tc->tc_count = htole16(TWE_MAX_CMDS); 1233 tc->tc_args.init_connection.response_queue_pointer = 0; 1234 1235 /* Submit the command for immediate execution. */ 1236 rv = twe_ccb_poll(sc, ccb, 5); 1237 twe_ccb_free(sc, ccb); 1238 return (rv); 1239 } 1240 1241 /* 1242 * Poll the controller for completed commands. Must be called with 1243 * interrupts blocked. 1244 */ 1245 static void 1246 twe_poll(struct twe_softc *sc) 1247 { 1248 struct twe_ccb *ccb; 1249 int found; 1250 u_int status, cmdid; 1251 1252 found = 0; 1253 1254 for (;;) { 1255 status = twe_inl(sc, TWE_REG_STS); 1256 twe_status_check(sc, status); 1257 1258 if ((status & TWE_STS_RESP_QUEUE_EMPTY)) 1259 break; 1260 1261 found = 1; 1262 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE); 1263 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT; 1264 if (cmdid >= TWE_MAX_QUEUECNT) { 1265 aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid); 1266 continue; 1267 } 1268 1269 ccb = sc->sc_ccbs + cmdid; 1270 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) { 1271 printf("%s: CCB for cmdid %d not active\n", 1272 device_xname(sc->sc_dev), cmdid); 1273 continue; 1274 } 1275 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE; 1276 1277 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1278 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1279 sizeof(struct twe_cmd), 1280 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1281 1282 /* Pass notification to upper layers. */ 1283 if (ccb->ccb_tx.tx_handler != NULL) 1284 (*ccb->ccb_tx.tx_handler)(ccb, 1285 ccb->ccb_cmd->tc_status != 0 ? EIO : 0); 1286 } 1287 1288 /* If any commands have completed, run the software queue. */ 1289 if (found) 1290 twe_ccb_enqueue(sc, NULL); 1291 } 1292 1293 /* 1294 * Wait for `status' to be set in the controller status register. Return 1295 * zero if found, non-zero if the operation timed out. 1296 */ 1297 static int 1298 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo) 1299 { 1300 1301 for (timo *= 10; timo != 0; timo--) { 1302 if ((twe_inl(sc, TWE_REG_STS) & status) == status) 1303 break; 1304 delay(100000); 1305 } 1306 1307 return (timo == 0); 1308 } 1309 1310 /* 1311 * Clear a PCI parity error. 1312 */ 1313 static void 1314 twe_clear_pci_parity_error(struct twe_softc *sc) 1315 { 1316 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR); 1317 1318 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2); 1319 } 1320 1321 1322 /* 1323 * Clear a PCI abort. 1324 */ 1325 static void 1326 twe_clear_pci_abort(struct twe_softc *sc) 1327 { 1328 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT); 1329 1330 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2); 1331 } 1332 1333 /* 1334 * Complain if the status bits aren't what we expect. 1335 */ 1336 static int 1337 twe_status_check(struct twe_softc *sc, u_int status) 1338 { 1339 int rv; 1340 1341 rv = 0; 1342 1343 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) { 1344 aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n", 1345 status & ~TWE_STS_EXPECTED_BITS); 1346 rv = -1; 1347 } 1348 1349 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) { 1350 aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n", 1351 status & TWE_STS_UNEXPECTED_BITS); 1352 rv = -1; 1353 if (status & TWE_STS_PCI_PARITY_ERROR) { 1354 aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat card, move card " 1355 "or buggy device present.\n"); 1356 twe_clear_pci_parity_error(sc); 1357 } 1358 if (status & TWE_STS_PCI_ABORT) { 1359 aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n"); 1360 twe_clear_pci_abort(sc); 1361 } 1362 } 1363 1364 return (rv); 1365 } 1366 1367 /* 1368 * Allocate and initialise a CCB. 1369 */ 1370 static inline void 1371 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags) 1372 { 1373 struct twe_cmd *tc; 1374 1375 ccb->ccb_tx.tx_handler = NULL; 1376 ccb->ccb_flags = flags; 1377 tc = ccb->ccb_cmd; 1378 tc->tc_status = 0; 1379 tc->tc_flags = 0; 1380 tc->tc_cmdid = ccb->ccb_cmdid; 1381 } 1382 1383 struct twe_ccb * 1384 twe_ccb_alloc(struct twe_softc *sc, int flags) 1385 { 1386 struct twe_ccb *ccb; 1387 int s; 1388 1389 s = splbio(); 1390 if (__predict_false((flags & TWE_CCB_AEN) != 0)) { 1391 /* Use the reserved CCB. */ 1392 ccb = sc->sc_ccbs; 1393 } else { 1394 /* Allocate a CCB and command block. */ 1395 if (__predict_false((ccb = 1396 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1397 splx(s); 1398 return (NULL); 1399 } 1400 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1401 } 1402 #ifdef DIAGNOSTIC 1403 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0) 1404 panic("twe_ccb_alloc: got reserved CCB for non-AEN"); 1405 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1406 panic("twe_ccb_alloc: CCB %ld already allocated", 1407 (long)(ccb - sc->sc_ccbs)); 1408 flags |= TWE_CCB_ALLOCED; 1409 #endif 1410 splx(s); 1411 1412 twe_ccb_init(sc, ccb, flags); 1413 return (ccb); 1414 } 1415 1416 struct twe_ccb * 1417 twe_ccb_alloc_wait(struct twe_softc *sc, int flags) 1418 { 1419 struct twe_ccb *ccb; 1420 int s; 1421 1422 KASSERT((flags & TWE_CCB_AEN) == 0); 1423 1424 s = splbio(); 1425 while (__predict_false((ccb = 1426 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1427 sc->sc_flags |= TWEF_WAIT_CCB; 1428 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0); 1429 } 1430 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1431 #ifdef DIAGNOSTIC 1432 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1433 panic("twe_ccb_alloc_wait: CCB %ld already allocated", 1434 (long)(ccb - sc->sc_ccbs)); 1435 flags |= TWE_CCB_ALLOCED; 1436 #endif 1437 splx(s); 1438 1439 twe_ccb_init(sc, ccb, flags); 1440 return (ccb); 1441 } 1442 1443 /* 1444 * Free a CCB. 1445 */ 1446 void 1447 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb) 1448 { 1449 int s; 1450 1451 s = splbio(); 1452 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) { 1453 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist); 1454 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) { 1455 sc->sc_flags &= ~TWEF_WAIT_CCB; 1456 wakeup(&sc->sc_ccb_freelist); 1457 } 1458 } 1459 ccb->ccb_flags = 0; 1460 splx(s); 1461 } 1462 1463 /* 1464 * Map the specified CCB's command block and data buffer (if any) into 1465 * controller visible space. Perform DMA synchronisation. 1466 */ 1467 int 1468 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb) 1469 { 1470 struct twe_cmd *tc; 1471 int flags, nsegs, i, s, rv; 1472 void *data; 1473 1474 /* 1475 * The data as a whole must be 512-byte aligned. 1476 */ 1477 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) { 1478 s = splvm(); 1479 /* XXX */ 1480 rv = uvm_km_kmem_alloc(kmem_va_arena, 1481 ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT), 1482 (vmem_addr_t *)&ccb->ccb_abuf); 1483 splx(s); 1484 data = (void *)ccb->ccb_abuf; 1485 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1486 memcpy(data, ccb->ccb_data, ccb->ccb_datasize); 1487 } else { 1488 ccb->ccb_abuf = (vaddr_t)0; 1489 data = ccb->ccb_data; 1490 } 1491 1492 /* 1493 * Map the data buffer into bus space and build the S/G list. 1494 */ 1495 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data, 1496 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING | 1497 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ? 1498 BUS_DMA_READ : BUS_DMA_WRITE)); 1499 if (rv != 0) { 1500 if (ccb->ccb_abuf != (vaddr_t)0) { 1501 s = splvm(); 1502 /* XXX */ 1503 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf, 1504 ccb->ccb_datasize); 1505 splx(s); 1506 } 1507 return (rv); 1508 } 1509 1510 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs; 1511 tc = ccb->ccb_cmd; 1512 tc->tc_size += 2 * nsegs; 1513 1514 /* The location of the S/G list is dependent upon command type. */ 1515 switch (tc->tc_opcode >> 5) { 1516 case 2: 1517 for (i = 0; i < nsegs; i++) { 1518 tc->tc_args.param.sgl[i].tsg_address = 1519 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1520 tc->tc_args.param.sgl[i].tsg_length = 1521 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1522 } 1523 /* XXX Needed? */ 1524 for (; i < TWE_SG_SIZE; i++) { 1525 tc->tc_args.param.sgl[i].tsg_address = 0; 1526 tc->tc_args.param.sgl[i].tsg_length = 0; 1527 } 1528 break; 1529 case 3: 1530 for (i = 0; i < nsegs; i++) { 1531 tc->tc_args.io.sgl[i].tsg_address = 1532 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1533 tc->tc_args.io.sgl[i].tsg_length = 1534 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1535 } 1536 /* XXX Needed? */ 1537 for (; i < TWE_SG_SIZE; i++) { 1538 tc->tc_args.io.sgl[i].tsg_address = 0; 1539 tc->tc_args.io.sgl[i].tsg_length = 0; 1540 } 1541 break; 1542 default: 1543 /* 1544 * In all likelihood, this is a command passed from 1545 * management tools in userspace where no S/G list is 1546 * necessary because no data is being passed. 