xref: /netbsd-src/sys/dev/pci/if_sip.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: if_sip.c,v 1.168 2018/06/26 06:48:01 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.168 2018/06/26 06:48:01 msaitoh Exp $");
77 
78 
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91 
92 #include <sys/rndsource.h>
93 
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98 
99 #include <net/bpf.h>
100 
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104 
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108 
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112 
113 #include <dev/pci/if_sipreg.h>
114 
115 /*
116  * Transmit descriptor list size.  This is arbitrary, but allocate
117  * enough descriptors for 128 pending transmissions, and 8 segments
118  * per packet (64 for DP83820 for jumbo frames).
119  *
120  * This MUST work out to a power of 2.
121  */
122 #define	GSIP_NTXSEGS_ALLOC 16
123 #define	SIP_NTXSEGS_ALLOC 8
124 
125 #define	SIP_TXQUEUELEN		256
126 #define	MAX_SIP_NTXDESC	\
127     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128 
129 /*
130  * Receive descriptor list size.  We have one Rx buffer per incoming
131  * packet, so this logic is a little simpler.
132  *
133  * Actually, on the DP83820, we allow the packet to consume more than
134  * one buffer, in order to support jumbo Ethernet frames.  In that
135  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
137  * so we'd better be quick about handling receive interrupts.
138  */
139 #define	GSIP_NRXDESC		256
140 #define	SIP_NRXDESC		128
141 
142 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
143 
144 /*
145  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
146  * a single clump that maps to a single DMA segment to make several things
147  * easier.
148  */
149 struct sip_control_data {
150 	/*
151 	 * The transmit descriptors.
152 	 */
153 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154 
155 	/*
156 	 * The receive descriptors.
157 	 */
158 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160 
161 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
162 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
163 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
164 
165 /*
166  * Software state for transmit jobs.
167  */
168 struct sip_txsoft {
169 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
170 	bus_dmamap_t txs_dmamap;	/* our DMA map */
171 	int txs_firstdesc;		/* first descriptor in packet */
172 	int txs_lastdesc;		/* last descriptor in packet */
173 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175 
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177 
178 /*
179  * Software state for receive jobs.
180  */
181 struct sip_rxsoft {
182 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
183 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
184 };
185 
186 enum sip_attach_stage {
187 	  SIP_ATTACH_FIN = 0
188 	, SIP_ATTACH_CREATE_RXMAP
189 	, SIP_ATTACH_CREATE_TXMAP
190 	, SIP_ATTACH_LOAD_MAP
191 	, SIP_ATTACH_CREATE_MAP
192 	, SIP_ATTACH_MAP_MEM
193 	, SIP_ATTACH_ALLOC_MEM
194 	, SIP_ATTACH_INTR
195 	, SIP_ATTACH_MAP
196 };
197 
198 /*
199  * Software state per device.
200  */
201 struct sip_softc {
202 	device_t sc_dev;		/* generic device information */
203 	device_suspensor_t		sc_suspensor;
204 	pmf_qual_t			sc_qual;
205 
206 	bus_space_tag_t sc_st;		/* bus space tag */
207 	bus_space_handle_t sc_sh;	/* bus space handle */
208 	bus_size_t sc_sz;		/* bus space size */
209 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
210 	pci_chipset_tag_t sc_pc;
211 	bus_dma_segment_t sc_seg;
212 	struct ethercom sc_ethercom;	/* ethernet common data */
213 
214 	const struct sip_product *sc_model; /* which model are we? */
215 	int sc_gigabit;			/* 1: 83820, 0: other */
216 	int sc_rev;			/* chip revision */
217 
218 	void *sc_ih;			/* interrupt cookie */
219 
220 	struct mii_data sc_mii;		/* MII/media information */
221 
222 	callout_t sc_tick_ch;		/* tick callout */
223 
224 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
225 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
226 
227 	/*
228 	 * Software state for transmit and receive descriptors.
229 	 */
230 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232 
233 	/*
234 	 * Control data structures.
235 	 */
236 	struct sip_control_data *sc_control_data;
237 #define	sc_txdescs	sc_control_data->scd_txdescs
238 #define	sc_rxdescs	sc_control_data->scd_rxdescs
239 
240 #ifdef SIP_EVENT_COUNTERS
241 	/*
242 	 * Event counters.
243 	 */
244 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
245 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
246 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
247 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
248 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
249 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
250 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
251 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
252 	/* DP83820 only */
253 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
254 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
255 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
256 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
257 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
258 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
259 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261 
262 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
263 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
264 	u_int32_t sc_imr;		/* prototype IMR register */
265 	u_int32_t sc_rfcr;		/* prototype RFCR register */
266 
267 	u_int32_t sc_cfg;		/* prototype CFG register */
268 
269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
270 
271 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
272 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
273 
274 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
275 
276 	int	sc_flowflags;		/* 802.3x flow control flags */
277 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
278 	int	sc_paused;		/* paused indication */
279 
280 	int	sc_txfree;		/* number of free Tx descriptors */
281 	int	sc_txnext;		/* next ready Tx descriptor */
282 	int	sc_txwin;		/* Tx descriptors since last intr */
283 
284 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
285 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
286 
287 	/* values of interface state at last init */
288 	struct {
289 		/* if_capenable */
290 		uint64_t	if_capenable;
291 		/* ec_capenable */
292 		int		ec_capenable;
293 		/* VLAN_ATTACHED */
294 		int		is_vlan;
295 	}	sc_prev;
296 
297 	short	sc_if_flags;
298 
299 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
300 	int	sc_rxdiscard;
301 	int	sc_rxlen;
302 	struct mbuf *sc_rxhead;
303 	struct mbuf *sc_rxtail;
304 	struct mbuf **sc_rxtailp;
305 
306 	int sc_ntxdesc;
307 	int sc_ntxdesc_mask;
308 
309 	int sc_nrxdesc_mask;
310 
311 	const struct sip_parm {
312 		const struct sip_regs {
313 			int r_rxcfg;
314 			int r_txcfg;
315 		} p_regs;
316 
317 		const struct sip_bits {
318 			uint32_t b_txcfg_mxdma_8;
319 			uint32_t b_txcfg_mxdma_16;
320 			uint32_t b_txcfg_mxdma_32;
321 			uint32_t b_txcfg_mxdma_64;
322 			uint32_t b_txcfg_mxdma_128;
323 			uint32_t b_txcfg_mxdma_256;
324 			uint32_t b_txcfg_mxdma_512;
325 			uint32_t b_txcfg_flth_mask;
326 			uint32_t b_txcfg_drth_mask;
327 
328 			uint32_t b_rxcfg_mxdma_8;
329 			uint32_t b_rxcfg_mxdma_16;
330 			uint32_t b_rxcfg_mxdma_32;
331 			uint32_t b_rxcfg_mxdma_64;
332 			uint32_t b_rxcfg_mxdma_128;
333 			uint32_t b_rxcfg_mxdma_256;
334 			uint32_t b_rxcfg_mxdma_512;
335 
336 			uint32_t b_isr_txrcmp;
337 			uint32_t b_isr_rxrcmp;
338 			uint32_t b_isr_dperr;
339 			uint32_t b_isr_sserr;
340 			uint32_t b_isr_rmabt;
341 			uint32_t b_isr_rtabt;
342 
343 			uint32_t b_cmdsts_size_mask;
344 		} p_bits;
345 		int		p_filtmem;
346 		int		p_rxbuf_len;
347 		bus_size_t	p_tx_dmamap_size;
348 		int		p_ntxsegs;
349 		int		p_ntxsegs_alloc;
350 		int		p_nrxdesc;
351 	} *sc_parm;
352 
353 	void (*sc_rxintr)(struct sip_softc *);
354 
355 	krndsource_t rnd_source;	/* random source */
356 };
357 
358 #define	sc_bits	sc_parm->p_bits
359 #define	sc_regs	sc_parm->p_regs
360 
361 static const struct sip_parm sip_parm = {
362 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
364 	, .p_tx_dmamap_size = MCLBYTES
365 	, .p_ntxsegs = 16
366 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 	, .p_nrxdesc = SIP_NRXDESC
368 	, .p_bits = {
369 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
370 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
371 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
372 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
373 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
374 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
375 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
376 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
377 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
378 
379 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
380 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
381 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
382 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
383 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
384 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
385 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
386 
387 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
388 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
389 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
390 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
391 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
392 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
393 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 	}
395 	, .p_regs = {
396 		.r_rxcfg = OTHER_SIP_RXCFG,
397 		.r_txcfg = OTHER_SIP_TXCFG
398 	}
399 }, gsip_parm = {
400 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 	, .p_rxbuf_len = MCLBYTES - 8
402 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 	, .p_ntxsegs = 64
404 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 	, .p_nrxdesc = GSIP_NRXDESC
406 	, .p_bits = {
407 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
408 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
409 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
410 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
411 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
412 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
413 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
414 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
415 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
416 
417 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
418 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
419 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
420 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
421 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
422 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
423 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
424 
425 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
426 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
427 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
428 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
429 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
430 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
431 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 	}
433 	, .p_regs = {
434 		.r_rxcfg = DP83820_SIP_RXCFG,
435 		.r_txcfg = DP83820_SIP_TXCFG
436 	}
437 };
438 
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 	return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444 
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 	return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450 
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 	sc->sc_rxtailp = &sc->sc_rxhead;
456 	*sc->sc_rxtailp = NULL;
457 	sc->sc_rxlen = 0;
458 }
459 
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 	*sc->sc_rxtailp = sc->sc_rxtail = m;
465 	sc->sc_rxtailp = &m->m_next;
466 }
467 
468 #ifdef SIP_EVENT_COUNTERS
469 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
470 #else
471 #define	SIP_EVCNT_INCR(ev)	/* nothing */
472 #endif
473 
474 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
476 
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 	int x, n;
481 
482 	x = x0;
483 	n = n0;
484 
485 	/* If it will wrap around, sync to the end of the ring. */
486 	if (x + n > sc->sc_ntxdesc) {
487 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 		    (sc->sc_ntxdesc - x), ops);
490 		n -= (sc->sc_ntxdesc - x);
491 		x = 0;
492 	}
493 
494 	/* Now sync whatever is left. */
495 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498 
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505 
506 #if 0
507 #ifdef DP83820
508 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
509 	u_int32_t	sipd_cmdsts;	/* command/status word */
510 #else
511 	u_int32_t	sipd_cmdsts;	/* command/status word */
512 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515 
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521 
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527 
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
533 
534 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 	sipd->sipd_extsts = 0;
539 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541 
542 #define	SIP_CHIP_VERS(sc, v, p, r)					\
543 	((sc)->sc_model->sip_vendor == (v) &&				\
544 	 (sc)->sc_model->sip_product == (p) &&				\
545 	 (sc)->sc_rev == (r))
546 
547 #define	SIP_CHIP_MODEL(sc, v, p)					\
548 	((sc)->sc_model->sip_vendor == (v) &&				\
549 	 (sc)->sc_model->sip_product == (p))
550 
551 #define	SIP_SIS900_REV(sc, rev)						\
552 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553 
554 #define SIP_TIMEOUT 1000
555 
556 static int	sip_ifflags_cb(struct ethercom *);
557 static void	sipcom_start(struct ifnet *);
558 static void	sipcom_watchdog(struct ifnet *);
559 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int	sipcom_init(struct ifnet *);
561 static void	sipcom_stop(struct ifnet *, int);
562 
563 static bool	sipcom_reset(struct sip_softc *);
564 static void	sipcom_rxdrain(struct sip_softc *);
565 static int	sipcom_add_rxbuf(struct sip_softc *, int);
566 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
567 				      u_int16_t *);
568 static void	sipcom_tick(void *);
569 
570 static void	sipcom_sis900_set_filter(struct sip_softc *);
571 static void	sipcom_dp83815_set_filter(struct sip_softc *);
572 
573 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
574 		    const struct pci_attach_args *, u_int8_t *);
575 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
577 		    const struct pci_attach_args *, u_int8_t *);
578 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
579 		    const struct pci_attach_args *, u_int8_t *);
580 
581 static int	sipcom_intr(void *);
582 static void	sipcom_txintr(struct sip_softc *);
583 static void	sip_rxintr(struct sip_softc *);
584 static void	gsip_rxintr(struct sip_softc *);
585 
586 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
589 
590 static int	sipcom_sis900_mii_readreg(device_t, int, int);
591 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void	sipcom_sis900_mii_statchg(struct ifnet *);
593 
594 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
597 
598 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599 
600 static int	sipcom_match(device_t, cfdata_t, void *);
601 static void	sipcom_attach(device_t, device_t, void *);
602 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int	sipcom_detach(device_t, int);
604 static bool	sipcom_resume(device_t, const pmf_qual_t *);
605 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
606 
607 int	gsip_copy_small = 0;
608 int	sip_copy_small = 0;
609 
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612     DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615     DVF_DETACH_SHUTDOWN);
616 
617 /*
618  * Descriptions of the variants of the SiS900.
