xref: /netbsd-src/sys/dev/pci/if_sip.c (revision b19e9f6776dfba359eaedbfd67d0367bca2f732e)
1 /*	$NetBSD: if_sip.c,v 1.32 2001/06/03 03:55:10 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Support the 10-bit interface on the DP83820 (for fiber).
80  *
81  *	- Support jumbo packets on the DP83820.
82  *
83  *	- Reduce the interrupt load.
84  */
85 
86 #include "opt_inet.h"
87 #include "opt_ns.h"
88 #include "bpfilter.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/callout.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/ioctl.h>
98 #include <sys/errno.h>
99 #include <sys/device.h>
100 #include <sys/queue.h>
101 
102 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
103 
104 #include <net/if.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_ether.h>
108 
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112 
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #endif
117 
118 #ifdef NS
119 #include <netns/ns.h>
120 #include <netns/ns_if.h>
121 #endif
122 
123 #include <machine/bus.h>
124 #include <machine/intr.h>
125 #include <machine/endian.h>
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129 #ifdef DP83820
130 #include <dev/mii/mii_bitbang.h>
131 #endif /* DP83820 */
132 
133 #include <dev/pci/pcireg.h>
134 #include <dev/pci/pcivar.h>
135 #include <dev/pci/pcidevs.h>
136 
137 #include <dev/pci/if_sipreg.h>
138 
139 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
140 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
141 #else			/* SiS900 and DP83815 */
142 #define	SIP_DECL(x)	__CONCAT(sip_,x)
143 #endif
144 
145 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
146 
147 /*
148  * Transmit descriptor list size.  This is arbitrary, but allocate
149  * enough descriptors for 128 pending transmissions, and 8 segments
150  * per packet.  This MUST work out to a power of 2.
151  */
152 #define	SIP_NTXSEGS		8
153 
154 #define	SIP_TXQUEUELEN		256
155 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
156 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
157 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
158 
159 /*
160  * Receive descriptor list size.  We have one Rx buffer per incoming
161  * packet, so this logic is a little simpler.
162  */
163 #define	SIP_NRXDESC		128
164 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
165 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
166 
167 /*
168  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
169  * a single clump that maps to a single DMA segment to make several things
170  * easier.
171  */
172 struct sip_control_data {
173 	/*
174 	 * The transmit descriptors.
175 	 */
176 	struct sip_desc scd_txdescs[SIP_NTXDESC];
177 
178 	/*
179 	 * The receive descriptors.
180 	 */
181 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
182 };
183 
184 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
185 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
186 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
187 
188 /*
189  * Software state for transmit jobs.
190  */
191 struct sip_txsoft {
192 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
193 	bus_dmamap_t txs_dmamap;	/* our DMA map */
194 	int txs_firstdesc;		/* first descriptor in packet */
195 	int txs_lastdesc;		/* last descriptor in packet */
196 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
197 };
198 
199 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
200 
201 /*
202  * Software state for receive jobs.
203  */
204 struct sip_rxsoft {
205 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
206 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
207 };
208 
209 /*
210  * Software state per device.
211  */
212 struct sip_softc {
213 	struct device sc_dev;		/* generic device information */
214 	bus_space_tag_t sc_st;		/* bus space tag */
215 	bus_space_handle_t sc_sh;	/* bus space handle */
216 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
217 	struct ethercom sc_ethercom;	/* ethernet common data */
218 	void *sc_sdhook;		/* shutdown hook */
219 
220 	const struct sip_product *sc_model; /* which model are we? */
221 
222 	void *sc_ih;			/* interrupt cookie */
223 
224 	struct mii_data sc_mii;		/* MII/media information */
225 
226 	struct callout sc_tick_ch;	/* tick callout */
227 
228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
229 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
230 
231 	/*
232 	 * Software state for transmit and receive descriptors.
233 	 */
234 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
236 
237 	/*
238 	 * Control data structures.
239 	 */
240 	struct sip_control_data *sc_control_data;
241 #define	sc_txdescs	sc_control_data->scd_txdescs
242 #define	sc_rxdescs	sc_control_data->scd_rxdescs
243 
244 #ifdef SIP_EVENT_COUNTERS
245 	/*
246 	 * Event counters.
247 	 */
248 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
249 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
250 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
251 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
252 #ifdef DP83820
253 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
254 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
255 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
256 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
257 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
258 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
259 #endif /* DP83820 */
260 #endif /* SIP_EVENT_COUNTERS */
261 
262 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
263 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
264 	u_int32_t sc_imr;		/* prototype IMR register */
265 	u_int32_t sc_rfcr;		/* prototype RFCR register */
266 
267 	u_int32_t sc_cfg;		/* prototype CFG register */
268 
269 #ifdef DP83820
270 	u_int32_t sc_gpior;		/* prototype GPIOR register */
271 #endif /* DP83820 */
272 
273 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
274 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
275 
276 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
277 
278 	int	sc_flags;		/* misc. flags; see below */
279 
280 	int	sc_txfree;		/* number of free Tx descriptors */
281 	int	sc_txnext;		/* next ready Tx descriptor */
282 
283 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
284 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
285 
286 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
287 };
288 
289 /* sc_flags */
290 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
291 
292 #ifdef SIP_EVENT_COUNTERS
293 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
294 #else
295 #define	SIP_EVCNT_INCR(ev)	/* nothing */
296 #endif
297 
298 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
299 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
300 
301 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
302 do {									\
303 	int __x, __n;							\
304 									\
305 	__x = (x);							\
306 	__n = (n);							\
307 									\
308 	/* If it will wrap around, sync to the end of the ring. */	\
309 	if ((__x + __n) > SIP_NTXDESC) {				\
310 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
311 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
312 		    (SIP_NTXDESC - __x), (ops));			\
313 		__n -= (SIP_NTXDESC - __x);				\
314 		__x = 0;						\
315 	}								\
316 									\
317 	/* Now sync whatever is left. */				\
318 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
319 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
320 } while (0)
321 
322 #define	SIP_CDRXSYNC(sc, x, ops)					\
323 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
324 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
325 
326 /*
327  * Note we rely on MCLBYTES being a power of two below.
328  */
329 #ifdef DP83820
330 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
331 #else
332 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
333 #endif
334 #define	SIP_INIT_RXDESC(sc, x)						\
335 do {									\
336 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
337 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
338 									\
339 	__sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
340 	__sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
341 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
342 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK));			\
343 	SIP_INIT_RXDESC_EXTSTS						\
344 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
345 } while (0)
346 
347 #define SIP_TIMEOUT 1000
348 
349 void	SIP_DECL(start)(struct ifnet *);
350 void	SIP_DECL(watchdog)(struct ifnet *);
351 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
352 int	SIP_DECL(init)(struct ifnet *);
353 void	SIP_DECL(stop)(struct ifnet *, int);
354 
355 void	SIP_DECL(shutdown)(void *);
356 
357 void	SIP_DECL(reset)(struct sip_softc *);
358 void	SIP_DECL(rxdrain)(struct sip_softc *);
359 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
360 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
361 void	SIP_DECL(tick)(void *);
362 
363 #if !defined(DP83820)
364 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
365 #endif /* ! DP83820 */
366 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
367 
368 #if defined(DP83820)
369 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, u_int8_t *);
370 #else
371 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *, u_int8_t *);
372 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, u_int8_t *);
373 #endif /* DP83820 */
374 
375 int	SIP_DECL(intr)(void *);
376 void	SIP_DECL(txintr)(struct sip_softc *);
377 void	SIP_DECL(rxintr)(struct sip_softc *);
378 
379 #if defined(DP83820)
380 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
381 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
382 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
383 #else
384 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
385 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
386 void	SIP_DECL(sis900_mii_statchg)(struct device *);
387 
388 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
389 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
390 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
391 #endif /* DP83820 */
392 
393 int	SIP_DECL(mediachange)(struct ifnet *);
394 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
395 
396 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
397 void	SIP_DECL(attach)(struct device *, struct device *, void *);
398 
399 int	SIP_DECL(copy_small) = 0;
400 
401 struct cfattach SIP_DECL(ca) = {
402 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
403 };
404 
405 /*
406  * Descriptions of the variants of the SiS900.
407  */
408 struct sip_variant {
409 	int	(*sipv_mii_readreg)(struct device *, int, int);
410 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
411 	void	(*sipv_mii_statchg)(struct device *);
412 	void	(*sipv_set_filter)(struct sip_softc *);
413 	void	(*sipv_read_macaddr)(struct sip_softc *, u_int8_t *);
414 };
415 
416 #if defined(DP83820)
417 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
418 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
419 
420 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
421 	SIP_DECL(dp83820_mii_bitbang_read),
422 	SIP_DECL(dp83820_mii_bitbang_write),
423 	{
424 		EROMAR_MDIO,		/* MII_BIT_MDO */
425 		EROMAR_MDIO,		/* MII_BIT_MDI */
426 		EROMAR_MDC,		/* MII_BIT_MDC */
427 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
428 		0,			/* MII_BIT_DIR_PHY_HOST */
429 	}
430 };
431 #endif /* DP83820 */
432 
433 #if defined(DP83820)
434 const struct sip_variant SIP_DECL(variant_dp83820) = {
435 	SIP_DECL(dp83820_mii_readreg),
436 	SIP_DECL(dp83820_mii_writereg),
437 	SIP_DECL(dp83820_mii_statchg),
438 	SIP_DECL(dp83815_set_filter),
439 	SIP_DECL(dp83820_read_macaddr),
440 };
441 #else
442 const struct sip_variant SIP_DECL(variant_sis900) = {
443 	SIP_DECL(sis900_mii_readreg),
444 	SIP_DECL(sis900_mii_writereg),
445 	SIP_DECL(sis900_mii_statchg),
446 	SIP_DECL(sis900_set_filter),
447 	SIP_DECL(sis900_read_macaddr),
448 };
449 
450 const struct sip_variant SIP_DECL(variant_dp83815) = {
451 	SIP_DECL(dp83815_mii_readreg),
452 	SIP_DECL(dp83815_mii_writereg),
453 	SIP_DECL(dp83815_mii_statchg),
454 	SIP_DECL(dp83815_set_filter),
455 	SIP_DECL(dp83815_read_macaddr),
456 };
457 #endif /* DP83820 */
458 
459 /*
460  * Devices supported by this driver.
