xref: /netbsd-src/sys/dev/pci/if_ste.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: if_ste.c,v 1.51 2018/06/26 06:48:01 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. ST-201 10/100
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.51 2018/06/26 06:48:01 msaitoh Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stereg.h>
72 
73 /*
74  * Transmit descriptor list size.
75  */
76 #define	STE_NTXDESC		256
77 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
78 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
79 
80 /*
81  * Receive descriptor list size.
82  */
83 #define	STE_NRXDESC		128
84 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
85 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
86 
87 /*
88  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
89  * a single clump that maps to a single DMA segment to make several things
90  * easier.
91  */
92 struct ste_control_data {
93 	/*
94 	 * The transmit descriptors.
95 	 */
96 	struct ste_tfd scd_txdescs[STE_NTXDESC];
97 
98 	/*
99 	 * The receive descriptors.
100 	 */
101 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
102 };
103 
104 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
105 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
106 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
107 
108 /*
109  * Software state for transmit and receive jobs.
110  */
111 struct ste_descsoft {
112 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
113 	bus_dmamap_t ds_dmamap;		/* our DMA map */
114 };
115 
116 /*
117  * Software state per device.
118  */
119 struct ste_softc {
120 	device_t sc_dev;		/* generic device information */
121 	bus_space_tag_t sc_st;		/* bus space tag */
122 	bus_space_handle_t sc_sh;	/* bus space handle */
123 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
124 	struct ethercom sc_ethercom;	/* ethernet common data */
125 
126 	void *sc_ih;			/* interrupt cookie */
127 
128 	struct mii_data sc_mii;		/* MII/media information */
129 
130 	callout_t sc_tick_ch;		/* tick callout */
131 
132 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
133 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
134 
135 	/*
136 	 * Software state for transmit and receive descriptors.
137 	 */
138 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
139 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
140 
141 	/*
142 	 * Control data structures.
143 	 */
144 	struct ste_control_data *sc_control_data;
145 #define	sc_txdescs	sc_control_data->scd_txdescs
146 #define	sc_rxdescs	sc_control_data->scd_rxdescs
147 
148 	int	sc_txpending;		/* number of Tx requests pending */
149 	int	sc_txdirty;		/* first dirty Tx descriptor */
150 	int	sc_txlast;		/* last used Tx descriptor */
151 
152 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
153 
154 	int	sc_txthresh;		/* Tx threshold */
155 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
156 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
157 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
158 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
159 };
160 
161 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
162 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
163 
164 #define	STE_CDTXSYNC(sc, x, ops)					\
165 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
166 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
167 
168 #define	STE_CDRXSYNC(sc, x, ops)					\
169 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
170 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
171 
172 #define	STE_INIT_RXDESC(sc, x)						\
173 do {									\
174 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
175 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
176 	struct mbuf *__m = __ds->ds_mbuf;				\
177 									\
178 	/*								\
179 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
180 	 * so that the payload after the Ethernet header is aligned	\
181 	 * to a 4-byte boundary.					\
182 	 */								\
183 	__m->m_data = __m->m_ext.ext_buf + 2;				\
184 	__rfd->rfd_frag.frag_addr =					\
185 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
186 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
187 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
188 	__rfd->rfd_status = 0;						\
189 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
190 } while (/*CONSTCOND*/0)
191 
192 #define STE_TIMEOUT 1000
193 
194 static void	ste_start(struct ifnet *);
195 static void	ste_watchdog(struct ifnet *);
196 static int	ste_ioctl(struct ifnet *, u_long, void *);
197 static int	ste_init(struct ifnet *);
198 static void	ste_stop(struct ifnet *, int);
199 
200 static bool	ste_shutdown(device_t, int);
201 
202 static void	ste_reset(struct ste_softc *, u_int32_t);
203 static void	ste_setthresh(struct ste_softc *);
204 static void	ste_txrestart(struct ste_softc *, u_int8_t);
205 static void	ste_rxdrain(struct ste_softc *);
206 static int	ste_add_rxbuf(struct ste_softc *, int);
207 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
208 static void	ste_tick(void *);
209 
210 static void	ste_stats_update(struct ste_softc *);
211 
212 static void	ste_set_filter(struct ste_softc *);
213 
214 static int	ste_intr(void *);
215 static void	ste_txintr(struct ste_softc *);
216 static void	ste_rxintr(struct ste_softc *);
217 
218 static int	ste_mii_readreg(device_t, int, int);
219 static void	ste_mii_writereg(device_t, int, int, int);
220 static void	ste_mii_statchg(struct ifnet *);
221 
222 static int	ste_match(device_t, cfdata_t, void *);
223 static void	ste_attach(device_t, device_t, void *);
224 
225 int	ste_copy_small = 0;
226 
227 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
228     ste_match, ste_attach, NULL, NULL);
229 
230 static uint32_t ste_mii_bitbang_read(device_t);
231 static void	ste_mii_bitbang_write(device_t, uint32_t);
232 
233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
234 	ste_mii_bitbang_read,
235 	ste_mii_bitbang_write,
236 	{
237 		PC_MgmtData,		/* MII_BIT_MDO */
238 		PC_MgmtData,		/* MII_BIT_MDI */
239 		PC_MgmtClk,		/* MII_BIT_MDC */
240 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
241 		0,			/* MII_BIT_DIR_PHY_HOST */
242 	}
243 };
244 
245 /*
246  * Devices supported by this driver.
