xref: /netbsd-src/sys/dev/pci/if_stge.c (revision 2d8e86c2f207da6fbbd50f11b6f33765ebdfa0e9)
1 /*	$NetBSD: if_stge.c,v 1.70 2019/07/09 08:46:59 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.70 2019/07/09 08:46:59 msaitoh Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stgereg.h>
72 
73 #include <prop/proplib.h>
74 
75 /* #define	STGE_CU_BUG			1 */
76 #define	STGE_VLAN_UNTAG			1
77 /* #define	STGE_VLAN_CFI		1 */
78 
79 /*
80  * Transmit descriptor list size.
81  */
82 #define	STGE_NTXDESC		256
83 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
84 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
85 
86 /*
87  * Receive descriptor list size.
88  */
89 #define	STGE_NRXDESC		256
90 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
91 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
92 
93 /*
94  * Only interrupt every N frames.  Must be a power-of-two.
95  */
96 #define	STGE_TXINTR_SPACING	16
97 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98 
99 /*
100  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct stge_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115 
116 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
117 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
118 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct stge_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct stge_softc {
132 	device_t sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	int sc_rev;			/* silicon revision */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	callout_t sc_tick_ch;		/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct stge_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 #ifdef STGE_EVENT_COUNTERS
162 	/*
163 	 * Event counters.
164 	 */
165 	struct evcnt sc_ev_txstall;	/* Tx stalled */
166 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
167 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
168 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
169 
170 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
171 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
172 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
173 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
174 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
175 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
176 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
177 
178 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
179 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
180 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
181 
182 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
183 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
184 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186 
187 	int	sc_txpending;		/* number of Tx requests pending */
188 	int	sc_txdirty;		/* first dirty Tx descriptor */
189 	int	sc_txlast;		/* last used Tx descriptor */
190 
191 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
192 	int	sc_rxdiscard;
193 	int	sc_rxlen;
194 	struct mbuf *sc_rxhead;
195 	struct mbuf *sc_rxtail;
196 	struct mbuf **sc_rxtailp;
197 
198 	int	sc_txthresh;		/* Tx threshold */
199 	uint32_t sc_usefiber:1;		/* if we're fiber */
200 	uint32_t sc_stge1023:1;		/* are we a 1023 */
201 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
202 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
203 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
204 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
205 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
206 };
207 
208 #define	STGE_RXCHAIN_RESET(sc)						\
209 do {									\
210 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
211 	*(sc)->sc_rxtailp = NULL;					\
212 	(sc)->sc_rxlen = 0;						\
213 } while (/*CONSTCOND*/0)
214 
215 #define	STGE_RXCHAIN_LINK(sc, m)					\
216 do {									\
217 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
218 	(sc)->sc_rxtailp = &(m)->m_next;				\
219 } while (/*CONSTCOND*/0)
220 
221 #ifdef STGE_EVENT_COUNTERS
222 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
223 #else
224 #define	STGE_EVCNT_INCR(ev)	/* nothing */
225 #endif
226 
227 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
229 
230 #define	STGE_CDTXSYNC(sc, x, ops)					\
231 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
232 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233 
234 #define	STGE_CDRXSYNC(sc, x, ops)					\
235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
236 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237 
238 #define	STGE_INIT_RXDESC(sc, x)						\
239 do {									\
240 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
241 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
242 									\
243 	/*								\
244 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
245 	 * so that the payload after the Ethernet header is aligned	\
246 	 * to a 4-byte boundary.					\
247 	 */								\
248 	__rfd->rfd_frag.frag_word0 =					\
249 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 	    FRAG_LEN(MCLBYTES - 2));					\
251 	__rfd->rfd_next =						\
252 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
253 	__rfd->rfd_status = 0;						\
254 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256 
257 #define STGE_TIMEOUT 1000
258 
259 static void	stge_start(struct ifnet *);
260 static void	stge_watchdog(struct ifnet *);
261 static int	stge_ioctl(struct ifnet *, u_long, void *);
262 static int	stge_init(struct ifnet *);
263 static void	stge_stop(struct ifnet *, int);
264 
265 static bool	stge_shutdown(device_t, int);
266 
267 static void	stge_reset(struct stge_softc *);
268 static void	stge_rxdrain(struct stge_softc *);
269 static int	stge_add_rxbuf(struct stge_softc *, int);
270 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void	stge_tick(void *);
272 
273 static void	stge_stats_update(struct stge_softc *);
274 
275 static void	stge_set_filter(struct stge_softc *);
276 
277 static int	stge_intr(void *);
278 static void	stge_txintr(struct stge_softc *);
279 static void	stge_rxintr(struct stge_softc *);
280 
281 static int	stge_mii_readreg(device_t, int, int, uint16_t *);
282 static int	stge_mii_writereg(device_t, int, int, uint16_t);
283 static void	stge_mii_statchg(struct ifnet *);
284 
285 static int	stge_match(device_t, cfdata_t, void *);
286 static void	stge_attach(device_t, device_t, void *);
287 
288 int	stge_copy_small = 0;
289 
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291     stge_match, stge_attach, NULL, NULL);
292 
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void	stge_mii_bitbang_write(device_t, uint32_t);
295 
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 	stge_mii_bitbang_read,
298 	stge_mii_bitbang_write,
299 	{
300 		PC_MgmtData,		/* MII_BIT_MDO */
301 		PC_MgmtData,		/* MII_BIT_MDI */
302 		PC_MgmtClk,		/* MII_BIT_MDC */
303 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
304 		0,			/* MII_BIT_DIR_PHY_HOST */
305 	}
306 };
307 
308 /*
309  * Devices supported by this driver.
310  */
311 static const struct stge_product {
312 	pci_vendor_id_t		stge_vendor;
313 	pci_product_id_t	stge_product;
314 	const char		*stge_name;
315 } stge_products[] = {
316 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
317 	  "Sundance ST-1023 Gigabit Ethernet" },
318 
319 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
320 	  "Sundance ST-2021 Gigabit Ethernet" },
321 
322 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
323 	  "Tamarack TC9021 Gigabit Ethernet" },
324 
325 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 	  "Tamarack TC9021 Gigabit Ethernet" },
327 
328 	/*
329 	 * The Sundance sample boards use the Sundance vendor ID,
330 	 * but the Tamarack product ID.