619  */
620 struct sip_variant {
621 	int	(*sipv_mii_readreg)(device_t, int, int);
622 	void	(*sipv_mii_writereg)(device_t, int, int, int);
623 	void	(*sipv_mii_statchg)(struct ifnet *);
624 	void	(*sipv_set_filter)(struct sip_softc *);
625 	void	(*sipv_read_macaddr)(struct sip_softc *,
626 		    const struct pci_attach_args *, u_int8_t *);
627 };
628 
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
631 
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 	sipcom_mii_bitbang_read,
634 	sipcom_mii_bitbang_write,
635 	{
636 		EROMAR_MDIO,		/* MII_BIT_MDO */
637 		EROMAR_MDIO,		/* MII_BIT_MDI */
638 		EROMAR_MDC,		/* MII_BIT_MDC */
639 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
640 		0,			/* MII_BIT_DIR_PHY_HOST */
641 	}
642 };
643 
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 	sipcom_dp83820_mii_readreg,
646 	sipcom_dp83820_mii_writereg,
647 	sipcom_dp83820_mii_statchg,
648 	sipcom_dp83815_set_filter,
649 	sipcom_dp83820_read_macaddr,
650 };
651 
652 static const struct sip_variant sipcom_variant_sis900 = {
653 	sipcom_sis900_mii_readreg,
654 	sipcom_sis900_mii_writereg,
655 	sipcom_sis900_mii_statchg,
656 	sipcom_sis900_set_filter,
657 	sipcom_sis900_read_macaddr,
658 };
659 
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 	sipcom_dp83815_mii_readreg,
662 	sipcom_dp83815_mii_writereg,
663 	sipcom_dp83815_mii_statchg,
664 	sipcom_dp83815_set_filter,
665 	sipcom_dp83815_read_macaddr,
666 };
667 
668 
669 /*
670  * Devices supported by this driver.
671  */
672 static const struct sip_product {
673 	pci_vendor_id_t		sip_vendor;
674 	pci_product_id_t	sip_product;
675 	const char		*sip_name;
676 	const struct sip_variant *sip_variant;
677 	int			sip_gigabit;
678 } sipcom_products[] = {
679 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
680 	  "NatSemi DP83820 Gigabit Ethernet",
681 	  &sipcom_variant_dp83820, 1 },
682 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
683 	  "SiS 900 10/100 Ethernet",
684 	  &sipcom_variant_sis900, 0 },
685 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
686 	  "SiS 7016 10/100 Ethernet",
687 	  &sipcom_variant_sis900, 0 },
688 
689 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
690 	  "NatSemi DP83815 10/100 Ethernet",
691 	  &sipcom_variant_dp83815, 0 },
692 
693 	{ 0,			0,
694 	  NULL,
695 	  NULL, 0 },
696 };
697 
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 	const struct sip_product *sip;
702 
703 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 		    sip->sip_gigabit == gigabit)
707 			return sip;
708 	}
709 	return NULL;
710 }
711 
712 /*
713  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
714  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
715  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716  * which means we try to use 64-bit data transfers on those cards if we
717  * happen to be plugged into a 32-bit slot.
718  *
719  * What we do is use this table of cards known to be 64-bit cards.  If
720  * you have a 64-bit card who's subsystem ID is not listed in this table,
721  * send the output of "pcictl dump ..." of the device to me so that your
722  * card will use the 64-bit data path when plugged into a 64-bit slot.
723  *
724  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
725  *	   June 30, 2002
726  */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 	static const struct {
731 		pci_vendor_id_t c64_vendor;
732 		pci_product_id_t c64_product;
733 	} card64[] = {
734 		/* Asante GigaNIX */
735 		{ 0x128a,	0x0002 },
736 
737 		/* Accton EN1407-T, Planex GN-1000TE */
738 		{ 0x1113,	0x1407 },
739 
740 		/* Netgear GA621 */
741 		{ 0x1385,	0x621a },
742 
743 		/* Netgear GA622 */
744 		{ 0x1385,	0x622a },
745 
746 		/* SMC EZ Card 1000 (9462TX) */
747 		{ 0x10b8,	0x9462 },
748 
749 		{ 0, 0}
750 	};
751 	pcireg_t subsys;
752 	int i;
753 
754 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755 
756 	for (i = 0; card64[i].c64_vendor != 0; i++) {
757 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
759 			return (1);
760 	}
761 
762 	return (0);
763 }
764 
765 static int
766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 	struct pci_attach_args *pa = aux;
769 
770 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 		return 1;
772 
773 	return 0;
774 }
775 
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 	u_int32_t reg;
780 	int i;
781 
782 	/*
783 	 * Cause the chip to load configuration data from the EEPROM.
784 	 */
785 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 	for (i = 0; i < 10000; i++) {
787 		delay(10);
788 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 		    PTSCR_EELOAD_EN) == 0)
790 			break;
791 	}
792 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 	    PTSCR_EELOAD_EN) {
794 		printf("%s: timeout loading configuration from EEPROM\n",
795 		    device_xname(sc->sc_dev));
796 		return;
797 	}
798 
799 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800 
801 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 	if (reg & CFG_PCI64_DET) {
803 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
804 		/*
805 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
806 		 * data transfers.
807 		 *
808 		 * We can't use the DATA64_EN bit in the EEPROM, because
809 		 * vendors of 32-bit cards fail to clear that bit in many
810 		 * cases (yet the card still detects that it's in a 64-bit
811 		 * slot; go figure).
812 		 */
813 		if (sipcom_check_64bit(pa)) {
814 			sc->sc_cfg |= CFG_DATA64_EN;
815 			printf(", using 64-bit data transfers");
816 		}
817 		printf("\n");
818 	}
819 
820 	/*
821 	 * XXX Need some PCI flags indicating support for
822 	 * XXX 64-bit addressing.
823 	 */
824 #if 0
825 	if (reg & CFG_M64ADDR)
826 		sc->sc_cfg |= CFG_M64ADDR;
827 	if (reg & CFG_T64ADDR)
828 		sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830 
831 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 		const char *sep = "";
833 		printf("%s: using ", device_xname(sc->sc_dev));
834 		if (reg & CFG_EXT_125) {
835 			sc->sc_cfg |= CFG_EXT_125;
836 			printf("%s125MHz clock", sep);
837 			sep = ", ";
838 		}
839 		if (reg & CFG_TBI_EN) {
840 			sc->sc_cfg |= CFG_TBI_EN;
841 			printf("%sten-bit interface", sep);
842 			sep = ", ";
843 		}
844 		printf("\n");
845 	}
846 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 	    (reg & CFG_MRM_DIS) != 0)
848 		sc->sc_cfg |= CFG_MRM_DIS;
849 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 	    (reg & CFG_MWI_DIS) != 0)
851 		sc->sc_cfg |= CFG_MWI_DIS;
852 
853 	/*
854 	 * Use the extended descriptor format on the DP83820.  This
855 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 	 * checksumming.
857 	 */
858 	sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860 
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 	int s;
865 
866 	s = splnet();
867 	sipcom_do_detach(self, SIP_ATTACH_FIN);
868 	splx(s);
869 
870 	return 0;
871 }
872 
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 	int i;
877 	struct sip_softc *sc = device_private(self);
878 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879 
880 	/*
881 	 * Free any resources we've allocated during attach.
882 	 * Do this in reverse order and fall through.
883 	 */
884 	switch (stage) {
885 	case SIP_ATTACH_FIN:
886 		sipcom_stop(ifp, 1);
887 		pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 		/*
890 		 * Attach event counters.
891 		 */
892 		evcnt_detach(&sc->sc_ev_txforceintr);
893 		evcnt_detach(&sc->sc_ev_txdstall);
894 		evcnt_detach(&sc->sc_ev_txsstall);
895 		evcnt_detach(&sc->sc_ev_hiberr);
896 		evcnt_detach(&sc->sc_ev_rxintr);
897 		evcnt_detach(&sc->sc_ev_txiintr);
898 		evcnt_detach(&sc->sc_ev_txdintr);
899 		if (!sc->sc_gigabit) {
900 			evcnt_detach(&sc->sc_ev_rxpause);
901 		} else {
902 			evcnt_detach(&sc->sc_ev_txudpsum);
903 			evcnt_detach(&sc->sc_ev_txtcpsum);
904 			evcnt_detach(&sc->sc_ev_txipsum);
905 			evcnt_detach(&sc->sc_ev_rxudpsum);
906 			evcnt_detach(&sc->sc_ev_rxtcpsum);
907 			evcnt_detach(&sc->sc_ev_rxipsum);
908 			evcnt_detach(&sc->sc_ev_txpause);
909 			evcnt_detach(&sc->sc_ev_rxpause);
910 		}
911 #endif /* SIP_EVENT_COUNTERS */
912 
913 		rnd_detach_source(&sc->rnd_source);
914 
915 		ether_ifdetach(ifp);
916 		if_detach(ifp);
917 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
918 
919 		/*FALLTHROUGH*/
920 	case SIP_ATTACH_CREATE_RXMAP:
921 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
922 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
923 				bus_dmamap_destroy(sc->sc_dmat,
924 				    sc->sc_rxsoft[i].rxs_dmamap);
925 		}
926 		/*FALLTHROUGH*/
927 	case SIP_ATTACH_CREATE_TXMAP:
928 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
929 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
930 				bus_dmamap_destroy(sc->sc_dmat,
931 				    sc->sc_txsoft[i].txs_dmamap);
932 		}
933 		/*FALLTHROUGH*/
934 	case SIP_ATTACH_LOAD_MAP:
935 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
936 		/*FALLTHROUGH*/
937 	case SIP_ATTACH_CREATE_MAP:
938 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
939 		/*FALLTHROUGH*/
940 	case SIP_ATTACH_MAP_MEM:
941 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
942 		    sizeof(struct sip_control_data));
943 		/*FALLTHROUGH*/
944 	case SIP_ATTACH_ALLOC_MEM:
945 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
946 		/* FALLTHROUGH*/
947 	case SIP_ATTACH_INTR:
948 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
949 		/* FALLTHROUGH*/
950 	case SIP_ATTACH_MAP:
951 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
952 		break;
953 	default:
954 		break;
955 	}
956 	return;
957 }
958 
959 static bool
960 sipcom_resume(device_t self, const pmf_qual_t *qual)
961 {
962 	struct sip_softc *sc = device_private(self);
963 
964 	return sipcom_reset(sc);
965 }
966 
967 static bool
968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
969 {
970 	struct sip_softc *sc = device_private(self);
971 
972 	sipcom_rxdrain(sc);
973 	return true;
974 }
975 
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 	struct sip_softc *sc = device_private(self);
980 	struct pci_attach_args *pa = aux;
981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 	pci_chipset_tag_t pc = pa->pa_pc;
983 	pci_intr_handle_t ih;
984 	const char *intrstr = NULL;
985 	bus_space_tag_t iot, memt;
986 	bus_space_handle_t ioh, memh;
987 	bus_size_t iosz, memsz;
988 	int ioh_valid, memh_valid;
989 	int i, rseg, error;
990 	const struct sip_product *sip;
991 	u_int8_t enaddr[ETHER_ADDR_LEN];
992 	pcireg_t csr;
993 	pcireg_t memtype;
994 	bus_size_t tx_dmamap_size;
995 	int ntxsegs_alloc;
996 	cfdata_t cf = device_cfdata(self);
997 	char intrbuf[PCI_INTRSTR_LEN];
998 
999 	callout_init(&sc->sc_tick_ch, 0);
1000 
1001 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1002 	if (sip == NULL) {
1003 		aprint_error("\n");
1004 		panic("%s: impossible", __func__);
1005 	}
1006 	sc->sc_dev = self;
1007 	sc->sc_gigabit = sip->sip_gigabit;
1008 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1009 	sc->sc_pc = pc;
1010 
1011 	if (sc->sc_gigabit) {
1012 		sc->sc_rxintr = gsip_rxintr;
1013 		sc->sc_parm = &gsip_parm;
1014 	} else {
1015 		sc->sc_rxintr = sip_rxintr;
1016 		sc->sc_parm = &sip_parm;
1017 	}
1018 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023 
1024 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1025 
1026 	aprint_naive("\n");
1027 	aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1028 
1029 	sc->sc_model = sip;
1030 
1031 	/*
1032 	 * XXX Work-around broken PXE firmware on some boards.
1033 	 *
1034 	 * The DP83815 shares an address decoder with the MEM BAR
1035 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1036 	 * so that memory mapped access works.
1037 	 */
1038 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1039 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1040 	    ~PCI_MAPREG_ROM_ENABLE);
1041 
1042 	/*
1043 	 * Map the device.
1044 	 */
1045 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1046 	    PCI_MAPREG_TYPE_IO, 0,
1047 	    &iot, &ioh, NULL, &iosz) == 0);
1048 	if (sc->sc_gigabit) {
1049 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1050 		switch (memtype) {
1051 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1052 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1053 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1054 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1055 			break;
1056 		default:
1057 			memh_valid = 0;
1058 		}
1059 	} else {
1060 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1061 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1062 		    &memt, &memh, NULL, &memsz) == 0);
1063 	}
1064 
1065 	if (memh_valid) {
1066 		sc->sc_st = memt;
1067 		sc->sc_sh = memh;
1068 		sc->sc_sz = memsz;
1069 	} else if (ioh_valid) {
1070 		sc->sc_st = iot;
1071 		sc->sc_sh = ioh;
1072 		sc->sc_sz = iosz;
1073 	} else {
1074 		aprint_error_dev(self, "unable to map device registers\n");
1075 		return;
1076 	}
1077 
1078 	sc->sc_dmat = pa->pa_dmat;
1079 
1080 	/*
1081 	 * Make sure bus mastering is enabled.  Also make sure
1082 	 * Write/Invalidate is enabled if we're allowed to use it.
1083 	 */
1084 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 	    csr | PCI_COMMAND_MASTER_ENABLE);
1089 
1090 	/* power up chip */
1091 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1092 	if (error != 0 && error != EOPNOTSUPP) {
1093 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1094 		return;
1095 	}
1096 
1097 	/*
1098 	 * Map and establish our interrupt.
