xref: /netbsd-src/sys/dev/pci/if_sip.c (revision aad9773e38ed2370a628a6416e098f9008fc10a7)
1 /*	$NetBSD: if_sip.c,v 1.158 2014/08/10 16:44:36 tls Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.158 2014/08/10 16:44:36 tls Exp $");
77 
78 
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91 
92 #include <sys/rnd.h>
93 
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98 
99 #include <net/bpf.h>
100 
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104 
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108 
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112 
113 #include <dev/pci/if_sipreg.h>
114 
115 /*
116  * Transmit descriptor list size.  This is arbitrary, but allocate
117  * enough descriptors for 128 pending transmissions, and 8 segments
118  * per packet (64 for DP83820 for jumbo frames).
119  *
120  * This MUST work out to a power of 2.
121  */
122 #define	GSIP_NTXSEGS_ALLOC 16
123 #define	SIP_NTXSEGS_ALLOC 8
124 
125 #define	SIP_TXQUEUELEN		256
126 #define	MAX_SIP_NTXDESC	\
127     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128 
129 /*
130  * Receive descriptor list size.  We have one Rx buffer per incoming
131  * packet, so this logic is a little simpler.
132  *
133  * Actually, on the DP83820, we allow the packet to consume more than
134  * one buffer, in order to support jumbo Ethernet frames.  In that
135  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
137  * so we'd better be quick about handling receive interrupts.
138  */
139 #define	GSIP_NRXDESC		256
140 #define	SIP_NRXDESC		128
141 
142 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
143 
144 /*
145  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
146  * a single clump that maps to a single DMA segment to make several things
147  * easier.
148  */
149 struct sip_control_data {
150 	/*
151 	 * The transmit descriptors.
152 	 */
153 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154 
155 	/*
156 	 * The receive descriptors.
157 	 */
158 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160 
161 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
162 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
163 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
164 
165 /*
166  * Software state for transmit jobs.
167  */
168 struct sip_txsoft {
169 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
170 	bus_dmamap_t txs_dmamap;	/* our DMA map */
171 	int txs_firstdesc;		/* first descriptor in packet */
172 	int txs_lastdesc;		/* last descriptor in packet */
173 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175 
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177 
178 /*
179  * Software state for receive jobs.
180  */
181 struct sip_rxsoft {
182 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
183 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
184 };
185 
186 enum sip_attach_stage {
187 	  SIP_ATTACH_FIN = 0
188 	, SIP_ATTACH_CREATE_RXMAP
189 	, SIP_ATTACH_CREATE_TXMAP
190 	, SIP_ATTACH_LOAD_MAP
191 	, SIP_ATTACH_CREATE_MAP
192 	, SIP_ATTACH_MAP_MEM
193 	, SIP_ATTACH_ALLOC_MEM
194 	, SIP_ATTACH_INTR
195 	, SIP_ATTACH_MAP
196 };
197 
198 /*
199  * Software state per device.
200  */
201 struct sip_softc {
202 	device_t sc_dev;		/* generic device information */
203 	device_suspensor_t		sc_suspensor;
204 	pmf_qual_t			sc_qual;
205 
206 	bus_space_tag_t sc_st;		/* bus space tag */
207 	bus_space_handle_t sc_sh;	/* bus space handle */
208 	bus_size_t sc_sz;		/* bus space size */
209 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
210 	pci_chipset_tag_t sc_pc;
211 	bus_dma_segment_t sc_seg;
212 	struct ethercom sc_ethercom;	/* ethernet common data */
213 
214 	const struct sip_product *sc_model; /* which model are we? */
215 	int sc_gigabit;			/* 1: 83820, 0: other */
216 	int sc_rev;			/* chip revision */
217 
218 	void *sc_ih;			/* interrupt cookie */
219 
220 	struct mii_data sc_mii;		/* MII/media information */
221 
222 	callout_t sc_tick_ch;		/* tick callout */
223 
224 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
225 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
226 
227 	/*
228 	 * Software state for transmit and receive descriptors.
229 	 */
230 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232 
233 	/*
234 	 * Control data structures.
235 	 */
236 	struct sip_control_data *sc_control_data;
237 #define	sc_txdescs	sc_control_data->scd_txdescs
238 #define	sc_rxdescs	sc_control_data->scd_rxdescs
239 
240 #ifdef SIP_EVENT_COUNTERS
241 	/*
242 	 * Event counters.