331 	 */
332 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
333 	  "Sundance TC9021 Gigabit Ethernet" },
334 
335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 	  "Sundance TC9021 Gigabit Ethernet" },
337 
338 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
339 	  "D-Link DL-4000 Gigabit Ethernet" },
340 
341 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
342 	  "Antares Gigabit Ethernet" },
343 
344 	{ 0,				0,
345 	  NULL },
346 };
347 
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 	const struct stge_product *sp;
352 
353 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 			return (sp);
357 	}
358 	return (NULL);
359 }
360 
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 	struct pci_attach_args *pa = aux;
365 
366 	if (stge_lookup(pa) != NULL)
367 		return (1);
368 
369 	return (0);
370 }
371 
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 	struct stge_softc *sc = device_private(self);
376 	struct pci_attach_args *pa = aux;
377 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 	struct mii_data * const mii = &sc->sc_mii;
379 	pci_chipset_tag_t pc = pa->pa_pc;
380 	pci_intr_handle_t ih;
381 	const char *intrstr = NULL;
382 	bus_space_tag_t iot, memt;
383 	bus_space_handle_t ioh, memh;
384 	bus_dma_segment_t seg;
385 	prop_data_t data;
386 	int ioh_valid, memh_valid;
387 	int i, rseg, error;
388 	const struct stge_product *sp;
389 	uint8_t enaddr[ETHER_ADDR_LEN];
390 	char intrbuf[PCI_INTRSTR_LEN];
391 
392 	callout_init(&sc->sc_tick_ch, 0);
393 
394 	sp = stge_lookup(pa);
395 	if (sp == NULL) {
396 		printf("\n");
397 		panic("ste_attach: impossible");
398 	}
399 
400 	sc->sc_rev = PCI_REVISION(pa->pa_class);
401 
402 	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
403 
404 	/*
405 	 * Map the device.
406 	 */
407 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
408 	    PCI_MAPREG_TYPE_IO, 0,
409 	    &iot, &ioh, NULL, NULL) == 0);
410 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
411 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
412 	    &memt, &memh, NULL, NULL) == 0);
413 
414 	if (memh_valid) {
415 		sc->sc_st = memt;
416 		sc->sc_sh = memh;
417 	} else if (ioh_valid) {
418 		sc->sc_st = iot;
419 		sc->sc_sh = ioh;
420 	} else {
421 		aprint_error_dev(self, "unable to map device registers\n");
422 		return;
423 	}
424 
425 	sc->sc_dmat = pa->pa_dmat;
426 
427 	/* Enable bus mastering. */
428 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
429 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
430 	    PCI_COMMAND_MASTER_ENABLE);
431 
432 	/* power up chip */
433 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
434 	    error != EOPNOTSUPP) {
435 		aprint_error_dev(self, "cannot activate %d\n", error);
436 		return;
437 	}
438 	/*
439 	 * Map and establish our interrupt.
440 	 */
441 	if (pci_intr_map(pa, &ih)) {
442 		aprint_error_dev(self, "unable to map interrupt\n");
443 		return;
444 	}
445 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
446 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
447 	    device_xname(self));
448 	if (sc->sc_ih == NULL) {
449 		aprint_error_dev(self, "unable to establish interrupt");
450 		if (intrstr != NULL)
451 			aprint_error(" at %s", intrstr);
452 		aprint_error("\n");
453 		return;
454 	}
455 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
456 
457 	/*
458 	 * Allocate the control data structures, and create and load the
459 	 * DMA map for it.
460 	 */
461 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
462 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
463 	    0)) != 0) {
464 		aprint_error_dev(self,
465 		    "unable to allocate control data, error = %d\n", error);
466 		goto fail_0;
467 	}
468 
469 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
470 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
471 	    BUS_DMA_COHERENT)) != 0) {
472 		aprint_error_dev(self,
473 		    "unable to map control data, error = %d\n", error);
474 		goto fail_1;
475 	}
476 
477 	if ((error = bus_dmamap_create(sc->sc_dmat,
478 	    sizeof(struct stge_control_data), 1,
479 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
480 		aprint_error_dev(self,
481 		    "unable to create control data DMA map, error = %d\n",
482 		    error);
483 		goto fail_2;
484 	}
485 
486 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
487 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
488 	    0)) != 0) {
489 		aprint_error_dev(self,
490 		    "unable to load control data DMA map, error = %d\n",
491 		    error);
492 		goto fail_3;
493 	}
494 
495 	/*
496 	 * Create the transmit buffer DMA maps.  Note that rev B.3
497 	 * and earlier seem to have a bug regarding multi-fragment
498 	 * packets.  We need to limit the number of Tx segments on
499 	 * such chips to 1.
500 	 */
501 	for (i = 0; i < STGE_NTXDESC; i++) {
502 		if ((error = bus_dmamap_create(sc->sc_dmat,
503 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
504 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
505 			aprint_error_dev(self,
506 			    "unable to create tx DMA map %d, error = %d\n",
507 			    i, error);
508 			goto fail_4;
509 		}
510 	}
511 
512 	/*
513 	 * Create the receive buffer DMA maps.
514 	 */
515 	for (i = 0; i < STGE_NRXDESC; i++) {
516 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
517 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
518 			aprint_error_dev(self,
519 			    "unable to create rx DMA map %d, error = %d\n",
520 			    i, error);
521 			goto fail_5;
522 		}
523 		sc->sc_rxsoft[i].ds_mbuf = NULL;
524 	}
525 
526 	/*
527 	 * Determine if we're copper or fiber.  It affects how we
528 	 * reset the card.
529 	 */
530 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
531 	    AC_PhyMedia)
532 		sc->sc_usefiber = 1;
533 	else
534 		sc->sc_usefiber = 0;
535 
536 	/*
537 	 * Reset the chip to a known state.
538 	 */
539 	stge_reset(sc);
540 
541 	/*
542 	 * Reading the station address from the EEPROM doesn't seem
543 	 * to work, at least on my sample boards.  Instead, since
544 	 * the reset sequence does AutoInit, read it from the station
545 	 * address registers. For Sundance 1023 you can only read it
546 	 * from EEPROM.
547 	 */
548 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
549 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
550 		    STGE_StationAddress0) & 0xff;
551 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552 		    STGE_StationAddress0) >> 8;
553 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 		    STGE_StationAddress1) & 0xff;
555 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 		    STGE_StationAddress1) >> 8;
557 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 		    STGE_StationAddress2) & 0xff;
559 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 		    STGE_StationAddress2) >> 8;
561 		sc->sc_stge1023 = 0;
562 	} else {
563 		data = prop_dictionary_get(device_properties(self),
564 		    "mac-address");
565 		if (data != NULL) {
566 			/*
567 			 * Try to get the station address from device
568 			 * properties first, in case the EEPROM is missing.
569 			 */
570 			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
571 			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
572 			(void)memcpy(enaddr, prop_data_data_nocopy(data),
573 			    ETHER_ADDR_LEN);
574 		} else {
575 			uint16_t myaddr[ETHER_ADDR_LEN / 2];
576 			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
577 				stge_read_eeprom(sc,
578 				    STGE_EEPROM_StationAddress0 + i,
579 				    &myaddr[i]);
580 				myaddr[i] = le16toh(myaddr[i]);
581 			}
582 			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
583 		}
584 		sc->sc_stge1023 = 1;
585 	}
586 
587 	aprint_normal_dev(self, "Ethernet address %s\n",
588 	    ether_sprintf(enaddr));
589 
590 	/*
591 	 * Read some important bits from the PhyCtrl register.