461  */
462 const struct sip_product {
463 	pci_vendor_id_t		sip_vendor;
464 	pci_product_id_t	sip_product;
465 	const char		*sip_name;
466 	const struct sip_variant *sip_variant;
467 } SIP_DECL(products)[] = {
468 #if defined(DP83820)
469 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
470 	  "NatSemi DP83820 Gigabit Ethernet",
471 	  &SIP_DECL(variant_dp83820) },
472 #else
473 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
474 	  "SiS 900 10/100 Ethernet",
475 	  &SIP_DECL(variant_sis900) },
476 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
477 	  "SiS 7016 10/100 Ethernet",
478 	  &SIP_DECL(variant_sis900) },
479 
480 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
481 	  "NatSemi DP83815 10/100 Ethernet",
482 	  &SIP_DECL(variant_dp83815) },
483 #endif /* DP83820 */
484 
485 	{ 0,			0,
486 	  NULL,
487 	  NULL },
488 };
489 
490 static const struct sip_product *
491 SIP_DECL(lookup)(const struct pci_attach_args *pa)
492 {
493 	const struct sip_product *sip;
494 
495 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
496 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
497 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
498 			return (sip);
499 	}
500 	return (NULL);
501 }
502 
503 int
504 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
505 {
506 	struct pci_attach_args *pa = aux;
507 
508 	if (SIP_DECL(lookup)(pa) != NULL)
509 		return (1);
510 
511 	return (0);
512 }
513 
514 void
515 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
516 {
517 	struct sip_softc *sc = (struct sip_softc *) self;
518 	struct pci_attach_args *pa = aux;
519 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
520 	pci_chipset_tag_t pc = pa->pa_pc;
521 	pci_intr_handle_t ih;
522 	const char *intrstr = NULL;
523 	bus_space_tag_t iot, memt;
524 	bus_space_handle_t ioh, memh;
525 	bus_dma_segment_t seg;
526 	int ioh_valid, memh_valid;
527 	int i, rseg, error;
528 	const struct sip_product *sip;
529 	pcireg_t pmode;
530 	u_int8_t enaddr[ETHER_ADDR_LEN];
531 	int pmreg;
532 #ifdef DP83820
533 	pcireg_t memtype;
534 	u_int32_t reg;
535 #endif /* DP83820 */
536 
537 	callout_init(&sc->sc_tick_ch);
538 
539 	sip = SIP_DECL(lookup)(pa);
540 	if (sip == NULL) {
541 		printf("\n");
542 		panic(SIP_STR(attach) ": impossible");
543 	}
544 
545 	printf(": %s\n", sip->sip_name);
546 
547 	sc->sc_model = sip;
548 
549 	/*
550 	 * Map the device.
551 	 */
552 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
553 	    PCI_MAPREG_TYPE_IO, 0,
554 	    &iot, &ioh, NULL, NULL) == 0);
555 #ifdef DP83820
556 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
557 	switch (memtype) {
558 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
559 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
560 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
561 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
562 		break;
563 	default:
564 		memh_valid = 0;
565 	}
566 #else
567 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
568 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
569 	    &memt, &memh, NULL, NULL) == 0);
570 #endif /* DP83820 */
571 
572 	if (memh_valid) {
573 		sc->sc_st = memt;
574 		sc->sc_sh = memh;
575 	} else if (ioh_valid) {
576 		sc->sc_st = iot;
577 		sc->sc_sh = ioh;
578 	} else {
579 		printf("%s: unable to map device registers\n",
580 		    sc->sc_dev.dv_xname);
581 		return;
582 	}
583 
584 	sc->sc_dmat = pa->pa_dmat;
585 
586 	/* Enable bus mastering. */
587 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
588 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
589 	    PCI_COMMAND_MASTER_ENABLE);
590 
591 	/* Get it out of power save mode if needed. */
592 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
593 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
594 		if (pmode == 3) {
595 			/*
596 			 * The card has lost all configuration data in
597 			 * this state, so punt.
598 			 */
599 			printf("%s: unable to wake up from power state D3\n",
600 			    sc->sc_dev.dv_xname);
601 			return;
602 		}
603 		if (pmode != 0) {
604 			printf("%s: waking up from power state D%d\n",
605 			    sc->sc_dev.dv_xname, pmode);
606 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
607 		}
608 	}
609 
610 	/*
611 	 * Map and establish our interrupt.
612 	 */
613 	if (pci_intr_map(pa, &ih)) {
614 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
615 		return;
616 	}
617 	intrstr = pci_intr_string(pc, ih);
618 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
619 	if (sc->sc_ih == NULL) {
620 		printf("%s: unable to establish interrupt",
621 		    sc->sc_dev.dv_xname);
622 		if (intrstr != NULL)
623 			printf(" at %s", intrstr);
624 		printf("\n");
625 		return;
626 	}
627 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
628 
629 	SIMPLEQ_INIT(&sc->sc_txfreeq);
630 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
631 
632 	/*
633 	 * Allocate the control data structures, and create and load the
634 	 * DMA map for it.
635 	 */
636 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
637 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
638 	    0)) != 0) {
639 		printf("%s: unable to allocate control data, error = %d\n",
640 		    sc->sc_dev.dv_xname, error);
641 		goto fail_0;
642 	}
643 
644 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
645 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
646 	    BUS_DMA_COHERENT)) != 0) {
647 		printf("%s: unable to map control data, error = %d\n",
648 		    sc->sc_dev.dv_xname, error);
649 		goto fail_1;
650 	}
651 
652 	if ((error = bus_dmamap_create(sc->sc_dmat,
653 	    sizeof(struct sip_control_data), 1,
654 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
655 		printf("%s: unable to create control data DMA map, "
656 		    "error = %d\n", sc->sc_dev.dv_xname, error);
657 		goto fail_2;
658 	}
659 
660 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
661 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
662 	    0)) != 0) {
663 		printf("%s: unable to load control data DMA map, error = %d\n",
664 		    sc->sc_dev.dv_xname, error);
665 		goto fail_3;
666 	}
667 
668 	/*
669 	 * Create the transmit buffer DMA maps.
670 	 */
671 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
672 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
673 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
674 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
675 			printf("%s: unable to create tx DMA map %d, "
676 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
677 			goto fail_4;
678 		}
679 	}
680 
681 	/*
682 	 * Create the receive buffer DMA maps.
683 	 */
684 	for (i = 0; i < SIP_NRXDESC; i++) {
685 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
686 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
687 			printf("%s: unable to create rx DMA map %d, "
688 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
689 			goto fail_5;
690 		}
691 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
692 	}
693 
694 	/*
695 	 * Reset the chip to a known state.
696 	 */
697 	SIP_DECL(reset)(sc);
698 
699 	/*
700 	 * Read the Ethernet address from the EEPROM.  This might
701 	 * also fetch other stuff from the EEPROM and stash it
702 	 * in the softc.
703 	 */
704 	sc->sc_cfg = 0;
705 	(*sip->sip_variant->sipv_read_macaddr)(sc, enaddr);
706 
707 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
708 	    ether_sprintf(enaddr));
709 
710 	/*
711 	 * Initialize the configuration register: aggressive PCI
712 	 * bus request algorithm, default backoff, default OW timer,
713 	 * default parity error detection.
714 	 *
715 	 * NOTE: "Big endian mode" is useless on the SiS900 and
716 	 * friends -- it affects packet data, not descriptors.
717 	 */
718 #ifdef DP83820
719 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
720 	if (reg & CFG_PCI64_DET) {
721 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
722 		/*
723 		 * XXX Need some PCI flags indicating support for
724 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
725 		 * XXX data path.
726 		 */
727 	}
728 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
729 		const char *sep = "";
730 		printf("%s: using ", sc->sc_dev.dv_xname);
731 		if (sc->sc_cfg & CFG_EXT_125) {
732 			printf("%s125MHz clock", sep);
733 			sep = ", ";
734 		}
735 		if (sc->sc_cfg & CFG_TBI_EN) {
736 			printf("%sten-bit interface", sep);
737 			sep = ", ";
738 		}
739 		printf("\n");
740 	}
741 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
742 		sc->sc_cfg |= CFG_MRM_DIS;
743 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
744 		sc->sc_cfg |= CFG_MWI_DIS;
745 
746 	/*
747 	 * Use the extended descriptor format on the DP83820.  This
748 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
749 	 * checksumming.
750 	 */
751 	sc->sc_cfg |= CFG_EXTSTS_EN;
752 #endif /* DP83820 */
753 
754 	/*
755 	 * Initialize our media structures and probe the MII.
756 	 */
757 	sc->sc_mii.mii_ifp = ifp;
758 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
759 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
760 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
761 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
762 	    SIP_DECL(mediastatus));
763 #ifdef DP83820
764 	if (sc->sc_cfg & CFG_TBI_EN) {
765 		/* Using ten-bit interface. */
766 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
767 	} else {
768 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
769 		    MII_OFFSET_ANY, 0);
770 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
771 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
772 			    0, NULL);
773 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
774 		} else
775 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
776 	}
777 #else
778 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
779 	    MII_OFFSET_ANY, 0);
780 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
781 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
782 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
783 	} else
784 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
785 #endif /* DP83820 */
786 
787 	ifp = &sc->sc_ethercom.ec_if;
788 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
789 	ifp->if_softc = sc;
790 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
791 	ifp->if_ioctl = SIP_DECL(ioctl);
792 	ifp->if_start = SIP_DECL(start);
793 	ifp->if_watchdog = SIP_DECL(watchdog);
794 	ifp->if_init = SIP_DECL(init);
795 	ifp->if_stop = SIP_DECL(stop);
796 	IFQ_SET_READY(&ifp->if_snd);
797 
798 	/*
799 	 * We can support 802.1Q VLAN-sized frames.
800 	 */
801 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
802 
803 #ifdef DP83820
804 	/*
805 	 * And the DP83820 can do VLAN tagging in hardware.
806 	 */
807 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
808 
809 	/*
810 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
811 	 * in hardware.
