xref: /netbsd-src/sys/dev/pci/if_ste.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: if_ste.c,v 1.44 2012/10/27 17:18:33 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. ST-201 10/100
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.44 2012/10/27 17:18:33 chs Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stereg.h>
72 
73 /*
74  * Transmit descriptor list size.
75  */
76 #define	STE_NTXDESC		256
77 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
78 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
79 
80 /*
81  * Receive descriptor list size.
82  */
83 #define	STE_NRXDESC		128
84 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
85 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
86 
87 /*
88  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
89  * a single clump that maps to a single DMA segment to make several things
90  * easier.
91  */
92 struct ste_control_data {
93 	/*
94 	 * The transmit descriptors.
95 	 */
96 	struct ste_tfd scd_txdescs[STE_NTXDESC];
97 
98 	/*
99 	 * The receive descriptors.
100 	 */
101 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
102 };
103 
104 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
105 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
106 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
107 
108 /*
109  * Software state for transmit and receive jobs.
110  */
111 struct ste_descsoft {
112 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
113 	bus_dmamap_t ds_dmamap;		/* our DMA map */
114 };
115 
116 /*
117  * Software state per device.
118  */
119 struct ste_softc {
120 	device_t sc_dev;		/* generic device information */
121 	bus_space_tag_t sc_st;		/* bus space tag */
122 	bus_space_handle_t sc_sh;	/* bus space handle */
123 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
124 	struct ethercom sc_ethercom;	/* ethernet common data */
125 
126 	void *sc_ih;			/* interrupt cookie */
127 
128 	struct mii_data sc_mii;		/* MII/media information */
129 
130 	callout_t sc_tick_ch;		/* tick callout */
131 
132 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
133 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
134 
135 	/*
136 	 * Software state for transmit and receive descriptors.
137 	 */
138 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
139 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
140 
141 	/*
142 	 * Control data structures.
143 	 */
144 	struct ste_control_data *sc_control_data;
145 #define	sc_txdescs	sc_control_data->scd_txdescs
146 #define	sc_rxdescs	sc_control_data->scd_rxdescs
147 
148 	int	sc_txpending;		/* number of Tx requests pending */
149 	int	sc_txdirty;		/* first dirty Tx descriptor */
150 	int	sc_txlast;		/* last used Tx descriptor */
151 
152 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
153 
154 	int	sc_txthresh;		/* Tx threshold */
155 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
156 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
157 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
158 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
159 };
160 
161 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
162 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
163 
164 #define	STE_CDTXSYNC(sc, x, ops)					\
165 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
166 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
167 
168 #define	STE_CDRXSYNC(sc, x, ops)					\
169 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
170 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
171 
172 #define	STE_INIT_RXDESC(sc, x)						\
173 do {									\
174 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
175 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
176 	struct mbuf *__m = __ds->ds_mbuf;				\
177 									\
178 	/*								\
179 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
180 	 * so that the payload after the Ethernet header is aligned	\
181 	 * to a 4-byte boundary.					\
182 	 */								\
183 	__m->m_data = __m->m_ext.ext_buf + 2;				\
184 	__rfd->rfd_frag.frag_addr =					\
185 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
186 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
187 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
188 	__rfd->rfd_status = 0;						\
189 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
190 } while (/*CONSTCOND*/0)
191 
192 #define STE_TIMEOUT 1000
193 
194 static void	ste_start(struct ifnet *);
195 static void	ste_watchdog(struct ifnet *);
196 static int	ste_ioctl(struct ifnet *, u_long, void *);
197 static int	ste_init(struct ifnet *);
198 static void	ste_stop(struct ifnet *, int);
199 
200 static bool	ste_shutdown(device_t, int);
201 
202 static void	ste_reset(struct ste_softc *, u_int32_t);
203 static void	ste_setthresh(struct ste_softc *);
204 static void	ste_txrestart(struct ste_softc *, u_int8_t);
205 static void	ste_rxdrain(struct ste_softc *);
206 static int	ste_add_rxbuf(struct ste_softc *, int);
207 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
208 static void	ste_tick(void *);
209 
210 static void	ste_stats_update(struct ste_softc *);
211 
212 static void	ste_set_filter(struct ste_softc *);
213 
214 static int	ste_intr(void *);
215 static void	ste_txintr(struct ste_softc *);
216 static void	ste_rxintr(struct ste_softc *);
217 
218 static int	ste_mii_readreg(device_t, int, int);
219 static void	ste_mii_writereg(device_t, int, int, int);
220 static void	ste_mii_statchg(struct ifnet *);
221 
222 static int	ste_match(device_t, cfdata_t, void *);
223 static void	ste_attach(device_t, device_t, void *);
224 
225 int	ste_copy_small = 0;
226 
227 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
228     ste_match, ste_attach, NULL, NULL);
229 
230 static uint32_t ste_mii_bitbang_read(device_t);
231 static void	ste_mii_bitbang_write(device_t, uint32_t);
232 
233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
234 	ste_mii_bitbang_read,
235 	ste_mii_bitbang_write,
236 	{
237 		PC_MgmtData,		/* MII_BIT_MDO */
238 		PC_MgmtData,		/* MII_BIT_MDI */
239 		PC_MgmtClk,		/* MII_BIT_MDC */
240 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
241 		0,			/* MII_BIT_DIR_PHY_HOST */
242 	}
243 };
244 
245 /*
246  * Devices supported by this driver.