592 	 */
593 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
594 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
595 
596 	/*
597 	 * Initialize our media structures and probe the MII.
598 	 */
599 	mii->mii_ifp = ifp;
600 	mii->mii_readreg = stge_mii_readreg;
601 	mii->mii_writereg = stge_mii_writereg;
602 	mii->mii_statchg = stge_mii_statchg;
603 	sc->sc_ethercom.ec_mii = mii;
604 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
605 	    ether_mediastatus);
606 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
607 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
608 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
609 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
610 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
611 	} else
612 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
613 
614 	ifp = &sc->sc_ethercom.ec_if;
615 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
616 	ifp->if_softc = sc;
617 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618 	ifp->if_ioctl = stge_ioctl;
619 	ifp->if_start = stge_start;
620 	ifp->if_watchdog = stge_watchdog;
621 	ifp->if_init = stge_init;
622 	ifp->if_stop = stge_stop;
623 	IFQ_SET_READY(&ifp->if_snd);
624 
625 	/*
626 	 * The manual recommends disabling early transmit, so we
627 	 * do.  It's disabled anyway, if using IP checksumming,
628 	 * since the entire packet must be in the FIFO in order
629 	 * for the chip to perform the checksum.
630 	 */
631 	sc->sc_txthresh = 0x0fff;
632 
633 	/*
634 	 * Disable MWI if the PCI layer tells us to.
635 	 */
636 	sc->sc_DMACtrl = 0;
637 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
638 		sc->sc_DMACtrl |= DMAC_MWIDisable;
639 
640 	/*
641 	 * We can support 802.1Q VLAN-sized frames and jumbo
642 	 * Ethernet frames.
643 	 *
644 	 * XXX Figure out how to do hw-assisted VLAN tagging in
645 	 * XXX a reasonable way on this chip.
646 	 */
647 	sc->sc_ethercom.ec_capabilities |=
648 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
649 	    ETHERCAP_VLAN_HWTAGGING;
650 	sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
651 
652 	/*
653 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
654 	 */
655 	sc->sc_ethercom.ec_if.if_capabilities |=
656 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
657 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
658 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
659 
660 	/*
661 	 * Attach the interface.
662 	 */
663 	if_attach(ifp);
664 	if_deferred_start_init(ifp, NULL);
665 	ether_ifattach(ifp, enaddr);
666 
667 #ifdef STGE_EVENT_COUNTERS
668 	/*
669 	 * Attach event counters.
670 	 */
671 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
672 	    NULL, device_xname(self), "txstall");
673 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
674 	    NULL, device_xname(self), "txdmaintr");
675 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
676 	    NULL, device_xname(self), "txindintr");
677 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
678 	    NULL, device_xname(self), "rxintr");
679 
680 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
681 	    NULL, device_xname(self), "txseg1");
682 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
683 	    NULL, device_xname(self), "txseg2");
684 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
685 	    NULL, device_xname(self), "txseg3");
686 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
687 	    NULL, device_xname(self), "txseg4");
688 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
689 	    NULL, device_xname(self), "txseg5");
690 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
691 	    NULL, device_xname(self), "txsegmore");
692 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
693 	    NULL, device_xname(self), "txcopy");
694 
695 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
696 	    NULL, device_xname(self), "rxipsum");
697 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
698 	    NULL, device_xname(self), "rxtcpsum");
699 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
700 	    NULL, device_xname(self), "rxudpsum");
701 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
702 	    NULL, device_xname(self), "txipsum");
703 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
704 	    NULL, device_xname(self), "txtcpsum");
705 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
706 	    NULL, device_xname(self), "txudpsum");
707 #endif /* STGE_EVENT_COUNTERS */
708 
709 	/*
710 	 * Make sure the interface is shutdown during reboot.
711 	 */
712 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
713 		pmf_class_network_register(self, ifp);
714 	else
715 		aprint_error_dev(self, "couldn't establish power handler\n");
716 
717 	return;
718 
719 	/*
720 	 * Free any resources we've allocated during the failed attach
721 	 * attempt.  Do this in reverse order and fall through.
722 	 */
723  fail_5:
724 	for (i = 0; i < STGE_NRXDESC; i++) {
725 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
726 			bus_dmamap_destroy(sc->sc_dmat,
727 			    sc->sc_rxsoft[i].ds_dmamap);
728 	}
729  fail_4:
730 	for (i = 0; i < STGE_NTXDESC; i++) {
731 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
732 			bus_dmamap_destroy(sc->sc_dmat,
733 			    sc->sc_txsoft[i].ds_dmamap);
734 	}
735 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
736  fail_3:
737 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
738  fail_2:
739 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
740 	    sizeof(struct stge_control_data));
741  fail_1:
742 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
743  fail_0:
744 	return;
745 }
746 
747 /*
748  * stge_shutdown:
749  *
750  *	Make sure the interface is stopped at reboot time.
751  */
752 static bool
753 stge_shutdown(device_t self, int howto)
754 {
755 	struct stge_softc *sc = device_private(self);
756 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
757 
758 	stge_stop(ifp, 1);
759 	stge_reset(sc);
760 	return true;
761 }
762 
763 static void
764 stge_dma_wait(struct stge_softc *sc)
765 {
766 	int i;
767 
768 	for (i = 0; i < STGE_TIMEOUT; i++) {
769 		delay(2);
770 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
771 		     DMAC_TxDMAInProg) == 0)
772 			break;
773 	}
774 
775 	if (i == STGE_TIMEOUT)
776 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
777 }
778 
779 /*
780  * stge_start:		[ifnet interface function]
781  *
782  *	Start packet transmission on the interface.
783  */
784 static void
785 stge_start(struct ifnet *ifp)
786 {
787 	struct stge_softc *sc = ifp->if_softc;
788 	struct mbuf *m0;
789 	struct stge_descsoft *ds;
790 	struct stge_tfd *tfd;
791 	bus_dmamap_t dmamap;
792 	int error, firsttx, nexttx, opending, seg, totlen;
793 	uint64_t csum_flags;
794 
795 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
796 		return;
797 
798 	/*
799 	 * Remember the previous number of pending transmissions
800 	 * and the first descriptor we will use.
801 	 */
802 	opending = sc->sc_txpending;
803 	firsttx = STGE_NEXTTX(sc->sc_txlast);
804 
805 	/*
806 	 * Loop through the send queue, setting up transmit descriptors
807 	 * until we drain the queue, or use up all available transmit
808 	 * descriptors.
809 	 */
810 	for (;;) {
811 		uint64_t tfc;
812 		bool have_vtag;
813 		uint16_t vtag;
814 
815 		/*
816 		 * Grab a packet off the queue.