812 	 */
813 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
814 	    IFCAP_CSUM_UDPv4;
815 #endif /* DP83820 */
816 
817 	/*
818 	 * Attach the interface.
819 	 */
820 	if_attach(ifp);
821 	ether_ifattach(ifp, enaddr);
822 
823 #ifdef SIP_EVENT_COUNTERS
824 	/*
825 	 * Attach event counters.
826 	 */
827 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
828 	    NULL, sc->sc_dev.dv_xname, "txsstall");
829 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
830 	    NULL, sc->sc_dev.dv_xname, "txdstall");
831 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
832 	    NULL, sc->sc_dev.dv_xname, "txintr");
833 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
834 	    NULL, sc->sc_dev.dv_xname, "rxintr");
835 #ifdef DP83820
836 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
837 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
838 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
839 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
840 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
841 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
842 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
843 	    NULL, sc->sc_dev.dv_xname, "txipsum");
844 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
845 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
846 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
847 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
848 #endif /* DP83820 */
849 #endif /* SIP_EVENT_COUNTERS */
850 
851 	/*
852 	 * Make sure the interface is shutdown during reboot.
853 	 */
854 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
855 	if (sc->sc_sdhook == NULL)
856 		printf("%s: WARNING: unable to establish shutdown hook\n",
857 		    sc->sc_dev.dv_xname);
858 	return;
859 
860 	/*
861 	 * Free any resources we've allocated during the failed attach
862 	 * attempt.  Do this in reverse order and fall through.
863 	 */
864  fail_5:
865 	for (i = 0; i < SIP_NRXDESC; i++) {
866 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
867 			bus_dmamap_destroy(sc->sc_dmat,
868 			    sc->sc_rxsoft[i].rxs_dmamap);
869 	}
870  fail_4:
871 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
872 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
873 			bus_dmamap_destroy(sc->sc_dmat,
874 			    sc->sc_txsoft[i].txs_dmamap);
875 	}
876 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
877  fail_3:
878 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
879  fail_2:
880 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
881 	    sizeof(struct sip_control_data));
882  fail_1:
883 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
884  fail_0:
885 	return;
886 }
887 
888 /*
889  * sip_shutdown:
890  *
891  *	Make sure the interface is stopped at reboot time.
892  */
893 void
894 SIP_DECL(shutdown)(void *arg)
895 {
896 	struct sip_softc *sc = arg;
897 
898 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
899 }
900 
901 /*
902  * sip_start:		[ifnet interface function]
903  *
904  *	Start packet transmission on the interface.
905  */
906 void
907 SIP_DECL(start)(struct ifnet *ifp)
908 {
909 	struct sip_softc *sc = ifp->if_softc;
910 	struct mbuf *m0, *m;
911 	struct sip_txsoft *txs;
912 	bus_dmamap_t dmamap;
913 	int error, firsttx, nexttx, lasttx, ofree, seg;
914 #ifdef DP83820
915 	u_int32_t extsts;
916 #endif
917 
918 	/*
919 	 * If we've been told to pause, don't transmit any more packets.
920 	 */
921 	if (sc->sc_flags & SIPF_PAUSED)
922 		ifp->if_flags |= IFF_OACTIVE;
923 
924 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
925 		return;
926 
927 	/*
928 	 * Remember the previous number of free descriptors and
929 	 * the first descriptor we'll use.
930 	 */
931 	ofree = sc->sc_txfree;
932 	firsttx = sc->sc_txnext;
933 
934 	/*
935 	 * Loop through the send queue, setting up transmit descriptors
936 	 * until we drain the queue, or use up all available transmit
937 	 * descriptors.
938 	 */
939 	for (;;) {
940 		/* Get a work queue entry. */
941 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
942 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
943 			break;
944 		}
945 
946 		/*
947 		 * Grab a packet off the queue.
948 		 */
949 		IFQ_POLL(&ifp->if_snd, m0);
950 		if (m0 == NULL)
951 			break;
952 		m = NULL;
953 
954 		dmamap = txs->txs_dmamap;
955 
956 		/*
957 		 * Load the DMA map.  If this fails, the packet either
958 		 * didn't fit in the alloted number of segments, or we
959 		 * were short on resources.  In this case, we'll copy
960 		 * and try again.
961 		 */
962 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
963 		    BUS_DMA_NOWAIT) != 0) {
964 			MGETHDR(m, M_DONTWAIT, MT_DATA);
965 			if (m == NULL) {
966 				printf("%s: unable to allocate Tx mbuf\n",
967 				    sc->sc_dev.dv_xname);
968 				break;
969 			}
970 			if (m0->m_pkthdr.len > MHLEN) {
971 				MCLGET(m, M_DONTWAIT);
972 				if ((m->m_flags & M_EXT) == 0) {
973 					printf("%s: unable to allocate Tx "
974 					    "cluster\n", sc->sc_dev.dv_xname);
975 					m_freem(m);
976 					break;
977 				}
978 			}
979 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
980 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
981 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
982 			    m, BUS_DMA_NOWAIT);
983 			if (error) {
984 				printf("%s: unable to load Tx buffer, "
985 				    "error = %d\n", sc->sc_dev.dv_xname, error);
986 				break;
987 			}
988 		}
989 
990 		/*
991 		 * Ensure we have enough descriptors free to describe
992 		 * the packet.  Note, we always reserve one descriptor
993 		 * at the end of the ring as a termination point, to
994 		 * prevent wrap-around.
995 		 */
996 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
997 			/*
998 			 * Not enough free descriptors to transmit this
999 			 * packet.  We haven't committed anything yet,
1000 			 * so just unload the DMA map, put the packet
1001 			 * back on the queue, and punt.  Notify the upper
1002 			 * layer that there are not more slots left.
1003 			 *
1004 			 * XXX We could allocate an mbuf and copy, but
1005 			 * XXX is it worth it?
1006 			 */
1007 			ifp->if_flags |= IFF_OACTIVE;
1008 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1009 			if (m != NULL)
1010 				m_freem(m);
1011 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1012 			break;
1013 		}
1014 
1015 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1016 		if (m != NULL) {
1017 			m_freem(m0);
1018 			m0 = m;
1019 		}
1020 
1021 		/*
1022 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1023 		 */
1024 
1025 		/* Sync the DMA map. */
1026 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1027 		    BUS_DMASYNC_PREWRITE);
1028 
1029 		/*
1030 		 * Initialize the transmit descriptors.
1031 		 */
1032 		for (nexttx = sc->sc_txnext, seg = 0;
1033 		     seg < dmamap->dm_nsegs;
1034 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1035 			/*
1036 			 * If this is the first descriptor we're
1037 			 * enqueueing, don't set the OWN bit just
1038 			 * yet.  That could cause a race condition.
1039 			 * We'll do it below.
1040 			 */
1041 			sc->sc_txdescs[nexttx].sipd_bufptr =
1042 			    htole32(dmamap->dm_segs[seg].ds_addr);
1043 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1044 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1045 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1046 #ifdef DP83820
1047 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1048 #endif /* DP83820 */
1049 			lasttx = nexttx;
1050 		}
1051 
1052 		/* Clear the MORE bit on the last segment. */
1053 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1054 
1055 #ifdef DP83820
1056 		/*
1057 		 * If VLANs are enabled and the packet has a VLAN tag, set
1058 		 * up the descriptor to encapsulate the packet for us.
1059 		 *
1060 		 * This apparently has to be on the last descriptor of
1061 		 * the packet.
1062 		 */
1063 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1064 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1065 			sc->sc_txdescs[lasttx].sipd_extsts |=
1066 			    htole32(EXTSTS_VPKT |
1067 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1068 		}
1069 
1070 		/*
1071 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1072 		 * checksumming, set up the descriptor to do this work
1073 		 * for us.
1074 		 *
1075 		 * This apparently has to be on the first descriptor of
1076 		 * the packet.
1077 		 *
1078 		 * Byte-swap constants so the compiler can optimize.
1079 		 */
1080 		extsts = 0;
1081 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1082 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1083 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1084 			extsts |= htole32(EXTSTS_IPPKT);
1085 		}
1086 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1087 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1088 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1089 			extsts |= htole32(EXTSTS_TCPPKT);
1090 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1091 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1092 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1093 			extsts |= htole32(EXTSTS_UDPPKT);
1094 		}
1095 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1096 #endif /* DP83820 */
1097 
1098 		/* Sync the descriptors we're using. */
1099 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1100 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1101 
1102 		/*
1103 		 * Store a pointer to the packet so we can free it later,
1104 		 * and remember what txdirty will be once the packet is
1105 		 * done.
1106 		 */
1107 		txs->txs_mbuf = m0;
1108 		txs->txs_firstdesc = sc->sc_txnext;
1109 		txs->txs_lastdesc = lasttx;
1110 
1111 		/* Advance the tx pointer. */
1112 		sc->sc_txfree -= dmamap->dm_nsegs;
1113 		sc->sc_txnext = nexttx;
1114 
1115 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1116 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1117 
1118 #if NBPFILTER > 0
1119 		/*
1120 		 * Pass the packet to any BPF listeners.
1121 		 */
1122 		if (ifp->if_bpf)
1123 			bpf_mtap(ifp->if_bpf, m0);
1124 #endif /* NBPFILTER > 0 */
1125 	}
1126 
1127 	if (txs == NULL || sc->sc_txfree == 0) {
1128 		/* No more slots left; notify upper layer. */
1129 		ifp->if_flags |= IFF_OACTIVE;
1130 	}
1131 
1132 	if (sc->sc_txfree != ofree) {
1133 		/*
1134 		 * Cause a descriptor interrupt to happen on the
1135 		 * last packet we enqueued.
1136 		 */
1137 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1138 		SIP_CDTXSYNC(sc, lasttx, 1,
1139 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1140 
1141 		/*
1142 		 * The entire packet chain is set up.  Give the
1143 		 * first descrptor to the chip now.
1144 		 */
1145 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1146 		SIP_CDTXSYNC(sc, firsttx, 1,
1147 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1148 
1149 		/*
1150 		 * Start the transmit process.  Note, the manual says
1151 		 * that if there are no pending transmissions in the
1152 		 * chip's internal queue (indicated by TXE being clear),
1153 		 * then the driver software must set the TXDP to the
1154 		 * first descriptor to be transmitted.  However, if we
1155 		 * do this, it causes serious performance degredation on
1156 		 * the DP83820 under load, not setting TXDP doesn't seem
1157 		 * to adversely affect the SiS 900 or DP83815.