247  */
248 static const struct ste_product {
249 	pci_vendor_id_t		ste_vendor;
250 	pci_product_id_t	ste_product;
251 	const char		*ste_name;
252 } ste_products[] = {
253 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
254 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
255 
256 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
257 	  "Sundance ST-201 10/100 Ethernet" },
258 
259 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
260 	  "D-Link DL-1002 10/100 Ethernet" },
261 
262 	{ 0,				0,
263 	  NULL },
264 };
265 
266 static const struct ste_product *
267 ste_lookup(const struct pci_attach_args *pa)
268 {
269 	const struct ste_product *sp;
270 
271 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
272 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
273 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
274 			return (sp);
275 	}
276 	return (NULL);
277 }
278 
279 static int
280 ste_match(device_t parent, cfdata_t cf, void *aux)
281 {
282 	struct pci_attach_args *pa = aux;
283 
284 	if (ste_lookup(pa) != NULL)
285 		return (1);
286 
287 	return (0);
288 }
289 
290 static void
291 ste_attach(device_t parent, device_t self, void *aux)
292 {
293 	struct ste_softc *sc = device_private(self);
294 	struct pci_attach_args *pa = aux;
295 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
296 	pci_chipset_tag_t pc = pa->pa_pc;
297 	pci_intr_handle_t ih;
298 	const char *intrstr = NULL;
299 	bus_space_tag_t iot, memt;
300 	bus_space_handle_t ioh, memh;
301 	bus_dma_segment_t seg;
302 	int ioh_valid, memh_valid;
303 	int i, rseg, error;
304 	const struct ste_product *sp;
305 	uint8_t enaddr[ETHER_ADDR_LEN];
306 	uint16_t myea[ETHER_ADDR_LEN / 2];
307 
308 	sc->sc_dev = self;
309 
310 	callout_init(&sc->sc_tick_ch, 0);
311 
312 	sp = ste_lookup(pa);
313 	if (sp == NULL) {
314 		printf("\n");
315 		panic("ste_attach: impossible");
316 	}
317 
318 	printf(": %s\n", sp->ste_name);
319 
320 	/*
321 	 * Map the device.
322 	 */
323 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
324 	    PCI_MAPREG_TYPE_IO, 0,
325 	    &iot, &ioh, NULL, NULL) == 0);
326 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
327 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
328 	    &memt, &memh, NULL, NULL) == 0);
329 
330 	if (memh_valid) {
331 		sc->sc_st = memt;
332 		sc->sc_sh = memh;
333 	} else if (ioh_valid) {
334 		sc->sc_st = iot;
335 		sc->sc_sh = ioh;
336 	} else {
337 		aprint_error_dev(self, "unable to map device registers\n");
338 		return;
339 	}
340 
341 	sc->sc_dmat = pa->pa_dmat;
342 
343 	/* Enable bus mastering. */
344 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
345 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
346 	    PCI_COMMAND_MASTER_ENABLE);
347 
348 	/* power up chip */
349 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
350 	    NULL)) && error != EOPNOTSUPP) {
351 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n",
352 		    error);
353 		return;
354 	}
355 
356 	/*
357 	 * Map and establish our interrupt.
358 	 */
359 	if (pci_intr_map(pa, &ih)) {
360 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
361 		return;
362 	}
363 	intrstr = pci_intr_string(pc, ih);
364 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
365 	if (sc->sc_ih == NULL) {
366 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
367 		if (intrstr != NULL)
368 			aprint_error(" at %s", intrstr);
369 		aprint_error("\n");
370 		return;
371 	}
372 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
373 
374 	/*
375 	 * Allocate the control data structures, and create and load the
376 	 * DMA map for it.
377 	 */
378 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
379 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
380 	    0)) != 0) {
381 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
382 		    error);
383 		goto fail_0;
384 	}
385 
386 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
387 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
388 	    BUS_DMA_COHERENT)) != 0) {
389 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
390 		    error);
391 		goto fail_1;
392 	}
393 
394 	if ((error = bus_dmamap_create(sc->sc_dmat,
395 	    sizeof(struct ste_control_data), 1,
396 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
397 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
398 		    "error = %d\n", error);
399 		goto fail_2;
400 	}
401 
402 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
403 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
404 	    0)) != 0) {
405 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
406 		    error);
407 		goto fail_3;
408 	}
409 
410 	/*
411 	 * Create the transmit buffer DMA maps.
412 	 */
413 	for (i = 0; i < STE_NTXDESC; i++) {
414 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
415 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
416 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
417 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
418 			    "error = %d\n", i, error);
419 			goto fail_4;
420 		}
421 	}
422 
423 	/*
424 	 * Create the receive buffer DMA maps.
425 	 */
426 	for (i = 0; i < STE_NRXDESC; i++) {
427 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
428 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
429 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
430 			    "error = %d\n", i, error);
431 			goto fail_5;
432 		}
433 		sc->sc_rxsoft[i].ds_mbuf = NULL;
434 	}
435 
436 	/*
437 	 * Reset the chip to a known state.
438 	 */
439 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
440 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
441 
442 	/*
443 	 * Read the Ethernet address from the EEPROM.
444 	 */
445 	for (i = 0; i < 3; i++) {
446 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
447 		myea[i] = le16toh(myea[i]);
448 	}
449 	memcpy(enaddr, myea, sizeof(enaddr));
450 
451 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
452 	    ether_sprintf(enaddr));
453 
454 	/*
455 	 * Initialize our media structures and probe the MII.