1099 	 */
1100 	if (pci_intr_map(pa, &ih)) {
1101 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1102 		return;
1103 	}
1104 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1105 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1106 	    device_xname(self));
1107 	if (sc->sc_ih == NULL) {
1108 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1109 		if (intrstr != NULL)
1110 			aprint_error(" at %s", intrstr);
1111 		aprint_error("\n");
1112 		sipcom_do_detach(self, SIP_ATTACH_MAP);
1113 		return;
1114 	}
1115 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1116 
1117 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1118 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1119 
1120 	/*
1121 	 * Allocate the control data structures, and create and load the
1122 	 * DMA map for it.
1123 	 */
1124 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1125 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1126 	    &rseg, 0)) != 0) {
1127 		aprint_error_dev(sc->sc_dev,
1128 		    "unable to allocate control data, error = %d\n", error);
1129 		sipcom_do_detach(self, SIP_ATTACH_INTR);
1130 		return;
1131 	}
1132 
1133 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1134 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1135 	    BUS_DMA_COHERENT)) != 0) {
1136 		aprint_error_dev(sc->sc_dev,
1137 		    "unable to map control data, error = %d\n", error);
1138 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1139 	}
1140 
1141 	if ((error = bus_dmamap_create(sc->sc_dmat,
1142 	    sizeof(struct sip_control_data), 1,
1143 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1144 		aprint_error_dev(self, "unable to create control data DMA map"
1145 		    ", error = %d\n", error);
1146 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1147 	}
1148 
1149 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1150 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1151 	    0)) != 0) {
1152 		aprint_error_dev(self, "unable to load control data DMA map"
1153 		    ", error = %d\n", error);
1154 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1155 	}
1156 
1157 	/*
1158 	 * Create the transmit buffer DMA maps.
1159 	 */
1160 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1161 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1162 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1163 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1164 			aprint_error_dev(self, "unable to create tx DMA map %d"
1165 			    ", error = %d\n", i, error);
1166 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1167 		}
1168 	}
1169 
1170 	/*
1171 	 * Create the receive buffer DMA maps.
1172 	 */
1173 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1174 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1175 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1176 			aprint_error_dev(self, "unable to create rx DMA map %d"
1177 			    ", error = %d\n", i, error);
1178 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1179 		}
1180 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1181 	}
1182 
1183 	/*
1184 	 * Reset the chip to a known state.
1185 	 */
1186 	sipcom_reset(sc);
1187 
1188 	/*
1189 	 * Read the Ethernet address from the EEPROM.  This might
1190 	 * also fetch other stuff from the EEPROM and stash it
1191 	 * in the softc.
1192 	 */
1193 	sc->sc_cfg = 0;
1194 	if (!sc->sc_gigabit) {
1195 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1196 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1197 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1198 
1199 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1200 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1201 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1202 			sc->sc_cfg |=
1203 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1204 			     CFG_EDBMASTEN);
1205 	}
1206 
1207 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1208 
1209 	aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1210 
1211 	/*
1212 	 * Initialize the configuration register: aggressive PCI
1213 	 * bus request algorithm, default backoff, default OW timer,
1214 	 * default parity error detection.
1215 	 *
1216 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1217 	 * friends -- it affects packet data, not descriptors.
1218 	 */
1219 	if (sc->sc_gigabit)
1220 		sipcom_dp83820_attach(sc, pa);
1221 
1222 	/*
1223 	 * Initialize our media structures and probe the MII.
1224 	 */
1225 	sc->sc_mii.mii_ifp = ifp;
1226 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1227 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1228 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1229 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1230 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1231 	    sipcom_mediastatus);
1232 
1233 	/*
1234 	 * XXX We cannot handle flow control on the DP83815.
1235 	 */
1236 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1237 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 			   MII_OFFSET_ANY, 0);
1239 	else
1240 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1241 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1242 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1243 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1244 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1245 	} else
1246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1247 
1248 	ifp = &sc->sc_ethercom.ec_if;
1249 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1250 	ifp->if_softc = sc;
1251 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1252 	sc->sc_if_flags = ifp->if_flags;
1253 	ifp->if_ioctl = sipcom_ioctl;
1254 	ifp->if_start = sipcom_start;
1255 	ifp->if_watchdog = sipcom_watchdog;
1256 	ifp->if_init = sipcom_init;
1257 	ifp->if_stop = sipcom_stop;
1258 	IFQ_SET_READY(&ifp->if_snd);
1259 
1260 	/*
1261 	 * We can support 802.1Q VLAN-sized frames.
1262 	 */
1263 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1264 
1265 	if (sc->sc_gigabit) {
1266 		/*
1267 		 * And the DP83820 can do VLAN tagging in hardware, and
1268 		 * support the jumbo Ethernet MTU.
1269 		 */
1270 		sc->sc_ethercom.ec_capabilities |=
1271 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1272 
1273 		/*
1274 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1275 		 * in hardware.
1276 		 */
1277 		ifp->if_capabilities |=
1278 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1279 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1280 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1281 	}
1282 
1283 	/*
1284 	 * Attach the interface.
1285 	 */
1286 	if_attach(ifp);
1287 	if_deferred_start_init(ifp, NULL);
1288 	ether_ifattach(ifp, enaddr);
1289 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1290 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1291 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1292 	sc->sc_prev.if_capenable = ifp->if_capenable;
1293 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1294 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1295 
1296 	/*
1297 	 * The number of bytes that must be available in
1298 	 * the Tx FIFO before the bus master can DMA more
1299 	 * data into the FIFO.
1300 	 */
1301 	sc->sc_tx_fill_thresh = 64 / 32;
1302 
1303 	/*
1304 	 * Start at a drain threshold of 512 bytes.  We will
1305 	 * increase it if a DMA underrun occurs.
1306 	 *
1307 	 * XXX The minimum value of this variable should be
1308 	 * tuned.  We may be able to improve performance
1309 	 * by starting with a lower value.  That, however,
1310 	 * may trash the first few outgoing packets if the
1311 	 * PCI bus is saturated.
1312 	 */
1313 	if (sc->sc_gigabit)
1314 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1315 	else
1316 		sc->sc_tx_drain_thresh = 1504 / 32;
1317 
1318 	/*
1319 	 * Initialize the Rx FIFO drain threshold.
1320 	 *
1321 	 * This is in units of 8 bytes.
1322 	 *
1323 	 * We should never set this value lower than 2; 14 bytes are
1324 	 * required to filter the packet.
1325 	 */
1326 	sc->sc_rx_drain_thresh = 128 / 8;
1327 
1328 #ifdef SIP_EVENT_COUNTERS
1329 	/*
1330 	 * Attach event counters.
1331 	 */
1332 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1333 	    NULL, device_xname(sc->sc_dev), "txsstall");
1334 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1335 	    NULL, device_xname(sc->sc_dev), "txdstall");
1336 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1337 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1338 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1339 	    NULL, device_xname(sc->sc_dev), "txdintr");
1340 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1341 	    NULL, device_xname(sc->sc_dev), "txiintr");
1342 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1343 	    NULL, device_xname(sc->sc_dev), "rxintr");
1344 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1345 	    NULL, device_xname(sc->sc_dev), "hiberr");
1346 	if (!sc->sc_gigabit) {
1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1348 		    NULL, device_xname(sc->sc_dev), "rxpause");
1349 	} else {
1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1351 		    NULL, device_xname(sc->sc_dev), "rxpause");
1352 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1353 		    NULL, device_xname(sc->sc_dev), "txpause");
1354 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1355 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1356 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1357 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1358 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1359 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1360 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1361 		    NULL, device_xname(sc->sc_dev), "txipsum");
1362 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1363 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1364 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1365 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1366 	}
1367 #endif /* SIP_EVENT_COUNTERS */
1368 
1369 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1370 		pmf_class_network_register(self, ifp);
1371 	else
1372 		aprint_error_dev(self, "couldn't establish power handler\n");
1373 }
1374 
1375 static inline void
1376 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1377     uint64_t capenable)
1378 {
1379 	u_int32_t extsts;
1380 #ifdef DEBUG
1381 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 #endif
1383 	/*
1384 	 * If VLANs are enabled and the packet has a VLAN tag, set
1385 	 * up the descriptor to encapsulate the packet for us.
1386 	 *
1387 	 * This apparently has to be on the last descriptor of
1388 	 * the packet.
1389 	 */
1390 
1391 	/*
1392 	 * Byte swapping is tricky. We need to provide the tag
1393 	 * in a network byte order. On a big-endian machine,
1394 	 * the byteorder is correct, but we need to swap it
1395 	 * anyway, because this will be undone by the outside
1396 	 * htole32(). That's why there must be an
1397 	 * unconditional swap instead of htons() inside.
1398 	 */
1399 	if (vlan_has_tag(m0)) {
1400 		sc->sc_txdescs[lasttx].sipd_extsts |=
1401 		    htole32(EXTSTS_VPKT |
1402 				(bswap16(vlan_get_tag(m0)) &
1403 				 EXTSTS_VTCI));
1404 	}
1405 
1406 	/*
1407 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1408 	 * checksumming, set up the descriptor to do this work
1409 	 * for us.
1410 	 *
1411 	 * This apparently has to be on the first descriptor of
1412 	 * the packet.
1413 	 *
1414 	 * Byte-swap constants so the compiler can optimize.
1415 	 */
1416 	extsts = 0;
1417 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1418 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1419 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1420 		extsts |= htole32(EXTSTS_IPPKT);
1421 	}
1422 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1423 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1424 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1425 		extsts |= htole32(EXTSTS_TCPPKT);
1426 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1427 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1428 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1429 		extsts |= htole32(EXTSTS_UDPPKT);
1430 	}
1431 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1432 }
1433 
1434 /*
1435  * sip_start:		[ifnet interface function]
1436  *
1437  *	Start packet transmission on the interface.
1438  */
1439 static void
1440 sipcom_start(struct ifnet *ifp)
1441 {
1442 	struct sip_softc *sc = ifp->if_softc;
1443 	struct mbuf *m0;
1444 	struct mbuf *m;
1445 	struct sip_txsoft *txs;
1446 	bus_dmamap_t dmamap;
1447 	int error, nexttx, lasttx, seg;
1448 	int ofree = sc->sc_txfree;
1449 #if 0
1450 	int firsttx = sc->sc_txnext;
1451 #endif
1452 
1453 	/*
1454 	 * If we've been told to pause, don't transmit any more packets.
1455 	 */
1456 	if (!sc->sc_gigabit && sc->sc_paused)
1457 		ifp->if_flags |= IFF_OACTIVE;
1458 
1459 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1460 		return;
1461 
1462 	/*
1463 	 * Loop through the send queue, setting up transmit descriptors
1464 	 * until we drain the queue, or use up all available transmit
1465 	 * descriptors.
1466 	 */
1467 	for (;;) {
1468 		/* Get a work queue entry. */
1469 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1470 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1471 			break;
1472 		}
1473 
1474 		/*
1475 		 * Grab a packet off the queue.
1476 		 */
1477 		IFQ_POLL(&ifp->if_snd, m0);
1478 		if (m0 == NULL)
1479 			break;
1480 		m = NULL;
1481 
1482 		dmamap = txs->txs_dmamap;
1483 
1484 		/*
1485 		 * Load the DMA map.  If this fails, the packet either
1486 		 * didn't fit in the alloted number of segments, or we
1487 		 * were short on resources.
1488 		 */
1489 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1490 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1491 		/* In the non-gigabit case, we'll copy and try again. */
1492 		if (error != 0 && !sc->sc_gigabit) {
1493 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1494 			if (m == NULL) {
1495 				printf("%s: unable to allocate Tx mbuf\n",
1496 				    device_xname(sc->sc_dev));
1497 				break;
1498 			}
1499 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1500 			if (m0->m_pkthdr.len > MHLEN) {
1501 				MCLGET(m, M_DONTWAIT);
1502 				if ((m->m_flags & M_EXT) == 0) {
1503 					printf("%s: unable to allocate Tx "
1504 					    "cluster\n",
1505 					    device_xname(sc->sc_dev));
1506 					m_freem(m);
1507 					break;
1508 				}
1509 			}
1510 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1511 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1512 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1513 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1514 			if (error) {
1515 				printf("%s: unable to load Tx buffer, error = "
1516 				    "%d\n", device_xname(sc->sc_dev), error);
1517 				break;
1518 			}
1519 		} else if (error == EFBIG) {
1520 			/*
1521 			 * For the too-many-segments case, we simply
1522 			 * report an error and drop the packet,
1523 			 * since we can't sanely copy a jumbo packet
1524 			 * to a single buffer.
1525 			 */
1526 			printf("%s: Tx packet consumes too many DMA segments, "
1527 			    "dropping...\n", device_xname(sc->sc_dev));
1528 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1529 			m_freem(m0);
1530 			continue;
1531 		} else if (error != 0) {
1532 			/*
1533 			 * Short on resources, just stop for now.
1534 			 */
1535 			break;
1536 		}
1537 
1538 		/*
1539 		 * Ensure we have enough descriptors free to describe
1540 		 * the packet.  Note, we always reserve one descriptor
1541 		 * at the end of the ring as a termination point, to
1542 		 * prevent wrap-around.
1543 		 */
1544 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1545 			/*
1546 			 * Not enough free descriptors to transmit this
1547 			 * packet.  We haven't committed anything yet,
1548 			 * so just unload the DMA map, put the packet
1549 			 * back on the queue, and punt.  Notify the upper
1550 			 * layer that there are not more slots left.
1551 			 *
1552 			 * XXX We could allocate an mbuf and copy, but
1553 			 * XXX is it worth it?
