xref: /netbsd-src/sys/dev/pci/if_vr.c (revision bada23909e740596d0a3785a73bd3583a9807fb8)
1 /*	$NetBSD: if_vr.c,v 1.18 1999/02/12 00:36:48 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1997, 1998
42  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Bill Paul.
55  * 4. Neither the name of the author nor the names of any co-contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69  * THE POSSIBILITY OF SUCH DAMAGE.
70  *
71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72  */
73 
74 /*
75  * VIA Rhine fast ethernet PCI NIC driver
76  *
77  * Supports various network adapters based on the VIA Rhine
78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
79  * Datasheets are available at http://www.via.com.tw.
80  *
81  * Written by Bill Paul <wpaul@ctr.columbia.edu>
82  * Electrical Engineering Department
83  * Columbia University, New York City
84  */
85 
86 /*
87  * The VIA Rhine controllers are similar in some respects to the
88  * the DEC tulip chips, except less complicated. The controller
89  * uses an MII bus and an external physical layer interface. The
90  * receiver has a one entry perfect filter and a 64-bit hash table
91  * multicast filter. Transmit and receive descriptors are similar
92  * to the tulip.
93  *
94  * The Rhine has a serious flaw in its transmit DMA mechanism:
95  * transmit buffers must be longword aligned. Unfortunately,
96  * the kernel doesn't guarantee that mbufs will be filled in starting
97  * at longword boundaries, so we have to do a buffer copy before
98  * transmission.
99  *
100  * Apparently, the receive DMA mechanism also has the same flaw.  This
101  * means that on systems with struct alignment requirements, incoming
102  * frames must be copied to a new buffer which shifts the data forward
103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
104  */
105 
106 #include "opt_inet.h"
107 
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/sockio.h>
111 #include <sys/mbuf.h>
112 #include <sys/malloc.h>
113 #include <sys/kernel.h>
114 #include <sys/socket.h>
115 #include <sys/device.h>
116 
117 #include <vm/vm.h>		/* for PAGE_SIZE */
118 
119 #include <net/if.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_ether.h>
124 
125 #if defined(INET)
126 #include <netinet/in.h>
127 #include <netinet/if_inarp.h>
128 #endif
129 
130 #include "bpfilter.h"
131 #if NBPFILTER > 0
132 #include <net/bpf.h>
133 #endif
134 
135 #include <machine/bus.h>
136 #include <machine/intr.h>
137 
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140 
141 #include <dev/pci/pcireg.h>
142 #include <dev/pci/pcivar.h>
143 #include <dev/pci/pcidevs.h>
144 
145 #include <dev/pci/if_vrreg.h>
146 
147 #define	VR_USEIOSPACE
148 
149 #define	ETHER_CRC_LEN	4	/* XXX Should be in a common header. */
150 
151 /*
152  * Various supported device vendors/types and their names.
153  */
154 static struct vr_type {
155 	pci_vendor_id_t		vr_vid;
156 	pci_product_id_t	vr_did;
157 	const char		*vr_name;
158 } vr_devs[] = {
159 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
160 		"VIA VT3043 (Rhine) 10/100 Ethernet" },
161 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
162 		"VIA VT86C100A (Rhine-II) 10/100 Ethernet" },
163 	{ 0, 0, NULL }
164 };
165 
166 /*
167  * Transmit descriptor list size.
168  */
169 #define	VR_NTXDESC		64
170 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
171 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
172 
173 /*
174  * Receive descriptor list size.
175  */
176 #define	VR_NRXDESC		64
177 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
178 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
179 
180 /*
181  * Control data structres that are DMA'd to the Rhine chip.  We allocate
182  * them in a single clump that maps to a single DMA segment to make several
183  * things easier.
184  *
185  * Note that since we always copy outgoing packets to aligned transmit
186  * buffers, we can reduce the transmit descriptors to one per packet.
187  */
188 struct vr_control_data {
189 	struct vr_desc		vr_txdescs[VR_NTXDESC];
190 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
191 };
192 
193 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
194 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
195 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
196 
197 /*
198  * Software state of transmit and receive descriptors.
199  */
200 struct vr_descsoft {
201 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
202 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
203 };
204 
205 struct vr_softc {
206 	struct device		vr_dev;		/* generic device glue */
207 	void			*vr_ih;		/* interrupt cookie */
208 	void			*vr_ats;	/* shutdown hook */
209 	bus_space_tag_t		vr_bst;		/* bus space tag */
210 	bus_space_handle_t	vr_bsh;		/* bus space handle */
211 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
212 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
213 	struct ethercom		vr_ec;		/* Ethernet common info */
214 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
215 	struct mii_data		vr_mii;		/* MII/media info */
216 
217 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
218 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
219 
220 	/*
221 	 * Software state for transmit and receive descriptors.
222 	 */
223 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
224 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
225 
226 	/*
227 	 * Control data structures.
228 	 */
229 	struct vr_control_data	*vr_control_data;
230 
231 	int	vr_txpending;		/* number of TX requests pending */
232 	int	vr_txdirty;		/* first dirty TX descriptor */
233 	int	vr_txlast;		/* last used TX descriptor */
234 
235 	int	vr_rxptr;		/* next ready RX descriptor */
236 };
237 
238 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
239 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
240 
241 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
242 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
243 
244 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
245 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
246 
247 #define	VR_CDTXSYNC(sc, x, ops)						\
248 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
249 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
250 
251 #define	VR_CDRXSYNC(sc, x, ops)						\
252 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
253 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
254 
255 /*
256  * Note we rely on MCLBYTES being a power of two below.