1158 		 *
1159 		 * Well, I guess it wouldn't be the first time a manual
1160 		 * has lied -- and they could be speaking of the NULL-
1161 		 * terminated descriptor list case, rather than OWN-
1162 		 * terminated rings.
1163 		 */
1164 #if 0
1165 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1166 		     CR_TXE) == 0) {
1167 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1168 			    SIP_CDTXADDR(sc, firsttx));
1169 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1170 		}
1171 #else
1172 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1173 #endif
1174 
1175 		/* Set a watchdog timer in case the chip flakes out. */
1176 		ifp->if_timer = 5;
1177 	}
1178 }
1179 
1180 /*
1181  * sip_watchdog:	[ifnet interface function]
1182  *
1183  *	Watchdog timer handler.
1184  */
1185 void
1186 SIP_DECL(watchdog)(struct ifnet *ifp)
1187 {
1188 	struct sip_softc *sc = ifp->if_softc;
1189 
1190 	/*
1191 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1192 	 * If we get a timeout, try and sweep up transmit descriptors.
1193 	 * If we manage to sweep them all up, ignore the lack of
1194 	 * interrupt.
1195 	 */
1196 	SIP_DECL(txintr)(sc);
1197 
1198 	if (sc->sc_txfree != SIP_NTXDESC) {
1199 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1200 		ifp->if_oerrors++;
1201 
1202 		/* Reset the interface. */
1203 		(void) SIP_DECL(init)(ifp);
1204 	} else if (ifp->if_flags & IFF_DEBUG)
1205 		printf("%s: recovered from device timeout\n",
1206 		    sc->sc_dev.dv_xname);
1207 
1208 	/* Try to get more packets going. */
1209 	SIP_DECL(start)(ifp);
1210 }
1211 
1212 /*
1213  * sip_ioctl:		[ifnet interface function]
1214  *
1215  *	Handle control requests from the operator.
1216  */
1217 int
1218 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1219 {
1220 	struct sip_softc *sc = ifp->if_softc;
1221 	struct ifreq *ifr = (struct ifreq *)data;
1222 	int s, error;
1223 
1224 	s = splnet();
1225 
1226 	switch (cmd) {
1227 	case SIOCSIFMEDIA:
1228 	case SIOCGIFMEDIA:
1229 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1230 		break;
1231 
1232 	default:
1233 		error = ether_ioctl(ifp, cmd, data);
1234 		if (error == ENETRESET) {
1235 			/*
1236 			 * Multicast list has changed; set the hardware filter
1237 			 * accordingly.
1238 			 */
1239 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1240 			error = 0;
1241 		}
1242 		break;
1243 	}
1244 
1245 	/* Try to get more packets going. */
1246 	SIP_DECL(start)(ifp);
1247 
1248 	splx(s);
1249 	return (error);
1250 }
1251 
1252 /*
1253  * sip_intr:
1254  *
1255  *	Interrupt service routine.
1256  */
1257 int
1258 SIP_DECL(intr)(void *arg)
1259 {
1260 	struct sip_softc *sc = arg;
1261 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1262 	u_int32_t isr;
1263 	int handled = 0;
1264 
1265 	for (;;) {
1266 		/* Reading clears interrupt. */
1267 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1268 		if ((isr & sc->sc_imr) == 0)
1269 			break;
1270 
1271 		handled = 1;
1272 
1273 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1274 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1275 
1276 			/* Grab any new packets. */
1277 			SIP_DECL(rxintr)(sc);
1278 
1279 			if (isr & ISR_RXORN) {
1280 				printf("%s: receive FIFO overrun\n",
1281 				    sc->sc_dev.dv_xname);
1282 
1283 				/* XXX adjust rx_drain_thresh? */
1284 			}
1285 
1286 			if (isr & ISR_RXIDLE) {
1287 				printf("%s: receive ring overrun\n",
1288 				    sc->sc_dev.dv_xname);
1289 
1290 				/* Get the receive process going again. */
1291 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1292 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1293 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1294 				    SIP_CR, CR_RXE);
1295 			}
1296 		}
1297 
1298 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
1299 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1300 
1301 			/* Sweep up transmit descriptors. */
1302 			SIP_DECL(txintr)(sc);
1303 
1304 			if (isr & ISR_TXURN) {
1305 				u_int32_t thresh;
1306 
1307 				printf("%s: transmit FIFO underrun",
1308 				    sc->sc_dev.dv_xname);
1309 
1310 				thresh = sc->sc_tx_drain_thresh + 1;
1311 				if (thresh <= TXCFG_DRTH &&
1312 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1313 				     (sc->sc_tx_fill_thresh * 32))) {
1314 					printf("; increasing Tx drain "
1315 					    "threshold to %u bytes\n",
1316 					    thresh * 32);
1317 					sc->sc_tx_drain_thresh = thresh;
1318 					(void) SIP_DECL(init)(ifp);
1319 				} else {
1320 					(void) SIP_DECL(init)(ifp);
1321 					printf("\n");
1322 				}
1323 			}
1324 		}
1325 
1326 #if !defined(DP83820)
1327 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1328 			if (isr & ISR_PAUSE_ST) {
1329 				sc->sc_flags |= SIPF_PAUSED;
1330 				ifp->if_flags |= IFF_OACTIVE;
1331 			}
1332 			if (isr & ISR_PAUSE_END) {
1333 				sc->sc_flags &= ~SIPF_PAUSED;
1334 				ifp->if_flags &= ~IFF_OACTIVE;
1335 			}
1336 		}
1337 #endif /* ! DP83820 */
1338 
1339 		if (isr & ISR_HIBERR) {
1340 #define	PRINTERR(bit, str)						\
1341 			if (isr & (bit))				\
1342 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1343 			PRINTERR(ISR_DPERR, "parity error");
1344 			PRINTERR(ISR_SSERR, "system error");
1345 			PRINTERR(ISR_RMABT, "master abort");
1346 			PRINTERR(ISR_RTABT, "target abort");
1347 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1348 			(void) SIP_DECL(init)(ifp);
1349 #undef PRINTERR
1350 		}
1351 	}
1352 
1353 	/* Try to get more packets going. */
1354 	SIP_DECL(start)(ifp);
1355 
1356 	return (handled);
1357 }
1358 
1359 /*
1360  * sip_txintr:
1361  *
1362  *	Helper; handle transmit interrupts.
1363  */
1364 void
1365 SIP_DECL(txintr)(struct sip_softc *sc)
1366 {
1367 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1368 	struct sip_txsoft *txs;
1369 	u_int32_t cmdsts;
1370 
1371 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1372 		ifp->if_flags &= ~IFF_OACTIVE;
1373 
1374 	/*
1375 	 * Go through our Tx list and free mbufs for those
1376 	 * frames which have been transmitted.
1377 	 */
1378 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1379 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1380 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1381 
1382 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1383 		if (cmdsts & CMDSTS_OWN)
1384 			break;
1385 
1386 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1387 
1388 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1389 
1390 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1391 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1392 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1393 		m_freem(txs->txs_mbuf);
1394 		txs->txs_mbuf = NULL;
1395 
1396 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1397 
1398 		/*
1399 		 * Check for errors and collisions.
1400 		 */
1401 		if (cmdsts &
1402 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1403 			if (ifp->if_flags & IFF_DEBUG) {
1404 				if (CMDSTS_Tx_ED)
1405 					printf("%s: excessive deferral\n",
1406 					    sc->sc_dev.dv_xname);
1407 				if (CMDSTS_Tx_EC) {
1408 					printf("%s: excessive collisions\n",
1409 					    sc->sc_dev.dv_xname);
1410 					ifp->if_collisions += 16;
1411 				}
1412 			}
1413 		} else {
1414 			/* Packet was transmitted successfully. */
1415 			ifp->if_opackets++;
1416 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1417 		}
1418 	}
1419 
1420 	/*
1421 	 * If there are no more pending transmissions, cancel the watchdog
1422 	 * timer.
1423 	 */
1424 	if (txs == NULL)
1425 		ifp->if_timer = 0;
1426 }
1427 
1428 /*
1429  * sip_rxintr:
1430  *
1431  *	Helper; handle receive interrupts.
1432  */
1433 void
1434 SIP_DECL(rxintr)(struct sip_softc *sc)
1435 {
1436 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1437 	struct sip_rxsoft *rxs;
1438 	struct mbuf *m;
1439 	u_int32_t cmdsts;
1440 #ifdef DP83820
1441 	u_int32_t extsts;
1442 #endif /* DP83820 */
1443 	int i, len;
1444 
1445 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1446 		rxs = &sc->sc_rxsoft[i];
1447 
1448 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1449 
1450 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1451 #ifdef DP83820
1452 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1453 #endif /* DP83820 */
1454 
1455 		/*
1456 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1457 		 * consumer of the receive ring, so if the bit is clear,
1458 		 * we have processed all of the packets.
1459 		 */
1460 		if ((cmdsts & CMDSTS_OWN) == 0) {
1461 			/*
1462 			 * We have processed all of the receive buffers.
1463 			 */
1464 			break;
1465 		}
1466 
1467 #if !defined(DP83820)
1468 		/*
1469 		 * If any collisions were seen on the wire, count one.
1470 		 */
1471 		if (cmdsts & CMDSTS_Rx_COL)
1472 			ifp->if_collisions++;
1473 #endif /* ! DP83820 */
1474 
1475 		/*
1476 		 * If an error occurred, update stats, clear the status
1477 		 * word, and leave the packet buffer in place.  It will
1478 		 * simply be reused the next time the ring comes around.