243 	 */
244 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
245 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
246 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
247 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
248 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
249 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
250 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
251 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
252 	/* DP83820 only */
253 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
254 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
255 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
256 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
257 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
258 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
259 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261 
262 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
263 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
264 	u_int32_t sc_imr;		/* prototype IMR register */
265 	u_int32_t sc_rfcr;		/* prototype RFCR register */
266 
267 	u_int32_t sc_cfg;		/* prototype CFG register */
268 
269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
270 
271 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
272 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
273 
274 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
275 
276 	int	sc_flowflags;		/* 802.3x flow control flags */
277 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
278 	int	sc_paused;		/* paused indication */
279 
280 	int	sc_txfree;		/* number of free Tx descriptors */
281 	int	sc_txnext;		/* next ready Tx descriptor */
282 	int	sc_txwin;		/* Tx descriptors since last intr */
283 
284 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
285 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
286 
287 	/* values of interface state at last init */
288 	struct {
289 		/* if_capenable */
290 		uint64_t	if_capenable;
291 		/* ec_capenable */
292 		int		ec_capenable;
293 		/* VLAN_ATTACHED */
294 		int		is_vlan;
295 	}	sc_prev;
296 
297 	short	sc_if_flags;
298 
299 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
300 	int	sc_rxdiscard;
301 	int	sc_rxlen;
302 	struct mbuf *sc_rxhead;
303 	struct mbuf *sc_rxtail;
304 	struct mbuf **sc_rxtailp;
305 
306 	int sc_ntxdesc;
307 	int sc_ntxdesc_mask;
308 
309 	int sc_nrxdesc_mask;
310 
311 	const struct sip_parm {
312 		const struct sip_regs {
313 			int r_rxcfg;
314 			int r_txcfg;
315 		} p_regs;
316 
317 		const struct sip_bits {
318 			uint32_t b_txcfg_mxdma_8;
319 			uint32_t b_txcfg_mxdma_16;
320 			uint32_t b_txcfg_mxdma_32;
321 			uint32_t b_txcfg_mxdma_64;
322 			uint32_t b_txcfg_mxdma_128;
323 			uint32_t b_txcfg_mxdma_256;
324 			uint32_t b_txcfg_mxdma_512;
325 			uint32_t b_txcfg_flth_mask;
326 			uint32_t b_txcfg_drth_mask;
327 
328 			uint32_t b_rxcfg_mxdma_8;
329 			uint32_t b_rxcfg_mxdma_16;
330 			uint32_t b_rxcfg_mxdma_32;
331 			uint32_t b_rxcfg_mxdma_64;
332 			uint32_t b_rxcfg_mxdma_128;
333 			uint32_t b_rxcfg_mxdma_256;
334 			uint32_t b_rxcfg_mxdma_512;
335 
336 			uint32_t b_isr_txrcmp;
337 			uint32_t b_isr_rxrcmp;
338 			uint32_t b_isr_dperr;
339 			uint32_t b_isr_sserr;
340 			uint32_t b_isr_rmabt;
341 			uint32_t b_isr_rtabt;
342 
343 			uint32_t b_cmdsts_size_mask;
344 		} p_bits;
345 		int		p_filtmem;
346 		int		p_rxbuf_len;
347 		bus_size_t	p_tx_dmamap_size;
348 		int		p_ntxsegs;
349 		int		p_ntxsegs_alloc;
350 		int		p_nrxdesc;
351 	} *sc_parm;
352 
353 	void (*sc_rxintr)(struct sip_softc *);
354 
355 	krndsource_t rnd_source;	/* random source */
356 };
357 
358 #define	sc_bits	sc_parm->p_bits
359 #define	sc_regs	sc_parm->p_regs
360 
361 static const struct sip_parm sip_parm = {
362 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
364 	, .p_tx_dmamap_size = MCLBYTES
365 	, .p_ntxsegs = 16
366 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 	, .p_nrxdesc = SIP_NRXDESC
368 	, .p_bits = {
369 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
370 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
371 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
372 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
373 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
374 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
375 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
376 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
377 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
378 
379 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
380 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
381 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
382 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
383 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
384 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
385 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
386 
387 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
388 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
389 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
390 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
391 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
392 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
393 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 	}
395 	, .p_regs = {
396 		.r_rxcfg = OTHER_SIP_RXCFG,
397 		.r_txcfg = OTHER_SIP_TXCFG
398 	}
399 }, gsip_parm = {
400 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 	, .p_rxbuf_len = MCLBYTES - 8
402 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 	, .p_ntxsegs = 64
404 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 	, .p_nrxdesc = GSIP_NRXDESC
406 	, .p_bits = {
407 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
408 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
409 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
410 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
411 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
412 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
413 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
414 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
415 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
416 
417 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
418 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
419 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
420 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
421 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
422 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