257  */
258 #define	VR_INIT_RXDESC(sc, i)						\
259 do {									\
260 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
261 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
262 									\
263 	__d->vr_next = VR_CDRXADDR((sc), VR_NEXTRX((i)));		\
264 	__d->vr_status = VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG |	\
265 	    VR_RXSTAT_OWN;						\
266 	__d->vr_data = __ds->ds_dmamap->dm_segs[0].ds_addr;		\
267 	__d->vr_ctl = VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |		\
268 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN);				\
269 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
270 } while (0)
271 
272 /*
273  * register space access macros
274  */
275 #define	CSR_WRITE_4(sc, reg, val)					\
276 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
277 #define	CSR_WRITE_2(sc, reg, val)					\
278 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
279 #define	CSR_WRITE_1(sc, reg, val)					\
280 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
281 
282 #define	CSR_READ_4(sc, reg)						\
283 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
284 #define	CSR_READ_2(sc, reg)						\
285 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
286 #define	CSR_READ_1(sc, reg)						\
287 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
288 
289 #define	VR_TIMEOUT		1000
290 
291 static int vr_add_rxbuf		__P((struct vr_softc *, int));
292 
293 static void vr_rxeof		__P((struct vr_softc *));
294 static void vr_rxeoc		__P((struct vr_softc *));
295 static void vr_txeof		__P((struct vr_softc *));
296 static int vr_intr		__P((void *));
297 static void vr_start		__P((struct ifnet *));
298 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
299 static void vr_init		__P((void *));
300 static void vr_stop		__P((struct vr_softc *));
301 static void vr_watchdog		__P((struct ifnet *));
302 static void vr_tick		__P((void *));
303 
304 static int vr_ifmedia_upd	__P((struct ifnet *));
305 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
306 
307 static void vr_mii_sync		__P((struct vr_softc *));
308 static void vr_mii_send		__P((struct vr_softc *, u_int32_t, int));
309 static int vr_mii_readreg	__P((struct device *, int, int));
310 static void vr_mii_writereg	__P((struct device *, int, int, int));
311 static void vr_mii_statchg	__P((struct device *));
312 
313 static u_int8_t vr_calchash	__P((u_int8_t *));
314 static void vr_setmulti		__P((struct vr_softc *));
315 static void vr_reset		__P((struct vr_softc *));
316 
317 #define	VR_SETBIT(sc, reg, x)				\
318 	CSR_WRITE_1(sc, reg,				\
319 		CSR_READ_1(sc, reg) | x)
320 
321 #define	VR_CLRBIT(sc, reg, x)				\
322 	CSR_WRITE_1(sc, reg,				\
323 		CSR_READ_1(sc, reg) & ~x)
324 
325 #define	VR_SETBIT16(sc, reg, x)				\
326 	CSR_WRITE_2(sc, reg,				\
327 		CSR_READ_2(sc, reg) | x)
328 
329 #define	VR_CLRBIT16(sc, reg, x)				\
330 	CSR_WRITE_2(sc, reg,				\
331 		CSR_READ_2(sc, reg) & ~x)
332 
333 #define	VR_SETBIT32(sc, reg, x)				\
334 	CSR_WRITE_4(sc, reg,				\
335 		CSR_READ_4(sc, reg) | x)
336 
337 #define	VR_CLRBIT32(sc, reg, x)				\
338 	CSR_WRITE_4(sc, reg,				\
339 		CSR_READ_4(sc, reg) & ~x)
340 
341 #define	SIO_SET(x)					\
342 	CSR_WRITE_1(sc, VR_MIICMD,			\
343 		CSR_READ_1(sc, VR_MIICMD) | x)
344 
345 #define	SIO_CLR(x)					\
346 	CSR_WRITE_1(sc, VR_MIICMD,			\
347 		CSR_READ_1(sc, VR_MIICMD) & ~x)
348 
349 /*
350  * Sync the PHYs by setting data bit and strobing the clock 32 times.
351  */
352 static void
353 vr_mii_sync(sc)
354 	struct vr_softc *sc;
355 {
356 	int i;
357 
358 	SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAOUT);
359 
360 	for (i = 0; i < 32; i++) {
361 		SIO_SET(VR_MIICMD_CLK);
362 		DELAY(1);
363 		SIO_CLR(VR_MIICMD_CLK);
364 		DELAY(1);
365 	}
366 }
367 
368 /*
369  * Clock a series of bits through the MII.
370  */
371 static void
372 vr_mii_send(sc, bits, cnt)
373 	struct vr_softc *sc;
374 	u_int32_t bits;
375 	int cnt;
376 {
377 	int i;
378 
379 	SIO_CLR(VR_MIICMD_CLK);
380 
381 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
382 		if (bits & i) {
383 			SIO_SET(VR_MIICMD_DATAOUT);
384 		} else {
385 			SIO_CLR(VR_MIICMD_DATAOUT);
386 		}
387 		DELAY(1);
388 		SIO_CLR(VR_MIICMD_CLK);
389 		DELAY(1);
390 		SIO_SET(VR_MIICMD_CLK);
391 	}
392 }
393 
394 /*
395  * Read an PHY register through the MII.
396  */
397 static int
398 vr_mii_readreg(self, phy, reg)
399 	struct device *self;
400 	int phy, reg;
401 {
402 	struct vr_softc *sc = (struct vr_softc *)self;
403 	int i, ack, val = 0;
404 
405 	CSR_WRITE_1(sc, VR_MIICMD, 0);
406 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
407 
408 	/*
409 	 * Turn on data xmit.
410 	 */
411 	SIO_SET(VR_MIICMD_DIR);
412 
413 	vr_mii_sync(sc);
414 
415 	/*
416 	 * Send command/address info.
417 	 */
418 	vr_mii_send(sc, MII_COMMAND_START, 2);
419 	vr_mii_send(sc, MII_COMMAND_READ, 2);
420 	vr_mii_send(sc, phy, 5);
421 	vr_mii_send(sc, reg, 5);
422 
423 	/* Idle bit */
424 	SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAOUT));
425 	DELAY(1);
426 	SIO_SET(VR_MIICMD_CLK);
427 	DELAY(1);
428 
429 	/* Turn off xmit. */
430 	SIO_CLR(VR_MIICMD_DIR);
431 
432 	/* Check for ack */
433 	SIO_CLR(VR_MIICMD_CLK);
434 	DELAY(1);
435 	SIO_SET(VR_MIICMD_CLK);
436 	DELAY(1);
437 	ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN;
438 
439 	/*
440 	 * Now try reading data bits. If the ack failed, we still
441 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
442 	 */
443 	if (ack) {
444 		for (i = 0; i < 16; i++) {
445 			SIO_CLR(VR_MIICMD_CLK);
446 			DELAY(1);
447 			SIO_SET(VR_MIICMD_CLK);
448 			DELAY(1);
449 		}
450 		goto fail;
451 	}
452 
453 	for (i = 0x8000; i; i >>= 1) {
454 		SIO_CLR(VR_MIICMD_CLK);
455 		DELAY(1);
456 		if (!ack) {
457 			if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN)
458 				val |= i;
459 			DELAY(1);
460 		}
461 		SIO_SET(VR_MIICMD_CLK);
462 		DELAY(1);
463 	}
464 
465  fail:
466 
467 	SIO_CLR(VR_MIICMD_CLK);
468 	DELAY(1);
469 	SIO_SET(VR_MIICMD_CLK);
470 	DELAY(1);
471 
472 	return (val);
473 }
474 
475 /*
476  * Write to a PHY register through the MII.
477  */
478 static void
479 vr_mii_writereg(self, phy, reg, val)
480 	struct device *self;
481 	int phy, reg, val;
482 {
483 	struct vr_softc *sc = (struct vr_softc *)self;
484 
485 	CSR_WRITE_1(sc, VR_MIICMD, 0);
486 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
487 
488 	/*
489 	 * Turn on data output.