1554 			 */
1555 			ifp->if_flags |= IFF_OACTIVE;
1556 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1557 			if (m != NULL)
1558 				m_freem(m);
1559 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1560 			break;
1561 		}
1562 
1563 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1564 		if (m != NULL) {
1565 			m_freem(m0);
1566 			m0 = m;
1567 		}
1568 
1569 		/*
1570 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1571 		 */
1572 
1573 		/* Sync the DMA map. */
1574 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1575 		    BUS_DMASYNC_PREWRITE);
1576 
1577 		/*
1578 		 * Initialize the transmit descriptors.
1579 		 */
1580 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1581 		     seg < dmamap->dm_nsegs;
1582 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1583 			/*
1584 			 * If this is the first descriptor we're
1585 			 * enqueueing, don't set the OWN bit just
1586 			 * yet.  That could cause a race condition.
1587 			 * We'll do it below.
1588 			 */
1589 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1590 			    htole32(dmamap->dm_segs[seg].ds_addr);
1591 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1592 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1593 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1594 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1595 			lasttx = nexttx;
1596 		}
1597 
1598 		/* Clear the MORE bit on the last segment. */
1599 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1600 		    htole32(~CMDSTS_MORE);
1601 
1602 		/*
1603 		 * If we're in the interrupt delay window, delay the
1604 		 * interrupt.
1605 		 */
1606 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1607 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1608 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1609 			    htole32(CMDSTS_INTR);
1610 			sc->sc_txwin = 0;
1611 		}
1612 
1613 		if (sc->sc_gigabit)
1614 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1615 
1616 		/* Sync the descriptors we're using. */
1617 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1618 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1619 
1620 		/*
1621 		 * The entire packet is set up.  Give the first descrptor
1622 		 * to the chip now.
1623 		 */
1624 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1625 		    htole32(CMDSTS_OWN);
1626 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1627 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1628 
1629 		/*
1630 		 * Store a pointer to the packet so we can free it later,
1631 		 * and remember what txdirty will be once the packet is
1632 		 * done.
1633 		 */
1634 		txs->txs_mbuf = m0;
1635 		txs->txs_firstdesc = sc->sc_txnext;
1636 		txs->txs_lastdesc = lasttx;
1637 
1638 		/* Advance the tx pointer. */
1639 		sc->sc_txfree -= dmamap->dm_nsegs;
1640 		sc->sc_txnext = nexttx;
1641 
1642 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1643 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1644 
1645 		/*
1646 		 * Pass the packet to any BPF listeners.
1647 		 */
1648 		bpf_mtap(ifp, m0, BPF_D_OUT);
1649 	}
1650 
1651 	if (txs == NULL || sc->sc_txfree == 0) {
1652 		/* No more slots left; notify upper layer. */
1653 		ifp->if_flags |= IFF_OACTIVE;
1654 	}
1655 
1656 	if (sc->sc_txfree != ofree) {
1657 		/*
1658 		 * Start the transmit process.  Note, the manual says
1659 		 * that if there are no pending transmissions in the
1660 		 * chip's internal queue (indicated by TXE being clear),
1661 		 * then the driver software must set the TXDP to the
1662 		 * first descriptor to be transmitted.  However, if we
1663 		 * do this, it causes serious performance degredation on
1664 		 * the DP83820 under load, not setting TXDP doesn't seem
1665 		 * to adversely affect the SiS 900 or DP83815.
1666 		 *
1667 		 * Well, I guess it wouldn't be the first time a manual
1668 		 * has lied -- and they could be speaking of the NULL-
1669 		 * terminated descriptor list case, rather than OWN-
1670 		 * terminated rings.
1671 		 */
1672 #if 0
1673 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1674 		     CR_TXE) == 0) {
1675 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1676 			    SIP_CDTXADDR(sc, firsttx));
1677 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1678 		}
1679 #else
1680 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1681 #endif
1682 
1683 		/* Set a watchdog timer in case the chip flakes out. */
1684 		/* Gigabit autonegotiation takes 5 seconds. */
1685 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1686 	}
1687 }
1688 
1689 /*
1690  * sip_watchdog:	[ifnet interface function]
1691  *
1692  *	Watchdog timer handler.
1693  */
1694 static void
1695 sipcom_watchdog(struct ifnet *ifp)
1696 {
1697 	struct sip_softc *sc = ifp->if_softc;
1698 
1699 	/*
1700 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1701 	 * If we get a timeout, try and sweep up transmit descriptors.
1702 	 * If we manage to sweep them all up, ignore the lack of
1703 	 * interrupt.
1704 	 */
1705 	sipcom_txintr(sc);
1706 
1707 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1708 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1709 		ifp->if_oerrors++;
1710 
1711 		/* Reset the interface. */
1712 		(void) sipcom_init(ifp);
1713 	} else if (ifp->if_flags & IFF_DEBUG)
1714 		printf("%s: recovered from device timeout\n",
1715 		    device_xname(sc->sc_dev));
1716 
1717 	/* Try to get more packets going. */
1718 	sipcom_start(ifp);
1719 }
1720 
1721 /* If the interface is up and running, only modify the receive
1722  * filter when setting promiscuous or debug mode.  Otherwise fall
1723  * through to ether_ioctl, which will reset the chip.
1724  */
1725 static int
1726 sip_ifflags_cb(struct ethercom *ec)
1727 {
1728 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1729 			 == (sc)->sc_ethercom.ec_capenable)		\
1730 			&& ((sc)->sc_prev.is_vlan ==			\
1731 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1732 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1733 	struct ifnet *ifp = &ec->ec_if;
1734 	struct sip_softc *sc = ifp->if_softc;
1735 	int change = ifp->if_flags ^ sc->sc_if_flags;
1736 
1737 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1738 	    !COMPARE_IC(sc, ifp))
1739 		return ENETRESET;
1740 	/* Set up the receive filter. */
1741 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1742 	return 0;
1743 }
1744 
1745 /*
1746  * sip_ioctl:		[ifnet interface function]
1747  *
1748  *	Handle control requests from the operator.
1749  */
1750 static int
1751 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1752 {
1753 	struct sip_softc *sc = ifp->if_softc;
1754 	struct ifreq *ifr = (struct ifreq *)data;
1755 	int s, error;
1756 
1757 	s = splnet();
1758 
1759 	switch (cmd) {
1760 	case SIOCSIFMEDIA:
1761 		/* Flow control requires full-duplex mode. */
1762 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1763 		    (ifr->ifr_media & IFM_FDX) == 0)
1764 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1765 
1766 		/* XXX */
1767 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1768 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1769 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1770 			if (sc->sc_gigabit &&
1771 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1772 				/* We can do both TXPAUSE and RXPAUSE. */
1773 				ifr->ifr_media |=
1774 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1775 			} else if (ifr->ifr_media & IFM_FLOW) {
1776 				/*
1777 				 * Both TXPAUSE and RXPAUSE must be set.
1778 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1779 				 * feature.)
1780 				 *
1781 				 * XXX Can SiS900 and DP83815 send PAUSE?
1782 				 */
1783 				ifr->ifr_media |=
1784 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1785 			}
1786 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1787 		}
1788 		/*FALLTHROUGH*/
1789 	default:
1790 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1791 			break;
1792 
1793 		error = 0;
1794 
1795 		if (cmd == SIOCSIFCAP)
1796 			error = (*ifp->if_init)(ifp);
1797 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1798 			;
1799 		else if (ifp->if_flags & IFF_RUNNING) {
1800 			/*
1801 			 * Multicast list has changed; set the hardware filter
1802 			 * accordingly.
1803 			 */
1804 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1805 		}
1806 		break;
1807 	}
1808 
1809 	/* Try to get more packets going. */
1810 	sipcom_start(ifp);
1811 
1812 	sc->sc_if_flags = ifp->if_flags;
1813 	splx(s);
1814 	return (error);
1815 }
1816 
1817 /*
1818  * sip_intr:
1819  *
1820  *	Interrupt service routine.
1821  */
1822 static int
1823 sipcom_intr(void *arg)
1824 {
1825 	struct sip_softc *sc = arg;
1826 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1827 	u_int32_t isr;
1828 	int handled = 0;
1829 
1830 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1831 		return 0;
1832 
1833 	/* Disable interrupts. */
1834 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1835 
1836 	for (;;) {
1837 		/* Reading clears interrupt. */
1838 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1839 		if ((isr & sc->sc_imr) == 0)
1840 			break;
1841 
1842 		rnd_add_uint32(&sc->rnd_source, isr);
1843 
1844 		handled = 1;
1845 
1846 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1847 			break;
1848 
1849 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1850 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1851 
1852 			/* Grab any new packets. */
1853 			(*sc->sc_rxintr)(sc);
1854 
1855 			if (isr & ISR_RXORN) {
1856 				printf("%s: receive FIFO overrun\n",
1857 				    device_xname(sc->sc_dev));
1858 
1859 				/* XXX adjust rx_drain_thresh? */
1860 			}
1861 
1862 			if (isr & ISR_RXIDLE) {
1863 				printf("%s: receive ring overrun\n",
1864 				    device_xname(sc->sc_dev));
1865 
1866 				/* Get the receive process going again. */
1867 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1868 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1869 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1870 				    SIP_CR, CR_RXE);
1871 			}
1872 		}
1873 
1874 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1875 #ifdef SIP_EVENT_COUNTERS
1876 			if (isr & ISR_TXDESC)
1877 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1878 			else if (isr & ISR_TXIDLE)
1879 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1880 #endif
1881 
1882 			/* Sweep up transmit descriptors. */
1883 			sipcom_txintr(sc);
1884 
1885 			if (isr & ISR_TXURN) {
1886 				u_int32_t thresh;
1887 				int txfifo_size = (sc->sc_gigabit)
1888 				    ? DP83820_SIP_TXFIFO_SIZE
1889 				    : OTHER_SIP_TXFIFO_SIZE;
1890 
1891 				printf("%s: transmit FIFO underrun",
1892 				    device_xname(sc->sc_dev));
1893 				thresh = sc->sc_tx_drain_thresh + 1;
1894 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1895 				&& (thresh * 32) <= (txfifo_size -
1896 				     (sc->sc_tx_fill_thresh * 32))) {
1897 					printf("; increasing Tx drain "
1898 					    "threshold to %u bytes\n",
1899 					    thresh * 32);
1900 					sc->sc_tx_drain_thresh = thresh;
1901 					(void) sipcom_init(ifp);
1902 				} else {
1903 					(void) sipcom_init(ifp);
1904 					printf("\n");
1905 				}
1906 			}
1907 		}
1908 
1909 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1910 			if (isr & ISR_PAUSE_ST) {
1911 				sc->sc_paused = 1;
1912 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1913 				ifp->if_flags |= IFF_OACTIVE;
1914 			}
1915 			if (isr & ISR_PAUSE_END) {
1916 				sc->sc_paused = 0;
1917 				ifp->if_flags &= ~IFF_OACTIVE;
1918 			}
1919 		}
1920 
1921 		if (isr & ISR_HIBERR) {
1922 			int want_init = 0;
1923 
1924 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1925 
1926 #define	PRINTERR(bit, str)						\
1927 			do {						\
1928 				if ((isr & (bit)) != 0) {		\
1929 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1930 						printf("%s: %s\n",	\
1931 						    device_xname(sc->sc_dev), str); \
1932 					want_init = 1;			\
1933 				}					\
1934 			} while (/*CONSTCOND*/0)
1935 
1936 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1937 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1938 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1939 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1940 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1941 			/*
1942 			 * Ignore:
1943 			 *	Tx reset complete
1944 			 *	Rx reset complete
1945 			 */
1946 			if (want_init)
1947 				(void) sipcom_init(ifp);
1948 #undef PRINTERR
1949 		}
1950 	}
1951 
1952 	/* Re-enable interrupts. */
1953 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1954 
1955 	/* Try to get more packets going. */
1956 	if_schedule_deferred_start(ifp);
1957 
1958 	return (handled);
1959 }
1960 
1961 /*
1962  * sip_txintr:
1963  *
1964  *	Helper; handle transmit interrupts.
1965  */
1966 static void
1967 sipcom_txintr(struct sip_softc *sc)
1968 {
1969 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1970 	struct sip_txsoft *txs;
1971 	u_int32_t cmdsts;
1972 
1973 	if (sc->sc_paused == 0)
1974 		ifp->if_flags &= ~IFF_OACTIVE;
1975 
1976 	/*
1977 	 * Go through our Tx list and free mbufs for those
1978 	 * frames which have been transmitted.
1979 	 */
1980 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1981 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1982 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1983 
1984 		cmdsts = le32toh(*sipd_cmdsts(sc,
1985 			&sc->sc_txdescs[txs->txs_lastdesc]));
1986 		if (cmdsts & CMDSTS_OWN)
1987 			break;
1988 
1989 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1990 
1991 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1992 
1993 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1994 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1995 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1996 		m_freem(txs->txs_mbuf);
1997 		txs->txs_mbuf = NULL;
1998 
1999 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2000 
2001 		/*
2002 		 * Check for errors and collisions.
2003 		 */
2004 		if (cmdsts &
2005 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2006 			ifp->if_oerrors++;
2007 			if (cmdsts & CMDSTS_Tx_EC)
2008 				ifp->if_collisions += 16;
2009 			if (ifp->if_flags & IFF_DEBUG) {
2010 				if (cmdsts & CMDSTS_Tx_ED)
2011 					printf("%s: excessive deferral\n",
2012 					    device_xname(sc->sc_dev));
2013 				if (cmdsts & CMDSTS_Tx_EC)
2014 					printf("%s: excessive collisions\n",
2015 					    device_xname(sc->sc_dev));
2016 			}
2017 		} else {
2018 			/* Packet was transmitted successfully. */
2019 			ifp->if_opackets++;
2020 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2021 		}
2022 	}
2023 
2024 	/*
2025 	 * If there are no more pending transmissions, cancel the watchdog
2026 	 * timer.