423 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
424 
425 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
426 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
427 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
428 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
429 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
430 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
431 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 	}
433 	, .p_regs = {
434 		.r_rxcfg = DP83820_SIP_RXCFG,
435 		.r_txcfg = DP83820_SIP_TXCFG
436 	}
437 };
438 
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 	return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444 
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 	return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450 
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 	sc->sc_rxtailp = &sc->sc_rxhead;
456 	*sc->sc_rxtailp = NULL;
457 	sc->sc_rxlen = 0;
458 }
459 
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 	*sc->sc_rxtailp = sc->sc_rxtail = m;
465 	sc->sc_rxtailp = &m->m_next;
466 }
467 
468 #ifdef SIP_EVENT_COUNTERS
469 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
470 #else
471 #define	SIP_EVCNT_INCR(ev)	/* nothing */
472 #endif
473 
474 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
476 
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 	int x, n;
481 
482 	x = x0;
483 	n = n0;
484 
485 	/* If it will wrap around, sync to the end of the ring. */
486 	if (x + n > sc->sc_ntxdesc) {
487 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 		    (sc->sc_ntxdesc - x), ops);
490 		n -= (sc->sc_ntxdesc - x);
491 		x = 0;
492 	}
493 
494 	/* Now sync whatever is left. */
495 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498 
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505 
506 #if 0
507 #ifdef DP83820
508 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
509 	u_int32_t	sipd_cmdsts;	/* command/status word */
510 #else
511 	u_int32_t	sipd_cmdsts;	/* command/status word */
512 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515 
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521 
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527 
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
533 
534 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 	sipd->sipd_extsts = 0;
539 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541 
542 #define	SIP_CHIP_VERS(sc, v, p, r)					\
543 	((sc)->sc_model->sip_vendor == (v) &&				\
544 	 (sc)->sc_model->sip_product == (p) &&				\
545 	 (sc)->sc_rev == (r))
546 
547 #define	SIP_CHIP_MODEL(sc, v, p)					\
548 	((sc)->sc_model->sip_vendor == (v) &&				\
549 	 (sc)->sc_model->sip_product == (p))
550 
551 #define	SIP_SIS900_REV(sc, rev)						\
552 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553 
554 #define SIP_TIMEOUT 1000
555 
556 static int	sip_ifflags_cb(struct ethercom *);
557 static void	sipcom_start(struct ifnet *);
558 static void	sipcom_watchdog(struct ifnet *);
559 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int	sipcom_init(struct ifnet *);
561 static void	sipcom_stop(struct ifnet *, int);
562 
563 static bool	sipcom_reset(struct sip_softc *);
564 static void	sipcom_rxdrain(struct sip_softc *);
565 static int	sipcom_add_rxbuf(struct sip_softc *, int);
566 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
567 				      u_int16_t *);
568 static void	sipcom_tick(void *);
569 
570 static void	sipcom_sis900_set_filter(struct sip_softc *);
571 static void	sipcom_dp83815_set_filter(struct sip_softc *);
572 
573 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
574 		    const struct pci_attach_args *, u_int8_t *);
575 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
577 		    const struct pci_attach_args *, u_int8_t *);
578 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
579 		    const struct pci_attach_args *, u_int8_t *);
580 
581 static int	sipcom_intr(void *);
582 static void	sipcom_txintr(struct sip_softc *);
583 static void	sip_rxintr(struct sip_softc *);
584 static void	gsip_rxintr(struct sip_softc *);
585 
586 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
589 
590 static int	sipcom_sis900_mii_readreg(device_t, int, int);
591 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void	sipcom_sis900_mii_statchg(struct ifnet *);
593 
594 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
597 
598 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599 
600 static int	sipcom_match(device_t, cfdata_t, void *);
601 static void	sipcom_attach(device_t, device_t, void *);
602 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int	sipcom_detach(device_t, int);
604 static bool	sipcom_resume(device_t, const pmf_qual_t *);
605 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
606 
607 int	gsip_copy_small = 0;
608 int	sip_copy_small = 0;
609 
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612     DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615     DVF_DETACH_SHUTDOWN);
616 
617 /*
618  * Descriptions of the variants of the SiS900.
619  */
620 struct sip_variant {
621 	int	(*sipv_mii_readreg)(device_t, int, int);
622 	void	(*sipv_mii_writereg)(device_t, int, int, int);
623 	void	(*sipv_mii_statchg)(struct ifnet *);
624 	void	(*sipv_set_filter)(struct sip_softc *);
625 	void	(*sipv_read_macaddr)(struct sip_softc *,
626 		    const struct pci_attach_args *, u_int8_t *);
627 };
628 
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
631 
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 	sipcom_mii_bitbang_read,
634 	sipcom_mii_bitbang_write,
635 	{
636 		EROMAR_MDIO,		/* MII_BIT_MDO */
637 		EROMAR_MDIO,		/* MII_BIT_MDI */
638 		EROMAR_MDC,		/* MII_BIT_MDC */
639 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
640 		0,			/* MII_BIT_DIR_PHY_HOST */
641 	}
642 };
643 
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 	sipcom_dp83820_mii_readreg,
646 	sipcom_dp83820_mii_writereg,
647 	sipcom_dp83820_mii_statchg,
648 	sipcom_dp83815_set_filter,
649 	sipcom_dp83820_read_macaddr,
650 };
651 
652 static const struct sip_variant sipcom_variant_sis900 = {
653 	sipcom_sis900_mii_readreg,
654 	sipcom_sis900_mii_writereg,
655 	sipcom_sis900_mii_statchg,
656 	sipcom_sis900_set_filter,
657 	sipcom_sis900_read_macaddr,
658 };
659 
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 	sipcom_dp83815_mii_readreg,
662 	sipcom_dp83815_mii_writereg,
663 	sipcom_dp83815_mii_statchg,
664 	sipcom_dp83815_set_filter,
665 	sipcom_dp83815_read_macaddr,
666 };
667 
668 
669 /*
670  * Devices supported by this driver.