490 	 */
491 	SIO_SET(VR_MIICMD_DIR);
492 
493 	vr_mii_sync(sc);
494 
495 	vr_mii_send(sc, MII_COMMAND_START, 2);
496 	vr_mii_send(sc, MII_COMMAND_WRITE, 2);
497 	vr_mii_send(sc, phy, 5);
498 	vr_mii_send(sc, reg, 5);
499 	vr_mii_send(sc, MII_COMMAND_ACK, 2);
500 	vr_mii_send(sc, val, 16);
501 
502 	/* Idle bit. */
503 	SIO_SET(VR_MIICMD_CLK);
504 	DELAY(1);
505 	SIO_CLR(VR_MIICMD_CLK);
506 	DELAY(1);
507 
508 	/*
509 	 * Turn off xmit.
510 	 */
511 	SIO_CLR(VR_MIICMD_DIR);
512 }
513 
514 static void
515 vr_mii_statchg(self)
516 	struct device *self;
517 {
518 	struct vr_softc *sc = (struct vr_softc *)self;
519 
520 	/*
521 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
522 	 * register, we first have to put the transmit and/or receive logic
523 	 * in the idle state.
524 	 */
525 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
526 
527 	if (sc->vr_mii.mii_media_active & IFM_FDX)
528 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
529 	else
530 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
531 
532 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
533 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
534 
535 	/* XXX Update ifp->if_baudrate */
536 }
537 
538 /*
539  * Calculate CRC of a multicast group address, return the lower 6 bits.
540  */
541 static u_int8_t
542 vr_calchash(addr)
543 	u_int8_t *addr;
544 {
545 	u_int32_t crc, carry;
546 	int i, j;
547 	u_int8_t c;
548 
549 	/* Compute CRC for the address value. */
550 	crc = 0xFFFFFFFF; /* initial value */
551 
552 	for (i = 0; i < 6; i++) {
553 		c = *(addr + i);
554 		for (j = 0; j < 8; j++) {
555 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
556 			crc <<= 1;
557 			c >>= 1;
558 			if (carry)
559 				crc = (crc ^ 0x04c11db6) | carry;
560 		}
561 	}
562 
563 	/* return the filter bit position */
564 	return ((crc >> 26) & 0x0000003F);
565 }
566 
567 /*
568  * Program the 64-bit multicast hash filter.
569  */
570 static void
571 vr_setmulti(sc)
572 	struct vr_softc *sc;
573 {
574 	struct ifnet *ifp;
575 	int h = 0;
576 	u_int32_t hashes[2] = { 0, 0 };
577 	struct ether_multistep step;
578 	struct ether_multi *enm;
579 	int mcnt = 0;
580 	u_int8_t rxfilt;
581 
582 	ifp = &sc->vr_ec.ec_if;
583 
584 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
585 
586 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
587 		rxfilt |= VR_RXCFG_RX_MULTI;
588 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
589 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
590 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
591 		return;
592 	}
593 
594 	/* first, zot all the existing hash bits */
595 	CSR_WRITE_4(sc, VR_MAR0, 0);
596 	CSR_WRITE_4(sc, VR_MAR1, 0);
597 
598 	/* now program new ones */
599 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
600 	while (enm != NULL) {
601 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
602 			continue;
603 
604 		h = vr_calchash(enm->enm_addrlo);
605 
606 		if (h < 32)
607 			hashes[0] |= (1 << h);
608 		else
609 			hashes[1] |= (1 << (h - 32));
610 		ETHER_NEXT_MULTI(step, enm);
611 		mcnt++;
612 	}
613 
614 	if (mcnt)
615 		rxfilt |= VR_RXCFG_RX_MULTI;
616 	else
617 		rxfilt &= ~VR_RXCFG_RX_MULTI;
618 
619 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
620 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
621 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
622 }
623 
624 static void
625 vr_reset(sc)
626 	struct vr_softc *sc;
627 {
628 	int i;
629 
630 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
631 
632 	for (i = 0; i < VR_TIMEOUT; i++) {
633 		DELAY(10);
634 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
635 			break;
636 	}
637 	if (i == VR_TIMEOUT)
638 		printf("%s: reset never completed!\n",
639 			sc->vr_dev.dv_xname);
640 
641 	/* Wait a little while for the chip to get its brains in order. */
642 	DELAY(1000);
643 }
644 
645 /*
646  * Initialize an RX descriptor and attach an MBUF cluster.
647  * Note: the length fields are only 11 bits wide, which means the
648  * largest size we can specify is 2047. This is important because
649  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
650  * overflow the field and make a mess.
651  */
652 static int
653 vr_add_rxbuf(sc, i)
654 	struct vr_softc *sc;
655 	int i;
656 {
657 	struct vr_descsoft *ds = VR_DSRX(sc, i);
658 	struct mbuf *m_new;
659 	int error;
660 
661 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
662 	if (m_new == NULL)
663 		return (ENOBUFS);
664 
665 	MCLGET(m_new, M_DONTWAIT);
666 	if ((m_new->m_flags & M_EXT) == 0) {
667 		m_freem(m_new);
668 		return (ENOBUFS);
669 	}
670 
671 	if (ds->ds_mbuf != NULL)
672 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
673 
674 	ds->ds_mbuf = m_new;
675 
676 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
677 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
678 	if (error) {
679 		printf("%s: unable to load rx DMA map %d, error = %d\n",
680 		    sc->vr_dev.dv_xname, i, error);
681 		panic("vr_add_rxbuf");		/* XXX */
682 	}
683 
684 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
685 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
686 
687 	VR_INIT_RXDESC(sc, i);
688 
689 	return (0);
690 }
691 
692 /*
693  * A frame has been uploaded: pass the resulting mbuf chain up to
694  * the higher level protocols.
695  */
696 static void
697 vr_rxeof(sc)
698 	struct vr_softc *sc;
699 {
700 	struct ether_header *eh;
701 	struct mbuf *m;
702 	struct ifnet *ifp;
703 	struct vr_desc *d;
704 	struct vr_descsoft *ds;
705 	int i, total_len;
706 	u_int32_t rxstat;
707 
708 	ifp = &sc->vr_ec.ec_if;
709 
710 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
711 		d = VR_CDRX(sc, i);
712 		ds = VR_DSRX(sc, i);
713 
714 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
715 
716 		rxstat = d->vr_status;
717 
718 		if (rxstat & VR_RXSTAT_OWN) {
719 			/*
720 			 * We have processed all of the receive buffers.
721 			 */
722 			break;
723 		}
724 
725 		/*
726 		 * If an error occurs, update stats, clear the
727 		 * status word and leave the mbuf cluster in place:
728 		 * it should simply get re-used next time this descriptor
729 		 * comes up in the ring.