1547 */ 1548 break; 1549 } 1550 1551 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1552 flags = BUS_DMASYNC_PREREAD; 1553 else 1554 flags = 0; 1555 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1556 flags |= BUS_DMASYNC_PREWRITE; 1557 1558 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1559 ccb->ccb_datasize, flags); 1560 return (0); 1561 } 1562 1563 /* 1564 * Unmap the specified CCB's command block and data buffer (if any) and 1565 * perform DMA synchronisation. 1566 */ 1567 void 1568 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb) 1569 { 1570 int flags, s; 1571 1572 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1573 flags = BUS_DMASYNC_POSTREAD; 1574 else 1575 flags = 0; 1576 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1577 flags |= BUS_DMASYNC_POSTWRITE; 1578 1579 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1580 ccb->ccb_datasize, flags); 1581 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer); 1582 1583 if (ccb->ccb_abuf != (vaddr_t)0) { 1584 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1585 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf, 1586 ccb->ccb_datasize); 1587 s = splvm(); 1588 /* XXX */ 1589 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf, 1590 ccb->ccb_datasize); 1591 splx(s); 1592 } 1593 } 1594 1595 /* 1596 * Submit a command to the controller and poll on completion. Return 1597 * non-zero on timeout (but don't check status, as some command types don't 1598 * return status). Must be called with interrupts blocked. 1599 */ 1600 int 1601 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo) 1602 { 1603 int rv; 1604 1605 if ((rv = twe_ccb_submit(sc, ccb)) != 0) 1606 return (rv); 1607 1608 for (timo *= 1000; timo != 0; timo--) { 1609 twe_poll(sc); 1610 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0) 1611 break; 1612 DELAY(100); 1613 } 1614 1615 return (timo == 0); 1616 } 1617 1618 /* 1619 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1620 * the order that they were enqueued and try to submit their command blocks 1621 * to the controller for execution. 1622 */ 1623 void 1624 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb) 1625 { 1626 int s; 1627 1628 s = splbio(); 1629 1630 if (ccb != NULL) 1631 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq); 1632 1633 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) { 1634 if (twe_ccb_submit(sc, ccb)) 1635 break; 1636 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq); 1637 } 1638 1639 splx(s); 1640 } 1641 1642 /* 1643 * Submit the command block associated with the specified CCB to the 1644 * controller for execution. Must be called with interrupts blocked. 1645 */ 1646 int 1647 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb) 1648 { 1649 bus_addr_t pa; 1650 int rv; 1651 u_int status; 1652 1653 /* Check to see if we can post a command. */ 1654 status = twe_inl(sc, TWE_REG_STS); 1655 twe_status_check(sc, status); 1656 1657 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) { 1658 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1659 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1660 sizeof(struct twe_cmd), 1661 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1662 #ifdef DIAGNOSTIC 1663 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0) 1664 panic("%s: CCB %ld not ALLOCED\n", 1665 device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs)); 1666 #endif 1667 ccb->ccb_flags |= TWE_CCB_ACTIVE; 1668 pa = sc->sc_cmds_paddr + 1669 ccb->ccb_cmdid * sizeof(struct twe_cmd); 1670 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa); 1671 rv = 0; 1672 } else 1673 rv = EBUSY; 1674 1675 return (rv); 1676 } 1677 1678 1679 /* 1680 * Accept an open operation on the control device. 