817 		 */
818 		IFQ_POLL(&ifp->if_snd, m0);
819 		if (m0 == NULL)
820 			break;
821 
822 		/*
823 		 * Leave one unused descriptor at the end of the
824 		 * list to prevent wrapping completely around.
825 		 */
826 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
827 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
828 			break;
829 		}
830 
831 		/*
832 		 * See if we have any VLAN stuff.
833 		 */
834 		have_vtag = vlan_has_tag(m0);
835 		if (have_vtag)
836 			vtag = vlan_get_tag(m0);
837 
838 		/*
839 		 * Get the last and next available transmit descriptor.
840 		 */
841 		nexttx = STGE_NEXTTX(sc->sc_txlast);
842 		tfd = &sc->sc_txdescs[nexttx];
843 		ds = &sc->sc_txsoft[nexttx];
844 
845 		dmamap = ds->ds_dmamap;
846 
847 		/*
848 		 * Load the DMA map.  If this fails, the packet either
849 		 * didn't fit in the alloted number of segments, or we
850 		 * were short on resources.  For the too-many-segments
851 		 * case, we simply report an error and drop the packet,
852 		 * since we can't sanely copy a jumbo packet to a single
853 		 * buffer.
854 		 */
855 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
856 		    BUS_DMA_NOWAIT);
857 		if (error) {
858 			if (error == EFBIG) {
859 				printf("%s: Tx packet consumes too many "
860 				    "DMA segments, dropping...\n",
861 				    device_xname(sc->sc_dev));
862 				IFQ_DEQUEUE(&ifp->if_snd, m0);
863 				m_freem(m0);
864 				continue;
865 			}
866 			/*
867 			 * Short on resources, just stop for now.
868 			 */
869 			break;
870 		}
871 
872 		IFQ_DEQUEUE(&ifp->if_snd, m0);
873 
874 		/*
875 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
876 		 */
877 
878 		/* Sync the DMA map. */
879 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
880 		    BUS_DMASYNC_PREWRITE);
881 
882 		/* Initialize the fragment list. */
883 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
884 			tfd->tfd_frags[seg].frag_word0 =
885 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
886 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
887 			totlen += dmamap->dm_segs[seg].ds_len;
888 		}
889 
890 #ifdef STGE_EVENT_COUNTERS
891 		switch (dmamap->dm_nsegs) {
892 		case 1:
893 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
894 			break;
895 		case 2:
896 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
897 			break;
898 		case 3:
899 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
900 			break;
901 		case 4:
902 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
903 			break;
904 		case 5:
905 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
906 			break;
907 		default:
908 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
909 			break;
910 		}
911 #endif /* STGE_EVENT_COUNTERS */
912 
913 		/*
914 		 * Initialize checksumming flags in the descriptor.
915 		 * Byte-swap constants so the compiler can optimize.
916 		 */
917 		csum_flags = 0;
918 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
919 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
920 			csum_flags |= TFD_IPChecksumEnable;
921 		}
922 
923 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
924 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
925 			csum_flags |= TFD_TCPChecksumEnable;
926 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
927 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
928 			csum_flags |= TFD_UDPChecksumEnable;
929 		}
930 
931 		/*
932 		 * Initialize the descriptor and give it to the chip.
933 		 * Check to see if we have a VLAN tag to insert.
934 		 */
935 
936 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
937 		    TFD_FragCount(seg) | csum_flags |
938 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
939 			TFD_TxDMAIndicate : 0);
940 		if (have_vtag) {
941 #if	0
942 			struct ether_header *eh =
943 			    mtod(m0, struct ether_header *);
944 			uint16_t etype = ntohs(eh->ether_type);
945 			printf("%s: xmit (tag %d) etype %x\n",
946 			   ifp->if_xname, *mtod(n, int *), etype);
947 #endif
948 			tfc |= TFD_VLANTagInsert |
949 #ifdef	STGE_VLAN_CFI
950 			    TFD_CFI |
951 #endif
952 			    TFD_VID(vtag);
953 		}
954 		tfd->tfd_control = htole64(tfc);
955 
956 		/* Sync the descriptor. */
957 		STGE_CDTXSYNC(sc, nexttx,
958 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
959 
960 		/*
961 		 * Kick the transmit DMA logic.
962 		 */
963 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
964 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
965 
966 		/*
967 		 * Store a pointer to the packet so we can free it later.
968 		 */
969 		ds->ds_mbuf = m0;
970 
971 		/* Advance the tx pointer. */
972 		sc->sc_txpending++;
973 		sc->sc_txlast = nexttx;
974 
975 		/*
976 		 * Pass the packet to any BPF listeners.
977 		 */
978 		bpf_mtap(ifp, m0, BPF_D_OUT);
979 	}
980 
981 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
982 		/* No more slots left; notify upper layer. */
983 		ifp->if_flags |= IFF_OACTIVE;
984 	}
985 
986 	if (sc->sc_txpending != opending) {
987 		/*
988 		 * We enqueued packets.  If the transmitter was idle,
989 		 * reset the txdirty pointer.
990 		 */
991 		if (opending == 0)
992 			sc->sc_txdirty = firsttx;
993 
994 		/* Set a watchdog timer in case the chip flakes out. */
995 		ifp->if_timer = 5;
996 	}
997 }
998 
999 /*
1000  * stge_watchdog:	[ifnet interface function]
1001  *
1002  *	Watchdog timer handler.
1003  */
1004 static void
1005 stge_watchdog(struct ifnet *ifp)
1006 {
1007 	struct stge_softc *sc = ifp->if_softc;
1008 
1009 	/*
1010 	 * Sweep up first, since we don't interrupt every frame.
1011 	 */
1012 	stge_txintr(sc);
1013 	if (sc->sc_txpending != 0) {
1014 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1015 		ifp->if_oerrors++;
1016 
1017 		(void) stge_init(ifp);
1018 
1019 		/* Try to get more packets going. */
1020 		stge_start(ifp);
1021 	}
1022 }
1023 
1024 /*
1025  * stge_ioctl:		[ifnet interface function]
1026  *
1027  *	Handle control requests from the operator.
1028  */
1029 static int
1030 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1031 {
1032 	struct stge_softc *sc = ifp->if_softc;
1033 	int s, error;
1034 
1035 	s = splnet();
1036 
1037 	error = ether_ioctl(ifp, cmd, data);
1038 	if (error == ENETRESET) {
1039 		error = 0;
1040 
1041 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1042 			;
1043 		else if (ifp->if_flags & IFF_RUNNING) {
1044 			/*
1045 			 * Multicast list has changed; set the hardware filter
1046 			 * accordingly.
1047 			 */
1048 			stge_set_filter(sc);
1049 		}
1050 	}
1051 
1052 	/* Try to get more packets going. */
1053 	stge_start(ifp);
1054 
1055 	splx(s);
1056 	return (error);
1057 }
1058 
1059 /*
1060  * stge_intr:
1061  *
1062  *	Interrupt service routine.