730 		 */
731 		if (rxstat & VR_RXSTAT_RXERR) {
732 			const char *errstr;
733 
734 			ifp->if_ierrors++;
735 			switch (rxstat & 0x000000FF) {
736 			case VR_RXSTAT_CRCERR:
737 				errstr = "crc error";
738 				break;
739 			case VR_RXSTAT_FRAMEALIGNERR:
740 				errstr = "frame alignment error";
741 				break;
742 			case VR_RXSTAT_FIFOOFLOW:
743 				errstr = "FIFO overflow";
744 				break;
745 			case VR_RXSTAT_GIANT:
746 				errstr = "received giant packet";
747 				break;
748 			case VR_RXSTAT_RUNT:
749 				errstr = "received runt packet";
750 				break;
751 			case VR_RXSTAT_BUSERR:
752 				errstr = "system bus error";
753 				break;
754 			case VR_RXSTAT_BUFFERR:
755 				errstr = "rx buffer error";
756 				break;
757 			default:
758 				errstr = "unknown rx error";
759 				break;
760 			}
761 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
762 			    errstr);
763 
764 			VR_INIT_RXDESC(sc, i);
765 
766 			continue;
767 		}
768 
769 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
770 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
771 
772 		/* No errors; receive the packet. */
773 		total_len = VR_RXBYTES(d->vr_status);
774 
775 		/*
776 		 * XXX The VIA Rhine chip includes the CRC with every
777 		 * received frame, and there's no way to turn this
778 		 * behavior off (at least, I can't find anything in
779 		 * the manual that explains how to do it) so we have
780 		 * to trim off the CRC manually.
781 		 */
782 		total_len -= ETHER_CRC_LEN;
783 
784 #ifdef __NO_STRICT_ALIGNMENT
785 		/*
786 		 * Try to conjure up a new mbuf cluster. If that
787 		 * fails, it means we have an out of memory condition and
788 		 * should leave the buffer in place and continue. This will
789 		 * result in a lost packet, but there's little else we
790 		 * can do in this situation.
791 		 */
792 		m = ds->ds_mbuf;
793 		if (vr_add_rxbuf(sc, i) == ENOBUFS) {
794 			ifp->if_ierrors++;
795 			VR_INIT_RXDESC(sc, i);
796 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
797 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
798 			continue;
799 		}
800 #else
801 		/*
802 		 * The Rhine's packet buffers must be 4-byte aligned.
803 		 * But this means that the data after the Ethernet header
804 		 * is misaligned.  We must allocate a new buffer and
805 		 * copy the data, shifted forward 2 bytes.
806 		 */
807 		MGETHDR(m, M_DONTWAIT, MT_DATA);
808 		if (m == NULL) {
809  dropit:
810 			ifp->if_ierrors++;
811 			VR_INIT_RXDESC(sc, i);
812 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
813 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
814 			continue;
815 		}
816 		if (total_len > (MHLEN - 2)) {
817 			MCLGET(m, M_DONTWAIT);
818 			if ((m->m_flags & M_EXT) == 0)
819 				goto dropit;
820 		}
821 		m->m_data += 2;
822 
823 		/*
824 		 * Note that we use clusters for incoming frames, so the
825 		 * buffer is virtually contiguous.
826 		 */
827 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
828 		    total_len);
829 
830 		/* Allow the recieve descriptor to continue using its mbuf. */
831 		VR_INIT_RXDESC(sc, i);
832 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
833 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
834 #endif /* __NO_STRICT_ALIGNMENT */
835 
836 		ifp->if_ipackets++;
837 		eh = mtod(m, struct ether_header *);
838 		m->m_pkthdr.rcvif = ifp;
839 		m->m_pkthdr.len = m->m_len = total_len;
840 #if NBPFILTER > 0
841 		/*
842 		 * Handle BPF listeners. Let the BPF user see the packet, but
843 		 * don't pass it up to the ether_input() layer unless it's
844 		 * a broadcast packet, multicast packet, matches our ethernet
845 		 * address or the interface is in promiscuous mode.
846 		 */
847 		if (ifp->if_bpf) {
848 			bpf_mtap(ifp->if_bpf, m);
849 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
850 			    (rxstat & (VR_RXSTAT_RX_PHYS | VR_RXSTAT_RX_BROAD |
851 				       VR_RXSTAT_RX_MULTI)) == 0) {
852 				m_freem(m);
853 				continue;
854 			}
855 		}
856 #endif
857 		/* Remove header from mbuf and pass it on. */
858 		m_adj(m, sizeof(struct ether_header));
859 		ether_input(ifp, eh, m);
860 	}
861 
862 	/* Update the receive pointer. */
863 	sc->vr_rxptr = i;
864 }
865 
866 void
867 vr_rxeoc(sc)
868 	struct vr_softc *sc;
869 {
870 
871 	vr_rxeof(sc);
872 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
873 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
874 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
875 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
876 }
877 
878 /*
879  * A frame was downloaded to the chip. It's safe for us to clean up
880  * the list buffers.
881  */
882 static void
883 vr_txeof(sc)
884 	struct vr_softc *sc;
885 {
886 	struct ifnet *ifp = &sc->vr_ec.ec_if;
887 	struct vr_desc *d;
888 	struct vr_descsoft *ds;
889 	u_int32_t txstat;
890 	int i;
891 
892 	ifp->if_flags &= ~IFF_OACTIVE;
893 
894 	/*
895 	 * Go through our tx list and free mbufs for those
896 	 * frames that have been transmitted.
897 	 */
898 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
899 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
900 		d = VR_CDTX(sc, i);
901 		ds = VR_DSTX(sc, i);
902 
903 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
904 
905 		txstat = d->vr_status;
906 		if (txstat & VR_TXSTAT_OWN)
907 			break;
908 
909 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
910 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
911 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
912 		m_freem(ds->ds_mbuf);
913 		ds->ds_mbuf = NULL;
914 
915 		if (txstat & VR_TXSTAT_ERRSUM) {
916 			ifp->if_oerrors++;
917 			if (txstat & VR_TXSTAT_DEFER)
918 				ifp->if_collisions++;
919 			if (txstat & VR_TXSTAT_LATECOLL)
920 				ifp->if_collisions++;
921 		}
922 
923 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
924 		ifp->if_opackets++;
925 	}
926 
927 	/* Update the dirty transmit buffer pointer. */
928 	sc->vr_txdirty = i;
929 
930 	/*
931 	 * Cancel the watchdog timer if there are no pending
932 	 * transmissions.