2027 	 */
2028 	if (txs == NULL) {
2029 		ifp->if_timer = 0;
2030 		sc->sc_txwin = 0;
2031 	}
2032 }
2033 
2034 /*
2035  * gsip_rxintr:
2036  *
2037  *	Helper; handle receive interrupts on gigabit parts.
2038  */
2039 static void
2040 gsip_rxintr(struct sip_softc *sc)
2041 {
2042 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2043 	struct sip_rxsoft *rxs;
2044 	struct mbuf *m;
2045 	u_int32_t cmdsts, extsts;
2046 	int i, len;
2047 
2048 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2049 		rxs = &sc->sc_rxsoft[i];
2050 
2051 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2052 
2053 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2054 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2055 		len = CMDSTS_SIZE(sc, cmdsts);
2056 
2057 		/*
2058 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2059 		 * consumer of the receive ring, so if the bit is clear,
2060 		 * we have processed all of the packets.
2061 		 */
2062 		if ((cmdsts & CMDSTS_OWN) == 0) {
2063 			/*
2064 			 * We have processed all of the receive buffers.
2065 			 */
2066 			break;
2067 		}
2068 
2069 		if (__predict_false(sc->sc_rxdiscard)) {
2070 			sip_init_rxdesc(sc, i);
2071 			if ((cmdsts & CMDSTS_MORE) == 0) {
2072 				/* Reset our state. */
2073 				sc->sc_rxdiscard = 0;
2074 			}
2075 			continue;
2076 		}
2077 
2078 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2079 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2080 
2081 		m = rxs->rxs_mbuf;
2082 
2083 		/*
2084 		 * Add a new receive buffer to the ring.
2085 		 */
2086 		if (sipcom_add_rxbuf(sc, i) != 0) {
2087 			/*
2088 			 * Failed, throw away what we've done so
2089 			 * far, and discard the rest of the packet.
2090 			 */
2091 			ifp->if_ierrors++;
2092 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2093 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2094 			sip_init_rxdesc(sc, i);
2095 			if (cmdsts & CMDSTS_MORE)
2096 				sc->sc_rxdiscard = 1;
2097 			if (sc->sc_rxhead != NULL)
2098 				m_freem(sc->sc_rxhead);
2099 			sip_rxchain_reset(sc);
2100 			continue;
2101 		}
2102 
2103 		sip_rxchain_link(sc, m);
2104 
2105 		m->m_len = len;
2106 
2107 		/*
2108 		 * If this is not the end of the packet, keep
2109 		 * looking.
2110 		 */
2111 		if (cmdsts & CMDSTS_MORE) {
2112 			sc->sc_rxlen += len;
2113 			continue;
2114 		}
2115 
2116 		/*
2117 		 * Okay, we have the entire packet now.  The chip includes
2118 		 * the FCS, so we need to trim it.
2119 		 */
2120 		m->m_len -= ETHER_CRC_LEN;
2121 
2122 		*sc->sc_rxtailp = NULL;
2123 		len = m->m_len + sc->sc_rxlen;
2124 		m = sc->sc_rxhead;
2125 
2126 		sip_rxchain_reset(sc);
2127 
2128 		/*
2129 		 * If an error occurred, update stats and drop the packet.
2130 		 */
2131 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2132 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2133 			ifp->if_ierrors++;
2134 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2135 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2136 				/* Receive overrun handled elsewhere. */
2137 				printf("%s: receive descriptor error\n",
2138 				    device_xname(sc->sc_dev));
2139 			}
2140 #define	PRINTERR(bit, str)						\
2141 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2142 			    (cmdsts & (bit)) != 0)			\
2143 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2144 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2145 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2146 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2147 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2148 #undef PRINTERR
2149 			m_freem(m);
2150 			continue;
2151 		}
2152 
2153 		/*
2154 		 * If the packet is small enough to fit in a
2155 		 * single header mbuf, allocate one and copy
2156 		 * the data into it.  This greatly reduces
2157 		 * memory consumption when we receive lots
2158 		 * of small packets.
2159 		 */
2160 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2161 			struct mbuf *nm;
2162 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2163 			if (nm == NULL) {
2164 				ifp->if_ierrors++;
2165 				m_freem(m);
2166 				continue;
2167 			}
2168 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2169 			nm->m_data += 2;
2170 			nm->m_pkthdr.len = nm->m_len = len;
2171 			m_copydata(m, 0, len, mtod(nm, void *));
2172 			m_freem(m);
2173 			m = nm;
2174 		}
2175 #ifndef __NO_STRICT_ALIGNMENT
2176 		else {
2177 			/*
2178 			 * The DP83820's receive buffers must be 4-byte
2179 			 * aligned.  But this means that the data after
2180 			 * the Ethernet header is misaligned.  To compensate,
2181 			 * we have artificially shortened the buffer size
2182 			 * in the descriptor, and we do an overlapping copy
2183 			 * of the data two bytes further in (in the first
2184 			 * buffer of the chain only).
2185 			 */
2186 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2187 			    m->m_len);
2188 			m->m_data += 2;
2189 		}
2190 #endif /* ! __NO_STRICT_ALIGNMENT */
2191 
2192 		/*
2193 		 * If VLANs are enabled, VLAN packets have been unwrapped
2194 		 * for us.  Associate the tag with the packet.
2195 		 */
2196 
2197 		/*
2198 		 * Again, byte swapping is tricky. Hardware provided
2199 		 * the tag in the network byte order, but extsts was
2200 		 * passed through le32toh() in the meantime. On a
2201 		 * big-endian machine, we need to swap it again. On a
2202 		 * little-endian machine, we need to convert from the
2203 		 * network to host byte order. This means that we must
2204 		 * swap it in any case, so unconditional swap instead
2205 		 * of htons() is used.
2206 		 */
2207 		if ((extsts & EXTSTS_VPKT) != 0) {
2208 			vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2209 		}
2210 
2211 		/*
2212 		 * Set the incoming checksum information for the
2213 		 * packet.
2214 		 */
2215 		if ((extsts & EXTSTS_IPPKT) != 0) {
2216 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2217 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2218 			if (extsts & EXTSTS_Rx_IPERR)
2219 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2220 			if (extsts & EXTSTS_TCPPKT) {
2221 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2222 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2223 				if (extsts & EXTSTS_Rx_TCPERR)
2224 					m->m_pkthdr.csum_flags |=
2225 					    M_CSUM_TCP_UDP_BAD;
2226 			} else if (extsts & EXTSTS_UDPPKT) {
2227 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2228 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2229 				if (extsts & EXTSTS_Rx_UDPERR)
2230 					m->m_pkthdr.csum_flags |=
2231 					    M_CSUM_TCP_UDP_BAD;
2232 			}
2233 		}
2234 
2235 		m_set_rcvif(m, ifp);
2236 		m->m_pkthdr.len = len;
2237 
2238 		/* Pass it on. */
2239 		if_percpuq_enqueue(ifp->if_percpuq, m);
2240 	}
2241 
2242 	/* Update the receive pointer. */
2243 	sc->sc_rxptr = i;
2244 }
2245 
2246 /*
2247  * sip_rxintr:
2248  *
2249  *	Helper; handle receive interrupts on 10/100 parts.
2250  */
2251 static void
2252 sip_rxintr(struct sip_softc *sc)
2253 {
2254 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2255 	struct sip_rxsoft *rxs;
2256 	struct mbuf *m;
2257 	u_int32_t cmdsts;
2258 	int i, len;
2259 
2260 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2261 		rxs = &sc->sc_rxsoft[i];
2262 
2263 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2264 
2265 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2266 
2267 		/*
2268 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2269 		 * consumer of the receive ring, so if the bit is clear,
2270 		 * we have processed all of the packets.
2271 		 */
2272 		if ((cmdsts & CMDSTS_OWN) == 0) {
2273 			/*
2274 			 * We have processed all of the receive buffers.
2275 			 */
2276 			break;
2277 		}
2278 
2279 		/*
2280 		 * If any collisions were seen on the wire, count one.
2281 		 */
2282 		if (cmdsts & CMDSTS_Rx_COL)
2283 			ifp->if_collisions++;
2284 
2285 		/*
2286 		 * If an error occurred, update stats, clear the status
2287 		 * word, and leave the packet buffer in place.  It will
2288 		 * simply be reused the next time the ring comes around.
2289 		 */
2290 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2291 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2292 			ifp->if_ierrors++;
2293 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2294 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2295 				/* Receive overrun handled elsewhere. */
2296 				printf("%s: receive descriptor error\n",
2297 				    device_xname(sc->sc_dev));
2298 			}
2299 #define	PRINTERR(bit, str)						\
2300 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2301 			    (cmdsts & (bit)) != 0)			\
2302 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2303 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2304 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2305 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2306 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2307 #undef PRINTERR
2308 			sip_init_rxdesc(sc, i);
2309 			continue;
2310 		}
2311 
2312 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2313 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2314 
2315 		/*
2316 		 * No errors; receive the packet.  Note, the SiS 900
2317 		 * includes the CRC with every packet.
2318 		 */
2319 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2320 
2321 #ifdef __NO_STRICT_ALIGNMENT
2322 		/*
2323 		 * If the packet is small enough to fit in a
2324 		 * single header mbuf, allocate one and copy
2325 		 * the data into it.  This greatly reduces
2326 		 * memory consumption when we receive lots
2327 		 * of small packets.
2328 		 *
2329 		 * Otherwise, we add a new buffer to the receive
2330 		 * chain.  If this fails, we drop the packet and
2331 		 * recycle the old buffer.
2332 		 */
2333 		if (sip_copy_small != 0 && len <= MHLEN) {
2334 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2335 			if (m == NULL)
2336 				goto dropit;
2337 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2338 			memcpy(mtod(m, void *),
2339 			    mtod(rxs->rxs_mbuf, void *), len);
2340 			sip_init_rxdesc(sc, i);
2341 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2342 			    rxs->rxs_dmamap->dm_mapsize,
2343 			    BUS_DMASYNC_PREREAD);
2344 		} else {
2345 			m = rxs->rxs_mbuf;
2346 			if (sipcom_add_rxbuf(sc, i) != 0) {
2347  dropit:
2348 				ifp->if_ierrors++;
2349 				sip_init_rxdesc(sc, i);
2350 				bus_dmamap_sync(sc->sc_dmat,
2351 				    rxs->rxs_dmamap, 0,
2352 				    rxs->rxs_dmamap->dm_mapsize,
2353 				    BUS_DMASYNC_PREREAD);
2354 				continue;
2355 			}
2356 		}
2357 #else
2358 		/*
2359 		 * The SiS 900's receive buffers must be 4-byte aligned.
2360 		 * But this means that the data after the Ethernet header
2361 		 * is misaligned.  We must allocate a new buffer and
2362 		 * copy the data, shifted forward 2 bytes.
2363 		 */
2364 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2365 		if (m == NULL) {
2366  dropit:
2367 			ifp->if_ierrors++;
2368 			sip_init_rxdesc(sc, i);
2369 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2370 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2371 			continue;
2372 		}
2373 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2374 		if (len > (MHLEN - 2)) {
2375 			MCLGET(m, M_DONTWAIT);
2376 			if ((m->m_flags & M_EXT) == 0) {
2377 				m_freem(m);
2378 				goto dropit;
2379 			}
2380 		}
2381 		m->m_data += 2;
2382 
2383 		/*
2384 		 * Note that we use clusters for incoming frames, so the
2385 		 * buffer is virtually contiguous.
2386 		 */
2387 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2388 
2389 		/* Allow the receive descriptor to continue using its mbuf. */
2390 		sip_init_rxdesc(sc, i);
2391 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2392 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2393 #endif /* __NO_STRICT_ALIGNMENT */
2394 
2395 		m_set_rcvif(m, ifp);
2396 		m->m_pkthdr.len = m->m_len = len;
2397 
2398 		/* Pass it on. */
2399 		if_percpuq_enqueue(ifp->if_percpuq, m);
2400 	}
2401 
2402 	/* Update the receive pointer. */
2403 	sc->sc_rxptr = i;
2404 }
2405 
2406 /*
2407  * sip_tick:
2408  *
2409  *	One second timer, used to tick the MII.
2410  */
2411 static void
2412 sipcom_tick(void *arg)
2413 {
2414 	struct sip_softc *sc = arg;
2415 	int s;
2416 
2417 	s = splnet();
2418 #ifdef SIP_EVENT_COUNTERS
2419 	if (sc->sc_gigabit) {
2420 		/* Read PAUSE related counts from MIB registers. */
2421 		sc->sc_ev_rxpause.ev_count +=
2422 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2423 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2424 		sc->sc_ev_txpause.ev_count +=
2425 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2426 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2427 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2428 	}
2429 #endif /* SIP_EVENT_COUNTERS */
2430 	mii_tick(&sc->sc_mii);
2431 	splx(s);
2432 
2433 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2434 }
2435 
2436 /*
2437  * sip_reset:
2438  *
2439  *	Perform a soft reset on the SiS 900.
2440  */
2441 static bool
2442 sipcom_reset(struct sip_softc *sc)
2443 {
2444 	bus_space_tag_t st = sc->sc_st;
2445 	bus_space_handle_t sh = sc->sc_sh;
2446 	int i;
2447 
2448 	bus_space_write_4(st, sh, SIP_IER, 0);
2449 	bus_space_write_4(st, sh, SIP_IMR, 0);
2450 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2451 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2452 
2453 	for (i = 0; i < SIP_TIMEOUT; i++) {
2454 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2455 			break;
2456 		delay(2);
2457 	}
2458 
2459 	if (i == SIP_TIMEOUT) {
2460 		printf("%s: reset failed to complete\n",
2461 		    device_xname(sc->sc_dev));
2462 		return false;
2463 	}
2464 
2465 	delay(1000);
2466 
2467 	if (sc->sc_gigabit) {
2468 		/*
2469 		 * Set the general purpose I/O bits.  Do it here in case we
2470 		 * need to have GPIO set up to talk to the media interface.