1479 		 */
1480 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1481 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1482 			ifp->if_ierrors++;
1483 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1484 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1485 				/* Receive overrun handled elsewhere. */
1486 				printf("%s: receive descriptor error\n",
1487 				    sc->sc_dev.dv_xname);
1488 			}
1489 #define	PRINTERR(bit, str)						\
1490 			if (cmdsts & (bit))				\
1491 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1492 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1493 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1494 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1495 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1496 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1497 #undef PRINTERR
1498 			SIP_INIT_RXDESC(sc, i);
1499 			continue;
1500 		}
1501 
1502 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1503 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1504 
1505 		/*
1506 		 * No errors; receive the packet.  Note, the SiS 900
1507 		 * includes the CRC with every packet.
1508 		 */
1509 		len = CMDSTS_SIZE(cmdsts);
1510 
1511 #ifdef __NO_STRICT_ALIGNMENT
1512 		/*
1513 		 * If the packet is small enough to fit in a
1514 		 * single header mbuf, allocate one and copy
1515 		 * the data into it.  This greatly reduces
1516 		 * memory consumption when we receive lots
1517 		 * of small packets.
1518 		 *
1519 		 * Otherwise, we add a new buffer to the receive
1520 		 * chain.  If this fails, we drop the packet and
1521 		 * recycle the old buffer.
1522 		 */
1523 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1524 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1525 			if (m == NULL)
1526 				goto dropit;
1527 			memcpy(mtod(m, caddr_t),
1528 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1529 			SIP_INIT_RXDESC(sc, i);
1530 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1531 			    rxs->rxs_dmamap->dm_mapsize,
1532 			    BUS_DMASYNC_PREREAD);
1533 		} else {
1534 			m = rxs->rxs_mbuf;
1535 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1536  dropit:
1537 				ifp->if_ierrors++;
1538 				SIP_INIT_RXDESC(sc, i);
1539 				bus_dmamap_sync(sc->sc_dmat,
1540 				    rxs->rxs_dmamap, 0,
1541 				    rxs->rxs_dmamap->dm_mapsize,
1542 				    BUS_DMASYNC_PREREAD);
1543 				continue;
1544 			}
1545 		}
1546 #else
1547 		/*
1548 		 * The SiS 900's receive buffers must be 4-byte aligned.
1549 		 * But this means that the data after the Ethernet header
1550 		 * is misaligned.  We must allocate a new buffer and
1551 		 * copy the data, shifted forward 2 bytes.
1552 		 */
1553 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1554 		if (m == NULL) {
1555  dropit:
1556 			ifp->if_ierrors++;
1557 			SIP_INIT_RXDESC(sc, i);
1558 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1559 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1560 			continue;
1561 		}
1562 		if (len > (MHLEN - 2)) {
1563 			MCLGET(m, M_DONTWAIT);
1564 			if ((m->m_flags & M_EXT) == 0) {
1565 				m_freem(m);
1566 				goto dropit;
1567 			}
1568 		}
1569 		m->m_data += 2;
1570 
1571 		/*
1572 		 * Note that we use clusters for incoming frames, so the
1573 		 * buffer is virtually contiguous.
1574 		 */
1575 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1576 
1577 		/* Allow the receive descriptor to continue using its mbuf. */
1578 		SIP_INIT_RXDESC(sc, i);
1579 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1580 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1581 #endif /* __NO_STRICT_ALIGNMENT */
1582 
1583 		ifp->if_ipackets++;
1584 		m->m_flags |= M_HASFCS;
1585 		m->m_pkthdr.rcvif = ifp;
1586 		m->m_pkthdr.len = m->m_len = len;
1587 
1588 #if NBPFILTER > 0
1589 		/*
1590 		 * Pass this up to any BPF listeners, but only
1591 		 * pass if up the stack if it's for us.
1592 		 */
1593 		if (ifp->if_bpf)
1594 			bpf_mtap(ifp->if_bpf, m);
1595 #endif /* NBPFILTER > 0 */
1596 
1597 #ifdef DP83820
1598 		/*
1599 		 * If VLANs are enabled, VLAN packets have been unwrapped
1600 		 * for us.  Associate the tag with the packet.
1601 		 */
1602 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1603 		    (extsts & EXTSTS_VPKT) != 0) {
1604 			struct mbuf *vtag;
1605 
1606 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1607 			if (vtag == NULL) {
1608 				printf("%s: unable to allocate VLAN tag\n",
1609 				    sc->sc_dev.dv_xname);
1610 				m_freem(m);
1611 				continue;
1612 			}
1613 
1614 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1615 			vtag->m_len = sizeof(int);
1616 		}
1617 
1618 		/*
1619 		 * Set the incoming checksum information for the
1620 		 * packet.
1621 		 */
1622 		if ((extsts & EXTSTS_IPPKT) != 0) {
1623 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1624 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1625 			if (extsts & EXTSTS_Rx_IPERR)
1626 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1627 			if (extsts & EXTSTS_TCPPKT) {
1628 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1629 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1630 				if (extsts & EXTSTS_Rx_TCPERR)
1631 					m->m_pkthdr.csum_flags |=
1632 					    M_CSUM_TCP_UDP_BAD;
1633 			} else if (extsts & EXTSTS_UDPPKT) {
1634 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1635 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1636 				if (extsts & EXTSTS_Rx_UDPERR)
1637 					m->m_pkthdr.csum_flags |=
1638 					    M_CSUM_TCP_UDP_BAD;
1639 			}
1640 		}
1641 #endif /* DP83820 */
1642 
1643 		/* Pass it on. */
1644 		(*ifp->if_input)(ifp, m);
1645 	}
1646 
1647 	/* Update the receive pointer. */
1648 	sc->sc_rxptr = i;
1649 }
1650 
1651 /*
1652  * sip_tick:
1653  *
1654  *	One second timer, used to tick the MII.
1655  */
1656 void
1657 SIP_DECL(tick)(void *arg)
1658 {
1659 	struct sip_softc *sc = arg;
1660 	int s;
1661 
1662 	s = splnet();
1663 	mii_tick(&sc->sc_mii);
1664 	splx(s);
1665 
1666 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1667 }
1668 
1669 /*
1670  * sip_reset:
1671  *
1672  *	Perform a soft reset on the SiS 900.
1673  */
1674 void
1675 SIP_DECL(reset)(struct sip_softc *sc)
1676 {
1677 	bus_space_tag_t st = sc->sc_st;
1678 	bus_space_handle_t sh = sc->sc_sh;
1679 	int i;
1680 
1681 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1682 
1683 	for (i = 0; i < SIP_TIMEOUT; i++) {
1684 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1685 			break;
1686 		delay(2);
1687 	}
1688 
1689 	if (i == SIP_TIMEOUT)
1690 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1691 
1692 	delay(1000);
1693 
1694 #ifdef DP83820
1695 	/*
1696 	 * Set the general purpose I/O bits.  Do it here in case we
1697 	 * need to have GPIO set up to talk to the media interface.
1698 	 */
1699 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
1700 	delay(1000);
1701 #endif /* DP83820 */
1702 }
1703 
1704 /*
1705  * sip_init:		[ ifnet interface function ]
1706  *
1707  *	Initialize the interface.  Must be called at splnet().
1708  */
1709 int
1710 SIP_DECL(init)(struct ifnet *ifp)
1711 {
1712 	struct sip_softc *sc = ifp->if_softc;
1713 	bus_space_tag_t st = sc->sc_st;
1714 	bus_space_handle_t sh = sc->sc_sh;
1715 	struct sip_txsoft *txs;
1716 	struct sip_rxsoft *rxs;
1717 	struct sip_desc *sipd;
1718 	u_int32_t reg;
1719 	int i, error = 0;
1720 
1721 	/*
1722 	 * Cancel any pending I/O.
1723 	 */
1724 	SIP_DECL(stop)(ifp, 0);
1725 
1726 	/*
1727 	 * Reset the chip to a known state.
1728 	 */
1729 	SIP_DECL(reset)(sc);
1730 
1731 #if !defined(DP83820)
1732 	if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
1733 	    sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1734 		/*
1735 		 * DP83815 manual, page 78:
1736 		 *    4.4 Recommended Registers Configuration
1737 		 *    For optimum performance of the DP83815, version noted
1738 		 *    as DP83815CVNG (SRR = 203h), the listed register
1739 		 *    modifications must be followed in sequence...
1740 		 *
1741 		 * It's not clear if this should be 302h or 203h because that
1742 		 * chip name is listed as SRR 302h in the description of the
1743 		 * SRR register.  However, my revision 302h DP83815 on the
1744 		 * Netgear FA311 purchased in 02/2001 needs these settings
1745 		 * to avoid tons of errors in AcceptPerfectMatch (non-
1746 		 * IFF_PROMISC) mode.  I do not know if other revisions need
1747 		 * this set or not.  [briggs -- 09 March 2001]
1748 		 *
1749 		 * Note that only the low-order 12 bits of 0xe4 are documented
1750 		 * and that this sets reserved bits in that register.
1751 		 */
1752 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
1753 		if (reg == 0x302) {
1754 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
1755 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
1756 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
1757 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
1758 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
1759 		}
1760 	}
1761 #endif /* ! DP83820 */
1762 
1763 	/*
1764 	 * Initialize the transmit descriptor ring.
1765 	 */
1766 	for (i = 0; i < SIP_NTXDESC; i++) {
1767 		sipd = &sc->sc_txdescs[i];
1768 		memset(sipd, 0, sizeof(struct sip_desc));
1769 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1770 	}
1771 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1772 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1773 	sc->sc_txfree = SIP_NTXDESC;
1774 	sc->sc_txnext = 0;
1775 
1776 	/*
1777 	 * Initialize the transmit job descriptors.
1778 	 */
1779 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1780 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1781 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1782 		txs = &sc->sc_txsoft[i];
1783 		txs->txs_mbuf = NULL;
1784 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1785 	}
1786 
1787 	/*
1788 	 * Initialize the receive descriptor and receive job
1789 	 * descriptor rings.
1790 	 */
1791 	for (i = 0; i < SIP_NRXDESC; i++) {
1792 		rxs = &sc->sc_rxsoft[i];
1793 		if (rxs->rxs_mbuf == NULL) {
1794 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
1795 				printf("%s: unable to allocate or map rx "
1796 				    "buffer %d, error = %d\n",
1797 				    sc->sc_dev.dv_xname, i, error);
1798 				/*
1799 				 * XXX Should attempt to run with fewer receive
1800 				 * XXX buffers instead of just failing.