247  */
248 static const struct ste_product {
249 	pci_vendor_id_t		ste_vendor;
250 	pci_product_id_t	ste_product;
251 	const char		*ste_name;
252 } ste_products[] = {
253 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
254 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
255 
256 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
257 	  "Sundance ST-201 10/100 Ethernet" },
258 
259 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
260 	  "D-Link DL-1002 10/100 Ethernet" },
261 
262 	{ 0,				0,
263 	  NULL },
264 };
265 
266 static const struct ste_product *
267 ste_lookup(const struct pci_attach_args *pa)
268 {
269 	const struct ste_product *sp;
270 
271 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
272 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
273 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
274 			return (sp);
275 	}
276 	return (NULL);
277 }
278 
279 static int
280 ste_match(device_t parent, cfdata_t cf, void *aux)
281 {
282 	struct pci_attach_args *pa = aux;
283 
284 	if (ste_lookup(pa) != NULL)
285 		return (1);
286 
287 	return (0);
288 }
289 
290 static void
291 ste_attach(device_t parent, device_t self, void *aux)
292 {
293 	struct ste_softc *sc = device_private(self);
294 	struct pci_attach_args *pa = aux;
295 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
296 	pci_chipset_tag_t pc = pa->pa_pc;
297 	pci_intr_handle_t ih;
298 	const char *intrstr = NULL;
299 	bus_space_tag_t iot, memt;
300 	bus_space_handle_t ioh, memh;
301 	bus_dma_segment_t seg;
302 	int ioh_valid, memh_valid;
303 	int i, rseg, error;
304 	const struct ste_product *sp;
305 	uint8_t enaddr[ETHER_ADDR_LEN];
306 	uint16_t myea[ETHER_ADDR_LEN / 2];
307 	char intrbuf[PCI_INTRSTR_LEN];
308 
309 	sc->sc_dev = self;
310 
311 	callout_init(&sc->sc_tick_ch, 0);
312 
313 	sp = ste_lookup(pa);
314 	if (sp == NULL) {
315 		printf("\n");
316 		panic("ste_attach: impossible");
317 	}
318 
319 	printf(": %s\n", sp->ste_name);
320 
321 	/*
322 	 * Map the device.
323 	 */
324 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
325 	    PCI_MAPREG_TYPE_IO, 0,
326 	    &iot, &ioh, NULL, NULL) == 0);
327 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
328 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
329 	    &memt, &memh, NULL, NULL) == 0);
330 
331 	if (memh_valid) {
332 		sc->sc_st = memt;
333 		sc->sc_sh = memh;
334 	} else if (ioh_valid) {
335 		sc->sc_st = iot;
336 		sc->sc_sh = ioh;
337 	} else {
338 		aprint_error_dev(self, "unable to map device registers\n");
339 		return;
340 	}
341 
342 	sc->sc_dmat = pa->pa_dmat;
343 
344 	/* Enable bus mastering. */
345 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
346 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
347 	    PCI_COMMAND_MASTER_ENABLE);
348 
349 	/* power up chip */
350 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
351 	    NULL)) && error != EOPNOTSUPP) {
352 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
353 		return;
354 	}
355 
356 	/*
357 	 * Map and establish our interrupt.
358 	 */
359 	if (pci_intr_map(pa, &ih)) {
360 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
361 		return;
362 	}
363 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
364 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
365 	if (sc->sc_ih == NULL) {
366 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
367 		if (intrstr != NULL)
368 			aprint_error(" at %s", intrstr);
369 		aprint_error("\n");
370 		return;
371 	}
372 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
373 
374 	/*
375 	 * Allocate the control data structures, and create and load the
376 	 * DMA map for it.
377 	 */
378 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
379 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
380 	    0)) != 0) {
381 		aprint_error_dev(sc->sc_dev,
382 		    "unable to allocate control data, error = %d\n", error);
383 		goto fail_0;
384 	}
385 
386 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
387 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
388 	    BUS_DMA_COHERENT)) != 0) {
389 		aprint_error_dev(sc->sc_dev,
390 		    "unable to map control data, error = %d\n", error);
391 		goto fail_1;
392 	}
393 
394 	if ((error = bus_dmamap_create(sc->sc_dmat,
395 	    sizeof(struct ste_control_data), 1,
396 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
397 		aprint_error_dev(sc->sc_dev,
398 		    "unable to create control data DMA map, error = %d\n",
399 		    error);
400 		goto fail_2;
401 	}
402 
403 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
404 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
405 	    0)) != 0) {
406 		aprint_error_dev(sc->sc_dev,
407 		    "unable to load control data DMA map, error = %d\n",
408 		    error);
409 		goto fail_3;
410 	}
411 
412 	/*
413 	 * Create the transmit buffer DMA maps.
414 	 */
415 	for (i = 0; i < STE_NTXDESC; i++) {
416 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
417 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
418 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
419 			aprint_error_dev(sc->sc_dev,
420 			    "unable to create tx DMA map %d, error = %d\n", i,
421 			    error);
422 			goto fail_4;
423 		}
424 	}
425 
426 	/*
427 	 * Create the receive buffer DMA maps.
428 	 */
429 	for (i = 0; i < STE_NRXDESC; i++) {
430 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
431 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
432 			aprint_error_dev(sc->sc_dev,
433 			    "unable to create rx DMA map %d, error = %d\n", i,
434 			    error);
435 			goto fail_5;
436 		}
437 		sc->sc_rxsoft[i].ds_mbuf = NULL;
438 	}
439 
440 	/*
441 	 * Reset the chip to a known state.
442 	 */
443 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
444 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
445 
446 	/*
447 	 * Read the Ethernet address from the EEPROM.
448 	 */
449 	for (i = 0; i < 3; i++) {
450 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
451 		myea[i] = le16toh(myea[i]);
452 	}
453 	memcpy(enaddr, myea, sizeof(enaddr));
454 
455 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
456 	    ether_sprintf(enaddr));
457 
458 	/*
459 	 * Initialize our media structures and probe the MII.