2471 		 */
2472 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2473 		delay(1000);
2474 	}
2475 	return true;
2476 }
2477 
2478 static void
2479 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2480 {
2481 	u_int32_t reg;
2482 	bus_space_tag_t st = sc->sc_st;
2483 	bus_space_handle_t sh = sc->sc_sh;
2484 	/*
2485 	 * Initialize the VLAN/IP receive control register.
2486 	 * We enable checksum computation on all incoming
2487 	 * packets, and do not reject packets w/ bad checksums.
2488 	 */
2489 	reg = 0;
2490 	if (capenable &
2491 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2492 		reg |= VRCR_IPEN;
2493 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2494 		reg |= VRCR_VTDEN|VRCR_VTREN;
2495 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2496 
2497 	/*
2498 	 * Initialize the VLAN/IP transmit control register.
2499 	 * We enable outgoing checksum computation on a
2500 	 * per-packet basis.
2501 	 */
2502 	reg = 0;
2503 	if (capenable &
2504 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2505 		reg |= VTCR_PPCHK;
2506 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2507 		reg |= VTCR_VPPTI;
2508 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2509 
2510 	/*
2511 	 * If we're using VLANs, initialize the VLAN data register.
2512 	 * To understand why we bswap the VLAN Ethertype, see section
2513 	 * 4.2.36 of the DP83820 manual.
2514 	 */
2515 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2516 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2517 }
2518 
2519 /*
2520  * sip_init:		[ ifnet interface function ]
2521  *
2522  *	Initialize the interface.  Must be called at splnet().
2523  */
2524 static int
2525 sipcom_init(struct ifnet *ifp)
2526 {
2527 	struct sip_softc *sc = ifp->if_softc;
2528 	bus_space_tag_t st = sc->sc_st;
2529 	bus_space_handle_t sh = sc->sc_sh;
2530 	struct sip_txsoft *txs;
2531 	struct sip_rxsoft *rxs;
2532 	struct sip_desc *sipd;
2533 	int i, error = 0;
2534 
2535 	if (device_is_active(sc->sc_dev)) {
2536 		/*
2537 		 * Cancel any pending I/O.
2538 		 */
2539 		sipcom_stop(ifp, 0);
2540 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2541 	           !device_is_active(sc->sc_dev))
2542 		return 0;
2543 
2544 	/*
2545 	 * Reset the chip to a known state.
2546 	 */
2547 	if (!sipcom_reset(sc))
2548 		return EBUSY;
2549 
2550 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2551 		/*
2552 		 * DP83815 manual, page 78:
2553 		 *    4.4 Recommended Registers Configuration
2554 		 *    For optimum performance of the DP83815, version noted
2555 		 *    as DP83815CVNG (SRR = 203h), the listed register
2556 		 *    modifications must be followed in sequence...
2557 		 *
2558 		 * It's not clear if this should be 302h or 203h because that
2559 		 * chip name is listed as SRR 302h in the description of the
2560 		 * SRR register.  However, my revision 302h DP83815 on the
2561 		 * Netgear FA311 purchased in 02/2001 needs these settings
2562 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2563 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2564 		 * this set or not.  [briggs -- 09 March 2001]
2565 		 *
2566 		 * Note that only the low-order 12 bits of 0xe4 are documented
2567 		 * and that this sets reserved bits in that register.
2568 		 */
2569 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2570 
2571 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2572 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2573 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2574 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2575 
2576 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2577 	}
2578 
2579 	/*
2580 	 * Initialize the transmit descriptor ring.
2581 	 */
2582 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2583 		sipd = &sc->sc_txdescs[i];
2584 		memset(sipd, 0, sizeof(struct sip_desc));
2585 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2586 	}
2587 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2588 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2589 	sc->sc_txfree = sc->sc_ntxdesc;
2590 	sc->sc_txnext = 0;
2591 	sc->sc_txwin = 0;
2592 
2593 	/*
2594 	 * Initialize the transmit job descriptors.
2595 	 */
2596 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2597 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2598 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2599 		txs = &sc->sc_txsoft[i];
2600 		txs->txs_mbuf = NULL;
2601 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2602 	}
2603 
2604 	/*
2605 	 * Initialize the receive descriptor and receive job
2606 	 * descriptor rings.
2607 	 */
2608 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2609 		rxs = &sc->sc_rxsoft[i];
2610 		if (rxs->rxs_mbuf == NULL) {
2611 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2612 				printf("%s: unable to allocate or map rx "
2613 				    "buffer %d, error = %d\n",
2614 				    device_xname(sc->sc_dev), i, error);
2615 				/*
2616 				 * XXX Should attempt to run with fewer receive
2617 				 * XXX buffers instead of just failing.
2618 				 */
2619 				sipcom_rxdrain(sc);
2620 				goto out;
2621 			}
2622 		} else
2623 			sip_init_rxdesc(sc, i);
2624 	}
2625 	sc->sc_rxptr = 0;
2626 	sc->sc_rxdiscard = 0;
2627 	sip_rxchain_reset(sc);
2628 
2629 	/*
2630 	 * Set the configuration register; it's already initialized
2631 	 * in sip_attach().
2632 	 */
2633 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2634 
2635 	/*
2636 	 * Initialize the prototype TXCFG register.
2637 	 */
2638 	if (sc->sc_gigabit) {
2639 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2640 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2641 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2642 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2643 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2644 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2645 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2646 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2647 	} else {
2648 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2649 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2650 	}
2651 
2652 	sc->sc_txcfg |= TXCFG_ATP |
2653 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2654 	    sc->sc_tx_drain_thresh;
2655 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2656 
2657 	/*
2658 	 * Initialize the receive drain threshold if we have never
2659 	 * done so.
2660 	 */
2661 	if (sc->sc_rx_drain_thresh == 0) {
2662 		/*
2663 		 * XXX This value should be tuned.  This is set to the
2664 		 * maximum of 248 bytes, and we may be able to improve
2665 		 * performance by decreasing it (although we should never
2666 		 * set this value lower than 2; 14 bytes are required to
2667 		 * filter the packet).
2668 		 */
2669 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2670 	}
2671 
2672 	/*
2673 	 * Initialize the prototype RXCFG register.
2674 	 */
2675 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2676 	/*
2677 	 * Accept long packets (including FCS) so we can handle
2678 	 * 802.1q-tagged frames and jumbo frames properly.
2679 	 */
2680 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2681 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2682 		sc->sc_rxcfg |= RXCFG_ALP;
2683 
2684 	/*
2685 	 * Checksum offloading is disabled if the user selects an MTU
2686 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2687 	 * evidence that >8109 does not work on some boards, such as the
2688 	 * Planex GN-1000TE).
2689 	 */
2690 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2691 	    (ifp->if_capenable &
2692 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2693 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2694 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2695 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2696 		       "disabled.\n", device_xname(sc->sc_dev));
2697 		ifp->if_capenable &=
2698 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2699 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2700 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2701 		ifp->if_csum_flags_tx = 0;
2702 		ifp->if_csum_flags_rx = 0;
2703 	}
2704 
2705 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2706 
2707 	if (sc->sc_gigabit)
2708 		sipcom_dp83820_init(sc, ifp->if_capenable);
2709 
2710 	/*
2711 	 * Give the transmit and receive rings to the chip.
2712 	 */
2713 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2714 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2715 
2716 	/*
2717 	 * Initialize the interrupt mask.
2718 	 */
2719 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2720 	             sc->sc_bits.b_isr_sserr |
2721 		     sc->sc_bits.b_isr_rmabt |
2722 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2723 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2724 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2725 
2726 	/* Set up the receive filter. */
2727 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2728 
2729 	/*
2730 	 * Tune sc_rx_flow_thresh.
2731 	 * XXX "More than 8KB" is too short for jumbo frames.
2732 	 * XXX TODO: Threshold value should be user-settable.
2733 	 */
2734 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2735 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2736 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2737 
2738 	/*
2739 	 * Set the current media.  Do this after initializing the prototype
2740 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2741 	 * control.
2742 	 */
2743 	if ((error = ether_mediachange(ifp)) != 0)
2744 		goto out;
2745 
2746 	/*
2747 	 * Set the interrupt hold-off timer to 100us.
2748 	 */
2749 	if (sc->sc_gigabit)
2750 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2751 
2752 	/*
2753 	 * Enable interrupts.
2754 	 */
2755 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2756 
2757 	/*
2758 	 * Start the transmit and receive processes.
2759 	 */
2760 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2761 
2762 	/*
2763 	 * Start the one second MII clock.
2764 	 */
2765 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2766 
2767 	/*
2768 	 * ...all done!
2769 	 */
2770 	ifp->if_flags |= IFF_RUNNING;
2771 	ifp->if_flags &= ~IFF_OACTIVE;
2772 	sc->sc_if_flags = ifp->if_flags;
2773 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2774 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2775 	sc->sc_prev.if_capenable = ifp->if_capenable;
2776 
2777  out:
2778 	if (error)
2779 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2780 	return (error);
2781 }
2782 
2783 /*
2784  * sip_drain:
2785  *
2786  *	Drain the receive queue.
2787  */
2788 static void
2789 sipcom_rxdrain(struct sip_softc *sc)
2790 {
2791 	struct sip_rxsoft *rxs;
2792 	int i;
2793 
2794 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2795 		rxs = &sc->sc_rxsoft[i];
2796 		if (rxs->rxs_mbuf != NULL) {
2797 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2798 			m_freem(rxs->rxs_mbuf);
2799 			rxs->rxs_mbuf = NULL;
2800 		}
2801 	}
2802 }
2803 
2804 /*
2805  * sip_stop:		[ ifnet interface function ]
2806  *
2807  *	Stop transmission on the interface.
2808  */
2809 static void
2810 sipcom_stop(struct ifnet *ifp, int disable)
2811 {
2812 	struct sip_softc *sc = ifp->if_softc;
2813 	bus_space_tag_t st = sc->sc_st;
2814 	bus_space_handle_t sh = sc->sc_sh;
2815 	struct sip_txsoft *txs;
2816 	u_int32_t cmdsts = 0;		/* DEBUG */
2817 
2818 	/*
2819 	 * Stop the one second clock.
2820 	 */
2821 	callout_stop(&sc->sc_tick_ch);
2822 
2823 	/* Down the MII. */
2824 	mii_down(&sc->sc_mii);
2825 
2826 	if (device_is_active(sc->sc_dev)) {
2827 		/*
2828 		 * Disable interrupts.
2829 		 */
2830 		bus_space_write_4(st, sh, SIP_IER, 0);
2831 
2832 		/*
2833 		 * Stop receiver and transmitter.
2834 		 */
2835 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2836 	}
2837 
2838 	/*
2839 	 * Release any queued transmit buffers.
2840 	 */
2841 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2842 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2843 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2844 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2845 		     CMDSTS_INTR) == 0)
2846 			printf("%s: sip_stop: last descriptor does not "
2847 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2848 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2849 #ifdef DIAGNOSTIC
2850 		if (txs->txs_mbuf == NULL) {
2851 			printf("%s: dirty txsoft with no mbuf chain\n",
2852 			    device_xname(sc->sc_dev));
2853 			panic("sip_stop");
2854 		}
2855 #endif
2856 		cmdsts |=		/* DEBUG */
2857 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2858 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2859 		m_freem(txs->txs_mbuf);
2860 		txs->txs_mbuf = NULL;
2861 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2862 	}
2863 
2864 	/*
2865 	 * Mark the interface down and cancel the watchdog timer.
2866 	 */
2867 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2868 	ifp->if_timer = 0;
2869 
2870 	if (disable)
2871 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2872 
2873 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2874 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2875 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2876 		    "descriptors\n", device_xname(sc->sc_dev));
2877 }
2878 
2879 /*
2880  * sip_read_eeprom:
2881  *
2882  *	Read data from the serial EEPROM.
2883  */
2884 static void
2885 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2886     u_int16_t *data)
2887 {
2888 	bus_space_tag_t st = sc->sc_st;
2889 	bus_space_handle_t sh = sc->sc_sh;
2890 	u_int16_t reg;
2891 	int i, x;
2892 
2893 	for (i = 0; i < wordcnt; i++) {
2894 		/* Send CHIP SELECT. */
2895 		reg = EROMAR_EECS;
2896 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2897 
2898 		/* Shift in the READ opcode. */
2899 		for (x = 3; x > 0; x--) {
2900 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2901 				reg |= EROMAR_EEDI;
2902 			else
2903 				reg &= ~EROMAR_EEDI;
2904 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2905 			bus_space_write_4(st, sh, SIP_EROMAR,
2906 			    reg | EROMAR_EESK);
2907 			delay(4);
2908 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2909 			delay(4);
2910 		}
2911 
2912 		/* Shift in address. */
2913 		for (x = 6; x > 0; x--) {
2914 			if ((word + i) & (1 << (x - 1)))
2915 				reg |= EROMAR_EEDI;
2916 			else
2917 				reg &= ~EROMAR_EEDI;
2918 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2919 			bus_space_write_4(st, sh, SIP_EROMAR,
2920 			    reg | EROMAR_EESK);
2921 			delay(4);
2922 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2923 			delay(4);
2924 		}
2925 
2926 		/* Shift out data. */
2927 		reg = EROMAR_EECS;
2928 		data[i] = 0;
2929 		for (x = 16; x > 0; x--) {
2930 			bus_space_write_4(st, sh, SIP_EROMAR,
2931 			    reg | EROMAR_EESK);
2932 			delay(4);
2933 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2934 				data[i] |= (1 << (x - 1));
2935 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2936 			delay(4);
2937 		}
2938 
2939 		/* Clear CHIP SELECT. */
2940 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2941 		delay(4);
2942 	}
2943 }
2944 
2945 /*
2946  * sipcom_add_rxbuf:
2947  *
2948  *	Add a receive buffer to the indicated descriptor.