456 	 */
457 	sc->sc_mii.mii_ifp = ifp;
458 	sc->sc_mii.mii_readreg = ste_mii_readreg;
459 	sc->sc_mii.mii_writereg = ste_mii_writereg;
460 	sc->sc_mii.mii_statchg = ste_mii_statchg;
461 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
462 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
463 	    ether_mediastatus);
464 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
465 	    MII_OFFSET_ANY, 0);
466 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
467 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
468 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
469 	} else
470 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
471 
472 	ifp = &sc->sc_ethercom.ec_if;
473 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
474 	ifp->if_softc = sc;
475 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
476 	ifp->if_ioctl = ste_ioctl;
477 	ifp->if_start = ste_start;
478 	ifp->if_watchdog = ste_watchdog;
479 	ifp->if_init = ste_init;
480 	ifp->if_stop = ste_stop;
481 	IFQ_SET_READY(&ifp->if_snd);
482 
483 	/*
484 	 * Default the transmit threshold to 128 bytes.
485 	 */
486 	sc->sc_txthresh = 128;
487 
488 	/*
489 	 * Disable MWI if the PCI layer tells us to.
490 	 */
491 	sc->sc_DMACtrl = 0;
492 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
493 		sc->sc_DMACtrl |= DC_MWIDisable;
494 
495 	/*
496 	 * We can support 802.1Q VLAN-sized frames.
497 	 */
498 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
499 
500 	/*
501 	 * Attach the interface.
502 	 */
503 	if_attach(ifp);
504 	ether_ifattach(ifp, enaddr);
505 
506 	/*
507 	 * Make sure the interface is shutdown during reboot.
508 	 */
509 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
510 		pmf_class_network_register(self, ifp);
511 	else
512 		aprint_error_dev(self, "couldn't establish power handler\n");
513 
514 	return;
515 
516 	/*
517 	 * Free any resources we've allocated during the failed attach
518 	 * attempt.  Do this in reverse order and fall through.
519 	 */
520  fail_5:
521 	for (i = 0; i < STE_NRXDESC; i++) {
522 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
523 			bus_dmamap_destroy(sc->sc_dmat,
524 			    sc->sc_rxsoft[i].ds_dmamap);
525 	}
526  fail_4:
527 	for (i = 0; i < STE_NTXDESC; i++) {
528 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
529 			bus_dmamap_destroy(sc->sc_dmat,
530 			    sc->sc_txsoft[i].ds_dmamap);
531 	}
532 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
533  fail_3:
534 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
535  fail_2:
536 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
537 	    sizeof(struct ste_control_data));
538  fail_1:
539 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
540  fail_0:
541 	return;
542 }
543 
544 /*
545  * ste_shutdown:
546  *
547  *	Make sure the interface is stopped at reboot time.
548  */
549 static bool
550 ste_shutdown(device_t self, int howto)
551 {
552 	struct ste_softc *sc;
553 
554 	sc = device_private(self);
555 	ste_stop(&sc->sc_ethercom.ec_if, 1);
556 
557 	return true;
558 }
559 
560 static void
561 ste_dmahalt_wait(struct ste_softc *sc)
562 {
563 	int i;
564 
565 	for (i = 0; i < STE_TIMEOUT; i++) {
566 		delay(2);
567 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
568 		     DC_DMAHaltBusy) == 0)
569 			break;
570 	}
571 
572 	if (i == STE_TIMEOUT)
573 		printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
574 }
575 
576 /*
577  * ste_start:		[ifnet interface function]
578  *
579  *	Start packet transmission on the interface.
580  */
581 static void
582 ste_start(struct ifnet *ifp)
583 {
584 	struct ste_softc *sc = ifp->if_softc;
585 	struct mbuf *m0, *m;
586 	struct ste_descsoft *ds;
587 	struct ste_tfd *tfd;
588 	bus_dmamap_t dmamap;
589 	int error, olasttx, nexttx, opending, seg, totlen;
590 
591 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
592 		return;
593 
594 	/*
595 	 * Remember the previous number of pending transmissions
596 	 * and the current last descriptor in the list.
597 	 */
598 	opending = sc->sc_txpending;
599 	olasttx = sc->sc_txlast;
600 
601 	/*
602 	 * Loop through the send queue, setting up transmit descriptors
603 	 * until we drain the queue, or use up all available transmit
604 	 * descriptors.
605 	 */
606 	while (sc->sc_txpending < STE_NTXDESC) {
607 		/*
608 		 * Grab a packet off the queue.
609 		 */
610 		IFQ_POLL(&ifp->if_snd, m0);
611 		if (m0 == NULL)
612 			break;
613 		m = NULL;
614 
615 		/*
616 		 * Get the last and next available transmit descriptor.
617 		 */
618 		nexttx = STE_NEXTTX(sc->sc_txlast);
619 		tfd = &sc->sc_txdescs[nexttx];
620 		ds = &sc->sc_txsoft[nexttx];
621 
622 		dmamap = ds->ds_dmamap;
623 
624 		/*
625 		 * Load the DMA map.  If this fails, the packet either
626 		 * didn't fit in the alloted number of segments, or we
627 		 * were short on resources.  In this case, we'll copy
628 		 * and try again.