1801 				 */
1802 				SIP_DECL(rxdrain)(sc);
1803 				goto out;
1804 			}
1805 		}
1806 	}
1807 	sc->sc_rxptr = 0;
1808 
1809 	/*
1810 	 * Set the configuration register; it's already initialized
1811 	 * in sip_attach().
1812 	 */
1813 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
1814 
1815 	/*
1816 	 * Initialize the transmit fill and drain thresholds if
1817 	 * we have never done so.
1818 	 */
1819 	if (sc->sc_tx_fill_thresh == 0) {
1820 		/*
1821 		 * XXX This value should be tuned.  This is the
1822 		 * minimum (32 bytes), and we may be able to
1823 		 * improve performance by increasing it.
1824 		 */
1825 		sc->sc_tx_fill_thresh = 1;
1826 	}
1827 	if (sc->sc_tx_drain_thresh == 0) {
1828 		/*
1829 		 * Start at a drain threshold of 512 bytes.  We will
1830 		 * increase it if a DMA underrun occurs.
1831 		 *
1832 		 * XXX The minimum value of this variable should be
1833 		 * tuned.  We may be able to improve performance
1834 		 * by starting with a lower value.  That, however,
1835 		 * may trash the first few outgoing packets if the
1836 		 * PCI bus is saturated.
1837 		 */
1838 		sc->sc_tx_drain_thresh = 512 / 32;
1839 	}
1840 
1841 	/*
1842 	 * Initialize the prototype TXCFG register.
1843 	 */
1844 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1845 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1846 	    sc->sc_tx_drain_thresh;
1847 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1848 
1849 	/*
1850 	 * Initialize the receive drain threshold if we have never
1851 	 * done so.
1852 	 */
1853 	if (sc->sc_rx_drain_thresh == 0) {
1854 		/*
1855 		 * XXX This value should be tuned.  This is set to the
1856 		 * maximum of 248 bytes, and we may be able to improve
1857 		 * performance by decreasing it (although we should never
1858 		 * set this value lower than 2; 14 bytes are required to
1859 		 * filter the packet).
1860 		 */
1861 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1862 	}
1863 
1864 	/*
1865 	 * Initialize the prototype RXCFG register.
1866 	 */
1867 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
1868 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1869 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1870 
1871 	/* Set up the receive filter. */
1872 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1873 
1874 #ifdef DP83820
1875 	/*
1876 	 * Initialize the VLAN/IP receive control register.
1877 	 * We enable checksum computation on all incoming
1878 	 * packets, and do not reject packets w/ bad checksums.
1879 	 */
1880 	reg = 0;
1881 	if (ifp->if_capenable &
1882 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1883 		reg |= VRCR_IPEN;
1884 	if (sc->sc_ethercom.ec_nvlans != 0)
1885 		reg |= VRCR_VTDEN|VRCR_VTREN;
1886 	bus_space_write_4(st, sh, SIP_VRCR, reg);
1887 
1888 	/*
1889 	 * Initialize the VLAN/IP transmit control register.
1890 	 * We enable outgoing checksum computation on a
1891 	 * per-packet basis.
1892 	 */
1893 	reg = 0;
1894 	if (ifp->if_capenable &
1895 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1896 		reg |= VTCR_PPCHK;
1897 	if (sc->sc_ethercom.ec_nvlans != 0)
1898 		reg |= VTCR_VPPTI;
1899 	bus_space_write_4(st, sh, SIP_VTCR, reg);
1900 
1901 	/*
1902 	 * If we're using VLANs, initialize the VLAN data register.
1903 	 * To understand why we bswap the VLAN Ethertype, see section
1904 	 * 4.2.36 of the DP83820 manual.
1905 	 */
1906 	if (sc->sc_ethercom.ec_nvlans != 0)
1907 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
1908 #endif /* DP83820 */
1909 
1910 	/*
1911 	 * Give the transmit and receive rings to the chip.
1912 	 */
1913 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1914 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1915 
1916 	/*
1917 	 * Initialize the interrupt mask.
1918 	 */
1919 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1920 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1921 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1922 
1923 	/*
1924 	 * Set the current media.  Do this after initializing the prototype
1925 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1926 	 * control.
1927 	 */
1928 	mii_mediachg(&sc->sc_mii);
1929 
1930 	/*
1931 	 * Enable interrupts.
1932 	 */
1933 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
1934 
1935 	/*
1936 	 * Start the transmit and receive processes.
1937 	 */
1938 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1939 
1940 	/*
1941 	 * Start the one second MII clock.
1942 	 */
1943 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1944 
1945 	/*
1946 	 * ...all done!
1947 	 */
1948 	ifp->if_flags |= IFF_RUNNING;
1949 	ifp->if_flags &= ~IFF_OACTIVE;
1950 
1951  out:
1952 	if (error)
1953 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1954 	return (error);
1955 }
1956 
1957 /*
1958  * sip_drain:
1959  *
1960  *	Drain the receive queue.
1961  */
1962 void
1963 SIP_DECL(rxdrain)(struct sip_softc *sc)
1964 {
1965 	struct sip_rxsoft *rxs;
1966 	int i;
1967 
1968 	for (i = 0; i < SIP_NRXDESC; i++) {
1969 		rxs = &sc->sc_rxsoft[i];
1970 		if (rxs->rxs_mbuf != NULL) {
1971 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1972 			m_freem(rxs->rxs_mbuf);
1973 			rxs->rxs_mbuf = NULL;
1974 		}
1975 	}
1976 }
1977 
1978 /*
1979  * sip_stop:		[ ifnet interface function ]
1980  *
1981  *	Stop transmission on the interface.
1982  */
1983 void
1984 SIP_DECL(stop)(struct ifnet *ifp, int disable)
1985 {
1986 	struct sip_softc *sc = ifp->if_softc;
1987 	bus_space_tag_t st = sc->sc_st;
1988 	bus_space_handle_t sh = sc->sc_sh;
1989 	struct sip_txsoft *txs;
1990 	u_int32_t cmdsts = 0;		/* DEBUG */
1991 
1992 	/*
1993 	 * Stop the one second clock.
1994 	 */
1995 	callout_stop(&sc->sc_tick_ch);
1996 
1997 	/* Down the MII. */
1998 	mii_down(&sc->sc_mii);
1999 
2000 	/*
2001 	 * Disable interrupts.
2002 	 */
2003 	bus_space_write_4(st, sh, SIP_IER, 0);
2004 
2005 	/*
2006 	 * Stop receiver and transmitter.
2007 	 */
2008 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2009 
2010 	/*
2011 	 * Release any queued transmit buffers.
2012 	 */
2013 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2014 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2015 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2016 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2017 		     CMDSTS_INTR) == 0)
2018 			printf("%s: sip_stop: last descriptor does not "
2019 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2020 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2021 #ifdef DIAGNOSTIC
2022 		if (txs->txs_mbuf == NULL) {
2023 			printf("%s: dirty txsoft with no mbuf chain\n",
2024 			    sc->sc_dev.dv_xname);
2025 			panic("sip_stop");
2026 		}
2027 #endif
2028 		cmdsts |=		/* DEBUG */
2029 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2030 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2031 		m_freem(txs->txs_mbuf);
2032 		txs->txs_mbuf = NULL;
2033 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2034 	}
2035 
2036 	if (disable)
2037 		SIP_DECL(rxdrain)(sc);
2038 
2039 	/*
2040 	 * Mark the interface down and cancel the watchdog timer.
2041 	 */
2042 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2043 	ifp->if_timer = 0;
2044 
2045 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2046 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2047 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2048 		    "descriptors\n", sc->sc_dev.dv_xname);
2049 }
2050 
2051 /*
2052  * sip_read_eeprom:
2053  *
2054  *	Read data from the serial EEPROM.
2055  */
2056 void
2057 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2058     u_int16_t *data)
2059 {
2060 	bus_space_tag_t st = sc->sc_st;
2061 	bus_space_handle_t sh = sc->sc_sh;
2062 	u_int16_t reg;
2063 	int i, x;
2064 
2065 	for (i = 0; i < wordcnt; i++) {
2066 		/* Send CHIP SELECT. */
2067 		reg = EROMAR_EECS;
2068 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2069 
2070 		/* Shift in the READ opcode. */
2071 		for (x = 3; x > 0; x--) {
2072 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2073 				reg |= EROMAR_EEDI;
2074 			else
2075 				reg &= ~EROMAR_EEDI;
2076 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2077 			bus_space_write_4(st, sh, SIP_EROMAR,
2078 			    reg | EROMAR_EESK);
2079 			delay(4);
2080 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2081 			delay(4);
2082 		}
2083 
2084 		/* Shift in address. */
2085 		for (x = 6; x > 0; x--) {
2086 			if ((word + i) & (1 << (x - 1)))
2087 				reg |= EROMAR_EEDI;
2088 			else
2089 				reg &= ~EROMAR_EEDI;
2090 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2091 			bus_space_write_4(st, sh, SIP_EROMAR,
2092 			    reg | EROMAR_EESK);
2093 			delay(4);
2094 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2095 			delay(4);
2096 		}
2097 
2098 		/* Shift out data. */
2099 		reg = EROMAR_EECS;
2100 		data[i] = 0;
2101 		for (x = 16; x > 0; x--) {
2102 			bus_space_write_4(st, sh, SIP_EROMAR,
2103 			    reg | EROMAR_EESK);
2104 			delay(4);
2105 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2106 				data[i] |= (1 << (x - 1));
2107 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2108 			delay(4);
2109 		}
2110 
2111 		/* Clear CHIP SELECT. */
2112 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2113 		delay(4);
2114 	}
2115 }
2116 
2117 /*
2118  * sip_add_rxbuf:
2119  *
2120  *	Add a receive buffer to the indicated descriptor.