460 	 */
461 	sc->sc_mii.mii_ifp = ifp;
462 	sc->sc_mii.mii_readreg = ste_mii_readreg;
463 	sc->sc_mii.mii_writereg = ste_mii_writereg;
464 	sc->sc_mii.mii_statchg = ste_mii_statchg;
465 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
466 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
467 	    ether_mediastatus);
468 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
469 	    MII_OFFSET_ANY, 0);
470 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
471 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0,NULL);
472 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
473 	} else
474 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
475 
476 	ifp = &sc->sc_ethercom.ec_if;
477 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
478 	ifp->if_softc = sc;
479 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
480 	ifp->if_ioctl = ste_ioctl;
481 	ifp->if_start = ste_start;
482 	ifp->if_watchdog = ste_watchdog;
483 	ifp->if_init = ste_init;
484 	ifp->if_stop = ste_stop;
485 	IFQ_SET_READY(&ifp->if_snd);
486 
487 	/*
488 	 * Default the transmit threshold to 128 bytes.
489 	 */
490 	sc->sc_txthresh = 128;
491 
492 	/*
493 	 * Disable MWI if the PCI layer tells us to.
494 	 */
495 	sc->sc_DMACtrl = 0;
496 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
497 		sc->sc_DMACtrl |= DC_MWIDisable;
498 
499 	/*
500 	 * We can support 802.1Q VLAN-sized frames.
501 	 */
502 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
503 
504 	/*
505 	 * Attach the interface.
506 	 */
507 	if_attach(ifp);
508 	if_deferred_start_init(ifp, NULL);
509 	ether_ifattach(ifp, enaddr);
510 
511 	/*
512 	 * Make sure the interface is shutdown during reboot.
513 	 */
514 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
515 		pmf_class_network_register(self, ifp);
516 	else
517 		aprint_error_dev(self, "couldn't establish power handler\n");
518 
519 	return;
520 
521 	/*
522 	 * Free any resources we've allocated during the failed attach
523 	 * attempt.  Do this in reverse order and fall through.
524 	 */
525  fail_5:
526 	for (i = 0; i < STE_NRXDESC; i++) {
527 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
528 			bus_dmamap_destroy(sc->sc_dmat,
529 			    sc->sc_rxsoft[i].ds_dmamap);
530 	}
531  fail_4:
532 	for (i = 0; i < STE_NTXDESC; i++) {
533 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
534 			bus_dmamap_destroy(sc->sc_dmat,
535 			    sc->sc_txsoft[i].ds_dmamap);
536 	}
537 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
538  fail_3:
539 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
540  fail_2:
541 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
542 	    sizeof(struct ste_control_data));
543  fail_1:
544 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
545  fail_0:
546 	return;
547 }
548 
549 /*
550  * ste_shutdown:
551  *
552  *	Make sure the interface is stopped at reboot time.
553  */
554 static bool
555 ste_shutdown(device_t self, int howto)
556 {
557 	struct ste_softc *sc;
558 
559 	sc = device_private(self);
560 	ste_stop(&sc->sc_ethercom.ec_if, 1);
561 
562 	return true;
563 }
564 
565 static void
566 ste_dmahalt_wait(struct ste_softc *sc)
567 {
568 	int i;
569 
570 	for (i = 0; i < STE_TIMEOUT; i++) {
571 		delay(2);
572 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
573 		     DC_DMAHaltBusy) == 0)
574 			break;
575 	}
576 
577 	if (i == STE_TIMEOUT)
578 		printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
579 }
580 
581 /*
582  * ste_start:		[ifnet interface function]
583  *
584  *	Start packet transmission on the interface.
585  */
586 static void
587 ste_start(struct ifnet *ifp)
588 {
589 	struct ste_softc *sc = ifp->if_softc;
590 	struct mbuf *m0, *m;
591 	struct ste_descsoft *ds;
592 	struct ste_tfd *tfd;
593 	bus_dmamap_t dmamap;
594 	int error, olasttx, nexttx, opending, seg, totlen;
595 
596 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
597 		return;
598 
599 	/*
600 	 * Remember the previous number of pending transmissions
601 	 * and the current last descriptor in the list.
602 	 */
603 	opending = sc->sc_txpending;
604 	olasttx = sc->sc_txlast;
605 
606 	/*
607 	 * Loop through the send queue, setting up transmit descriptors
608 	 * until we drain the queue, or use up all available transmit
609 	 * descriptors.
610 	 */
611 	while (sc->sc_txpending < STE_NTXDESC) {
612 		/*
613 		 * Grab a packet off the queue.
614 		 */
615 		IFQ_POLL(&ifp->if_snd, m0);
616 		if (m0 == NULL)
617 			break;
618 		m = NULL;
619 
620 		/*
621 		 * Get the last and next available transmit descriptor.
622 		 */
623 		nexttx = STE_NEXTTX(sc->sc_txlast);
624 		tfd = &sc->sc_txdescs[nexttx];
625 		ds = &sc->sc_txsoft[nexttx];
626 
627 		dmamap = ds->ds_dmamap;
628 
629 		/*
630 		 * Load the DMA map.  If this fails, the packet either
631 		 * didn't fit in the alloted number of segments, or we
632 		 * were short on resources.  In this case, we'll copy
633 		 * and try again.