629 		 */
630 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
631 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
632 			MGETHDR(m, M_DONTWAIT, MT_DATA);
633 			if (m == NULL) {
634 				printf("%s: unable to allocate Tx mbuf\n",
635 				    device_xname(sc->sc_dev));
636 				break;
637 			}
638 			if (m0->m_pkthdr.len > MHLEN) {
639 				MCLGET(m, M_DONTWAIT);
640 				if ((m->m_flags & M_EXT) == 0) {
641 					printf("%s: unable to allocate Tx "
642 					    "cluster\n", device_xname(sc->sc_dev));
643 					m_freem(m);
644 					break;
645 				}
646 			}
647 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
648 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
649 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
650 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
651 			if (error) {
652 				printf("%s: unable to load Tx buffer, "
653 				    "error = %d\n", device_xname(sc->sc_dev), error);
654 				break;
655 			}
656 		}
657 
658 		IFQ_DEQUEUE(&ifp->if_snd, m0);
659 		if (m != NULL) {
660 			m_freem(m0);
661 			m0 = m;
662 		}
663 
664 		/*
665 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
666 		 */
667 
668 		/* Sync the DMA map. */
669 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
670 		    BUS_DMASYNC_PREWRITE);
671 
672 		/* Initialize the fragment list. */
673 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
674 			tfd->tfd_frags[seg].frag_addr =
675 			    htole32(dmamap->dm_segs[seg].ds_addr);
676 			tfd->tfd_frags[seg].frag_len =
677 			    htole32(dmamap->dm_segs[seg].ds_len);
678 			totlen += dmamap->dm_segs[seg].ds_len;
679 		}
680 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
681 
682 		/* Initialize the descriptor. */
683 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
684 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
685 
686 		/* Sync the descriptor. */
687 		STE_CDTXSYNC(sc, nexttx,
688 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
689 
690 		/*
691 		 * Store a pointer to the packet so we can free it later,
692 		 * and remember what txdirty will be once the packet is
693 		 * done.
694 		 */
695 		ds->ds_mbuf = m0;
696 
697 		/* Advance the tx pointer. */
698 		sc->sc_txpending++;
699 		sc->sc_txlast = nexttx;
700 
701 		/*
702 		 * Pass the packet to any BPF listeners.
703 		 */
704 		bpf_mtap(ifp, m0);
705 	}
706 
707 	if (sc->sc_txpending == STE_NTXDESC) {
708 		/* No more slots left; notify upper layer. */
709 		ifp->if_flags |= IFF_OACTIVE;
710 	}
711 
712 	if (sc->sc_txpending != opending) {
713 		/*
714 		 * We enqueued packets.  If the transmitter was idle,
715 		 * reset the txdirty pointer.
716 		 */
717 		if (opending == 0)
718 			sc->sc_txdirty = STE_NEXTTX(olasttx);
719 
720 		/*
721 		 * Cause a descriptor interrupt to happen on the
722 		 * last packet we enqueued, and also cause the
723 		 * DMA engine to wait after is has finished processing
724 		 * it.
725 		 */
726 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
727 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
728 		    htole32(TFD_TxDMAIndicate);
729 		STE_CDTXSYNC(sc, sc->sc_txlast,
730 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
731 
732 		/*
733 		 * Link up the new chain of descriptors to the
734 		 * last.
735 		 */
736 		sc->sc_txdescs[olasttx].tfd_next =
737 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
738 		STE_CDTXSYNC(sc, olasttx,
739 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
740 
741 		/*
742 		 * Kick the transmit DMA logic.  Note that since we're
743 		 * using auto-polling, reading the Tx desc pointer will
744 		 * give it the nudge it needs to get going.
745 		 */
746 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
747 		    STE_TxDMAListPtr) == 0) {
748 			bus_space_write_4(sc->sc_st, sc->sc_sh,
749 			    STE_DMACtrl, DC_TxDMAHalt);
750 			ste_dmahalt_wait(sc);
751 			bus_space_write_4(sc->sc_st, sc->sc_sh,
752 			    STE_TxDMAListPtr,
753 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
754 			bus_space_write_4(sc->sc_st, sc->sc_sh,
755 			    STE_DMACtrl, DC_TxDMAResume);
756 		}
757 
758 		/* Set a watchdog timer in case the chip flakes out. */
759 		ifp->if_timer = 5;
760 	}
761 }
762 
763 /*
764  * ste_watchdog:	[ifnet interface function]
765  *
766  *	Watchdog timer handler.
767  */
768 static void
769 ste_watchdog(struct ifnet *ifp)
770 {
771 	struct ste_softc *sc = ifp->if_softc;
772 
773 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
774 	ifp->if_oerrors++;
775 
776 	ste_txintr(sc);
777 	ste_rxintr(sc);
778 	(void) ste_init(ifp);
779 
780 	/* Try to get more packets going. */
781 	ste_start(ifp);
782 }
783 
784 /*
785  * ste_ioctl:		[ifnet interface function]
786  *
787  *	Handle control requests from the operator.
788  */
789 static int
790 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
791 {
792 	struct ste_softc *sc = ifp->if_softc;
793 	int s, error;
794 
795 	s = splnet();
796 
797 	error = ether_ioctl(ifp, cmd, data);
798 	if (error == ENETRESET) {
799 		/*
800 		 * Multicast list has changed; set the hardware filter
801 		 * accordingly.
802 		 */
803 		if (ifp->if_flags & IFF_RUNNING)
804 			ste_set_filter(sc);
805 		error = 0;
806 	}
807 
808 	/* Try to get more packets going. */
809 	ste_start(ifp);
810 
811 	splx(s);
812 	return (error);
813 }
814 
815 /*
816  * ste_intr:
817  *
818  *	Interrupt service routine.