671  */
672 static const struct sip_product {
673 	pci_vendor_id_t		sip_vendor;
674 	pci_product_id_t	sip_product;
675 	const char		*sip_name;
676 	const struct sip_variant *sip_variant;
677 	int			sip_gigabit;
678 } sipcom_products[] = {
679 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
680 	  "NatSemi DP83820 Gigabit Ethernet",
681 	  &sipcom_variant_dp83820, 1 },
682 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
683 	  "SiS 900 10/100 Ethernet",
684 	  &sipcom_variant_sis900, 0 },
685 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
686 	  "SiS 7016 10/100 Ethernet",
687 	  &sipcom_variant_sis900, 0 },
688 
689 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
690 	  "NatSemi DP83815 10/100 Ethernet",
691 	  &sipcom_variant_dp83815, 0 },
692 
693 	{ 0,			0,
694 	  NULL,
695 	  NULL, 0 },
696 };
697 
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 	const struct sip_product *sip;
702 
703 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 		    sip->sip_gigabit == gigabit)
707 			return sip;
708 	}
709 	return NULL;
710 }
711 
712 /*
713  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
714  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
715  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716  * which means we try to use 64-bit data transfers on those cards if we
717  * happen to be plugged into a 32-bit slot.
718  *
719  * What we do is use this table of cards known to be 64-bit cards.  If
720  * you have a 64-bit card who's subsystem ID is not listed in this table,
721  * send the output of "pcictl dump ..." of the device to me so that your
722  * card will use the 64-bit data path when plugged into a 64-bit slot.
723  *
724  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
725  *	   June 30, 2002
726  */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 	static const struct {
731 		pci_vendor_id_t c64_vendor;
732 		pci_product_id_t c64_product;
733 	} card64[] = {
734 		/* Asante GigaNIX */
735 		{ 0x128a,	0x0002 },
736 
737 		/* Accton EN1407-T, Planex GN-1000TE */
738 		{ 0x1113,	0x1407 },
739 
740 		/* Netgear GA621 */
741 		{ 0x1385,	0x621a },
742 
743 		/* Netgear GA622 */
744 		{ 0x1385,	0x622a },
745 
746 		/* SMC EZ Card 1000 (9462TX) */
747 		{ 0x10b8,	0x9462 },
748 
749 		{ 0, 0}
750 	};
751 	pcireg_t subsys;
752 	int i;
753 
754 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755 
756 	for (i = 0; card64[i].c64_vendor != 0; i++) {
757 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
759 			return (1);
760 	}
761 
762 	return (0);
763 }
764 
765 static int
766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 	struct pci_attach_args *pa = aux;
769 
770 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 		return 1;
772 
773 	return 0;
774 }
775 
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 	u_int32_t reg;
780 	int i;
781 
782 	/*
783 	 * Cause the chip to load configuration data from the EEPROM.
784 	 */
785 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 	for (i = 0; i < 10000; i++) {
787 		delay(10);
788 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 		    PTSCR_EELOAD_EN) == 0)
790 			break;
791 	}
792 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 	    PTSCR_EELOAD_EN) {
794 		printf("%s: timeout loading configuration from EEPROM\n",
795 		    device_xname(sc->sc_dev));
796 		return;
797 	}
798 
799 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800 
801 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 	if (reg & CFG_PCI64_DET) {
803 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
804 		/*
805 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
806 		 * data transfers.
807 		 *
808 		 * We can't use the DATA64_EN bit in the EEPROM, because
809 		 * vendors of 32-bit cards fail to clear that bit in many
810 		 * cases (yet the card still detects that it's in a 64-bit
811 		 * slot; go figure).
812 		 */
813 		if (sipcom_check_64bit(pa)) {
814 			sc->sc_cfg |= CFG_DATA64_EN;
815 			printf(", using 64-bit data transfers");
816 		}
817 		printf("\n");
818 	}
819 
820 	/*
821 	 * XXX Need some PCI flags indicating support for
822 	 * XXX 64-bit addressing.
823 	 */
824 #if 0
825 	if (reg & CFG_M64ADDR)
826 		sc->sc_cfg |= CFG_M64ADDR;
827 	if (reg & CFG_T64ADDR)
828 		sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830 
831 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 		const char *sep = "";
833 		printf("%s: using ", device_xname(sc->sc_dev));
834 		if (reg & CFG_EXT_125) {
835 			sc->sc_cfg |= CFG_EXT_125;
836 			printf("%s125MHz clock", sep);
837 			sep = ", ";
838 		}
839 		if (reg & CFG_TBI_EN) {
840 			sc->sc_cfg |= CFG_TBI_EN;
841 			printf("%sten-bit interface", sep);
842 			sep = ", ";
843 		}
844 		printf("\n");
845 	}
846 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 	    (reg & CFG_MRM_DIS) != 0)
848 		sc->sc_cfg |= CFG_MRM_DIS;
849 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 	    (reg & CFG_MWI_DIS) != 0)
851 		sc->sc_cfg |= CFG_MWI_DIS;
852 
853 	/*
854 	 * Use the extended descriptor format on the DP83820.  This
855 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 	 * checksumming.
857 	 */
858 	sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860 
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 	int s;
865 
866 	s = splnet();
867 	sipcom_do_detach(self, SIP_ATTACH_FIN);
868 	splx(s);
869 
870 	return 0;
871 }
872 
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 	int i;
877 	struct sip_softc *sc = device_private(self);
878 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879 
880 	/*
881 	 * Free any resources we've allocated during attach.
882 	 * Do this in reverse order and fall through.