2121  */
2122 int
2123 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2124 {
2125 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2126 	struct mbuf *m;
2127 	int error;
2128 
2129 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2130 	if (m == NULL)
2131 		return (ENOBUFS);
2132 
2133 	MCLGET(m, M_DONTWAIT);
2134 	if ((m->m_flags & M_EXT) == 0) {
2135 		m_freem(m);
2136 		return (ENOBUFS);
2137 	}
2138 
2139 	if (rxs->rxs_mbuf != NULL)
2140 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2141 
2142 	rxs->rxs_mbuf = m;
2143 
2144 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2145 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
2146 	if (error) {
2147 		printf("%s: can't load rx DMA map %d, error = %d\n",
2148 		    sc->sc_dev.dv_xname, idx, error);
2149 		panic("sip_add_rxbuf");		/* XXX */
2150 	}
2151 
2152 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2153 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2154 
2155 	SIP_INIT_RXDESC(sc, idx);
2156 
2157 	return (0);
2158 }
2159 
2160 #if !defined(DP83820)
2161 /*
2162  * sip_sis900_set_filter:
2163  *
2164  *	Set up the receive filter.
2165  */
2166 void
2167 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2168 {
2169 	bus_space_tag_t st = sc->sc_st;
2170 	bus_space_handle_t sh = sc->sc_sh;
2171 	struct ethercom *ec = &sc->sc_ethercom;
2172 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2173 	struct ether_multi *enm;
2174 	u_int8_t *cp;
2175 	struct ether_multistep step;
2176 	u_int32_t crc, mchash[8];
2177 
2178 	/*
2179 	 * Initialize the prototype RFCR.
2180 	 */
2181 	sc->sc_rfcr = RFCR_RFEN;
2182 	if (ifp->if_flags & IFF_BROADCAST)
2183 		sc->sc_rfcr |= RFCR_AAB;
2184 	if (ifp->if_flags & IFF_PROMISC) {
2185 		sc->sc_rfcr |= RFCR_AAP;
2186 		goto allmulti;
2187 	}
2188 
2189 	/*
2190 	 * Set up the multicast address filter by passing all multicast
2191 	 * addresses through a CRC generator, and then using the high-order
2192 	 * 6 bits as an index into the 128 bit multicast hash table (only
2193 	 * the lower 16 bits of each 32 bit multicast hash register are
2194 	 * valid).  The high order bits select the register, while the
2195 	 * rest of the bits select the bit within the register.
2196 	 */
2197 
2198 	memset(mchash, 0, sizeof(mchash));
2199 
2200 	ETHER_FIRST_MULTI(step, ec, enm);
2201 	while (enm != NULL) {
2202 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2203 			/*
2204 			 * We must listen to a range of multicast addresses.
2205 			 * For now, just accept all multicasts, rather than
2206 			 * trying to set only those filter bits needed to match
2207 			 * the range.  (At this time, the only use of address
2208 			 * ranges is for IP multicast routing, for which the
2209 			 * range is big enough to require all bits set.)
2210 			 */
2211 			goto allmulti;
2212 		}
2213 
2214 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2215 
2216 		/* Just want the 7 most significant bits. */
2217 		crc >>= 25;
2218 
2219 		/* Set the corresponding bit in the hash table. */
2220 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2221 
2222 		ETHER_NEXT_MULTI(step, enm);
2223 	}
2224 
2225 	ifp->if_flags &= ~IFF_ALLMULTI;
2226 	goto setit;
2227 
2228  allmulti:
2229 	ifp->if_flags |= IFF_ALLMULTI;
2230 	sc->sc_rfcr |= RFCR_AAM;
2231 
2232  setit:
2233 #define	FILTER_EMIT(addr, data)						\
2234 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2235 	delay(1);							\
2236 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2237 	delay(1)
2238 
2239 	/*
2240 	 * Disable receive filter, and program the node address.
2241 	 */
2242 	cp = LLADDR(ifp->if_sadl);
2243 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2244 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2245 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2246 
2247 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2248 		/*
2249 		 * Program the multicast hash table.
2250 		 */
2251 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2252 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2253 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2254 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2255 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2256 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2257 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2258 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2259 	}
2260 #undef FILTER_EMIT
2261 
2262 	/*
2263 	 * Re-enable the receiver filter.
2264 	 */
2265 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2266 }
2267 #endif /* ! DP83820 */
2268 
2269 /*
2270  * sip_dp83815_set_filter:
2271  *
2272  *	Set up the receive filter.
2273  */
2274 void
2275 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2276 {
2277 	bus_space_tag_t st = sc->sc_st;
2278 	bus_space_handle_t sh = sc->sc_sh;
2279 	struct ethercom *ec = &sc->sc_ethercom;
2280 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2281 	struct ether_multi *enm;
2282 	u_int8_t *cp;
2283 	struct ether_multistep step;
2284 	u_int32_t crc, hash, slot, bit;
2285 #ifdef DP83820
2286 #define	MCHASH_NWORDS	128
2287 #else
2288 #define	MCHASH_NWORDS	32
2289 #endif /* DP83820 */
2290 	u_int16_t mchash[MCHASH_NWORDS];
2291 	int i;
2292 
2293 	/*
2294 	 * Initialize the prototype RFCR.
2295 	 * Enable the receive filter, and accept on
2296 	 *    Perfect (destination address) Match
2297 	 * If IFF_BROADCAST, also accept all broadcast packets.
2298 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2299 	 *    IFF_ALLMULTI and accept all multicast, too).
2300 	 */
2301 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2302 	if (ifp->if_flags & IFF_BROADCAST)
2303 		sc->sc_rfcr |= RFCR_AAB;
2304 	if (ifp->if_flags & IFF_PROMISC) {
2305 		sc->sc_rfcr |= RFCR_AAP;
2306 		goto allmulti;
2307 	}
2308 
2309 #ifdef DP83820
2310 	/*
2311 	 * Set up the DP83820 multicast address filter by passing all multicast
2312 	 * addresses through a CRC generator, and then using the high-order
2313 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2314 	 * high-order 7 bits select the slot, while the low-order 4 bits
2315 	 * select the bit within the slot.  Note that only the low 16-bits
2316 	 * of each filter word are used, and there are 128 filter words.
2317 	 */
2318 #else
2319 	/*
2320 	 * Set up the DP83815 multicast address filter by passing all multicast
2321 	 * addresses through a CRC generator, and then using the high-order
2322 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2323 	 * high-order 5 bits select the slot, while the low-order 4 bits
2324 	 * select the bit within the slot.  Note that only the low 16-bits
2325 	 * of each filter word are used, and there are 32 filter words.
2326 	 */
2327 #endif /* DP83820 */
2328 
2329 	memset(mchash, 0, sizeof(mchash));
2330 
2331 	ifp->if_flags &= ~IFF_ALLMULTI;
2332 	ETHER_FIRST_MULTI(step, ec, enm);
2333 	if (enm != NULL) {
2334 		while (enm != NULL) {
2335 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2336 			    ETHER_ADDR_LEN)) {
2337 			/*
2338 			 * We must listen to a range of multicast addresses.
2339 			 * For now, just accept all multicasts, rather than
2340 			 * trying to set only those filter bits needed to match
2341 			 * the range.  (At this time, the only use of address
2342 			 * ranges is for IP multicast routing, for which the
2343 			 * range is big enough to require all bits set.)
2344 			 */
2345 				goto allmulti;
2346 			}
2347 
2348 #ifdef DP83820
2349 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2350 
2351 			/* Just want the 11 most significant bits. */
2352 			hash = crc >> 21;
2353 #else
2354 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2355 
2356 			/* Just want the 9 most significant bits. */
2357 			hash = crc >> 23;
2358 #endif /* DP83820 */
2359 			slot = hash >> 4;
2360 			bit = hash & 0xf;
2361 
2362 			/* Set the corresponding bit in the hash table. */
2363 			mchash[slot] |= 1 << bit;
2364 
2365 			ETHER_NEXT_MULTI(step, enm);
2366 		}
2367 
2368 		sc->sc_rfcr |= RFCR_MHEN;
2369 	}
2370 	goto setit;
2371 
2372  allmulti:
2373 	ifp->if_flags |= IFF_ALLMULTI;
2374 	sc->sc_rfcr |= RFCR_AAM;
2375 
2376  setit:
2377 #define	FILTER_EMIT(addr, data)						\
2378 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2379 	delay(1);							\
2380 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2381 	delay(1);
2382 
2383 	/*
2384 	 * Disable receive filter, and program the node address.
2385 	 */
2386 	cp = LLADDR(ifp->if_sadl);
2387 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2388 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2389 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2390 
2391 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2392 		/*
2393 		 * Program the multicast hash table.
2394 		 */
2395 		for (i = 0; i < MCHASH_NWORDS; i++)
2396 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2397 			    mchash[i]);
2398 	}
2399 #undef FILTER_EMIT
2400 #undef MCHASH_NWORDS
2401 
2402 	/*
2403 	 * Re-enable the receiver filter.
2404 	 */
2405 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2406 }
2407 
2408 #if defined(DP83820)
2409 /*
2410  * sip_dp83820_mii_readreg:	[mii interface function]
2411  *
2412  *	Read a PHY register on the MII of the DP83820.
2413  */
2414 int
2415 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2416 {
2417 
2418 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2419 	    phy, reg));
2420 }
2421 
2422 /*
2423  * sip_dp83820_mii_writereg:	[mii interface function]
2424  *
2425  *	Write a PHY register on the MII of the DP83820.
2426  */
2427 void
2428 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2429 {
2430 
2431 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2432 	    phy, reg, val);
2433 }
2434 
2435 /*
2436  * sip_dp83815_mii_statchg:	[mii interface function]
2437  *
2438  *	Callback from MII layer when media changes.
2439  */
2440 void
2441 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2442 {
2443 	struct sip_softc *sc = (struct sip_softc *) self;
2444 	u_int32_t cfg;
2445 
2446 	/*
2447 	 * Update TXCFG for full-duplex operation.
2448 	 */
2449 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2450 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2451 	else
2452 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2453 
2454 	/*
2455 	 * Update RXCFG for full-duplex or loopback.
2456 	 */
2457 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2458 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2459 		sc->sc_rxcfg |= RXCFG_ATX;
2460 	else
2461 		sc->sc_rxcfg &= ~RXCFG_ATX;
2462 
2463 	/*
2464 	 * Update CFG for MII/GMII.
2465 	 */
2466 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2467 		cfg = sc->sc_cfg | CFG_MODE_1000;
2468 	else
2469 		cfg = sc->sc_cfg;
2470 
2471 	/*
2472 	 * XXX 802.3x flow control.