933 	 */
934 	if (sc->vr_txpending == 0)
935 		ifp->if_timer = 0;
936 }
937 
938 static int
939 vr_intr(arg)
940 	void *arg;
941 {
942 	struct vr_softc *sc;
943 	struct ifnet *ifp;
944 	u_int16_t status;
945 	int handled = 0, dotx = 0;
946 
947 	sc = arg;
948 	ifp = &sc->vr_ec.ec_if;
949 
950 	/* Suppress unwanted interrupts. */
951 	if ((ifp->if_flags & IFF_UP) == 0) {
952 		vr_stop(sc);
953 		return (0);
954 	}
955 
956 	/* Disable interrupts. */
957 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
958 
959 	for (;;) {
960 		status = CSR_READ_2(sc, VR_ISR);
961 		if (status)
962 			CSR_WRITE_2(sc, VR_ISR, status);
963 
964 		if ((status & VR_INTRS) == 0)
965 			break;
966 
967 		handled = 1;
968 
969 		if (status & VR_ISR_RX_OK)
970 			vr_rxeof(sc);
971 
972 		if (status &
973 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
974 		     VR_ISR_RX_DROPPED))
975 			vr_rxeoc(sc);
976 
977 		if (status & VR_ISR_TX_OK) {
978 			dotx = 1;
979 			vr_txeof(sc);
980 		}
981 
982 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
983 			if (status & VR_ISR_TX_UNDERRUN)
984 				printf("%s: transmit underrun\n",
985 				    sc->vr_dev.dv_xname);
986 			if (status & VR_ISR_TX_ABRT)
987 				printf("%s: transmit aborted\n",
988 				    sc->vr_dev.dv_xname);
989 			ifp->if_oerrors++;
990 			dotx = 1;
991 			vr_txeof(sc);
992 			if (sc->vr_txpending) {
993 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
994 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
995 			}
996 		}
997 
998 		if (status & VR_ISR_BUSERR) {
999 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
1000 			/* vr_init() calls vr_start() */
1001 			dotx = 0;
1002 			vr_init(sc);
1003 		}
1004 	}
1005 
1006 	/* Re-enable interrupts. */
1007 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1008 
1009 	if (dotx)
1010 		vr_start(ifp);
1011 
1012 	return (handled);
1013 }
1014 
1015 /*
1016  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1017  * to the mbuf data regions directly in the transmit lists. We also save a
1018  * copy of the pointers since the transmit list fragment pointers are
1019  * physical addresses.
1020  */
1021 static void
1022 vr_start(ifp)
1023 	struct ifnet *ifp;
1024 {
1025 	struct vr_softc *sc = ifp->if_softc;
1026 	struct mbuf *m0, *m;
1027 	struct vr_desc *d;
1028 	struct vr_descsoft *ds;
1029 	int error, firsttx, nexttx, opending;
1030 
1031 	/*
1032 	 * Remember the previous txpending and the first transmit
1033 	 * descriptor we use.
1034 	 */
1035 	opending = sc->vr_txpending;
1036 	firsttx = VR_NEXTTX(sc->vr_txlast);
1037 
1038 	/*
1039 	 * Loop through the send queue, setting up transmit descriptors
1040 	 * until we drain the queue, or use up all available transmit
1041 	 * descriptors.
1042 	 */
1043 	while (sc->vr_txpending < VR_NTXDESC) {
1044 		/*
1045 		 * Grab a packet off the queue.
1046 		 */
1047 		IF_DEQUEUE(&ifp->if_snd, m0);
1048 		if (m0 == NULL)
1049 			break;
1050 
1051 		/*
1052 		 * Get the next available transmit descriptor.
1053 		 */
1054 		nexttx = VR_NEXTTX(sc->vr_txlast);
1055 		d = VR_CDTX(sc, nexttx);
1056 		ds = VR_DSTX(sc, nexttx);
1057 
1058 		/*
1059 		 * Load the DMA map.  If this fails, the packet didn't
1060 		 * fit in one DMA segment, and we need to copy.  Note,
1061 		 * the packet must also be aligned.
1062 		 */
1063 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
1064 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1065 		     BUS_DMA_NOWAIT) != 0) {
1066 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1067 			if (m == NULL) {
1068 				printf("%s: unable to allocate Tx mbuf\n",
1069 				    sc->vr_dev.dv_xname);
1070 				IF_PREPEND(&ifp->if_snd, m0);
1071 				break;
1072 			}
1073 			if (m0->m_pkthdr.len > MHLEN) {
1074 				MCLGET(m, M_DONTWAIT);
1075 				if ((m->m_flags & M_EXT) == 0) {
1076 					printf("%s: unable to allocate Tx "
1077 					    "cluster\n", sc->vr_dev.dv_xname);
1078 					m_freem(m);
1079 					IF_PREPEND(&ifp->if_snd, m0);
1080 					break;
1081 				}
1082 			}
1083 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1084 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1085 			m_freem(m0);
1086 			m0 = m;
1087 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1088 			    ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
1089 			if (error) {
1090 				printf("%s: unable to load Tx buffer, "
1091 				    "error = %d\n", sc->vr_dev.dv_xname, error);
1092 				IF_PREPEND(&ifp->if_snd, m0);
1093 				break;
1094 			}
1095 		}
1096 
1097 		/* Sync the DMA map. */
1098 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1099 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1100 
1101 		/*
1102 		 * Store a pointer to the packet so we can free it later.
1103 		 */
1104 		ds->ds_mbuf = m0;
1105 
1106 #if NBPFILTER > 0
1107 		/*
1108 		 * If there's a BPF listener, bounce a copy of this frame
1109 		 * to him.
1110 		 */
1111 		if (ifp->if_bpf)
1112 			bpf_mtap(ifp->if_bpf, m0);
1113 #endif
1114 
1115 		/*
1116 		 * Fill in the transmit descriptor.  The Rhine
1117 		 * doesn't auto-pad, so we have to do this ourselves.
1118 		 */
1119 		d->vr_data = ds->ds_dmamap->dm_segs[0].ds_addr;
1120 		d->vr_ctl = m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1121 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len;
1122 		d->vr_ctl |=
1123 		    VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|VR_TXCTL_LASTFRAG;
1124 
1125 		/*
1126 		 * If this is the first descriptor we're enqueuing,
1127 		 * don't give it to the Rhine yet.  That could cause
1128 		 * a race condition.  We'll do it below.
1129 		 */
1130 		if (nexttx == firsttx)
1131 			d->vr_status = 0;
1132 		else
1133 			d->vr_status = VR_TXSTAT_OWN;
1134 
1135 		VR_CDTXSYNC(sc, nexttx,
1136 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1137 
1138 		/* Advance the tx pointer. */
1139 		sc->vr_txpending++;
1140 		sc->vr_txlast = nexttx;
1141 	}
1142 
1143 	if (sc->vr_txpending == VR_NTXDESC) {
1144 		/* No more slots left; notify upper layer. */
1145 		ifp->if_flags |= IFF_OACTIVE;
1146 	}
1147 
1148 	if (sc->vr_txpending != opending) {
1149 		/*
1150 		 * We enqueued packets.  If the transmitter was idle,
1151 		 * reset the txdirty pointer.
1152 		 */
1153 		if (opending == 0)
1154 			sc->vr_txdirty = firsttx;
1155 
1156 		/*
1157 		 * Cause a transmit interrupt to happen on the
1158 		 * last packet we enqueued.