1681 */ 1682 static int 1683 tweopen(dev_t dev, int flag, int mode, struct lwp *l) 1684 { 1685 struct twe_softc *twe; 1686 1687 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL) 1688 return (ENXIO); 1689 if ((twe->sc_flags & TWEF_OPEN) != 0) 1690 return (EBUSY); 1691 1692 twe->sc_flags |= TWEF_OPEN; 1693 return (0); 1694 } 1695 1696 /* 1697 * Accept the last close on the control device. 1698 */ 1699 static int 1700 tweclose(dev_t dev, int flag, int mode, 1701 struct lwp *l) 1702 { 1703 struct twe_softc *twe; 1704 1705 twe = device_lookup_private(&twe_cd, minor(dev)); 1706 twe->sc_flags &= ~TWEF_OPEN; 1707 return (0); 1708 } 1709 1710 void 1711 twe_ccb_wait_handler(struct twe_ccb *ccb, int error) 1712 { 1713 1714 /* Just wake up the sleeper. */ 1715 wakeup(ccb); 1716 } 1717 1718 /* 1719 * Handle control operations. 1720 */ 1721 static int 1722 tweioctl(dev_t dev, u_long cmd, void *data, int flag, 1723 struct lwp *l) 1724 { 1725 struct twe_softc *twe; 1726 struct twe_ccb *ccb; 1727 struct twe_param *param; 1728 struct twe_usercommand *tu; 1729 struct twe_paramcommand *tp; 1730 struct twe_drivecommand *td; 1731 void *pdata = NULL; 1732 int s, error = 0; 1733 u_int8_t cmdid; 1734 1735 twe = device_lookup_private(&twe_cd, minor(dev)); 1736 tu = (struct twe_usercommand *)data; 1737 tp = (struct twe_paramcommand *)data; 1738 td = (struct twe_drivecommand *)data; 1739 1740 /* This is intended to be compatible with the FreeBSD interface. */ 1741 switch (cmd) { 1742 case TWEIO_COMMAND: 1743 error = kauth_authorize_device_passthru(l->l_cred, dev, 1744 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); 1745 if (error) 1746 return (error); 1747 1748 /* XXX mutex */ 1749 if (tu->tu_size > 0) { 1750 /* 1751 * XXX Handle > TWE_SECTOR_SIZE? Let's see if 1752 * it's really necessary, first. 1753 */ 1754 if (tu->tu_size > TWE_SECTOR_SIZE) { 1755 #ifdef TWE_DEBUG 1756 printf("%s: TWEIO_COMMAND: tu_size = %zu\n", 1757 device_xname(twe->sc_dev), tu->tu_size); 1758 #endif 1759 return EINVAL; 1760 } 1761 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK); 1762 error = copyin(tu->tu_data, pdata, tu->tu_size); 1763 if (error != 0) 1764 goto done; 1765 ccb = twe_ccb_alloc_wait(twe, 1766 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1767 KASSERT(ccb != NULL); 1768 ccb->ccb_data = pdata; 1769 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1770 } else { 1771 ccb = twe_ccb_alloc_wait(twe, 0); 1772 KASSERT(ccb != NULL); 1773 } 1774 1775 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler; 1776 ccb->ccb_tx.tx_context = NULL; 1777 ccb->ccb_tx.tx_dv = twe->sc_dev; 1778 1779 cmdid = ccb->ccb_cmdid; 1780 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd)); 1781 ccb->ccb_cmd->tc_cmdid = cmdid; 1782 1783 /* Map the transfer. */ 1784 if ((error = twe_ccb_map(twe, ccb)) != 0) { 1785 twe_ccb_free(twe, ccb); 1786 goto done; 1787 } 1788 1789 /* Submit the command and wait up to 1 minute. */ 1790 error = 0; 1791 twe_ccb_enqueue(twe, ccb); 1792 s = splbio(); 1793 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0) 1794 if ((error = tsleep(ccb, PRIBIO, "tweioctl", 1795 60 * hz)) != 0) 1796 break; 1797 splx(s); 1798 1799 /* Copy the command back to the ioctl argument. */ 1800 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd)); 1801 #ifdef TWE_DEBUG 1802 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, " 1803 "tc_status = 0x%02x\n", device_xname(twe->sc_dev), 1804 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status); 1805 #endif 1806 1807 s = splbio(); 1808 twe_ccb_free(twe, ccb); 1809 splx(s); 1810 1811 if (tu->tu_size > 0) 1812 error = copyout(pdata, tu->tu_data, tu->tu_size); 1813 goto done; 1814 1815 case TWEIO_STATS: 1816 return (ENOENT); 1817 1818 case TWEIO_AEN_POLL: 1819 s = splbio(); 1820 *(u_int *)data = twe_aen_dequeue(twe); 1821 splx(s); 1822 return (0); 1823 1824 case TWEIO_AEN_WAIT: 1825 s = splbio(); 1826 while ((*(u_int *)data = 1827 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) { 1828 twe->sc_flags |= TWEF_AENQ_WAIT; 