1063  */
1064 static int
1065 stge_intr(void *arg)
1066 {
1067 	struct stge_softc *sc = arg;
1068 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1069 	uint32_t txstat;
1070 	int wantinit;
1071 	uint16_t isr;
1072 
1073 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1074 	     IS_InterruptStatus) == 0)
1075 		return (0);
1076 
1077 	for (wantinit = 0; wantinit == 0;) {
1078 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1079 		if ((isr & sc->sc_IntEnable) == 0)
1080 			break;
1081 
1082 		/* Host interface errors. */
1083 		if (isr & IS_HostError) {
1084 			printf("%s: Host interface error\n",
1085 			    device_xname(sc->sc_dev));
1086 			wantinit = 1;
1087 			continue;
1088 		}
1089 
1090 		/* Receive interrupts. */
1091 		if (isr & (IS_RxDMAComplete | IS_RFDListEnd)) {
1092 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1093 			stge_rxintr(sc);
1094 			if (isr & IS_RFDListEnd) {
1095 				printf("%s: receive ring overflow\n",
1096 				    device_xname(sc->sc_dev));
1097 				/*
1098 				 * XXX Should try to recover from this
1099 				 * XXX more gracefully.
1100 				 */
1101 				wantinit = 1;
1102 			}
1103 		}
1104 
1105 		/* Transmit interrupts. */
1106 		if (isr & (IS_TxDMAComplete | IS_TxComplete)) {
1107 #ifdef STGE_EVENT_COUNTERS
1108 			if (isr & IS_TxDMAComplete)
1109 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1110 #endif
1111 			stge_txintr(sc);
1112 		}
1113 
1114 		/* Statistics overflow. */
1115 		if (isr & IS_UpdateStats)
1116 			stge_stats_update(sc);
1117 
1118 		/* Transmission errors. */
1119 		if (isr & IS_TxComplete) {
1120 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1121 			for (;;) {
1122 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1123 				    STGE_TxStatus);
1124 				if ((txstat & TS_TxComplete) == 0)
1125 					break;
1126 				if (txstat & TS_TxUnderrun) {
1127 					sc->sc_txthresh++;
1128 					if (sc->sc_txthresh > 0x0fff)
1129 						sc->sc_txthresh = 0x0fff;
1130 					printf("%s: transmit underrun, new "
1131 					    "threshold: %d bytes\n",
1132 					    device_xname(sc->sc_dev),
1133 					    sc->sc_txthresh << 5);
1134 				}
1135 				if (txstat & TS_MaxCollisions)
1136 					printf("%s: excessive collisions\n",
1137 					    device_xname(sc->sc_dev));
1138 			}
1139 			wantinit = 1;
1140 		}
1141 
1142 	}
1143 
1144 	if (wantinit)
1145 		stge_init(ifp);
1146 
1147 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1148 	    sc->sc_IntEnable);
1149 
1150 	/* Try to get more packets going. */
1151 	if_schedule_deferred_start(ifp);
1152 
1153 	return (1);
1154 }
1155 
1156 /*
1157  * stge_txintr:
1158  *
1159  *	Helper; handle transmit interrupts.
1160  */
1161 static void
1162 stge_txintr(struct stge_softc *sc)
1163 {
1164 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1165 	struct stge_descsoft *ds;
1166 	uint64_t control;
1167 	int i;
1168 
1169 	ifp->if_flags &= ~IFF_OACTIVE;
1170 
1171 	/*
1172 	 * Go through our Tx list and free mbufs for those
1173 	 * frames which have been transmitted.
1174 	 */
1175 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1176 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1177 		ds = &sc->sc_txsoft[i];
1178 
1179 		STGE_CDTXSYNC(sc, i,
1180 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1181 
1182 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1183 		if ((control & TFD_TFDDone) == 0)
1184 			break;
1185 
1186 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1187 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1188 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1189 		m_freem(ds->ds_mbuf);
1190 		ds->ds_mbuf = NULL;
1191 	}
1192 
1193 	/* Update the dirty transmit buffer pointer. */
1194 	sc->sc_txdirty = i;
1195 
1196 	/*
1197 	 * If there are no more pending transmissions, cancel the watchdog
1198 	 * timer.
1199 	 */
1200 	if (sc->sc_txpending == 0)
1201 		ifp->if_timer = 0;
1202 }
1203 
1204 /*
1205  * stge_rxintr:
1206  *
1207  *	Helper; handle receive interrupts.
1208  */
1209 static void
1210 stge_rxintr(struct stge_softc *sc)
1211 {
1212 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1213 	struct stge_descsoft *ds;
1214 	struct mbuf *m, *tailm;
1215 	uint64_t status;
1216 	int i, len;
1217 
1218 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1219 		ds = &sc->sc_rxsoft[i];
1220 
1221 		STGE_CDRXSYNC(sc, i,
1222 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1223 
1224 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1225 
1226 		if ((status & RFD_RFDDone) == 0)
1227 			break;
1228 
1229 		if (__predict_false(sc->sc_rxdiscard)) {
1230 			STGE_INIT_RXDESC(sc, i);
1231 			if (status & RFD_FrameEnd) {
1232 				/* Reset our state. */
1233 				sc->sc_rxdiscard = 0;
1234 			}
1235 			continue;
1236 		}
1237 
1238 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1239 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1240 
1241 		m = ds->ds_mbuf;
1242 
1243 		/*
1244 		 * Add a new receive buffer to the ring.
1245 		 */
1246 		if (stge_add_rxbuf(sc, i) != 0) {
1247 			/*
1248 			 * Failed, throw away what we've done so
1249 			 * far, and discard the rest of the packet.
1250 			 */
1251 			ifp->if_ierrors++;
1252 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1253 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1254 			STGE_INIT_RXDESC(sc, i);
1255 			if ((status & RFD_FrameEnd) == 0)
1256 				sc->sc_rxdiscard = 1;
1257 			if (sc->sc_rxhead != NULL)
1258 				m_freem(sc->sc_rxhead);
1259 			STGE_RXCHAIN_RESET(sc);
1260 			continue;
1261 		}
1262 
1263 #ifdef DIAGNOSTIC
1264 		if (status & RFD_FrameStart) {
1265 			KASSERT(sc->sc_rxhead == NULL);
1266 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1267 		}
1268 #endif
1269 
1270 		STGE_RXCHAIN_LINK(sc, m);
1271 
1272 		/*
1273 		 * If this is not the end of the packet, keep
1274 		 * looking.
1275 		 */
1276 		if ((status & RFD_FrameEnd) == 0) {
1277 			sc->sc_rxlen += m->m_len;
1278 			continue;
1279 		}
1280 
1281 		/*
1282 		 * Okay, we have the entire packet now...