634 		 */
635 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
636 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
637 			MGETHDR(m, M_DONTWAIT, MT_DATA);
638 			if (m == NULL) {
639 				printf("%s: unable to allocate Tx mbuf\n",
640 				    device_xname(sc->sc_dev));
641 				break;
642 			}
643 			if (m0->m_pkthdr.len > MHLEN) {
644 				MCLGET(m, M_DONTWAIT);
645 				if ((m->m_flags & M_EXT) == 0) {
646 					printf("%s: unable to allocate Tx "
647 					    "cluster\n",
648 					    device_xname(sc->sc_dev));
649 					m_freem(m);
650 					break;
651 				}
652 			}
653 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
654 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
655 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
656 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
657 			if (error) {
658 				printf("%s: unable to load Tx buffer, "
659 				    "error = %d\n", device_xname(sc->sc_dev),
660 				    error);
661 				break;
662 			}
663 		}
664 
665 		IFQ_DEQUEUE(&ifp->if_snd, m0);
666 		if (m != NULL) {
667 			m_freem(m0);
668 			m0 = m;
669 		}
670 
671 		/*
672 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
673 		 */
674 
675 		/* Sync the DMA map. */
676 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
677 		    BUS_DMASYNC_PREWRITE);
678 
679 		/* Initialize the fragment list. */
680 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
681 			tfd->tfd_frags[seg].frag_addr =
682 			    htole32(dmamap->dm_segs[seg].ds_addr);
683 			tfd->tfd_frags[seg].frag_len =
684 			    htole32(dmamap->dm_segs[seg].ds_len);
685 			totlen += dmamap->dm_segs[seg].ds_len;
686 		}
687 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
688 
689 		/* Initialize the descriptor. */
690 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
691 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
692 
693 		/* Sync the descriptor. */
694 		STE_CDTXSYNC(sc, nexttx,
695 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
696 
697 		/*
698 		 * Store a pointer to the packet so we can free it later,
699 		 * and remember what txdirty will be once the packet is
700 		 * done.
701 		 */
702 		ds->ds_mbuf = m0;
703 
704 		/* Advance the tx pointer. */
705 		sc->sc_txpending++;
706 		sc->sc_txlast = nexttx;
707 
708 		/*
709 		 * Pass the packet to any BPF listeners.
710 		 */
711 		bpf_mtap(ifp, m0, BPF_D_OUT);
712 	}
713 
714 	if (sc->sc_txpending == STE_NTXDESC) {
715 		/* No more slots left; notify upper layer. */
716 		ifp->if_flags |= IFF_OACTIVE;
717 	}
718 
719 	if (sc->sc_txpending != opending) {
720 		/*
721 		 * We enqueued packets.  If the transmitter was idle,
722 		 * reset the txdirty pointer.
723 		 */
724 		if (opending == 0)
725 			sc->sc_txdirty = STE_NEXTTX(olasttx);
726 
727 		/*
728 		 * Cause a descriptor interrupt to happen on the
729 		 * last packet we enqueued, and also cause the
730 		 * DMA engine to wait after is has finished processing
731 		 * it.
732 		 */
733 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
734 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
735 		    htole32(TFD_TxDMAIndicate);
736 		STE_CDTXSYNC(sc, sc->sc_txlast,
737 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
738 
739 		/*
740 		 * Link up the new chain of descriptors to the
741 		 * last.
742 		 */
743 		sc->sc_txdescs[olasttx].tfd_next =
744 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
745 		STE_CDTXSYNC(sc, olasttx,
746 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
747 
748 		/*
749 		 * Kick the transmit DMA logic.  Note that since we're
750 		 * using auto-polling, reading the Tx desc pointer will
751 		 * give it the nudge it needs to get going.
752 		 */
753 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
754 		    STE_TxDMAListPtr) == 0) {
755 			bus_space_write_4(sc->sc_st, sc->sc_sh,
756 			    STE_DMACtrl, DC_TxDMAHalt);
757 			ste_dmahalt_wait(sc);
758 			bus_space_write_4(sc->sc_st, sc->sc_sh,
759 			    STE_TxDMAListPtr,
760 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
761 			bus_space_write_4(sc->sc_st, sc->sc_sh,
762 			    STE_DMACtrl, DC_TxDMAResume);
763 		}
764 
765 		/* Set a watchdog timer in case the chip flakes out. */
766 		ifp->if_timer = 5;
767 	}
768 }
769 
770 /*
771  * ste_watchdog:	[ifnet interface function]
772  *
773  *	Watchdog timer handler.
774  */
775 static void
776 ste_watchdog(struct ifnet *ifp)
777 {
778 	struct ste_softc *sc = ifp->if_softc;
779 
780 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
781 	ifp->if_oerrors++;
782 
783 	ste_txintr(sc);
784 	ste_rxintr(sc);
785 	(void) ste_init(ifp);
786 
787 	/* Try to get more packets going. */
788 	ste_start(ifp);
789 }
790 
791 /*
792  * ste_ioctl:		[ifnet interface function]
793  *
794  *	Handle control requests from the operator.
795  */
796 static int
797 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
798 {
799 	struct ste_softc *sc = ifp->if_softc;
800 	int s, error;
801 
802 	s = splnet();
803 
804 	error = ether_ioctl(ifp, cmd, data);
805 	if (error == ENETRESET) {
806 		/*
807 		 * Multicast list has changed; set the hardware filter
808 		 * accordingly.
809 		 */
810 		if (ifp->if_flags & IFF_RUNNING)
811 			ste_set_filter(sc);
812 		error = 0;
813 	}
814 
815 	/* Try to get more packets going. */
816 	ste_start(ifp);
817 
818 	splx(s);
819 	return (error);
820 }
821 
822 /*
823  * ste_intr:
824  *
825  *	Interrupt service routine.