883 	 */
884 	switch (stage) {
885 	case SIP_ATTACH_FIN:
886 		sipcom_stop(ifp, 1);
887 		pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 		/*
890 		 * Attach event counters.
891 		 */
892 		evcnt_detach(&sc->sc_ev_txforceintr);
893 		evcnt_detach(&sc->sc_ev_txdstall);
894 		evcnt_detach(&sc->sc_ev_txsstall);
895 		evcnt_detach(&sc->sc_ev_hiberr);
896 		evcnt_detach(&sc->sc_ev_rxintr);
897 		evcnt_detach(&sc->sc_ev_txiintr);
898 		evcnt_detach(&sc->sc_ev_txdintr);
899 		if (!sc->sc_gigabit) {
900 			evcnt_detach(&sc->sc_ev_rxpause);
901 		} else {
902 			evcnt_detach(&sc->sc_ev_txudpsum);
903 			evcnt_detach(&sc->sc_ev_txtcpsum);
904 			evcnt_detach(&sc->sc_ev_txipsum);
905 			evcnt_detach(&sc->sc_ev_rxudpsum);
906 			evcnt_detach(&sc->sc_ev_rxtcpsum);
907 			evcnt_detach(&sc->sc_ev_rxipsum);
908 			evcnt_detach(&sc->sc_ev_txpause);
909 			evcnt_detach(&sc->sc_ev_rxpause);
910 		}
911 #endif /* SIP_EVENT_COUNTERS */
912 
913 		rnd_detach_source(&sc->rnd_source);
914 
915 		ether_ifdetach(ifp);
916 		if_detach(ifp);
917 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
918 
919 		/*FALLTHROUGH*/
920 	case SIP_ATTACH_CREATE_RXMAP:
921 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
922 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
923 				bus_dmamap_destroy(sc->sc_dmat,
924 				    sc->sc_rxsoft[i].rxs_dmamap);
925 		}
926 		/*FALLTHROUGH*/
927 	case SIP_ATTACH_CREATE_TXMAP:
928 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
929 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
930 				bus_dmamap_destroy(sc->sc_dmat,
931 				    sc->sc_txsoft[i].txs_dmamap);
932 		}
933 		/*FALLTHROUGH*/
934 	case SIP_ATTACH_LOAD_MAP:
935 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
936 		/*FALLTHROUGH*/
937 	case SIP_ATTACH_CREATE_MAP:
938 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
939 		/*FALLTHROUGH*/
940 	case SIP_ATTACH_MAP_MEM:
941 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
942 		    sizeof(struct sip_control_data));
943 		/*FALLTHROUGH*/
944 	case SIP_ATTACH_ALLOC_MEM:
945 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
946 		/* FALLTHROUGH*/
947 	case SIP_ATTACH_INTR:
948 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
949 		/* FALLTHROUGH*/
950 	case SIP_ATTACH_MAP:
951 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
952 		break;
953 	default:
954 		break;
955 	}
956 	return;
957 }
958 
959 static bool
960 sipcom_resume(device_t self, const pmf_qual_t *qual)
961 {
962 	struct sip_softc *sc = device_private(self);
963 
964 	return sipcom_reset(sc);
965 }
966 
967 static bool
968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
969 {
970 	struct sip_softc *sc = device_private(self);
971 
972 	sipcom_rxdrain(sc);
973 	return true;
974 }
975 
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 	struct sip_softc *sc = device_private(self);
980 	struct pci_attach_args *pa = aux;
981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 	pci_chipset_tag_t pc = pa->pa_pc;
983 	pci_intr_handle_t ih;
984 	const char *intrstr = NULL;
985 	bus_space_tag_t iot, memt;
986 	bus_space_handle_t ioh, memh;
987 	bus_size_t iosz, memsz;
988 	int ioh_valid, memh_valid;
989 	int i, rseg, error;
990 	const struct sip_product *sip;
991 	u_int8_t enaddr[ETHER_ADDR_LEN];
992 	pcireg_t csr;
993 	pcireg_t memtype;
994 	bus_size_t tx_dmamap_size;
995 	int ntxsegs_alloc;
996 	cfdata_t cf = device_cfdata(self);
997 	char intrbuf[PCI_INTRSTR_LEN];
998 
999 	callout_init(&sc->sc_tick_ch, 0);
1000 
1001 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1002 	if (sip == NULL) {
1003 		printf("\n");
1004 		panic("%s: impossible", __func__);
1005 	}
1006 	sc->sc_dev = self;
1007 	sc->sc_gigabit = sip->sip_gigabit;
1008 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1009 	sc->sc_pc = pc;
1010 
1011 	if (sc->sc_gigabit) {
1012 		sc->sc_rxintr = gsip_rxintr;
1013 		sc->sc_parm = &gsip_parm;
1014 	} else {
1015 		sc->sc_rxintr = sip_rxintr;
1016 		sc->sc_parm = &sip_parm;
1017 	}
1018 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023 
1024 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1025 
1026 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1027 
1028 	sc->sc_model = sip;
1029 
1030 	/*
1031 	 * XXX Work-around broken PXE firmware on some boards.