819  */
820 static int
821 ste_intr(void *arg)
822 {
823 	struct ste_softc *sc = arg;
824 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
825 	uint16_t isr;
826 	uint8_t txstat;
827 	int wantinit;
828 
829 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
830 	     IS_InterruptStatus) == 0)
831 		return (0);
832 
833 	for (wantinit = 0; wantinit == 0;) {
834 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
835 		if ((isr & sc->sc_IntEnable) == 0)
836 			break;
837 
838 		/* Receive interrupts. */
839 		if (isr & IE_RxDMAComplete)
840 			ste_rxintr(sc);
841 
842 		/* Transmit interrupts. */
843 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
844 			ste_txintr(sc);
845 
846 		/* Statistics overflow. */
847 		if (isr & IE_UpdateStats)
848 			ste_stats_update(sc);
849 
850 		/* Transmission errors. */
851 		if (isr & IE_TxComplete) {
852 			for (;;) {
853 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
854 				    STE_TxStatus);
855 				if ((txstat & TS_TxComplete) == 0)
856 					break;
857 				if (txstat & TS_TxUnderrun) {
858 					sc->sc_txthresh += 32;
859 					if (sc->sc_txthresh > 0x1ffc)
860 						sc->sc_txthresh = 0x1ffc;
861 					printf("%s: transmit underrun, new "
862 					    "threshold: %d bytes\n",
863 					    device_xname(sc->sc_dev),
864 					    sc->sc_txthresh);
865 					ste_reset(sc, AC_TxReset | AC_DMA |
866 					    AC_FIFO | AC_Network);
867 					ste_setthresh(sc);
868 					bus_space_write_1(sc->sc_st, sc->sc_sh,
869 					    STE_TxDMAPollPeriod, 127);
870 					ste_txrestart(sc,
871 					    bus_space_read_1(sc->sc_st,
872 						sc->sc_sh, STE_TxFrameId));
873 				}
874 				if (txstat & TS_TxReleaseError) {
875 					printf("%s: Tx FIFO release error\n",
876 					    device_xname(sc->sc_dev));
877 					wantinit = 1;
878 				}
879 				if (txstat & TS_MaxCollisions) {
880 					printf("%s: excessive collisions\n",
881 					    device_xname(sc->sc_dev));
882 					wantinit = 1;
883 				}
884 				if (txstat & TS_TxStatusOverflow) {
885 					printf("%s: status overflow\n",
886 					    device_xname(sc->sc_dev));
887 					wantinit = 1;
888 				}
889 				bus_space_write_2(sc->sc_st, sc->sc_sh,
890 				    STE_TxStatus, 0);
891 			}
892 		}
893 
894 		/* Host interface errors. */
895 		if (isr & IE_HostError) {
896 			printf("%s: Host interface error\n",
897 			    device_xname(sc->sc_dev));
898 			wantinit = 1;
899 		}
900 	}
901 
902 	if (wantinit)
903 		ste_init(ifp);
904 
905 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
906 	    sc->sc_IntEnable);
907 
908 	/* Try to get more packets going. */
909 	ste_start(ifp);
910 
911 	return (1);
912 }
913 
914 /*
915  * ste_txintr:
916  *
917  *	Helper; handle transmit interrupts.
918  */
919 static void
920 ste_txintr(struct ste_softc *sc)
921 {
922 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
923 	struct ste_descsoft *ds;
924 	uint32_t control;
925 	int i;
926 
927 	ifp->if_flags &= ~IFF_OACTIVE;
928 
929 	/*
930 	 * Go through our Tx list and free mbufs for those
931 	 * frames which have been transmitted.
932 	 */
933 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
934 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
935 		ds = &sc->sc_txsoft[i];
936 
937 		STE_CDTXSYNC(sc, i,
938 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
939 
940 		control = le32toh(sc->sc_txdescs[i].tfd_control);
941 		if ((control & TFD_TxDMAComplete) == 0)
942 			break;
943 
944 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
945 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
946 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
947 		m_freem(ds->ds_mbuf);
948 		ds->ds_mbuf = NULL;
949 	}
950 
951 	/* Update the dirty transmit buffer pointer. */
952 	sc->sc_txdirty = i;
953 
954 	/*
955 	 * If there are no more pending transmissions, cancel the watchdog
956 	 * timer.
957 	 */
958 	if (sc->sc_txpending == 0)
959 		ifp->if_timer = 0;
960 }
961 
962 /*
963  * ste_rxintr:
964  *
965  *	Helper; handle receive interrupts.
966  */
967 static void
968 ste_rxintr(struct ste_softc *sc)
969 {
970 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
971 	struct ste_descsoft *ds;
972 	struct mbuf *m;
973 	uint32_t status;
974 	int i, len;
975 
976 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
977 		ds = &sc->sc_rxsoft[i];
978 
979 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
980 
981 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
982 
983 		if ((status & RFD_RxDMAComplete) == 0)
984 			break;
985 
986 		/*
987 		 * If the packet had an error, simply recycle the
988 		 * buffer.  Note, we count the error later in the
989 		 * periodic stats update.
990 		 */
991 		if (status & RFD_RxFrameError) {
992 			STE_INIT_RXDESC(sc, i);
993 			continue;
994 		}
995 
996 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
997 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
998 
999 		/*
1000 		 * No errors; receive the packet.  Note, we have
1001 		 * configured the chip to not include the CRC at
1002 		 * the end of the packet.
1003 		 */
1004 		len = RFD_RxDMAFrameLen(status);
1005 
1006 		/*
1007 		 * If the packet is small enough to fit in a
1008 		 * single header mbuf, allocate one and copy
1009 		 * the data into it.  This greatly reduces
1010 		 * memory consumption when we receive lots
1011 		 * of small packets.
1012 		 *
1013 		 * Otherwise, we add a new buffer to the receive
1014 		 * chain.  If this fails, we drop the packet and
1015 		 * recycle the old buffer.