1159 		 */
1160 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= VR_TXCTL_FINT;
1161 		VR_CDTXSYNC(sc, sc->vr_txlast,
1162 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1163 
1164 		/*
1165 		 * The entire packet chain is set up.  Give the
1166 		 * first descriptor to the Rhine now.
1167 		 */
1168 		VR_CDTX(sc, firsttx)->vr_status = VR_TXSTAT_OWN;
1169 		VR_CDTXSYNC(sc, firsttx,
1170 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1171 
1172 		/* Start the transmitter. */
1173 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1174 
1175 		/* Set the watchdog timer in case the chip flakes out. */
1176 		ifp->if_timer = 5;
1177 	}
1178 }
1179 
1180 /*
1181  * Initialize the interface.  Must be called at splnet.
1182  */
1183 static void
1184 vr_init(xsc)
1185 	void *xsc;
1186 {
1187 	struct vr_softc *sc = xsc;
1188 	struct ifnet *ifp = &sc->vr_ec.ec_if;
1189 	struct vr_desc *d;
1190 	int i;
1191 
1192 	/* Cancel pending I/O. */
1193 	vr_stop(sc);
1194 
1195 	/* Reset the Rhine to a known state. */
1196 	vr_reset(sc);
1197 
1198 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1199 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1200 
1201 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1202 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1203 
1204 	/*
1205 	 * Initialize the transmit desciptor ring.  txlast is initialized
1206 	 * to the end of the list so that it will wrap around to the first
1207 	 * descriptor when the first packet is transmitted.
1208 	 */
1209 	for (i = 0; i < VR_NTXDESC; i++) {
1210 		d = VR_CDTX(sc, i);
1211 		memset(d, 0, sizeof(struct vr_desc));
1212 		d->vr_next = VR_CDTXADDR(sc, VR_NEXTTX(i));
1213 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1214 	}
1215 	sc->vr_txpending = 0;
1216 	sc->vr_txdirty = 0;
1217 	sc->vr_txlast = VR_NTXDESC - 1;
1218 
1219 	/*
1220 	 * Initialize the receive descriptor ring.  The buffers are
1221 	 * already allocated.
1222 	 */
1223 	for (i = 0; i < VR_NRXDESC; i++)
1224 		VR_INIT_RXDESC(sc, i);
1225 	sc->vr_rxptr = 0;
1226 
1227 	/* If we want promiscuous mode, set the allframes bit. */
1228 	if (ifp->if_flags & IFF_PROMISC)
1229 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1230 	else
1231 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1232 
1233 	/* Set capture broadcast bit to capture broadcast frames. */
1234 	if (ifp->if_flags & IFF_BROADCAST)
1235 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1236 	else
1237 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1238 
1239 	/* Program the multicast filter, if necessary. */
1240 	vr_setmulti(sc);
1241 
1242 	/* Give the transmit and recieve rings to the Rhine. */
1243 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1244 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1245 
1246 	/* Set current media. */
1247 	mii_mediachg(&sc->vr_mii);
1248 
1249 	/* Enable receiver and transmitter. */
1250 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1251 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1252 				    VR_CMD_RX_GO);
1253 
1254 	/* Enable interrupts. */
1255 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1256 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1257 
1258 	ifp->if_flags |= IFF_RUNNING;
1259 	ifp->if_flags &= ~IFF_OACTIVE;
1260 
1261 	/* Start one second timer. */
1262 	timeout(vr_tick, sc, hz);
1263 
1264 	/* Attempt to start output on the interface. */
1265 	vr_start(ifp);
1266 }
1267 
1268 /*
1269  * Set media options.
1270  */
1271 static int
1272 vr_ifmedia_upd(ifp)
1273 	struct ifnet *ifp;
1274 {
1275 	struct vr_softc *sc = ifp->if_softc;
1276 
1277 	if (ifp->if_flags & IFF_UP)
1278 		mii_mediachg(&sc->vr_mii);
1279 	return (0);
1280 }
1281 
1282 /*
1283  * Report current media status.
1284  */
1285 static void
1286 vr_ifmedia_sts(ifp, ifmr)
1287 	struct ifnet *ifp;
1288 	struct ifmediareq *ifmr;
1289 {
1290 	struct vr_softc *sc = ifp->if_softc;
1291 
1292 	mii_pollstat(&sc->vr_mii);
1293 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
1294 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
1295 }
1296 
1297 static int
1298 vr_ioctl(ifp, command, data)
1299 	struct ifnet *ifp;
1300 	u_long command;
1301 	caddr_t data;
1302 {
1303 	struct vr_softc *sc = ifp->if_softc;
1304 	struct ifreq *ifr = (struct ifreq *)data;
1305 	struct ifaddr *ifa = (struct ifaddr *)data;
1306 	int s, error = 0;
1307 
1308 	s = splnet();
1309 
1310 	switch (command) {
1311 	case SIOCSIFADDR:
1312 		ifp->if_flags |= IFF_UP;
1313 
1314 		switch (ifa->ifa_addr->sa_family) {
1315 #ifdef INET
1316 		case AF_INET:
1317 			vr_init(sc);
1318 			arp_ifinit(ifp, ifa);
1319 			break;
1320 #endif /* INET */
1321 		default:
1322 			vr_init(sc);
1323 			break;
1324 		}
1325 		break;
1326 
1327 	case SIOCGIFADDR:
1328 		bcopy((caddr_t) sc->vr_enaddr,
1329 			(caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1330 			ETHER_ADDR_LEN);
1331 		break;
1332 
1333 	case SIOCSIFMTU:
1334 		if (ifr->ifr_mtu > ETHERMTU)
1335 			error = EINVAL;
1336 		else
1337 			ifp->if_mtu = ifr->ifr_mtu;
1338 		break;
1339 
1340 	case SIOCSIFFLAGS:
1341 		if ((ifp->if_flags & IFF_UP) == 0 &&
1342 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1343 			/*
1344 			 * If interface is marked down and it is running, then
1345 			 * stop it.
1346 			 */
1347 			vr_stop(sc);
1348 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1349 			   (ifp->if_flags & IFF_RUNNING) == 0) {
1350 			/*
1351 			 * If interface is marked up and it is stopped, then
1352 			 * start it.
1353 			 */
1354 			vr_init(sc);
1355 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1356 			/*
1357 			 * Reset the interface to pick up changes in any other
1358 			 * flags that affect the hardware state.
1359 			 */
1360 			vr_init(sc);
1361 		}
1362 		break;
1363 
1364 	case SIOCADDMULTI:
1365 	case SIOCDELMULTI:
1366 		if (command == SIOCADDMULTI)
1367 			error = ether_addmulti(ifr, &sc->vr_ec);
1368 		else
1369 			error = ether_delmulti(ifr, &sc->vr_ec);
1370 
1371 		if (error == ENETRESET) {
1372 			/*
1373 			 * Multicast list has changed; set the hardware filter
1374 			 * accordingly.