1032 	 *
1033 	 * The DP83815 shares an address decoder with the MEM BAR
1034 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1035 	 * so that memory mapped access works.
1036 	 */
1037 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1038 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1039 	    ~PCI_MAPREG_ROM_ENABLE);
1040 
1041 	/*
1042 	 * Map the device.
1043 	 */
1044 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1045 	    PCI_MAPREG_TYPE_IO, 0,
1046 	    &iot, &ioh, NULL, &iosz) == 0);
1047 	if (sc->sc_gigabit) {
1048 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1049 		switch (memtype) {
1050 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1051 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1052 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1053 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1054 			break;
1055 		default:
1056 			memh_valid = 0;
1057 		}
1058 	} else {
1059 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1061 		    &memt, &memh, NULL, &memsz) == 0);
1062 	}
1063 
1064 	if (memh_valid) {
1065 		sc->sc_st = memt;
1066 		sc->sc_sh = memh;
1067 		sc->sc_sz = memsz;
1068 	} else if (ioh_valid) {
1069 		sc->sc_st = iot;
1070 		sc->sc_sh = ioh;
1071 		sc->sc_sz = iosz;
1072 	} else {
1073 		printf("%s: unable to map device registers\n",
1074 		    device_xname(sc->sc_dev));
1075 		return;
1076 	}
1077 
1078 	sc->sc_dmat = pa->pa_dmat;
1079 
1080 	/*
1081 	 * Make sure bus mastering is enabled.  Also make sure
1082 	 * Write/Invalidate is enabled if we're allowed to use it.
1083 	 */
1084 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 	    csr | PCI_COMMAND_MASTER_ENABLE);
1089 
1090 	/* power up chip */
1091 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1092 	if (error != 0 && error != EOPNOTSUPP) {
1093 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1094 		return;
1095 	}
1096 
1097 	/*
1098 	 * Map and establish our interrupt.
1099 	 */
1100 	if (pci_intr_map(pa, &ih)) {
1101 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1102 		return;
1103 	}
1104 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1105 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1106 	if (sc->sc_ih == NULL) {
1107 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1108 		if (intrstr != NULL)
1109 			aprint_error(" at %s", intrstr);
1110 		aprint_error("\n");
1111 		sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 		return;
1113 	}
1114 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1115 
1116 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118 
1119 	/*
1120 	 * Allocate the control data structures, and create and load the
1121 	 * DMA map for it.
1122 	 */
1123 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 	    &rseg, 0)) != 0) {
1126 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1127 		    error);
1128 		sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 		return;
1130 	}
1131 
1132 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 	    BUS_DMA_COHERENT)) != 0) {
1135 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1136 		    error);
1137 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 	}
1139 
1140 	if ((error = bus_dmamap_create(sc->sc_dmat,
1141 	    sizeof(struct sip_control_data), 1,
1142 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1144 		    "error = %d\n", error);
1145 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1146 	}
1147 
1148 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1149 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1150 	    0)) != 0) {
1151 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1152 		    error);
1153 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1154 	}
1155 
1156 	/*
1157 	 * Create the transmit buffer DMA maps.
1158 	 */
1159 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1160 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1161 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1162 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1163 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1164 			    "error = %d\n", i, error);
1165 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * Create the receive buffer DMA maps.
1171 	 */
1172 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1173 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1174 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1175 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1176 			    "error = %d\n", i, error);
1177 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1178 		}
1179 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1180 	}
1181 
1182 	/*
1183 	 * Reset the chip to a known state.
1184 	 */
1185 	sipcom_reset(sc);
1186 
1187 	/*
1188 	 * Read the Ethernet address from the EEPROM.  This might
1189 	 * also fetch other stuff from the EEPROM and stash it
1190 	 * in the softc.
1191 	 */
1192 	sc->sc_cfg = 0;
1193 	if (!sc->sc_gigabit) {
1194 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1195 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1196 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1197 
1198 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1199 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1200 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1201 			sc->sc_cfg |=
1202 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1203 			     CFG_EDBMASTEN);
1204 	}
1205 
1206 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1207 
1208 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1209 	    ether_sprintf(enaddr));
1210 
1211 	/*
1212 	 * Initialize the configuration register: aggressive PCI
1213 	 * bus request algorithm, default backoff, default OW timer,
1214 	 * default parity error detection.
1215 	 *
1216 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1217 	 * friends -- it affects packet data, not descriptors.
1218 	 */
1219 	if (sc->sc_gigabit)
1220 		sipcom_dp83820_attach(sc, pa);
1221 
1222 	/*
1223 	 * Initialize our media structures and probe the MII.
1224 	 */
1225 	sc->sc_mii.mii_ifp = ifp;
1226 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1227 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1228 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1229 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1230 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1231 	    sipcom_mediastatus);
1232 
1233 	/*
1234 	 * XXX We cannot handle flow control on the DP83815.