1829 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH, 1830 "tweaen", 0); 1831 if (error == EINTR) { 1832 splx(s); 1833 return (error); 1834 } 1835 } 1836 splx(s); 1837 return (0); 1838 1839 case TWEIO_GET_PARAM: 1840 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id, 1841 tp->tp_size, 0, ¶m); 1842 if (error != 0) 1843 return (error); 1844 if (param->tp_param_size > tp->tp_size) { 1845 error = EFAULT; 1846 goto done; 1847 } 1848 error = copyout(param->tp_data, tp->tp_data, 1849 param->tp_param_size); 1850 free(param, M_DEVBUF); 1851 goto done; 1852 1853 case TWEIO_SET_PARAM: 1854 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK); 1855 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0) 1856 goto done; 1857 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id, 1858 tp->tp_size, pdata); 1859 goto done; 1860 1861 case TWEIO_RESET: 1862 s = splbio(); 1863 twe_reset(twe); 1864 splx(s); 1865 return (0); 1866 1867 case TWEIO_ADD_UNIT: 1868 /* XXX mutex */ 1869 return (twe_add_unit(twe, td->td_unit)); 1870 1871 case TWEIO_DEL_UNIT: 1872 /* XXX mutex */ 1873 return (twe_del_unit(twe, td->td_unit)); 1874 1875 default: 1876 return EINVAL; 1877 } 1878 done: 1879 if (pdata) 1880 free(pdata, M_DEVBUF); 1881 return error; 1882 } 1883 1884 const struct cdevsw twe_cdevsw = { 1885 .d_open = tweopen, 1886 .d_close = tweclose, 1887 .d_read = noread, 1888 .d_write = nowrite, 1889 .d_ioctl = tweioctl, 1890 .d_stop = nostop, 1891 .d_tty = notty, 1892 .d_poll = nopoll, 1893 .d_mmap = nommap, 1894 .d_kqfilter = nokqfilter, 1895 .d_discard = nodiscard, 1896 .d_flag = D_OTHER 1897 }; 1898 1899 /* 1900 * Print some information about the controller 1901 */ 1902 static void 1903 twe_describe_controller(struct twe_softc *sc) 1904 { 1905 struct twe_param *p[6]; 1906 int i, rv = 0; 1907 uint32_t dsize; 1908 uint8_t ports; 1909 1910 ports = 0; 1911 1912 /* get the port count */ 1913 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER, 1914 TWE_PARAM_CONTROLLER_PortCount, &ports); 1915 1916 /* get version strings */ 1917 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon, 1918 16, NULL, &p[0]); 1919 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW, 1920 16, NULL, &p[1]); 1921 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS, 1922 16, NULL, &p[2]); 1923 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB, 1924 8, NULL, &p[3]); 1925 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA, 1926 8, NULL, &p[4]); 1927 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI, 1928 8, NULL, &p[5]); 1929 1930 if (rv) { 1931 /* some error occurred */ 1932 aprint_error_dev(sc->sc_dev, "failed to fetch version information\n"); 1933 return; 1934 } 1935 1936 aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n", 1937 ports, p[1]->tp_data, p[2]->tp_data); 1938 1939 aprint_verbose_dev(sc->sc_dev, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n", 1940 p[0]->tp_data, p[3]->tp_data, 1941 p[4]->tp_data, p[5]->tp_data); 1942 1943 free(p[0], M_DEVBUF); 1944 free(p[1], M_DEVBUF); 1945 free(p[2], M_DEVBUF); 1946 free(p[3], M_DEVBUF); 1947 free(p[4], M_DEVBUF); 1948 free(p[5], M_DEVBUF); 1949 1950 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY, 1951 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]); 1952 if (rv) { 1953 aprint_error_dev(sc->sc_dev, "failed to get drive status summary\n"); 1954 return; 1955 } 1956 for (i = 0; i < ports; i++) { 1957 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present) 1958 continue; 1959 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i, 1960 TWE_PARAM_DRIVEINFO_Size, &dsize); 1961 if (rv) { 1962 aprint_error_dev(sc->sc_dev, 1963 "unable to get drive size for port %d\n", i); 1964 continue; 1965 } 1966 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i, 1967 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]); 1968 if (rv) { 1969 aprint_error_dev(sc->sc_dev, 1970 "unable to get drive model for port %d\n", i); 1971 continue; 1972 } 1973 aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n", 1974 i, p[1]->tp_data, dsize / 2048); 1975 free(p[1], M_DEVBUF); 1976 } 1977 free(p[0], M_DEVBUF); 1978 } 1979