1283 		 */
1284 		*sc->sc_rxtailp = NULL;
1285 		m = sc->sc_rxhead;
1286 		tailm = sc->sc_rxtail;
1287 
1288 		STGE_RXCHAIN_RESET(sc);
1289 
1290 		/*
1291 		 * If the packet had an error, drop it.  Note we
1292 		 * count the error later in the periodic stats update.
1293 		 */
1294 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1295 			      RFD_RxAlignmentError | RFD_RxFCSError |
1296 			      RFD_RxLengthError)) {
1297 			m_freem(m);
1298 			continue;
1299 		}
1300 
1301 		/*
1302 		 * No errors.
1303 		 *
1304 		 * Note we have configured the chip to not include
1305 		 * the CRC at the end of the packet.
1306 		 */
1307 		len = RFD_RxDMAFrameLen(status);
1308 		tailm->m_len = len - sc->sc_rxlen;
1309 
1310 		/*
1311 		 * If the packet is small enough to fit in a
1312 		 * single header mbuf, allocate one and copy
1313 		 * the data into it.  This greatly reduces
1314 		 * memory consumption when we receive lots
1315 		 * of small packets.
1316 		 */
1317 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1318 			struct mbuf *nm;
1319 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1320 			if (nm == NULL) {
1321 				ifp->if_ierrors++;
1322 				m_freem(m);
1323 				continue;
1324 			}
1325 			nm->m_data += 2;
1326 			nm->m_pkthdr.len = nm->m_len = len;
1327 			m_copydata(m, 0, len, mtod(nm, void *));
1328 			m_freem(m);
1329 			m = nm;
1330 		}
1331 
1332 		/*
1333 		 * Set the incoming checksum information for the packet.
1334 		 */
1335 		if (status & RFD_IPDetected) {
1336 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1337 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1338 			if (status & RFD_IPError)
1339 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1340 			if (status & RFD_TCPDetected) {
1341 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1342 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1343 				if (status & RFD_TCPError)
1344 					m->m_pkthdr.csum_flags |=
1345 					    M_CSUM_TCP_UDP_BAD;
1346 			} else if (status & RFD_UDPDetected) {
1347 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1348 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1349 				if (status & RFD_UDPError)
1350 					m->m_pkthdr.csum_flags |=
1351 					    M_CSUM_TCP_UDP_BAD;
1352 			}
1353 		}
1354 
1355 		m_set_rcvif(m, ifp);
1356 		m->m_pkthdr.len = len;
1357 
1358 		/*
1359 		 * Pass this up to any BPF listeners, but only
1360 		 * pass if up the stack if it's for us.
1361 		 */
1362 #ifdef	STGE_VLAN_UNTAG
1363 		/*
1364 		 * Check for VLAN tagged packets
1365 		 */
1366 		if (status & RFD_VLANDetected)
1367 			vlan_set_tag(m, RFD_TCI(status));
1368 
1369 #endif
1370 #if	0
1371 		if (status & RFD_VLANDetected) {
1372 			struct ether_header *eh;
1373 			uint16_t etype;
1374 
1375 			eh = mtod(m, struct ether_header *);
1376 			etype = ntohs(eh->ether_type);
1377 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1378 			    ifp->if_xname, (uint16_t) RFD_TCI(status),
1379 			    etype);
1380 		}
1381 #endif
1382 		/* Pass it on. */
1383 		if_percpuq_enqueue(ifp->if_percpuq, m);
1384 	}
1385 
1386 	/* Update the receive pointer. */
1387 	sc->sc_rxptr = i;
1388 }
1389 
1390 /*
1391  * stge_tick:
1392  *
1393  *	One second timer, used to tick the MII.
1394  */
1395 static void
1396 stge_tick(void *arg)
1397 {
1398 	struct stge_softc *sc = arg;
1399 	int s;
1400 
1401 	s = splnet();
1402 	mii_tick(&sc->sc_mii);
1403 	stge_stats_update(sc);
1404 	splx(s);
1405 
1406 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1407 }
1408 
1409 /*
1410  * stge_stats_update:
1411  *
1412  *	Read the TC9021 statistics counters.
1413  */
1414 static void
1415 stge_stats_update(struct stge_softc *sc)
1416 {
1417 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1418 	bus_space_tag_t st = sc->sc_st;
1419 	bus_space_handle_t sh = sc->sc_sh;
1420 
1421 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1422 
1423 	ifp->if_ipackets +=
1424 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1425 
1426 	ifp->if_ierrors +=
1427 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1428 
1429 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1430 
1431 	ifp->if_opackets +=
1432 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1433 
1434 	ifp->if_collisions +=
1435 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1436 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1437 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1438 
1439 	ifp->if_oerrors +=
1440 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1441 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1442 }
1443 
1444 /*
1445  * stge_reset:
1446  *
1447  *	Perform a soft reset on the TC9021.
1448  */
1449 static void
1450 stge_reset(struct stge_softc *sc)
1451 {
1452 	uint32_t ac;
1453 	int i;
1454 
1455 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1456 
1457 	/*
1458 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1459 	 * to be present in order for the reset to complete on fiber
1460 	 * cards.
1461 	 */
1462 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1463 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1464 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1465 	    (sc->sc_usefiber ? AC_RstOut : 0));
1466 
1467 	delay(50000);
1468 
1469 	for (i = 0; i < STGE_TIMEOUT; i++) {
1470 		delay(5000);
1471 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1472 		     AC_ResetBusy) == 0)
1473 			break;
1474 	}
1475 
1476 	if (i == STGE_TIMEOUT)
1477 		printf("%s: reset failed to complete\n",
1478 		    device_xname(sc->sc_dev));
1479 
1480 	delay(1000);
1481 }
1482 
1483 /*
1484  * stge_init:		[ ifnet interface function ]
1485  *
1486  *	Initialize the interface.  Must be called at splnet().
1487  */
1488 static int
1489 stge_init(struct ifnet *ifp)
1490 {
1491 	struct stge_softc *sc = ifp->if_softc;
1492 	bus_space_tag_t st = sc->sc_st;
1493 	bus_space_handle_t sh = sc->sc_sh;
1494 	struct stge_descsoft *ds;
1495 	int i, error = 0;
1496 
1497 	/*
1498 	 * Cancel any pending I/O.
1499 	 */
1500 	stge_stop(ifp, 0);
1501 
1502 	/*
1503 	 * Reset the chip to a known state.
1504 	 */
1505 	stge_reset(sc);
1506 
1507 	/*
1508 	 * Initialize the transmit descriptor ring.
1509 	 */
1510 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1511 	for (i = 0; i < STGE_NTXDESC; i++) {
1512 		sc->sc_txdescs[i].tfd_next = htole64(
1513 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1514 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1515 	}
1516 	sc->sc_txpending = 0;
1517 	sc->sc_txdirty = 0;
1518 	sc->sc_txlast = STGE_NTXDESC - 1;
1519 
1520 	/*
1521 	 * Initialize the receive descriptor and receive job
1522 	 * descriptor rings.