1016 		 */
1017 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1018 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1019 			if (m == NULL)
1020 				goto dropit;
1021 			m->m_data += 2;
1022 			memcpy(mtod(m, void *),
1023 			    mtod(ds->ds_mbuf, void *), len);
1024 			STE_INIT_RXDESC(sc, i);
1025 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1026 			    ds->ds_dmamap->dm_mapsize,
1027 			    BUS_DMASYNC_PREREAD);
1028 		} else {
1029 			m = ds->ds_mbuf;
1030 			if (ste_add_rxbuf(sc, i) != 0) {
1031  dropit:
1032 				ifp->if_ierrors++;
1033 				STE_INIT_RXDESC(sc, i);
1034 				bus_dmamap_sync(sc->sc_dmat,
1035 				    ds->ds_dmamap, 0,
1036 				    ds->ds_dmamap->dm_mapsize,
1037 				    BUS_DMASYNC_PREREAD);
1038 				continue;
1039 			}
1040 		}
1041 
1042 		m->m_pkthdr.rcvif = ifp;
1043 		m->m_pkthdr.len = m->m_len = len;
1044 
1045 		/*
1046 		 * Pass this up to any BPF listeners, but only
1047 		 * pass if up the stack if it's for us.
1048 		 */
1049 		bpf_mtap(ifp, m);
1050 
1051 		/* Pass it on. */
1052 		(*ifp->if_input)(ifp, m);
1053 	}
1054 
1055 	/* Update the receive pointer. */
1056 	sc->sc_rxptr = i;
1057 }
1058 
1059 /*
1060  * ste_tick:
1061  *
1062  *	One second timer, used to tick the MII.
1063  */
1064 static void
1065 ste_tick(void *arg)
1066 {
1067 	struct ste_softc *sc = arg;
1068 	int s;
1069 
1070 	s = splnet();
1071 	mii_tick(&sc->sc_mii);
1072 	ste_stats_update(sc);
1073 	splx(s);
1074 
1075 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1076 }
1077 
1078 /*
1079  * ste_stats_update:
1080  *
1081  *	Read the ST-201 statistics counters.
1082  */
1083 static void
1084 ste_stats_update(struct ste_softc *sc)
1085 {
1086 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1087 	bus_space_tag_t st = sc->sc_st;
1088 	bus_space_handle_t sh = sc->sc_sh;
1089 
1090 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1091 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1092 
1093 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1094 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1095 
1096 	ifp->if_opackets +=
1097 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1098 	ifp->if_ipackets +=
1099 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1100 
1101 	ifp->if_collisions +=
1102 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1103 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1104 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1105 
1106 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1107 
1108 	ifp->if_ierrors +=
1109 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1110 
1111 	ifp->if_oerrors +=
1112 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1113 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1114 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1115 
1116 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1117 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1118 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1119 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1120 }
1121 
1122 /*
1123  * ste_reset:
1124  *
1125  *	Perform a soft reset on the ST-201.
1126  */
1127 static void
1128 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1129 {
1130 	uint32_t ac;
1131 	int i;
1132 
1133 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1134 
1135 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1136 
1137 	delay(50000);
1138 
1139 	for (i = 0; i < STE_TIMEOUT; i++) {
1140 		delay(1000);
1141 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1142 		     AC_ResetBusy) == 0)
1143 			break;
1144 	}
1145 
1146 	if (i == STE_TIMEOUT)
1147 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1148 
1149 	delay(1000);
1150 }
1151 
1152 /*
1153  * ste_setthresh:
1154  *
1155  * 	set the various transmit threshold registers
1156  */
1157 static void
1158 ste_setthresh(struct ste_softc *sc)
1159 {
1160 	/* set the TX threhold */
1161 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1162 	    STE_TxStartThresh, sc->sc_txthresh);
1163 	/* Urgent threshold: set to sc_txthresh / 2 */
1164 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1165 	    sc->sc_txthresh >> 6);
1166 	/* Burst threshold: use default value (256 bytes) */
1167 }
1168 
1169 /*
1170  * restart TX at the given frame ID in the transmitter ring
1171  */
1172 static void
1173 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1174 {
1175 	u_int32_t control;
1176 
1177 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1178 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1179 	control &= ~TFD_TxDMAComplete;
1180 	sc->sc_txdescs[id].tfd_control = htole32(control);
1181 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1182 
1183 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1184 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1185 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1186 	ste_dmahalt_wait(sc);
1187 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1188 	    STE_CDTXADDR(sc, id));
1189 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1190 }
1191 
1192 /*
1193  * ste_init:		[ ifnet interface function ]
1194  *
1195  *	Initialize the interface.  Must be called at splnet().
1196  */
1197 static int
1198 ste_init(struct ifnet *ifp)
1199 {
1200 	struct ste_softc *sc = ifp->if_softc;
1201 	bus_space_tag_t st = sc->sc_st;
1202 	bus_space_handle_t sh = sc->sc_sh;
1203 	struct ste_descsoft *ds;
1204 	int i, error = 0;
1205 
1206 	/*
1207 	 * Cancel any pending I/O.
1208 	 */
1209 	ste_stop(ifp, 0);
1210 
1211 	/*
1212 	 * Reset the chip to a known state.
1213 	 */
1214 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1215 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1216 
1217 	/*
1218 	 * Initialize the transmit descriptor ring.
1219 	 */
1220 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1221 	sc->sc_txpending = 0;
1222 	sc->sc_txdirty = 0;
1223 	sc->sc_txlast = STE_NTXDESC - 1;
1224 
1225 	/*
1226 	 * Initialize the receive descriptor and receive job
1227 	 * descriptor rings.
1228 	 */
1229 	for (i = 0; i < STE_NRXDESC; i++) {
1230 		ds = &sc->sc_rxsoft[i];
1231 		if (ds->ds_mbuf == NULL) {
1232 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1233 				printf("%s: unable to allocate or map rx "
1234 				    "buffer %d, error = %d\n",
1235 				    device_xname(sc->sc_dev), i, error);
1236 				/*
1237 				 * XXX Should attempt to run with fewer receive
1238 				 * XXX buffers instead of just failing.