826  */
827 static int
828 ste_intr(void *arg)
829 {
830 	struct ste_softc *sc = arg;
831 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
832 	uint16_t isr;
833 	uint8_t txstat;
834 	int wantinit;
835 
836 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
837 	     IS_InterruptStatus) == 0)
838 		return (0);
839 
840 	for (wantinit = 0; wantinit == 0;) {
841 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
842 		if ((isr & sc->sc_IntEnable) == 0)
843 			break;
844 
845 		/* Receive interrupts. */
846 		if (isr & IE_RxDMAComplete)
847 			ste_rxintr(sc);
848 
849 		/* Transmit interrupts. */
850 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
851 			ste_txintr(sc);
852 
853 		/* Statistics overflow. */
854 		if (isr & IE_UpdateStats)
855 			ste_stats_update(sc);
856 
857 		/* Transmission errors. */
858 		if (isr & IE_TxComplete) {
859 			for (;;) {
860 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
861 				    STE_TxStatus);
862 				if ((txstat & TS_TxComplete) == 0)
863 					break;
864 				if (txstat & TS_TxUnderrun) {
865 					sc->sc_txthresh += 32;
866 					if (sc->sc_txthresh > 0x1ffc)
867 						sc->sc_txthresh = 0x1ffc;
868 					printf("%s: transmit underrun, new "
869 					    "threshold: %d bytes\n",
870 					    device_xname(sc->sc_dev),
871 					    sc->sc_txthresh);
872 					ste_reset(sc, AC_TxReset | AC_DMA |
873 					    AC_FIFO | AC_Network);
874 					ste_setthresh(sc);
875 					bus_space_write_1(sc->sc_st, sc->sc_sh,
876 					    STE_TxDMAPollPeriod, 127);
877 					ste_txrestart(sc,
878 					    bus_space_read_1(sc->sc_st,
879 						sc->sc_sh, STE_TxFrameId));
880 				}
881 				if (txstat & TS_TxReleaseError) {
882 					printf("%s: Tx FIFO release error\n",
883 					    device_xname(sc->sc_dev));
884 					wantinit = 1;
885 				}
886 				if (txstat & TS_MaxCollisions) {
887 					printf("%s: excessive collisions\n",
888 					    device_xname(sc->sc_dev));
889 					wantinit = 1;
890 				}
891 				if (txstat & TS_TxStatusOverflow) {
892 					printf("%s: status overflow\n",
893 					    device_xname(sc->sc_dev));
894 					wantinit = 1;
895 				}
896 				bus_space_write_2(sc->sc_st, sc->sc_sh,
897 				    STE_TxStatus, 0);
898 			}
899 		}
900 
901 		/* Host interface errors. */
902 		if (isr & IE_HostError) {
903 			printf("%s: Host interface error\n",
904 			    device_xname(sc->sc_dev));
905 			wantinit = 1;
906 		}
907 	}
908 
909 	if (wantinit)
910 		ste_init(ifp);
911 
912 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
913 	    sc->sc_IntEnable);
914 
915 	/* Try to get more packets going. */
916 	if_schedule_deferred_start(ifp);
917 
918 	return (1);
919 }
920 
921 /*
922  * ste_txintr:
923  *
924  *	Helper; handle transmit interrupts.
925  */
926 static void
927 ste_txintr(struct ste_softc *sc)
928 {
929 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
930 	struct ste_descsoft *ds;
931 	uint32_t control;
932 	int i;
933 
934 	ifp->if_flags &= ~IFF_OACTIVE;
935 
936 	/*
937 	 * Go through our Tx list and free mbufs for those
938 	 * frames which have been transmitted.
939 	 */
940 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
941 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
942 		ds = &sc->sc_txsoft[i];
943 
944 		STE_CDTXSYNC(sc, i,
945 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
946 
947 		control = le32toh(sc->sc_txdescs[i].tfd_control);
948 		if ((control & TFD_TxDMAComplete) == 0)
949 			break;
950 
951 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
952 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
953 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
954 		m_freem(ds->ds_mbuf);
955 		ds->ds_mbuf = NULL;
956 	}
957 
958 	/* Update the dirty transmit buffer pointer. */
959 	sc->sc_txdirty = i;
960 
961 	/*
962 	 * If there are no more pending transmissions, cancel the watchdog
963 	 * timer.
964 	 */
965 	if (sc->sc_txpending == 0)
966 		ifp->if_timer = 0;
967 }
968 
969 /*
970  * ste_rxintr:
971  *
972  *	Helper; handle receive interrupts.
973  */
974 static void
975 ste_rxintr(struct ste_softc *sc)
976 {
977 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
978 	struct ste_descsoft *ds;
979 	struct mbuf *m;
980 	uint32_t status;
981 	int i, len;
982 
983 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
984 		ds = &sc->sc_rxsoft[i];
985 
986 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
987 
988 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
989 
990 		if ((status & RFD_RxDMAComplete) == 0)
991 			break;
992 
993 		/*
994 		 * If the packet had an error, simply recycle the
995 		 * buffer.  Note, we count the error later in the
996 		 * periodic stats update.
997 		 */
998 		if (status & RFD_RxFrameError) {
999 			STE_INIT_RXDESC(sc, i);
1000 			continue;
1001 		}
1002 
1003 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1004 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1005 
1006 		/*
1007 		 * No errors; receive the packet.  Note, we have
1008 		 * configured the chip to not include the CRC at
1009 		 * the end of the packet.
1010 		 */
1011 		len = RFD_RxDMAFrameLen(status);
1012 
1013 		/*
1014 		 * If the packet is small enough to fit in a
1015 		 * single header mbuf, allocate one and copy
1016 		 * the data into it.  This greatly reduces
1017 		 * memory consumption when we receive lots
1018 		 * of small packets.
1019 		 *
1020 		 * Otherwise, we add a new buffer to the receive
1021 		 * chain.  If this fails, we drop the packet and
1022 		 * recycle the old buffer.