1523 	 */
1524 	for (i = 0; i < STGE_NRXDESC; i++) {
1525 		ds = &sc->sc_rxsoft[i];
1526 		if (ds->ds_mbuf == NULL) {
1527 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1528 				printf("%s: unable to allocate or map rx "
1529 				    "buffer %d, error = %d\n",
1530 				    device_xname(sc->sc_dev), i, error);
1531 				/*
1532 				 * XXX Should attempt to run with fewer receive
1533 				 * XXX buffers instead of just failing.
1534 				 */
1535 				stge_rxdrain(sc);
1536 				goto out;
1537 			}
1538 		} else
1539 			STGE_INIT_RXDESC(sc, i);
1540 	}
1541 	sc->sc_rxptr = 0;
1542 	sc->sc_rxdiscard = 0;
1543 	STGE_RXCHAIN_RESET(sc);
1544 
1545 	/* Set the station address. */
1546 	for (i = 0; i < 6; i++)
1547 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1548 		    CLLADDR(ifp->if_sadl)[i]);
1549 
1550 	/*
1551 	 * Set the statistics masks.  Disable all the RMON stats,
1552 	 * and disable selected stats in the non-RMON stats registers.
1553 	 */
1554 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1555 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1556 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1557 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1558 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1559 	    (1U << 21));
1560 
1561 	/* Set up the receive filter. */
1562 	stge_set_filter(sc);
1563 
1564 	/*
1565 	 * Give the transmit and receive ring to the chip.
1566 	 */
1567 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1568 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1569 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1570 
1571 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1572 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1573 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1574 
1575 	/*
1576 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1577 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1578 	 * transmit engine when there's actually a packet.
1579 	 */
1580 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1581 
1582 	/* ..and the Rx auto-poll period. */
1583 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1584 
1585 	/* Initialize the Tx start threshold. */
1586 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1587 
1588 	/* RX DMA thresholds, from linux */
1589 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1590 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1591 
1592 	/*
1593 	 * Initialize the Rx DMA interrupt control register.  We
1594 	 * request an interrupt after every incoming packet, but
1595 	 * defer it for 32us (64 * 512 ns).  When the number of
1596 	 * interrupts pending reaches 8, we stop deferring the
1597 	 * interrupt, and signal it immediately.
1598 	 */
1599 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1600 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1601 
1602 	/*
1603 	 * Initialize the interrupt mask.
1604 	 */
1605 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1606 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1607 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1608 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1609 
1610 	/*
1611 	 * Configure the DMA engine.
1612 	 * XXX Should auto-tune TxBurstLimit.
1613 	 */
1614 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1615 	    DMAC_TxBurstLimit(3));
1616 
1617 	/*
1618 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1619 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1620 	 * empty again.
1621 	 */
1622 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1623 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1624 
1625 	/*
1626 	 * Set the maximum frame size.
1627 	 */
1628 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1629 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1630 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1631 	     ETHER_VLAN_ENCAP_LEN : 0));
1632 
1633 	/*
1634 	 * Initialize MacCtrl -- do it before setting the media,
1635 	 * as setting the media will actually program the register.
1636 	 *
1637 	 * Note: We have to poke the IFS value before poking
1638 	 * anything else.
1639 	 */
1640 	sc->sc_MACCtrl = MC_IFSSelect(0);
1641 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1642 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1643 #ifdef	STGE_VLAN_UNTAG
1644 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1645 #endif
1646 
1647 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1648 		/* Multi-frag frame bug work-around. */
1649 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1650 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1651 
1652 		/* Tx Poll Now bug work-around. */
1653 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1654 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1655 		/* XXX ? from linux */
1656 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1657 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1658 	}
1659 
1660 	/*
1661 	 * Set the current media.
1662 	 */
1663 	if ((error = ether_mediachange(ifp)) != 0)
1664 		goto out;
1665 
1666 	/*
1667 	 * Start the one second MII clock.
1668 	 */
1669 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1670 
1671 	/*
1672 	 * ...all done!
1673 	 */
1674 	ifp->if_flags |= IFF_RUNNING;
1675 	ifp->if_flags &= ~IFF_OACTIVE;
1676 
1677  out:
1678 	if (error)
1679 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1680 	return (error);
1681 }
1682 
1683 /*
1684  * stge_drain:
1685  *
1686  *	Drain the receive queue.
1687  */
1688 static void
1689 stge_rxdrain(struct stge_softc *sc)
1690 {
1691 	struct stge_descsoft *ds;
1692 	int i;
1693 
1694 	for (i = 0; i < STGE_NRXDESC; i++) {
1695 		ds = &sc->sc_rxsoft[i];
1696 		if (ds->ds_mbuf != NULL) {
1697 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1698 			ds->ds_mbuf->m_next = NULL;
1699 			m_freem(ds->ds_mbuf);
1700 			ds->ds_mbuf = NULL;
1701 		}
1702 	}
1703 }
1704 
1705 /*
1706  * stge_stop:		[ ifnet interface function ]
1707  *
1708  *	Stop transmission on the interface.
1709  */
1710 static void
1711 stge_stop(struct ifnet *ifp, int disable)
1712 {
1713 	struct stge_softc *sc = ifp->if_softc;
1714 	struct stge_descsoft *ds;
1715 	int i;
1716 
1717 	/*
1718 	 * Stop the one second clock.
1719 	 */
1720 	callout_stop(&sc->sc_tick_ch);
1721 
1722 	/* Down the MII. */
1723 	mii_down(&sc->sc_mii);
1724 
1725 	/*
1726 	 * Disable interrupts.
1727 	 */
1728 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1729 
1730 	/*
1731 	 * Stop receiver, transmitter, and stats update.
1732 	 */
1733 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1734 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1735 
1736 	/*
1737 	 * Stop the transmit and receive DMA.
1738 	 */
1739 	stge_dma_wait(sc);
1740 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1741 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1742 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1743 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1744 
1745 	/*
1746 	 * Release any queued transmit buffers.
1747 	 */
1748 	for (i = 0; i < STGE_NTXDESC; i++) {
1749 		ds = &sc->sc_txsoft[i];
1750 		if (ds->ds_mbuf != NULL) {
1751 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1752 			m_freem(ds->ds_mbuf);
1753 			ds->ds_mbuf = NULL;
1754 		}
1755 	}
1756 
1757 	/*
1758 	 * Mark the interface down and cancel the watchdog timer.