2949  */
2950 static int
2951 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2952 {
2953 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2954 	struct mbuf *m;
2955 	int error;
2956 
2957 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2958 	if (m == NULL)
2959 		return (ENOBUFS);
2960 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2961 
2962 	MCLGET(m, M_DONTWAIT);
2963 	if ((m->m_flags & M_EXT) == 0) {
2964 		m_freem(m);
2965 		return (ENOBUFS);
2966 	}
2967 
2968 	/* XXX I don't believe this is necessary. --dyoung */
2969 	if (sc->sc_gigabit)
2970 		m->m_len = sc->sc_parm->p_rxbuf_len;
2971 
2972 	if (rxs->rxs_mbuf != NULL)
2973 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2974 
2975 	rxs->rxs_mbuf = m;
2976 
2977 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2978 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2979 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2980 	if (error) {
2981 		printf("%s: can't load rx DMA map %d, error = %d\n",
2982 		    device_xname(sc->sc_dev), idx, error);
2983 		panic("%s", __func__);		/* XXX */
2984 	}
2985 
2986 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2987 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2988 
2989 	sip_init_rxdesc(sc, idx);
2990 
2991 	return (0);
2992 }
2993 
2994 /*
2995  * sip_sis900_set_filter:
2996  *
2997  *	Set up the receive filter.
2998  */
2999 static void
3000 sipcom_sis900_set_filter(struct sip_softc *sc)
3001 {
3002 	bus_space_tag_t st = sc->sc_st;
3003 	bus_space_handle_t sh = sc->sc_sh;
3004 	struct ethercom *ec = &sc->sc_ethercom;
3005 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3006 	struct ether_multi *enm;
3007 	const u_int8_t *cp;
3008 	struct ether_multistep step;
3009 	u_int32_t crc, mchash[16];
3010 
3011 	/*
3012 	 * Initialize the prototype RFCR.
3013 	 */
3014 	sc->sc_rfcr = RFCR_RFEN;
3015 	if (ifp->if_flags & IFF_BROADCAST)
3016 		sc->sc_rfcr |= RFCR_AAB;
3017 	if (ifp->if_flags & IFF_PROMISC) {
3018 		sc->sc_rfcr |= RFCR_AAP;
3019 		goto allmulti;
3020 	}
3021 
3022 	/*
3023 	 * Set up the multicast address filter by passing all multicast
3024 	 * addresses through a CRC generator, and then using the high-order
3025 	 * 6 bits as an index into the 128 bit multicast hash table (only
3026 	 * the lower 16 bits of each 32 bit multicast hash register are
3027 	 * valid).  The high order bits select the register, while the
3028 	 * rest of the bits select the bit within the register.
3029 	 */
3030 
3031 	memset(mchash, 0, sizeof(mchash));
3032 
3033 	/*
3034 	 * SiS900 (at least SiS963) requires us to register the address of
3035 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3036 	 */
3037 	crc = 0x0ed423f9;
3038 
3039 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3040 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3041 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3042 		/* Just want the 8 most significant bits. */
3043 		crc >>= 24;
3044 	} else {
3045 		/* Just want the 7 most significant bits. */
3046 		crc >>= 25;
3047 	}
3048 
3049 	/* Set the corresponding bit in the hash table. */
3050 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3051 
3052 	ETHER_FIRST_MULTI(step, ec, enm);
3053 	while (enm != NULL) {
3054 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3055 			/*
3056 			 * We must listen to a range of multicast addresses.
3057 			 * For now, just accept all multicasts, rather than
3058 			 * trying to set only those filter bits needed to match
3059 			 * the range.  (At this time, the only use of address
3060 			 * ranges is for IP multicast routing, for which the
3061 			 * range is big enough to require all bits set.)
3062 			 */
3063 			goto allmulti;
3064 		}
3065 
3066 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3067 
3068 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3069 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3070 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3071 			/* Just want the 8 most significant bits. */
3072 			crc >>= 24;
3073 		} else {
3074 			/* Just want the 7 most significant bits. */
3075 			crc >>= 25;
3076 		}
3077 
3078 		/* Set the corresponding bit in the hash table. */
3079 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3080 
3081 		ETHER_NEXT_MULTI(step, enm);
3082 	}
3083 
3084 	ifp->if_flags &= ~IFF_ALLMULTI;
3085 	goto setit;
3086 
3087  allmulti:
3088 	ifp->if_flags |= IFF_ALLMULTI;
3089 	sc->sc_rfcr |= RFCR_AAM;
3090 
3091  setit:
3092 #define	FILTER_EMIT(addr, data)						\
3093 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3094 	delay(1);							\
3095 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3096 	delay(1)
3097 
3098 	/*
3099 	 * Disable receive filter, and program the node address.
3100 	 */
3101 	cp = CLLADDR(ifp->if_sadl);
3102 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3103 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3104 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3105 
3106 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3107 		/*
3108 		 * Program the multicast hash table.
3109 		 */
3110 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3111 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3112 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3113 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3114 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3115 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3116 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3117 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3118 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3119 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3120 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3121 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3122 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3123 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3124 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3125 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3126 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3127 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3128 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3129 		}
3130 	}
3131 #undef FILTER_EMIT
3132 
3133 	/*
3134 	 * Re-enable the receiver filter.
3135 	 */
3136 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3137 }
3138 
3139 /*
3140  * sip_dp83815_set_filter:
3141  *
3142  *	Set up the receive filter.
3143  */
3144 static void
3145 sipcom_dp83815_set_filter(struct sip_softc *sc)
3146 {
3147 	bus_space_tag_t st = sc->sc_st;
3148 	bus_space_handle_t sh = sc->sc_sh;
3149 	struct ethercom *ec = &sc->sc_ethercom;
3150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3151 	struct ether_multi *enm;
3152 	const u_int8_t *cp;
3153 	struct ether_multistep step;
3154 	u_int32_t crc, hash, slot, bit;
3155 #define	MCHASH_NWORDS_83820	128
3156 #define	MCHASH_NWORDS_83815	32
3157 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3158 	u_int16_t mchash[MCHASH_NWORDS];
3159 	int i;
3160 
3161 	/*
3162 	 * Initialize the prototype RFCR.
3163 	 * Enable the receive filter, and accept on
3164 	 *    Perfect (destination address) Match
3165 	 * If IFF_BROADCAST, also accept all broadcast packets.
3166 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3167 	 *    IFF_ALLMULTI and accept all multicast, too).
3168 	 */
3169 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3170 	if (ifp->if_flags & IFF_BROADCAST)
3171 		sc->sc_rfcr |= RFCR_AAB;
3172 	if (ifp->if_flags & IFF_PROMISC) {
3173 		sc->sc_rfcr |= RFCR_AAP;
3174 		goto allmulti;
3175 	}
3176 
3177 	/*
3178          * Set up the DP83820/DP83815 multicast address filter by
3179          * passing all multicast addresses through a CRC generator,
3180          * and then using the high-order 11/9 bits as an index into
3181          * the 2048/512 bit multicast hash table.  The high-order
3182          * 7/5 bits select the slot, while the low-order 4 bits
3183          * select the bit within the slot.  Note that only the low
3184          * 16-bits of each filter word are used, and there are
3185          * 128/32 filter words.
3186 	 */
3187 
3188 	memset(mchash, 0, sizeof(mchash));
3189 
3190 	ifp->if_flags &= ~IFF_ALLMULTI;
3191 	ETHER_FIRST_MULTI(step, ec, enm);
3192 	if (enm == NULL)
3193 		goto setit;
3194 	while (enm != NULL) {
3195 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3196 			/*
3197 			 * We must listen to a range of multicast addresses.
3198 			 * For now, just accept all multicasts, rather than
3199 			 * trying to set only those filter bits needed to match
3200 			 * the range.  (At this time, the only use of address
3201 			 * ranges is for IP multicast routing, for which the
3202 			 * range is big enough to require all bits set.)
3203 			 */
3204 			goto allmulti;
3205 		}
3206 
3207 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3208 
3209 		if (sc->sc_gigabit) {
3210 			/* Just want the 11 most significant bits. */
3211 			hash = crc >> 21;
3212 		} else {
3213 			/* Just want the 9 most significant bits. */
3214 			hash = crc >> 23;
3215 		}
3216 
3217 		slot = hash >> 4;
3218 		bit = hash & 0xf;
3219 
3220 		/* Set the corresponding bit in the hash table. */
3221 		mchash[slot] |= 1 << bit;
3222 
3223 		ETHER_NEXT_MULTI(step, enm);
3224 	}
3225 	sc->sc_rfcr |= RFCR_MHEN;
3226 	goto setit;
3227 
3228  allmulti:
3229 	ifp->if_flags |= IFF_ALLMULTI;
3230 	sc->sc_rfcr |= RFCR_AAM;
3231 
3232  setit:
3233 #define	FILTER_EMIT(addr, data)						\
3234 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3235 	delay(1);							\
3236 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3237 	delay(1)
3238 
3239 	/*
3240 	 * Disable receive filter, and program the node address.
3241 	 */
3242 	cp = CLLADDR(ifp->if_sadl);
3243 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3244 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3245 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3246 
3247 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3248 		int nwords =
3249 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3250 		/*
3251 		 * Program the multicast hash table.
3252 		 */
3253 		for (i = 0; i < nwords; i++) {
3254 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3255 		}
3256 	}
3257 #undef FILTER_EMIT
3258 #undef MCHASH_NWORDS
3259 #undef MCHASH_NWORDS_83815
3260 #undef MCHASH_NWORDS_83820
3261 
3262 	/*
3263 	 * Re-enable the receiver filter.
3264 	 */
3265 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3266 }
3267 
3268 /*
3269  * sip_dp83820_mii_readreg:	[mii interface function]
3270  *
3271  *	Read a PHY register on the MII of the DP83820.
3272  */
3273 static int
3274 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3275 {
3276 	struct sip_softc *sc = device_private(self);
3277 
3278 	if (sc->sc_cfg & CFG_TBI_EN) {
3279 		bus_addr_t tbireg;
3280 		int rv;
3281 
3282 		if (phy != 0)
3283 			return (0);
3284 
3285 		switch (reg) {
3286 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3287 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3288 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3289 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3290 		case MII_ANER:		tbireg = SIP_TANER; break;
3291 		case MII_EXTSR:
3292 			/*
3293 			 * Don't even bother reading the TESR register.
3294 			 * The manual documents that the device has
3295 			 * 1000baseX full/half capability, but the
3296 			 * register itself seems read back 0 on some
3297 			 * boards.  Just hard-code the result.
3298 			 */
3299 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3300 
3301 		default:
3302 			return (0);
3303 		}
3304 
3305 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3306 		if (tbireg == SIP_TBISR) {
3307 			/* LINK and ACOMP are switched! */
3308 			int val = rv;
3309 
3310 			rv = 0;
3311 			if (val & TBISR_MR_LINK_STATUS)
3312 				rv |= BMSR_LINK;
3313 			if (val & TBISR_MR_AN_COMPLETE)
3314 				rv |= BMSR_ACOMP;
3315 
3316 			/*
3317 			 * The manual claims this register reads back 0
3318 			 * on hard and soft reset.  But we want to let
3319 			 * the gentbi driver know that we support auto-
3320 			 * negotiation, so hard-code this bit in the
3321 			 * result.
3322 			 */
3323 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3324 		}
3325 
3326 		return (rv);
3327 	}
3328 
3329 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3330 }
3331 
3332 /*
3333  * sip_dp83820_mii_writereg:	[mii interface function]
3334  *
3335  *	Write a PHY register on the MII of the DP83820.
3336  */
3337 static void
3338 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3339 {
3340 	struct sip_softc *sc = device_private(self);
3341 
3342 	if (sc->sc_cfg & CFG_TBI_EN) {
3343 		bus_addr_t tbireg;
3344 
3345 		if (phy != 0)
3346 			return;
3347 
3348 		switch (reg) {
3349 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3350 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3351 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3352 		default:
3353 			return;
3354 		}
3355 
3356 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3357 		return;
3358 	}
3359 
3360 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3361 }
3362 
3363 /*
3364  * sip_dp83820_mii_statchg:	[mii interface function]
3365  *
3366  *	Callback from MII layer when media changes.
3367  */
3368 static void
3369 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3370 {
3371 	struct sip_softc *sc = ifp->if_softc;
3372 	struct mii_data *mii = &sc->sc_mii;
3373 	u_int32_t cfg, pcr;
3374 
3375 	/*
3376 	 * Get flow control negotiation result.
3377 	 */
3378 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3379 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3380 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3381 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3382 	}
3383 
3384 	/*
3385 	 * Update TXCFG for full-duplex operation.
3386 	 */
3387 	if ((mii->mii_media_active & IFM_FDX) != 0)
3388 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3389 	else
3390 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3391 
3392 	/*
3393 	 * Update RXCFG for full-duplex or loopback.
3394 	 */
3395 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3396 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3397 		sc->sc_rxcfg |= RXCFG_ATX;
3398 	else
3399 		sc->sc_rxcfg &= ~RXCFG_ATX;
3400 
3401 	/*
3402 	 * Update CFG for MII/GMII.