1375 			 */
1376 			vr_setmulti(sc);
1377 			error = 0;
1378 		}
1379 		break;
1380 
1381 	case SIOCGIFMEDIA:
1382 	case SIOCSIFMEDIA:
1383 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1384 		break;
1385 
1386 	default:
1387 		error = EINVAL;
1388 		break;
1389 	}
1390 
1391 	splx(s);
1392 	return (error);
1393 }
1394 
1395 static void
1396 vr_watchdog(ifp)
1397 	struct ifnet *ifp;
1398 {
1399 	struct vr_softc *sc = ifp->if_softc;
1400 
1401 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1402 	ifp->if_oerrors++;
1403 
1404 	vr_init(sc);
1405 }
1406 
1407 /*
1408  * One second timer, used to tick MII.
1409  */
1410 static void
1411 vr_tick(arg)
1412 	void *arg;
1413 {
1414 	struct vr_softc *sc = arg;
1415 	int s;
1416 
1417 	s = splnet();
1418 	mii_tick(&sc->vr_mii);
1419 	splx(s);
1420 
1421 	timeout(vr_tick, sc, hz);
1422 }
1423 
1424 /*
1425  * Stop the adapter and free any mbufs allocated to the
1426  * transmit lists.
1427  */
1428 static void
1429 vr_stop(sc)
1430 	struct vr_softc *sc;
1431 {
1432 	struct vr_descsoft *ds;
1433 	struct ifnet *ifp;
1434 	int i;
1435 
1436 	/* Cancel one second timer. */
1437 	untimeout(vr_tick, sc);
1438 
1439 	ifp = &sc->vr_ec.ec_if;
1440 	ifp->if_timer = 0;
1441 
1442 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1443 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1444 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1445 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1446 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1447 
1448 	/*
1449 	 * Release any queued transmit buffers.
1450 	 */
1451 	for (i = 0; i < VR_NTXDESC; i++) {
1452 		ds = VR_DSTX(sc, i);
1453 		if (ds->ds_mbuf != NULL) {
1454 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1455 			m_freem(ds->ds_mbuf);
1456 			ds->ds_mbuf = NULL;
1457 		}
1458 	}
1459 
1460 	/*
1461 	 * Mark the interface down and cancel the watchdog timer.
1462 	 */
1463 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1464 	ifp->if_timer = 0;
1465 }
1466 
1467 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1468 static int vr_probe __P((struct device *, struct cfdata *, void *));
1469 static void vr_attach __P((struct device *, struct device *, void *));
1470 static void vr_shutdown __P((void *));
1471 
1472 struct cfattach vr_ca = {
1473 	sizeof (struct vr_softc), vr_probe, vr_attach
1474 };
1475 
1476 static struct vr_type *
1477 vr_lookup(pa)
1478 	struct pci_attach_args *pa;
1479 {
1480 	struct vr_type *vrt;
1481 
1482 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1483 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1484 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1485 			return (vrt);
1486 	}
1487 	return (NULL);
1488 }
1489 
1490 static int
1491 vr_probe(parent, match, aux)
1492 	struct device *parent;
1493 	struct cfdata *match;
1494 	void *aux;
1495 {
1496 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1497 
1498 	if (vr_lookup(pa) != NULL)
1499 		return (1);
1500 
1501 	return (0);
1502 }
1503 
1504 /*
1505  * Stop all chip I/O so that the kernel's probe routines don't
1506  * get confused by errant DMAs when rebooting.
1507  */
1508 static void
1509 vr_shutdown(arg)
1510 	void *arg;
1511 {
1512 	struct vr_softc *sc = (struct vr_softc *)arg;
1513 
1514 	vr_stop(sc);
1515 }
1516 
1517 /*
1518  * Attach the interface. Allocate softc structures, do ifmedia
1519  * setup and ethernet/BPF attach.
1520  */
1521 static void
1522 vr_attach(parent, self, aux)
1523 	struct device *parent;
1524 	struct device *self;
1525 	void *aux;
1526 {
1527 	struct vr_softc *sc = (struct vr_softc *) self;
1528 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1529 	bus_dma_segment_t seg;
1530 	struct vr_type *vrt;
1531 	u_int32_t command;
1532 	struct ifnet *ifp;
1533 	u_char eaddr[ETHER_ADDR_LEN];
1534 	int i, rseg, error;
1535 
1536 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1537 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1538 
1539 	vrt = vr_lookup(pa);
1540 	if (vrt == NULL) {
1541 		printf("\n");
1542 		panic("vr_attach: impossible");
1543 	}
1544 
1545 	printf(": %s Ethernet\n", vrt->vr_name);
1546 
1547 	/*
1548 	 * Handle power management nonsense.
1549 	 */
1550 
1551 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1552 	if (command == 0x01) {
1553 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1554 		if (command & VR_PSTATE_MASK) {
1555 			u_int32_t iobase, membase, irq;
1556 
1557 			/* Save important PCI config data. */
1558 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
1559 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
1560 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
1561 
1562 			/* Reset the power state. */
1563 			printf("%s: chip is in D%d power mode "
1564 				"-- setting to D0\n",
1565 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1566 			command &= 0xFFFFFFFC;
1567 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1568 
1569 			/* Restore PCI config data. */
1570 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1571 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1572 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1573 		}
1574 	}
1575 
1576 	/*
1577 	 * Map control/status registers.
1578 	 */
1579 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1580 	command |= (PCI_COMMAND_IO_ENABLE |
1581 		    PCI_COMMAND_MEM_ENABLE |
1582 		    PCI_COMMAND_MASTER_ENABLE);
1583 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1584 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1585 
1586 	{
1587 		bus_space_tag_t iot, memt;
1588 		bus_space_handle_t ioh, memh;
1589 		int ioh_valid, memh_valid;
1590 		pci_intr_handle_t intrhandle;
1591 		const char *intrstr;
1592 
1593 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1594 			PCI_MAPREG_TYPE_IO, 0,
1595 			&iot, &ioh, NULL, NULL) == 0);
1596 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1597 			PCI_MAPREG_TYPE_MEM |
1598 			PCI_MAPREG_MEM_TYPE_32BIT,
1599 			0, &memt, &memh, NULL, NULL) == 0);
1600 #if defined(VR_USEIOSPACE)
1601 		if (ioh_valid) {
1602 			sc->vr_bst = iot;
1603 			sc->vr_bsh = ioh;
1604 		} else if (memh_valid) {
1605 			sc->vr_bst = memt;
1606 			sc->vr_bsh = memh;
1607 		}
1608 #else
1609 		if (memh_valid) {
1610 			sc->vr_bst = memt;
1611 			sc->vr_bsh = memh;
1612 		} else if (ioh_valid) {
1613 			sc->vr_bst = iot;
1614 			sc->vr_bsh = ioh;
1615 		}
1616 #endif
1617 		else {
1618 			printf(": unable to map device registers\n");
1619 			return;
1620 		}
1621 
1622 		/* Allocate interrupt */
1623 		if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1624 				pa->pa_intrline, &intrhandle)) {
1625 			printf("%s: couldn't map interrupt\n",
1626 				sc->vr_dev.dv_xname);
1627 			return;
1628 		}
1629 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1630 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1631 						vr_intr, sc);
1632 		if (sc->vr_ih == NULL) {
1633 			printf("%s: couldn't establish interrupt",
1634 				sc->vr_dev.dv_xname);
1635 			if (intrstr != NULL)
1636 				printf(" at %s", intrstr);
1637 			printf("\n");
1638 		}
1639 		printf("%s: interrupting at %s\n",
1640 			sc->vr_dev.dv_xname, intrstr);
1641 	}
1642 
1643 	/* Reset the adapter. */
1644 	vr_reset(sc);
1645 
1646 	/*
1647 	 * Get station address. The way the Rhine chips work,
1648 	 * you're not allowed to directly access the EEPROM once
1649 	 * they've been programmed a special way. Consequently,
1650 	 * we need to read the node address from the PAR0 and PAR1
1651 	 * registers.