1023 		 */
1024 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1025 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1026 			if (m == NULL)
1027 				goto dropit;
1028 			m->m_data += 2;
1029 			memcpy(mtod(m, void *),
1030 			    mtod(ds->ds_mbuf, void *), len);
1031 			STE_INIT_RXDESC(sc, i);
1032 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1033 			    ds->ds_dmamap->dm_mapsize,
1034 			    BUS_DMASYNC_PREREAD);
1035 		} else {
1036 			m = ds->ds_mbuf;
1037 			if (ste_add_rxbuf(sc, i) != 0) {
1038  dropit:
1039 				ifp->if_ierrors++;
1040 				STE_INIT_RXDESC(sc, i);
1041 				bus_dmamap_sync(sc->sc_dmat,
1042 				    ds->ds_dmamap, 0,
1043 				    ds->ds_dmamap->dm_mapsize,
1044 				    BUS_DMASYNC_PREREAD);
1045 				continue;
1046 			}
1047 		}
1048 
1049 		m_set_rcvif(m, ifp);
1050 		m->m_pkthdr.len = m->m_len = len;
1051 
1052 		/* Pass it on. */
1053 		if_percpuq_enqueue(ifp->if_percpuq, m);
1054 	}
1055 
1056 	/* Update the receive pointer. */
1057 	sc->sc_rxptr = i;
1058 }
1059 
1060 /*
1061  * ste_tick:
1062  *
1063  *	One second timer, used to tick the MII.
1064  */
1065 static void
1066 ste_tick(void *arg)
1067 {
1068 	struct ste_softc *sc = arg;
1069 	int s;
1070 
1071 	s = splnet();
1072 	mii_tick(&sc->sc_mii);
1073 	ste_stats_update(sc);
1074 	splx(s);
1075 
1076 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1077 }
1078 
1079 /*
1080  * ste_stats_update:
1081  *
1082  *	Read the ST-201 statistics counters.
1083  */
1084 static void
1085 ste_stats_update(struct ste_softc *sc)
1086 {
1087 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1088 	bus_space_tag_t st = sc->sc_st;
1089 	bus_space_handle_t sh = sc->sc_sh;
1090 
1091 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1092 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1093 
1094 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1095 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1096 
1097 	ifp->if_opackets +=
1098 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1099 	ifp->if_ipackets +=
1100 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1101 
1102 	ifp->if_collisions +=
1103 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1104 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1105 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1106 
1107 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1108 
1109 	ifp->if_ierrors +=
1110 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1111 
1112 	ifp->if_oerrors +=
1113 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1114 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1115 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1116 
1117 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1118 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1119 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1120 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1121 }
1122 
1123 /*
1124  * ste_reset:
1125  *
1126  *	Perform a soft reset on the ST-201.
1127  */
1128 static void
1129 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1130 {
1131 	uint32_t ac;
1132 	int i;
1133 
1134 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1135 
1136 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1137 
1138 	delay(50000);
1139 
1140 	for (i = 0; i < STE_TIMEOUT; i++) {
1141 		delay(1000);
1142 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1143 		     AC_ResetBusy) == 0)
1144 			break;
1145 	}
1146 
1147 	if (i == STE_TIMEOUT)
1148 		printf("%s: reset failed to complete\n",
1149 		    device_xname(sc->sc_dev));
1150 
1151 	delay(1000);
1152 }
1153 
1154 /*
1155  * ste_setthresh:
1156  *
1157  * 	set the various transmit threshold registers
1158  */
1159 static void
1160 ste_setthresh(struct ste_softc *sc)
1161 {
1162 	/* set the TX threhold */
1163 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1164 	    STE_TxStartThresh, sc->sc_txthresh);
1165 	/* Urgent threshold: set to sc_txthresh / 2 */
1166 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1167 	    sc->sc_txthresh >> 6);
1168 	/* Burst threshold: use default value (256 bytes) */
1169 }
1170 
1171 /*
1172  * restart TX at the given frame ID in the transmitter ring
1173  */
1174 static void
1175 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1176 {
1177 	u_int32_t control;
1178 
1179 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1180 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1181 	control &= ~TFD_TxDMAComplete;
1182 	sc->sc_txdescs[id].tfd_control = htole32(control);
1183 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1184 
1185 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1186 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1187 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1188 	ste_dmahalt_wait(sc);
1189 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1190 	    STE_CDTXADDR(sc, id));
1191 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1192 }
1193 
1194 /*
1195  * ste_init:		[ ifnet interface function ]
1196  *
1197  *	Initialize the interface.  Must be called at splnet().
1198  */
1199 static int
1200 ste_init(struct ifnet *ifp)
1201 {
1202 	struct ste_softc *sc = ifp->if_softc;
1203 	bus_space_tag_t st = sc->sc_st;
1204 	bus_space_handle_t sh = sc->sc_sh;
1205 	struct ste_descsoft *ds;
1206 	int i, error = 0;
1207 
1208 	/*
1209 	 * Cancel any pending I/O.
1210 	 */
1211 	ste_stop(ifp, 0);
1212 
1213 	/*
1214 	 * Reset the chip to a known state.
1215 	 */
1216 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1217 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1218 
1219 	/*
1220 	 * Initialize the transmit descriptor ring.
1221 	 */
1222 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1223 	sc->sc_txpending = 0;
1224 	sc->sc_txdirty = 0;
1225 	sc->sc_txlast = STE_NTXDESC - 1;
1226 
1227 	/*
1228 	 * Initialize the receive descriptor and receive job
1229 	 * descriptor rings.
1230 	 */
1231 	for (i = 0; i < STE_NRXDESC; i++) {
1232 		ds = &sc->sc_rxsoft[i];
1233 		if (ds->ds_mbuf == NULL) {
1234 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1235 				printf("%s: unable to allocate or map rx "
1236 				    "buffer %d, error = %d\n",
1237 				    device_xname(sc->sc_dev), i, error);
1238 				/*
1239 				 * XXX Should attempt to run with fewer receive
1240 				 * XXX buffers instead of just failing.