1239 				 */
1240 				ste_rxdrain(sc);
1241 				goto out;
1242 			}
1243 		} else
1244 			STE_INIT_RXDESC(sc, i);
1245 	}
1246 	sc->sc_rxptr = 0;
1247 
1248 	/* Set the station address. */
1249 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1250 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1251 		    CLLADDR(ifp->if_sadl)[i]);
1252 
1253 	/* Set up the receive filter. */
1254 	ste_set_filter(sc);
1255 
1256 	/*
1257 	 * Give the receive ring to the chip.
1258 	 */
1259 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1260 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1261 
1262 	/*
1263 	 * We defer giving the transmit ring to the chip until we
1264 	 * transmit the first packet.
1265 	 */
1266 
1267 	/*
1268 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1269 	 * large (127 is the max) -- we explicitly kick the transmit engine
1270 	 * when there's actually a packet.  We are using auto-polling only
1271 	 * to make the interface to the transmit engine not suck.
1272 	 */
1273 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1274 
1275 	/* ..and the Rx auto-poll period. */
1276 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1277 
1278 	/* Initialize the Tx start threshold. */
1279 	ste_setthresh(sc);
1280 
1281 	/* Set the FIFO release threshold to 512 bytes. */
1282 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1283 
1284 	/* Set maximum packet size for VLAN. */
1285 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1286 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1287 	else
1288 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1289 
1290 	/*
1291 	 * Initialize the interrupt mask.
1292 	 */
1293 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1294 	    IE_TxDMAComplete | IE_RxDMAComplete;
1295 
1296 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1297 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1298 
1299 	/*
1300 	 * Start the receive DMA engine.
1301 	 */
1302 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1303 
1304 	/*
1305 	 * Initialize MacCtrl0 -- do it before setting the media,
1306 	 * as setting the media will actually program the register.
1307 	 */
1308 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1309 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1310 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1311 
1312 	/*
1313 	 * Set the current media.
1314 	 */
1315 	if ((error = ether_mediachange(ifp)) != 0)
1316 		goto out;
1317 
1318 	/*
1319 	 * Start the MAC.
1320 	 */
1321 	bus_space_write_2(st, sh, STE_MacCtrl1,
1322 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1323 
1324 	/*
1325 	 * Start the one second MII clock.
1326 	 */
1327 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1328 
1329 	/*
1330 	 * ...all done!
1331 	 */
1332 	ifp->if_flags |= IFF_RUNNING;
1333 	ifp->if_flags &= ~IFF_OACTIVE;
1334 
1335  out:
1336 	if (error)
1337 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1338 	return (error);
1339 }
1340 
1341 /*
1342  * ste_drain:
1343  *
1344  *	Drain the receive queue.
1345  */
1346 static void
1347 ste_rxdrain(struct ste_softc *sc)
1348 {
1349 	struct ste_descsoft *ds;
1350 	int i;
1351 
1352 	for (i = 0; i < STE_NRXDESC; i++) {
1353 		ds = &sc->sc_rxsoft[i];
1354 		if (ds->ds_mbuf != NULL) {
1355 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1356 			m_freem(ds->ds_mbuf);
1357 			ds->ds_mbuf = NULL;
1358 		}
1359 	}
1360 }
1361 
1362 /*
1363  * ste_stop:		[ ifnet interface function ]
1364  *
1365  *	Stop transmission on the interface.
1366  */
1367 static void
1368 ste_stop(struct ifnet *ifp, int disable)
1369 {
1370 	struct ste_softc *sc = ifp->if_softc;
1371 	struct ste_descsoft *ds;
1372 	int i;
1373 
1374 	/*
1375 	 * Stop the one second clock.
1376 	 */
1377 	callout_stop(&sc->sc_tick_ch);
1378 
1379 	/* Down the MII. */
1380 	mii_down(&sc->sc_mii);
1381 
1382 	/*
1383 	 * Disable interrupts.
1384 	 */
1385 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1386 
1387 	/*
1388 	 * Stop receiver, transmitter, and stats update.
1389 	 */
1390 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1391 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1392 
1393 	/*
1394 	 * Stop the transmit and receive DMA.
1395 	 */
1396 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1397 	    DC_RxDMAHalt | DC_TxDMAHalt);
1398 	ste_dmahalt_wait(sc);
1399 
1400 	/*
1401 	 * Release any queued transmit buffers.
1402 	 */
1403 	for (i = 0; i < STE_NTXDESC; i++) {
1404 		ds = &sc->sc_txsoft[i];
1405 		if (ds->ds_mbuf != NULL) {
1406 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1407 			m_freem(ds->ds_mbuf);
1408 			ds->ds_mbuf = NULL;
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * Mark the interface down and cancel the watchdog timer.
1414 	 */
1415 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1416 	ifp->if_timer = 0;
1417 
1418 	if (disable)
1419 		ste_rxdrain(sc);
1420 }
1421 
1422 static int
1423 ste_eeprom_wait(struct ste_softc *sc)
1424 {
1425 	int i;
1426 
1427 	for (i = 0; i < STE_TIMEOUT; i++) {
1428 		delay(1000);
1429 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1430 		     EC_EepromBusy) == 0)
1431 			return (0);
1432 	}
1433 	return (1);
1434 }
1435 
1436 /*
1437  * ste_read_eeprom:
1438  *
1439  *	Read data from the serial EEPROM.