2473 	 */
2474 
2475 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2476 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2477 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2478 }
2479 
2480 /*
2481  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2482  *
2483  *	Read the MII serial port for the MII bit-bang module.
2484  */
2485 u_int32_t
2486 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2487 {
2488 	struct sip_softc *sc = (void *) self;
2489 
2490 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2491 }
2492 
2493 /*
2494  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2495  *
2496  *	Write the MII serial port for the MII bit-bang module.
2497  */
2498 void
2499 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2500 {
2501 	struct sip_softc *sc = (void *) self;
2502 
2503 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2504 }
2505 #else /* ! DP83820 */
2506 /*
2507  * sip_sis900_mii_readreg:	[mii interface function]
2508  *
2509  *	Read a PHY register on the MII.
2510  */
2511 int
2512 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2513 {
2514 	struct sip_softc *sc = (struct sip_softc *) self;
2515 	u_int32_t enphy;
2516 
2517 	/*
2518 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2519 	 * MII address 0.
2520 	 */
2521 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2522 		return (0);
2523 
2524 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2525 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2526 	    ENPHY_RWCMD | ENPHY_ACCESS);
2527 	do {
2528 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2529 	} while (enphy & ENPHY_ACCESS);
2530 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2531 }
2532 
2533 /*
2534  * sip_sis900_mii_writereg:	[mii interface function]
2535  *
2536  *	Write a PHY register on the MII.
2537  */
2538 void
2539 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2540 {
2541 	struct sip_softc *sc = (struct sip_softc *) self;
2542 	u_int32_t enphy;
2543 
2544 	/*
2545 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2546 	 * MII address 0.
2547 	 */
2548 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2549 		return;
2550 
2551 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2552 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2553 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2554 	do {
2555 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2556 	} while (enphy & ENPHY_ACCESS);
2557 }
2558 
2559 /*
2560  * sip_sis900_mii_statchg:	[mii interface function]
2561  *
2562  *	Callback from MII layer when media changes.
2563  */
2564 void
2565 SIP_DECL(sis900_mii_statchg)(struct device *self)
2566 {
2567 	struct sip_softc *sc = (struct sip_softc *) self;
2568 	u_int32_t flowctl;
2569 
2570 	/*
2571 	 * Update TXCFG for full-duplex operation.
2572 	 */
2573 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2574 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2575 	else
2576 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2577 
2578 	/*
2579 	 * Update RXCFG for full-duplex or loopback.
2580 	 */
2581 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2582 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2583 		sc->sc_rxcfg |= RXCFG_ATX;
2584 	else
2585 		sc->sc_rxcfg &= ~RXCFG_ATX;
2586 
2587 	/*
2588 	 * Update IMR for use of 802.3x flow control.
2589 	 */
2590 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2591 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2592 		flowctl = FLOWCTL_FLOWEN;
2593 	} else {
2594 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2595 		flowctl = 0;
2596 	}
2597 
2598 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2599 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2600 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2601 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2602 }
2603 
2604 /*
2605  * sip_dp83815_mii_readreg:	[mii interface function]
2606  *
2607  *	Read a PHY register on the MII.
2608  */
2609 int
2610 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2611 {
2612 	struct sip_softc *sc = (struct sip_softc *) self;
2613 	u_int32_t val;
2614 
2615 	/*
2616 	 * The DP83815 only has an internal PHY.  Only allow
2617 	 * MII address 0.
2618 	 */
2619 	if (phy != 0)
2620 		return (0);
2621 
2622 	/*
2623 	 * Apparently, after a reset, the DP83815 can take a while
2624 	 * to respond.  During this recovery period, the BMSR returns
2625 	 * a value of 0.  Catch this -- it's not supposed to happen
2626 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2627 	 * PHY to come back to life.
2628 	 *
2629 	 * This works out because the BMSR is the first register
2630 	 * read during the PHY probe process.
2631 	 */
2632 	do {
2633 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2634 	} while (reg == MII_BMSR && val == 0);
2635 
2636 	return (val & 0xffff);
2637 }
2638 
2639 /*
2640  * sip_dp83815_mii_writereg:	[mii interface function]
2641  *
2642  *	Write a PHY register to the MII.
2643  */
2644 void
2645 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2646 {
2647 	struct sip_softc *sc = (struct sip_softc *) self;
2648 
2649 	/*
2650 	 * The DP83815 only has an internal PHY.  Only allow
2651 	 * MII address 0.
2652 	 */
2653 	if (phy != 0)
2654 		return;
2655 
2656 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2657 }
2658 
2659 /*
2660  * sip_dp83815_mii_statchg:	[mii interface function]
2661  *
2662  *	Callback from MII layer when media changes.
2663  */
2664 void
2665 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2666 {
2667 	struct sip_softc *sc = (struct sip_softc *) self;
2668 
2669 	/*
2670 	 * Update TXCFG for full-duplex operation.
2671 	 */
2672 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2673 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2674 	else
2675 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2676 
2677 	/*
2678 	 * Update RXCFG for full-duplex or loopback.
2679 	 */
2680 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2681 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2682 		sc->sc_rxcfg |= RXCFG_ATX;
2683 	else
2684 		sc->sc_rxcfg &= ~RXCFG_ATX;
2685 
2686 	/*
2687 	 * XXX 802.3x flow control.
2688 	 */
2689 
2690 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2691 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2692 }
2693 #endif /* DP83820 */
2694 
2695 #if defined(DP83820)
2696 void
2697 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2698 {
2699 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
2700 	u_int8_t cksum, *e, match;
2701 	int i;
2702 
2703 	/*
2704 	 * EEPROM data format for the DP83820 can be found in
2705 	 * the DP83820 manual, section 4.2.4.
2706 	 */
2707 
2708 	SIP_DECL(read_eeprom)(sc, 0,
2709 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
2710 
2711 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
2712 	match = ~(match - 1);
2713 
2714 	cksum = 0x55;
2715 	e = (u_int8_t *) eeprom_data;
2716 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
2717 		cksum += *e++;
2718 
2719 	if (cksum != match)
2720 		printf("%s: Checksum (%x) mismatch (%x)",
2721 		    sc->sc_dev.dv_xname, cksum, match);
2722 
2723 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
2724 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
2725 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
2726 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
2727 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
2728 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
2729 
2730 	/* Get the GPIOR bits. */
2731 	sc->sc_gpior = eeprom_data[0x04];
2732 
2733 	/* Get various CFG related bits. */
2734 	if ((eeprom_data[0x05] >> 0) & 1)
2735 		sc->sc_cfg |= CFG_EXT_125;
2736 	if ((eeprom_data[0x05] >> 9) & 1)
2737 		sc->sc_cfg |= CFG_TBI_EN;
2738 }
2739 #else /* ! DP83820 */
2740 void
2741 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2742 {
2743 	u_int16_t myea[ETHER_ADDR_LEN / 2];
2744 
2745 	SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2746 	    sizeof(myea) / sizeof(myea[0]), myea);
2747 
2748 	enaddr[0] = myea[0] & 0xff;
2749 	enaddr[1] = myea[0] >> 8;
2750 	enaddr[2] = myea[1] & 0xff;
2751 	enaddr[3] = myea[1] >> 8;
2752 	enaddr[4] = myea[2] & 0xff;
2753 	enaddr[5] = myea[2] >> 8;
2754 }
2755 
2756 /* Table and macro to bit-reverse an octet. */
2757 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2758 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2759 
2760 void
2761 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2762 {
2763 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
2764 	u_int8_t cksum, *e, match;
2765 	int i;
2766 
2767 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
2768 	    sizeof(eeprom_data[0]), eeprom_data);
2769 
2770 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
2771 	match = ~(match - 1);
2772 
2773 	cksum = 0x55;
2774 	e = (u_int8_t *) eeprom_data;
2775 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
2776 		cksum += *e++;
2777 	}
2778 	if (cksum != match) {
2779 		printf("%s: Checksum (%x) mismatch (%x)",
2780 		    sc->sc_dev.dv_xname, cksum, match);
2781 	}
2782 
2783 	/*
2784 	 * Unrolled because it makes slightly more sense this way.
2785 	 * The DP83815 stores the MAC address in bit 0 of word 6
2786 	 * through bit 15 of word 8.
2787 	 */
2788 	ea = &eeprom_data[6];
2789 	enaddr[0] = ((*ea & 0x1) << 7);
2790 	ea++;
2791 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
2792 	enaddr[1] = ((*ea & 0x1FE) >> 1);
2793 	enaddr[2] = ((*ea & 0x1) << 7);
2794 	ea++;
2795 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
2796 	enaddr[3] = ((*ea & 0x1FE) >> 1);
2797 	enaddr[4] = ((*ea & 0x1) << 7);
2798 	ea++;
2799 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
2800 	enaddr[5] = ((*ea & 0x1FE) >> 1);
2801 
2802 	/*
2803 	 * In case that's not weird enough, we also need to reverse
2804 	 * the bits in each byte.  This all actually makes more sense
2805 	 * if you think about the EEPROM storage as an array of bits
2806 	 * being shifted into bytes, but that's not how we're looking
2807 	 * at it here...
2808 	 */
2809 	for (i = 0; i < 6 ;i++)
2810 		enaddr[i] = bbr(enaddr[i]);
2811 }
2812 #endif /* DP83820 */
2813 
2814 /*
2815  * sip_mediastatus:	[ifmedia interface function]
2816  *
2817  *	Get the current interface media status.
2818  */
2819 void
2820 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
2821 {
2822 	struct sip_softc *sc = ifp->if_softc;
2823 
2824 	mii_pollstat(&sc->sc_mii);
2825 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2826 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2827 }
2828 
2829 /*
2830  * sip_mediachange:	[ifmedia interface function]
2831  *
2832  *	Set hardware to newly-selected media.
2833  */
2834 int
2835 SIP_DECL(mediachange)(struct ifnet *ifp)
2836 {
2837 	struct sip_softc *sc = ifp->if_softc;
2838 
2839 	if (ifp->if_flags & IFF_UP)
2840 		mii_mediachg(&sc->sc_mii);
2841 	return (0);
2842 }
2843