1235 	 */
1236 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1237 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 			   MII_OFFSET_ANY, 0);
1239 	else
1240 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1241 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1242 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1243 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1244 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1245 	} else
1246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1247 
1248 	ifp = &sc->sc_ethercom.ec_if;
1249 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1250 	ifp->if_softc = sc;
1251 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1252 	sc->sc_if_flags = ifp->if_flags;
1253 	ifp->if_ioctl = sipcom_ioctl;
1254 	ifp->if_start = sipcom_start;
1255 	ifp->if_watchdog = sipcom_watchdog;
1256 	ifp->if_init = sipcom_init;
1257 	ifp->if_stop = sipcom_stop;
1258 	IFQ_SET_READY(&ifp->if_snd);
1259 
1260 	/*
1261 	 * We can support 802.1Q VLAN-sized frames.
1262 	 */
1263 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1264 
1265 	if (sc->sc_gigabit) {
1266 		/*
1267 		 * And the DP83820 can do VLAN tagging in hardware, and
1268 		 * support the jumbo Ethernet MTU.
1269 		 */
1270 		sc->sc_ethercom.ec_capabilities |=
1271 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1272 
1273 		/*
1274 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1275 		 * in hardware.
1276 		 */
1277 		ifp->if_capabilities |=
1278 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1279 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1280 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1281 	}
1282 
1283 	/*
1284 	 * Attach the interface.
1285 	 */
1286 	if_attach(ifp);
1287 	ether_ifattach(ifp, enaddr);
1288 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1289 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1290 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1291 	sc->sc_prev.if_capenable = ifp->if_capenable;
1292 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1293 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1294 
1295 	/*
1296 	 * The number of bytes that must be available in
1297 	 * the Tx FIFO before the bus master can DMA more
1298 	 * data into the FIFO.
1299 	 */
1300 	sc->sc_tx_fill_thresh = 64 / 32;
1301 
1302 	/*
1303 	 * Start at a drain threshold of 512 bytes.  We will
1304 	 * increase it if a DMA underrun occurs.
1305 	 *
1306 	 * XXX The minimum value of this variable should be
1307 	 * tuned.  We may be able to improve performance
1308 	 * by starting with a lower value.  That, however,
1309 	 * may trash the first few outgoing packets if the
1310 	 * PCI bus is saturated.
1311 	 */
1312 	if (sc->sc_gigabit)
1313 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1314 	else
1315 		sc->sc_tx_drain_thresh = 1504 / 32;
1316 
1317 	/*
1318 	 * Initialize the Rx FIFO drain threshold.
1319 	 *
1320 	 * This is in units of 8 bytes.
1321 	 *
1322 	 * We should never set this value lower than 2; 14 bytes are
1323 	 * required to filter the packet.
1324 	 */
1325 	sc->sc_rx_drain_thresh = 128 / 8;
1326 
1327 #ifdef SIP_EVENT_COUNTERS
1328 	/*
1329 	 * Attach event counters.
1330 	 */
1331 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1332 	    NULL, device_xname(sc->sc_dev), "txsstall");
1333 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1334 	    NULL, device_xname(sc->sc_dev), "txdstall");
1335 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1336 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1337 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1338 	    NULL, device_xname(sc->sc_dev), "txdintr");
1339 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1340 	    NULL, device_xname(sc->sc_dev), "txiintr");
1341 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1342 	    NULL, device_xname(sc->sc_dev), "rxintr");
1343 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1344 	    NULL, device_xname(sc->sc_dev), "hiberr");
1345 	if (!sc->sc_gigabit) {
1346 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1347 		    NULL, device_xname(sc->sc_dev), "rxpause");
1348 	} else {
1349 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1350 		    NULL, device_xname(sc->sc_dev), "rxpause");
1351 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1352 		    NULL, device_xname(sc->sc_dev), "txpause");
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1354 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1355 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1356 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1357 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1358 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1360 		    NULL, device_xname(sc->sc_dev), "txipsum");
1361 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1362 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1363 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1364 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1365 	}
1366 #endif /* SIP_EVENT_COUNTERS */
1367 
1368 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1369 		pmf_class_network_register(self, ifp);
1370 	else
1371 		aprint_error_dev(self, "couldn't establish power handler\n");
1372 }
1373 
1374 static inline void
1375 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1376     uint64_t capenable)
1377 {
1378 	struct m_tag *mtag;
1379 	u_int32_t extsts;
1380 #ifdef DEBUG
1381 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 #endif
1383 	/*
1384 	 * If VLANs are enabled and the packet has a VLAN tag, set
1385 	 * up the descriptor to encapsulate the packet for us.
1386 	 *
1387 	 * This apparently has to be on the last descriptor of
1388 	 * the packet.
1389 	 */
1390 
1391 	/*
1392 	 * Byte swapping is tricky. We need to provide the tag
1393 	 * in a network byte order. On a big-endian machine,
1394 	 * the byteorder is correct, but we need to swap it
1395 	 * anyway, because this will be undone by the outside
1396 	 * htole32(). That's why there must be an
1397 	 * unconditional swap instead of htons() inside.
1398 	 */
1399 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1400 		sc->sc_txdescs[lasttx].sipd_extsts |=
1401 		    htole32(EXTSTS_VPKT |
1402 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1403 				 EXTSTS_VTCI));
1404 	}
1405 
1406 	/*
1407 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1408 	 * checksumming, set up the descriptor to do this work
1409 	 * for us.
1410 	 *
1411 	 * This apparently has to be on the first descriptor of
1412 	 * the packet.