1440  */
1441 static void
1442 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1443 {
1444 
1445 	if (ste_eeprom_wait(sc))
1446 		printf("%s: EEPROM failed to come ready\n",
1447 		    device_xname(sc->sc_dev));
1448 
1449 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1450 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1451 	if (ste_eeprom_wait(sc))
1452 		printf("%s: EEPROM read timed out\n",
1453 		    device_xname(sc->sc_dev));
1454 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1455 }
1456 
1457 /*
1458  * ste_add_rxbuf:
1459  *
1460  *	Add a receive buffer to the indicated descriptor.
1461  */
1462 static int
1463 ste_add_rxbuf(struct ste_softc *sc, int idx)
1464 {
1465 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1466 	struct mbuf *m;
1467 	int error;
1468 
1469 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1470 	if (m == NULL)
1471 		return (ENOBUFS);
1472 
1473 	MCLGET(m, M_DONTWAIT);
1474 	if ((m->m_flags & M_EXT) == 0) {
1475 		m_freem(m);
1476 		return (ENOBUFS);
1477 	}
1478 
1479 	if (ds->ds_mbuf != NULL)
1480 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1481 
1482 	ds->ds_mbuf = m;
1483 
1484 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1485 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1486 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1487 	if (error) {
1488 		printf("%s: can't load rx DMA map %d, error = %d\n",
1489 		    device_xname(sc->sc_dev), idx, error);
1490 		panic("ste_add_rxbuf");		/* XXX */
1491 	}
1492 
1493 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1494 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1495 
1496 	STE_INIT_RXDESC(sc, idx);
1497 
1498 	return (0);
1499 }
1500 
1501 /*
1502  * ste_set_filter:
1503  *
1504  *	Set up the receive filter.
1505  */
1506 static void
1507 ste_set_filter(struct ste_softc *sc)
1508 {
1509 	struct ethercom *ec = &sc->sc_ethercom;
1510 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1511 	struct ether_multi *enm;
1512 	struct ether_multistep step;
1513 	uint32_t crc;
1514 	uint16_t mchash[4];
1515 
1516 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1517 	if (ifp->if_flags & IFF_BROADCAST)
1518 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1519 
1520 	if (ifp->if_flags & IFF_PROMISC) {
1521 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1522 		goto allmulti;
1523 	}
1524 
1525 	/*
1526 	 * Set up the multicast address filter by passing all multicast
1527 	 * addresses through a CRC generator, and then using the low-order
1528 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1529 	 * high order bits select the register, while the rest of the bits
1530 	 * select the bit within the register.
1531 	 */
1532 
1533 	memset(mchash, 0, sizeof(mchash));
1534 
1535 	ETHER_FIRST_MULTI(step, ec, enm);
1536 	if (enm == NULL)
1537 		goto done;
1538 
1539 	while (enm != NULL) {
1540 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1541 			/*
1542 			 * We must listen to a range of multicast addresses.
1543 			 * For now, just accept all multicasts, rather than
1544 			 * trying to set only those filter bits needed to match
1545 			 * the range.  (At this time, the only use of address
1546 			 * ranges is for IP multicast routing, for which the
1547 			 * range is big enough to require all bits set.)
1548 			 */
1549 			goto allmulti;
1550 		}
1551 
1552 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1553 
1554 		/* Just want the 6 least significant bits. */
1555 		crc &= 0x3f;
1556 
1557 		/* Set the corresponding bit in the hash table. */
1558 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1559 
1560 		ETHER_NEXT_MULTI(step, enm);
1561 	}
1562 
1563 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1564 
1565 	ifp->if_flags &= ~IFF_ALLMULTI;
1566 	goto done;
1567 
1568  allmulti:
1569 	ifp->if_flags |= IFF_ALLMULTI;
1570 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1571 
1572  done:
1573 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1574 		/*
1575 		 * Program the multicast hash table.
1576 		 */
1577 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1578 		    mchash[0]);
1579 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1580 		    mchash[1]);
1581 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1582 		    mchash[2]);
1583 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1584 		    mchash[3]);
1585 	}
1586 
1587 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1588 	    sc->sc_ReceiveMode);
1589 }
1590 
1591 /*
1592  * ste_mii_readreg:	[mii interface function]
1593  *
1594  *	Read a PHY register on the MII of the ST-201.
1595  */
1596 static int
1597 ste_mii_readreg(device_t self, int phy, int reg)
1598 {
1599 
1600 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1601 }
1602 
1603 /*
1604  * ste_mii_writereg:	[mii interface function]
1605  *
1606  *	Write a PHY register on the MII of the ST-201.
1607  */
1608 static void
1609 ste_mii_writereg(device_t self, int phy, int reg, int val)
1610 {
1611 
1612 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1613 }
1614 
1615 /*
1616  * ste_mii_statchg:	[mii interface function]
1617  *
1618  *	Callback from MII layer when media changes.
1619  */
1620 static void
1621 ste_mii_statchg(struct ifnet *ifp)
1622 {
1623 	struct ste_softc *sc = ifp->if_softc;
1624 
1625 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1626 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1627 	else
1628 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1629 
1630 	/* XXX 802.1x flow-control? */
1631 
1632 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1633 }
1634 
1635 /*
1636  * ste_mii_bitbang_read: [mii bit-bang interface function]
1637  *
1638  *	Read the MII serial port for the MII bit-bang module.
1639  */
1640 static uint32_t
1641 ste_mii_bitbang_read(device_t self)
1642 {
1643 	struct ste_softc *sc = device_private(self);
1644 
1645 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1646 }
1647 
1648 /*
1649  * ste_mii_bitbang_write: [mii big-bang interface function]
1650  *
1651  *	Write the MII serial port for the MII bit-bang module.
1652  */
1653 static void
1654 ste_mii_bitbang_write(device_t self, uint32_t val)
1655 {
1656 	struct ste_softc *sc = device_private(self);
1657 
1658 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1659 }
1660