1759 	 */
1760 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1761 	ifp->if_timer = 0;
1762 
1763 	if (disable)
1764 		stge_rxdrain(sc);
1765 }
1766 
1767 static int
1768 stge_eeprom_wait(struct stge_softc *sc)
1769 {
1770 	int i;
1771 
1772 	for (i = 0; i < STGE_TIMEOUT; i++) {
1773 		delay(1000);
1774 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1775 		     EC_EepromBusy) == 0)
1776 			return (0);
1777 	}
1778 	return (1);
1779 }
1780 
1781 /*
1782  * stge_read_eeprom:
1783  *
1784  *	Read data from the serial EEPROM.
1785  */
1786 static void
1787 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1788 {
1789 
1790 	if (stge_eeprom_wait(sc))
1791 		printf("%s: EEPROM failed to come ready\n",
1792 		    device_xname(sc->sc_dev));
1793 
1794 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1795 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1796 	if (stge_eeprom_wait(sc))
1797 		printf("%s: EEPROM read timed out\n",
1798 		    device_xname(sc->sc_dev));
1799 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1800 }
1801 
1802 /*
1803  * stge_add_rxbuf:
1804  *
1805  *	Add a receive buffer to the indicated descriptor.
1806  */
1807 static int
1808 stge_add_rxbuf(struct stge_softc *sc, int idx)
1809 {
1810 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1811 	struct mbuf *m;
1812 	int error;
1813 
1814 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1815 	if (m == NULL)
1816 		return (ENOBUFS);
1817 
1818 	MCLGET(m, M_DONTWAIT);
1819 	if ((m->m_flags & M_EXT) == 0) {
1820 		m_freem(m);
1821 		return (ENOBUFS);
1822 	}
1823 
1824 	m->m_data = m->m_ext.ext_buf + 2;
1825 	m->m_len = MCLBYTES - 2;
1826 
1827 	if (ds->ds_mbuf != NULL)
1828 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1829 
1830 	ds->ds_mbuf = m;
1831 
1832 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1833 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1834 	if (error) {
1835 		printf("%s: can't load rx DMA map %d, error = %d\n",
1836 		    device_xname(sc->sc_dev), idx, error);
1837 		panic("stge_add_rxbuf");	/* XXX */
1838 	}
1839 
1840 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1841 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1842 
1843 	STGE_INIT_RXDESC(sc, idx);
1844 
1845 	return (0);
1846 }
1847 
1848 /*
1849  * stge_set_filter:
1850  *
1851  *	Set up the receive filter.
1852  */
1853 static void
1854 stge_set_filter(struct stge_softc *sc)
1855 {
1856 	struct ethercom *ec = &sc->sc_ethercom;
1857 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1858 	struct ether_multi *enm;
1859 	struct ether_multistep step;
1860 	uint32_t crc;
1861 	uint32_t mchash[2];
1862 
1863 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1864 	if (ifp->if_flags & IFF_BROADCAST)
1865 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1866 
1867 	/* XXX: ST1023 only works in promiscuous mode */
1868 	if (sc->sc_stge1023)
1869 		ifp->if_flags |= IFF_PROMISC;
1870 
1871 	if (ifp->if_flags & IFF_PROMISC) {
1872 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1873 		goto allmulti;
1874 	}
1875 
1876 	/*
1877 	 * Set up the multicast address filter by passing all multicast
1878 	 * addresses through a CRC generator, and then using the low-order
1879 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1880 	 * high order bits select the register, while the rest of the bits
1881 	 * select the bit within the register.
1882 	 */
1883 
1884 	memset(mchash, 0, sizeof(mchash));
1885 
1886 	ETHER_LOCK(ec);
1887 	ETHER_FIRST_MULTI(step, ec, enm);
1888 	if (enm == NULL) {
1889 		ETHER_UNLOCK(ec);
1890 		goto done;
1891 	}
1892 
1893 	while (enm != NULL) {
1894 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1895 			/*
1896 			 * We must listen to a range of multicast addresses.
1897 			 * For now, just accept all multicasts, rather than
1898 			 * trying to set only those filter bits needed to match
1899 			 * the range.  (At this time, the only use of address
1900 			 * ranges is for IP multicast routing, for which the
1901 			 * range is big enough to require all bits set.)
1902 			 */
1903 			ETHER_UNLOCK(ec);
1904 			goto allmulti;
1905 		}
1906 
1907 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1908 
1909 		/* Just want the 6 least significant bits. */
1910 		crc &= 0x3f;
1911 
1912 		/* Set the corresponding bit in the hash table. */
1913 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1914 
1915 		ETHER_NEXT_MULTI(step, enm);
1916 	}
1917 	ETHER_UNLOCK(ec);
1918 
1919 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1920 
1921 	ifp->if_flags &= ~IFF_ALLMULTI;
1922 	goto done;
1923 
1924  allmulti:
1925 	ifp->if_flags |= IFF_ALLMULTI;
1926 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1927 
1928  done:
1929 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1930 		/*
1931 		 * Program the multicast hash table.
1932 		 */
1933 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1934 		    mchash[0]);
1935 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1936 		    mchash[1]);
1937 	}
1938 
1939 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1940 	    sc->sc_ReceiveMode);
1941 }
1942 
1943 /*
1944  * stge_mii_readreg:	[mii interface function]
1945  *
1946  *	Read a PHY register on the MII of the TC9021.
1947  */
1948 static int
1949 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1950 {
1951 
1952 	return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
1953 }
1954 
1955 /*
1956  * stge_mii_writereg:	[mii interface function]
1957  *
1958  *	Write a PHY register on the MII of the TC9021.
1959  */
1960 static int
1961 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1962 {
1963 
1964 	return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
1965 	    val);
1966 }
1967 
1968 /*
1969  * stge_mii_statchg:	[mii interface function]
1970  *
1971  *	Callback from MII layer when media changes.
1972  */
1973 static void
1974 stge_mii_statchg(struct ifnet *ifp)
1975 {
1976 	struct stge_softc *sc = ifp->if_softc;
1977 
1978 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1979 		sc->sc_MACCtrl |= MC_DuplexSelect;
1980 	else
1981 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1982 
1983 	/* XXX 802.1x flow-control? */
1984 
1985 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1986 }
1987 
1988 /*
1989  * sste_mii_bitbang_read: [mii bit-bang interface function]
1990  *
1991  *	Read the MII serial port for the MII bit-bang module.
1992  */
1993 static uint32_t
1994 stge_mii_bitbang_read(device_t self)
1995 {
1996 	struct stge_softc *sc = device_private(self);
1997 
1998 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1999 }
2000 
2001 /*
2002  * stge_mii_bitbang_write: [mii big-bang interface function]
2003  *
2004  *	Write the MII serial port for the MII bit-bang module.
2005  */
2006 static void
2007 stge_mii_bitbang_write(device_t self, uint32_t val)
2008 {
2009 	struct stge_softc *sc = device_private(self);
2010 
2011 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2012 	    val | sc->sc_PhyCtrl);
2013 }
2014