3403 	 */
3404 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3405 		cfg = sc->sc_cfg | CFG_MODE_1000;
3406 	else
3407 		cfg = sc->sc_cfg;
3408 
3409 	/*
3410 	 * 802.3x flow control.
3411 	 */
3412 	pcr = 0;
3413 	if (sc->sc_flowflags & IFM_FLOW) {
3414 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3415 			pcr |= sc->sc_rx_flow_thresh;
3416 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3417 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3418 	}
3419 
3420 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3421 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3422 	    sc->sc_txcfg);
3423 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3424 	    sc->sc_rxcfg);
3425 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3426 }
3427 
3428 /*
3429  * sip_mii_bitbang_read: [mii bit-bang interface function]
3430  *
3431  *	Read the MII serial port for the MII bit-bang module.
3432  */
3433 static u_int32_t
3434 sipcom_mii_bitbang_read(device_t self)
3435 {
3436 	struct sip_softc *sc = device_private(self);
3437 
3438 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3439 }
3440 
3441 /*
3442  * sip_mii_bitbang_write: [mii big-bang interface function]
3443  *
3444  *	Write the MII serial port for the MII bit-bang module.
3445  */
3446 static void
3447 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3448 {
3449 	struct sip_softc *sc = device_private(self);
3450 
3451 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3452 }
3453 
3454 /*
3455  * sip_sis900_mii_readreg:	[mii interface function]
3456  *
3457  *	Read a PHY register on the MII.
3458  */
3459 static int
3460 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3461 {
3462 	struct sip_softc *sc = device_private(self);
3463 	u_int32_t enphy;
3464 
3465 	/*
3466 	 * The PHY of recent SiS chipsets is accessed through bitbang
3467 	 * operations.
3468 	 */
3469 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3470 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3471 		    phy, reg);
3472 
3473 #ifndef SIS900_MII_RESTRICT
3474 	/*
3475 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3476 	 * MII address 0.
3477 	 */
3478 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3479 		return (0);
3480 #endif
3481 
3482 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3483 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3484 	    ENPHY_RWCMD | ENPHY_ACCESS);
3485 	do {
3486 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3487 	} while (enphy & ENPHY_ACCESS);
3488 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3489 }
3490 
3491 /*
3492  * sip_sis900_mii_writereg:	[mii interface function]
3493  *
3494  *	Write a PHY register on the MII.
3495  */
3496 static void
3497 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3498 {
3499 	struct sip_softc *sc = device_private(self);
3500 	u_int32_t enphy;
3501 
3502 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3503 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3504 		    phy, reg, val);
3505 		return;
3506 	}
3507 
3508 #ifndef SIS900_MII_RESTRICT
3509 	/*
3510 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3511 	 * MII address 0.
3512 	 */
3513 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3514 		return;
3515 #endif
3516 
3517 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3518 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3519 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3520 	do {
3521 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3522 	} while (enphy & ENPHY_ACCESS);
3523 }
3524 
3525 /*
3526  * sip_sis900_mii_statchg:	[mii interface function]
3527  *
3528  *	Callback from MII layer when media changes.
3529  */
3530 static void
3531 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3532 {
3533 	struct sip_softc *sc = ifp->if_softc;
3534 	struct mii_data *mii = &sc->sc_mii;
3535 	u_int32_t flowctl;
3536 
3537 	/*
3538 	 * Get flow control negotiation result.
3539 	 */
3540 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3541 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3542 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3543 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3544 	}
3545 
3546 	/*
3547 	 * Update TXCFG for full-duplex operation.
3548 	 */
3549 	if ((mii->mii_media_active & IFM_FDX) != 0)
3550 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3551 	else
3552 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3553 
3554 	/*
3555 	 * Update RXCFG for full-duplex or loopback.
3556 	 */
3557 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3558 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3559 		sc->sc_rxcfg |= RXCFG_ATX;
3560 	else
3561 		sc->sc_rxcfg &= ~RXCFG_ATX;
3562 
3563 	/*
3564 	 * Update IMR for use of 802.3x flow control.
3565 	 */
3566 	if (sc->sc_flowflags & IFM_FLOW) {
3567 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3568 		flowctl = FLOWCTL_FLOWEN;
3569 	} else {
3570 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3571 		flowctl = 0;
3572 	}
3573 
3574 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3575 	    sc->sc_txcfg);
3576 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3577 	    sc->sc_rxcfg);
3578 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3579 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3580 }
3581 
3582 /*
3583  * sip_dp83815_mii_readreg:	[mii interface function]
3584  *
3585  *	Read a PHY register on the MII.
3586  */
3587 static int
3588 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3589 {
3590 	struct sip_softc *sc = device_private(self);
3591 	u_int32_t val;
3592 
3593 	/*
3594 	 * The DP83815 only has an internal PHY.  Only allow
3595 	 * MII address 0.
3596 	 */
3597 	if (phy != 0)
3598 		return (0);
3599 
3600 	/*
3601 	 * Apparently, after a reset, the DP83815 can take a while
3602 	 * to respond.  During this recovery period, the BMSR returns
3603 	 * a value of 0.  Catch this -- it's not supposed to happen
3604 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3605 	 * PHY to come back to life.
3606 	 *
3607 	 * This works out because the BMSR is the first register
3608 	 * read during the PHY probe process.
3609 	 */
3610 	do {
3611 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3612 	} while (reg == MII_BMSR && val == 0);
3613 
3614 	return (val & 0xffff);
3615 }
3616 
3617 /*
3618  * sip_dp83815_mii_writereg:	[mii interface function]
3619  *
3620  *	Write a PHY register to the MII.
3621  */
3622 static void
3623 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3624 {
3625 	struct sip_softc *sc = device_private(self);
3626 
3627 	/*
3628 	 * The DP83815 only has an internal PHY.  Only allow
3629 	 * MII address 0.
3630 	 */
3631 	if (phy != 0)
3632 		return;
3633 
3634 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3635 }
3636 
3637 /*
3638  * sip_dp83815_mii_statchg:	[mii interface function]
3639  *
3640  *	Callback from MII layer when media changes.
3641  */
3642 static void
3643 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3644 {
3645 	struct sip_softc *sc = ifp->if_softc;
3646 
3647 	/*
3648 	 * Update TXCFG for full-duplex operation.
3649 	 */
3650 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3651 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3652 	else
3653 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3654 
3655 	/*
3656 	 * Update RXCFG for full-duplex or loopback.
3657 	 */
3658 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3659 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3660 		sc->sc_rxcfg |= RXCFG_ATX;
3661 	else
3662 		sc->sc_rxcfg &= ~RXCFG_ATX;
3663 
3664 	/*
3665 	 * XXX 802.3x flow control.
3666 	 */
3667 
3668 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3669 	    sc->sc_txcfg);
3670 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3671 	    sc->sc_rxcfg);
3672 
3673 	/*
3674 	 * Some DP83815s experience problems when used with short
3675 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3676 	 * sequence adjusts the DSP's signal attenuation to fix the
3677 	 * problem.
3678 	 */
3679 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3680 		uint32_t reg;
3681 
3682 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3683 
3684 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3685 		reg &= 0x0fff;
3686 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3687 		delay(100);
3688 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3689 		reg &= 0x00ff;
3690 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3691 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3692 			    0x00e8);
3693 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3694 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3695 			    reg | 0x20);
3696 		}
3697 
3698 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3699 	}
3700 }
3701 
3702 static void
3703 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3704     const struct pci_attach_args *pa, u_int8_t *enaddr)
3705 {
3706 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3707 	u_int8_t cksum, *e, match;
3708 	int i;
3709 
3710 	/*
3711 	 * EEPROM data format for the DP83820 can be found in
3712 	 * the DP83820 manual, section 4.2.4.
3713 	 */
3714 
3715 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3716 
3717 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3718 	match = ~(match - 1);
3719 
3720 	cksum = 0x55;
3721 	e = (u_int8_t *) eeprom_data;
3722 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3723 		cksum += *e++;
3724 
3725 	if (cksum != match)
3726 		printf("%s: Checksum (%x) mismatch (%x)",
3727 		    device_xname(sc->sc_dev), cksum, match);
3728 
3729 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3730 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3731 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3732 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3733 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3734 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3735 }
3736 
3737 static void
3738 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3739 {
3740 	int i;
3741 
3742 	/*
3743 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3744 	 * a reason, but I don't know it.
3745 	 */
3746 	for (i = 0; i < 10; i++)
3747 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3748 }
3749 
3750 static void
3751 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3752     const struct pci_attach_args *pa, u_int8_t *enaddr)
3753 {
3754 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3755 
3756 	switch (sc->sc_rev) {
3757 	case SIS_REV_630S:
3758 	case SIS_REV_630E:
3759 	case SIS_REV_630EA1:
3760 	case SIS_REV_630ET:
3761 	case SIS_REV_635:
3762 		/*
3763 		 * The MAC address for the on-board Ethernet of
3764 		 * the SiS 630 chipset is in the NVRAM.  Kick
3765 		 * the chip into re-loading it from NVRAM, and
3766 		 * read the MAC address out of the filter registers.
3767 		 */
3768 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3769 
3770 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3771 		    RFCR_RFADDR_NODE0);
3772 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3773 		    0xffff;
3774 
3775 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3776 		    RFCR_RFADDR_NODE2);
3777 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3778 		    0xffff;
3779 
3780 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3781 		    RFCR_RFADDR_NODE4);
3782 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3783 		    0xffff;
3784 		break;
3785 
3786 	case SIS_REV_960:
3787 		{
3788 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3789 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3790 
3791 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3792 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3793 
3794 			int waittime, i;
3795 
3796 			/* Allow to read EEPROM from LAN. It is shared
3797 			 * between a 1394 controller and the NIC and each
3798 			 * time we access it, we need to set SIS_EECMD_REQ.
3799 			 */
3800 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3801 
3802 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3803 				/* Force EEPROM to idle state. */
3804 
3805 				/*
3806 				 * XXX-cube This is ugly.  I'll look for docs about it.
3807 				 */
3808 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3809 				sipcom_sis900_eeprom_delay(sc);
3810 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3811 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3812 					sipcom_sis900_eeprom_delay(sc);
3813 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3814 					sipcom_sis900_eeprom_delay(sc);
3815 				}
3816 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3817 				sipcom_sis900_eeprom_delay(sc);
3818 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3819 
3820 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3821 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3822 					    sizeof(myea) / sizeof(myea[0]), myea);
3823 					break;
3824 				}
3825 				DELAY(1);
3826 			}
3827 
3828 			/*
3829 			 * Set SIS_EECTL_CLK to high, so a other master
3830 			 * can operate on the i2c bus.
3831 			 */
3832 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3833 
3834 			/* Refuse EEPROM access by LAN */
3835 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3836 		} break;
3837 
3838 	default:
3839 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3840 		    sizeof(myea) / sizeof(myea[0]), myea);
3841 	}
3842 
3843 	enaddr[0] = myea[0] & 0xff;
3844 	enaddr[1] = myea[0] >> 8;
3845 	enaddr[2] = myea[1] & 0xff;
3846 	enaddr[3] = myea[1] >> 8;
3847 	enaddr[4] = myea[2] & 0xff;
3848 	enaddr[5] = myea[2] >> 8;
3849 }
3850 
3851 /* Table and macro to bit-reverse an octet. */
3852 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3853 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3854 
3855 static void
3856 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3857     const struct pci_attach_args *pa, u_int8_t *enaddr)
3858 {
3859 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3860 	u_int8_t cksum, *e, match;
3861 	int i;
3862 
3863 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3864 	    sizeof(eeprom_data[0]), eeprom_data);
3865 
3866 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3867 	match = ~(match - 1);
3868 
3869 	cksum = 0x55;
3870 	e = (u_int8_t *) eeprom_data;
3871 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3872 		cksum += *e++;
3873 	}
3874 	if (cksum != match) {
3875 		printf("%s: Checksum (%x) mismatch (%x)",
3876 		    device_xname(sc->sc_dev), cksum, match);
3877 	}
3878 
3879 	/*
3880 	 * Unrolled because it makes slightly more sense this way.
3881 	 * The DP83815 stores the MAC address in bit 0 of word 6
3882 	 * through bit 15 of word 8.
3883 	 */
3884 	ea = &eeprom_data[6];
3885 	enaddr[0] = ((*ea & 0x1) << 7);
3886 	ea++;
3887 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3888 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3889 	enaddr[2] = ((*ea & 0x1) << 7);
3890 	ea++;
3891 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3892 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3893 	enaddr[4] = ((*ea & 0x1) << 7);
3894 	ea++;
3895 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3896 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3897 
3898 	/*
3899 	 * In case that's not weird enough, we also need to reverse
3900 	 * the bits in each byte.  This all actually makes more sense
3901 	 * if you think about the EEPROM storage as an array of bits
3902 	 * being shifted into bytes, but that's not how we're looking
3903 	 * at it here...
3904 	 */
3905 	for (i = 0; i < 6 ;i++)
3906 		enaddr[i] = bbr(enaddr[i]);
3907 }
3908 
3909 /*
3910  * sip_mediastatus:	[ifmedia interface function]
3911  *
3912  *	Get the current interface media status.
3913  */
3914 static void
3915 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3916 {
3917 	struct sip_softc *sc = ifp->if_softc;
3918 
3919 	if (!device_is_active(sc->sc_dev)) {
3920 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3921 		ifmr->ifm_status = 0;
3922 		return;
3923 	}
3924 	ether_mediastatus(ifp, ifmr);
3925 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3926 			   sc->sc_flowflags;
3927 }
3928