1241 				 */
1242 				ste_rxdrain(sc);
1243 				goto out;
1244 			}
1245 		} else
1246 			STE_INIT_RXDESC(sc, i);
1247 	}
1248 	sc->sc_rxptr = 0;
1249 
1250 	/* Set the station address. */
1251 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1252 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1253 		    CLLADDR(ifp->if_sadl)[i]);
1254 
1255 	/* Set up the receive filter. */
1256 	ste_set_filter(sc);
1257 
1258 	/*
1259 	 * Give the receive ring to the chip.
1260 	 */
1261 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1262 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1263 
1264 	/*
1265 	 * We defer giving the transmit ring to the chip until we
1266 	 * transmit the first packet.
1267 	 */
1268 
1269 	/*
1270 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1271 	 * large (127 is the max) -- we explicitly kick the transmit engine
1272 	 * when there's actually a packet.  We are using auto-polling only
1273 	 * to make the interface to the transmit engine not suck.
1274 	 */
1275 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1276 
1277 	/* ..and the Rx auto-poll period. */
1278 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1279 
1280 	/* Initialize the Tx start threshold. */
1281 	ste_setthresh(sc);
1282 
1283 	/* Set the FIFO release threshold to 512 bytes. */
1284 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1285 
1286 	/* Set maximum packet size for VLAN. */
1287 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1288 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1289 	else
1290 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1291 
1292 	/*
1293 	 * Initialize the interrupt mask.
1294 	 */
1295 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1296 	    IE_TxDMAComplete | IE_RxDMAComplete;
1297 
1298 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1299 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1300 
1301 	/*
1302 	 * Start the receive DMA engine.
1303 	 */
1304 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1305 
1306 	/*
1307 	 * Initialize MacCtrl0 -- do it before setting the media,
1308 	 * as setting the media will actually program the register.
1309 	 */
1310 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1311 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1312 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1313 
1314 	/*
1315 	 * Set the current media.
1316 	 */
1317 	if ((error = ether_mediachange(ifp)) != 0)
1318 		goto out;
1319 
1320 	/*
1321 	 * Start the MAC.
1322 	 */
1323 	bus_space_write_2(st, sh, STE_MacCtrl1,
1324 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1325 
1326 	/*
1327 	 * Start the one second MII clock.
1328 	 */
1329 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1330 
1331 	/*
1332 	 * ...all done!
1333 	 */
1334 	ifp->if_flags |= IFF_RUNNING;
1335 	ifp->if_flags &= ~IFF_OACTIVE;
1336 
1337  out:
1338 	if (error)
1339 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1340 	return (error);
1341 }
1342 
1343 /*
1344  * ste_drain:
1345  *
1346  *	Drain the receive queue.
1347  */
1348 static void
1349 ste_rxdrain(struct ste_softc *sc)
1350 {
1351 	struct ste_descsoft *ds;
1352 	int i;
1353 
1354 	for (i = 0; i < STE_NRXDESC; i++) {
1355 		ds = &sc->sc_rxsoft[i];
1356 		if (ds->ds_mbuf != NULL) {
1357 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1358 			m_freem(ds->ds_mbuf);
1359 			ds->ds_mbuf = NULL;
1360 		}
1361 	}
1362 }
1363 
1364 /*
1365  * ste_stop:		[ ifnet interface function ]
1366  *
1367  *	Stop transmission on the interface.
1368  */
1369 static void
1370 ste_stop(struct ifnet *ifp, int disable)
1371 {
1372 	struct ste_softc *sc = ifp->if_softc;
1373 	struct ste_descsoft *ds;
1374 	int i;
1375 
1376 	/*
1377 	 * Stop the one second clock.
1378 	 */
1379 	callout_stop(&sc->sc_tick_ch);
1380 
1381 	/* Down the MII. */
1382 	mii_down(&sc->sc_mii);
1383 
1384 	/*
1385 	 * Disable interrupts.
1386 	 */
1387 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1388 
1389 	/*
1390 	 * Stop receiver, transmitter, and stats update.
1391 	 */
1392 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1393 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1394 
1395 	/*
1396 	 * Stop the transmit and receive DMA.
1397 	 */
1398 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1399 	    DC_RxDMAHalt | DC_TxDMAHalt);
1400 	ste_dmahalt_wait(sc);
1401 
1402 	/*
1403 	 * Release any queued transmit buffers.
1404 	 */
1405 	for (i = 0; i < STE_NTXDESC; i++) {
1406 		ds = &sc->sc_txsoft[i];
1407 		if (ds->ds_mbuf != NULL) {
1408 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1409 			m_freem(ds->ds_mbuf);
1410 			ds->ds_mbuf = NULL;
1411 		}
1412 	}
1413 
1414 	/*
1415 	 * Mark the interface down and cancel the watchdog timer.
1416 	 */
1417 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1418 	ifp->if_timer = 0;
1419 
1420 	if (disable)
1421 		ste_rxdrain(sc);
1422 }
1423 
1424 static int
1425 ste_eeprom_wait(struct ste_softc *sc)
1426 {
1427 	int i;
1428 
1429 	for (i = 0; i < STE_TIMEOUT; i++) {
1430 		delay(1000);
1431 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1432 		     EC_EepromBusy) == 0)
1433 			return (0);
1434 	}
1435 	return (1);
1436 }
1437 
1438 /*
1439  * ste_read_eeprom:
1440  *
1441  *	Read data from the serial EEPROM.