1652 	 */
1653 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1654 	DELAY(200);
1655 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1656 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1657 
1658 	/*
1659 	 * A Rhine chip was detected. Inform the world.
1660 	 */
1661 	printf("%s: Ethernet address: %s\n",
1662 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1663 
1664 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1665 
1666 	sc->vr_dmat = pa->pa_dmat;
1667 
1668 	/*
1669 	 * Allocate the control data structures, and create and load
1670 	 * the DMA map for it.
1671 	 */
1672 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1673 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1674 	    0)) != 0) {
1675 		printf("%s: unable to allocate control data, error = %d\n",
1676 		    sc->vr_dev.dv_xname, error);
1677 		goto fail_0;
1678 	}
1679 
1680 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1681 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1682 	    BUS_DMA_COHERENT)) != 0) {
1683 		printf("%s: unable to map control data, error = %d\n",
1684 		    sc->vr_dev.dv_xname, error);
1685 		goto fail_1;
1686 	}
1687 
1688 	if ((error = bus_dmamap_create(sc->vr_dmat,
1689 	    sizeof(struct vr_control_data), 1,
1690 	    sizeof(struct vr_control_data), 0, 0,
1691 	    &sc->vr_cddmamap)) != 0) {
1692 		printf("%s: unable to create control data DMA map, "
1693 		    "error = %d\n", sc->vr_dev.dv_xname, error);
1694 		goto fail_2;
1695 	}
1696 
1697 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1698 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1699 	    0)) != 0) {
1700 		printf("%s: unable to load control data DMA map, error = %d\n",
1701 		    sc->vr_dev.dv_xname, error);
1702 		goto fail_3;
1703 	}
1704 
1705 	/*
1706 	 * Create the transmit buffer DMA maps.
1707 	 */
1708 	for (i = 0; i < VR_NTXDESC; i++) {
1709 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1710 		    1, MCLBYTES, 0, 0,
1711 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1712 			printf("%s: unable to create tx DMA map %d, "
1713 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1714 			goto fail_4;
1715 		}
1716 	}
1717 
1718 	/*
1719 	 * Create the receive buffer DMA maps.
1720 	 */
1721 	for (i = 0; i < VR_NRXDESC; i++) {
1722 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1723 		    MCLBYTES, 0, 0,
1724 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1725 			printf("%s: unable to create rx DMA map %d, "
1726 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1727 			goto fail_5;
1728 		}
1729 	}
1730 
1731 	/*
1732 	 * Pre-allocate the receive buffers.
1733 	 */
1734 	for (i = 0; i < VR_NRXDESC; i++) {
1735 		if ((error = vr_add_rxbuf(sc, i)) != 0) {
1736 			printf("%s: unable to allocate or map rx buffer %d, "
1737 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
1738 			goto fail_6;
1739 		}
1740 	}
1741 
1742 	ifp = &sc->vr_ec.ec_if;
1743 	ifp->if_softc = sc;
1744 	ifp->if_mtu = ETHERMTU;
1745 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1746 	ifp->if_ioctl = vr_ioctl;
1747 	ifp->if_output = ether_output;
1748 	ifp->if_start = vr_start;
1749 	ifp->if_watchdog = vr_watchdog;
1750 	ifp->if_baudrate = 10000000;
1751 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1752 
1753 	/*
1754 	 * Initialize MII/media info.
1755 	 */
1756 	sc->vr_mii.mii_ifp = ifp;
1757 	sc->vr_mii.mii_readreg = vr_mii_readreg;
1758 	sc->vr_mii.mii_writereg = vr_mii_writereg;
1759 	sc->vr_mii.mii_statchg = vr_mii_statchg;
1760 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1761 	mii_phy_probe(&sc->vr_dev, &sc->vr_mii, 0xffffffff);
1762 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1763 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1764 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1765 	} else
1766 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1767 
1768 	/*
1769 	 * Call MI attach routines.
1770 	 */
1771 	if_attach(ifp);
1772 	ether_ifattach(ifp, sc->vr_enaddr);
1773 
1774 #if NBPFILTER > 0
1775 	bpfattach(&sc->vr_ec.ec_if.if_bpf,
1776 		ifp, DLT_EN10MB, sizeof (struct ether_header));
1777 #endif
1778 
1779 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1780 	if (sc->vr_ats == NULL)
1781 		printf("%s: warning: couldn't establish shutdown hook\n",
1782 			sc->vr_dev.dv_xname);
1783 	return;
1784 
1785  fail_6:
1786 	for (i = 0; i < VR_NRXDESC; i++) {
1787 		if (sc->vr_rxsoft[i].ds_mbuf != NULL) {
1788 			bus_dmamap_unload(sc->vr_dmat,
1789 			    sc->vr_rxsoft[i].ds_dmamap);
1790 			(void) m_freem(sc->vr_rxsoft[i].ds_mbuf);
1791 		}
1792 	}
1793  fail_5:
1794 	for (i = 0; i < VR_NRXDESC; i++) {
1795 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1796 			bus_dmamap_destroy(sc->vr_dmat,
1797 			    sc->vr_rxsoft[i].ds_dmamap);
1798 	}
1799  fail_4:
1800 	for (i = 0; i < VR_NTXDESC; i++) {
1801 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1802 			bus_dmamap_destroy(sc->vr_dmat,
1803 			    sc->vr_txsoft[i].ds_dmamap);
1804 	}
1805 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1806  fail_3:
1807 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1808  fail_2:
1809 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1810 	    sizeof(struct vr_control_data));
1811  fail_1:
1812 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1813  fail_0:
1814 	return;
1815 }
1816