1442  */
1443 static void
1444 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1445 {
1446 
1447 	if (ste_eeprom_wait(sc))
1448 		printf("%s: EEPROM failed to come ready\n",
1449 		    device_xname(sc->sc_dev));
1450 
1451 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1452 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1453 	if (ste_eeprom_wait(sc))
1454 		printf("%s: EEPROM read timed out\n",
1455 		    device_xname(sc->sc_dev));
1456 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1457 }
1458 
1459 /*
1460  * ste_add_rxbuf:
1461  *
1462  *	Add a receive buffer to the indicated descriptor.
1463  */
1464 static int
1465 ste_add_rxbuf(struct ste_softc *sc, int idx)
1466 {
1467 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1468 	struct mbuf *m;
1469 	int error;
1470 
1471 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1472 	if (m == NULL)
1473 		return (ENOBUFS);
1474 
1475 	MCLGET(m, M_DONTWAIT);
1476 	if ((m->m_flags & M_EXT) == 0) {
1477 		m_freem(m);
1478 		return (ENOBUFS);
1479 	}
1480 
1481 	if (ds->ds_mbuf != NULL)
1482 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1483 
1484 	ds->ds_mbuf = m;
1485 
1486 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1487 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1488 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1489 	if (error) {
1490 		printf("%s: can't load rx DMA map %d, error = %d\n",
1491 		    device_xname(sc->sc_dev), idx, error);
1492 		panic("ste_add_rxbuf");		/* XXX */
1493 	}
1494 
1495 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1496 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1497 
1498 	STE_INIT_RXDESC(sc, idx);
1499 
1500 	return (0);
1501 }
1502 
1503 /*
1504  * ste_set_filter:
1505  *
1506  *	Set up the receive filter.
1507  */
1508 static void
1509 ste_set_filter(struct ste_softc *sc)
1510 {
1511 	struct ethercom *ec = &sc->sc_ethercom;
1512 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1513 	struct ether_multi *enm;
1514 	struct ether_multistep step;
1515 	uint32_t crc;
1516 	uint16_t mchash[4];
1517 
1518 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1519 	if (ifp->if_flags & IFF_BROADCAST)
1520 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1521 
1522 	if (ifp->if_flags & IFF_PROMISC) {
1523 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1524 		goto allmulti;
1525 	}
1526 
1527 	/*
1528 	 * Set up the multicast address filter by passing all multicast
1529 	 * addresses through a CRC generator, and then using the low-order
1530 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1531 	 * high order bits select the register, while the rest of the bits
1532 	 * select the bit within the register.
1533 	 */
1534 
1535 	memset(mchash, 0, sizeof(mchash));
1536 
1537 	ETHER_FIRST_MULTI(step, ec, enm);
1538 	if (enm == NULL)
1539 		goto done;
1540 
1541 	while (enm != NULL) {
1542 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1543 			/*
1544 			 * We must listen to a range of multicast addresses.
1545 			 * For now, just accept all multicasts, rather than
1546 			 * trying to set only those filter bits needed to match
1547 			 * the range.  (At this time, the only use of address
1548 			 * ranges is for IP multicast routing, for which the
1549 			 * range is big enough to require all bits set.)
1550 			 */
1551 			goto allmulti;
1552 		}
1553 
1554 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1555 
1556 		/* Just want the 6 least significant bits. */
1557 		crc &= 0x3f;
1558 
1559 		/* Set the corresponding bit in the hash table. */
1560 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1561 
1562 		ETHER_NEXT_MULTI(step, enm);
1563 	}
1564 
1565 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1566 
1567 	ifp->if_flags &= ~IFF_ALLMULTI;
1568 	goto done;
1569 
1570  allmulti:
1571 	ifp->if_flags |= IFF_ALLMULTI;
1572 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1573 
1574  done:
1575 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1576 		/*
1577 		 * Program the multicast hash table.
1578 		 */
1579 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1580 		    mchash[0]);
1581 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1582 		    mchash[1]);
1583 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1584 		    mchash[2]);
1585 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1586 		    mchash[3]);
1587 	}
1588 
1589 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1590 	    sc->sc_ReceiveMode);
1591 }
1592 
1593 /*
1594  * ste_mii_readreg:	[mii interface function]
1595  *
1596  *	Read a PHY register on the MII of the ST-201.
1597  */
1598 static int
1599 ste_mii_readreg(device_t self, int phy, int reg)
1600 {
1601 
1602 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1603 }
1604 
1605 /*
1606  * ste_mii_writereg:	[mii interface function]
1607  *
1608  *	Write a PHY register on the MII of the ST-201.
1609  */
1610 static void
1611 ste_mii_writereg(device_t self, int phy, int reg, int val)
1612 {
1613 
1614 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1615 }
1616 
1617 /*
1618  * ste_mii_statchg:	[mii interface function]
1619  *
1620  *	Callback from MII layer when media changes.
1621  */
1622 static void
1623 ste_mii_statchg(struct ifnet *ifp)
1624 {
1625 	struct ste_softc *sc = ifp->if_softc;
1626 
1627 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1628 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1629 	else
1630 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1631 
1632 	/* XXX 802.1x flow-control? */
1633 
1634 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1635 }
1636 
1637 /*
1638  * ste_mii_bitbang_read: [mii bit-bang interface function]
1639  *
1640  *	Read the MII serial port for the MII bit-bang module.
1641  */
1642 static uint32_t
1643 ste_mii_bitbang_read(device_t self)
1644 {
1645 	struct ste_softc *sc = device_private(self);
1646 
1647 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1648 }
1649 
1650 /*
1651  * ste_mii_bitbang_write: [mii big-bang interface function]
1652  *
1653  *	Write the MII serial port for the MII bit-bang module.
1654  */
1655 static void
1656 ste_mii_bitbang_write(device_t self, uint32_t val)
1657 {
1658 	struct ste_softc *sc = device_private(self);
1659 
1660 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1661 }
1662