1413 	 *
1414 	 * Byte-swap constants so the compiler can optimize.
1415 	 */
1416 	extsts = 0;
1417 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1418 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1419 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1420 		extsts |= htole32(EXTSTS_IPPKT);
1421 	}
1422 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1423 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1424 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1425 		extsts |= htole32(EXTSTS_TCPPKT);
1426 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1427 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1428 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1429 		extsts |= htole32(EXTSTS_UDPPKT);
1430 	}
1431 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1432 }
1433 
1434 /*
1435  * sip_start:		[ifnet interface function]
1436  *
1437  *	Start packet transmission on the interface.
1438  */
1439 static void
1440 sipcom_start(struct ifnet *ifp)
1441 {
1442 	struct sip_softc *sc = ifp->if_softc;
1443 	struct mbuf *m0;
1444 	struct mbuf *m;
1445 	struct sip_txsoft *txs;
1446 	bus_dmamap_t dmamap;
1447 	int error, nexttx, lasttx, seg;
1448 	int ofree = sc->sc_txfree;
1449 #if 0
1450 	int firsttx = sc->sc_txnext;
1451 #endif
1452 
1453 	/*
1454 	 * If we've been told to pause, don't transmit any more packets.
1455 	 */
1456 	if (!sc->sc_gigabit && sc->sc_paused)
1457 		ifp->if_flags |= IFF_OACTIVE;
1458 
1459 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1460 		return;
1461 
1462 	/*
1463 	 * Loop through the send queue, setting up transmit descriptors
1464 	 * until we drain the queue, or use up all available transmit
1465 	 * descriptors.
1466 	 */
1467 	for (;;) {
1468 		/* Get a work queue entry. */
1469 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1470 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1471 			break;
1472 		}
1473 
1474 		/*
1475 		 * Grab a packet off the queue.
1476 		 */
1477 		IFQ_POLL(&ifp->if_snd, m0);
1478 		if (m0 == NULL)
1479 			break;
1480 		m = NULL;
1481 
1482 		dmamap = txs->txs_dmamap;
1483 
1484 		/*
1485 		 * Load the DMA map.  If this fails, the packet either
1486 		 * didn't fit in the alloted number of segments, or we
1487 		 * were short on resources.
1488 		 */
1489 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1490 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1491 		/* In the non-gigabit case, we'll copy and try again. */
1492 		if (error != 0 && !sc->sc_gigabit) {
1493 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1494 			if (m == NULL) {
1495 				printf("%s: unable to allocate Tx mbuf\n",
1496 				    device_xname(sc->sc_dev));
1497 				break;
1498 			}
1499 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1500 			if (m0->m_pkthdr.len > MHLEN) {
1501 				MCLGET(m, M_DONTWAIT);
1502 				if ((m->m_flags & M_EXT) == 0) {
1503 					printf("%s: unable to allocate Tx "
1504 					    "cluster\n", device_xname(sc->sc_dev));
1505 					m_freem(m);
1506 					break;
1507 				}
1508 			}
1509 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1510 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1511 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1512 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1513 			if (error) {
1514 				printf("%s: unable to load Tx buffer, "
1515 				    "error = %d\n", device_xname(sc->sc_dev), error);
1516 				break;
1517 			}
1518 		} else if (error == EFBIG) {
1519 			/*
1520 			 * For the too-many-segments case, we simply
1521 			 * report an error and drop the packet,
1522 			 * since we can't sanely copy a jumbo packet
1523 			 * to a single buffer.
1524 			 */
1525 			printf("%s: Tx packet consumes too many "
1526 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1527 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1528 			m_freem(m0);
1529 			continue;
1530 		} else if (error != 0) {
1531 			/*
1532 			 * Short on resources, just stop for now.
1533 			 */
1534 			break;
1535 		}
1536 
1537 		/*
1538 		 * Ensure we have enough descriptors free to describe
1539 		 * the packet.  Note, we always reserve one descriptor
1540 		 * at the end of the ring as a termination point, to
1541 		 * prevent wrap-around.
1542 		 */
1543 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1544 			/*
1545 			 * Not enough free descriptors to transmit this
1546 			 * packet.  We haven't committed anything yet,
1547 			 * so just unload the DMA map, put the packet
1548 			 * back on the queue, and punt.  Notify the upper
1549 			 * layer that there are not more slots left.
1550 			 *
1551 			 * XXX We could allocate an mbuf and copy, but
1552 			 * XXX is it worth it?
1553 			 */
1554 			ifp->if_flags |= IFF_OACTIVE;
1555 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1556 			if (m != NULL)
1557 				m_freem(m);
1558 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1559 			break;
1560 		}
1561 
1562 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1563 		if (m != NULL) {
1564 			m_freem(m0);
1565 			m0 = m;
1566 		}
1567 
1568 		/*
1569 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1570 		 */
1571 
1572 		/* Sync the DMA map. */
1573 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1574 		    BUS_DMASYNC_PREWRITE);
1575 
1576 		/*
1577 		 * Initialize the transmit descriptors.
1578 		 */
1579 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1580 		     seg < dmamap->dm_nsegs;
1581 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1582 			/*
1583 			 * If this is the first descriptor we're
1584 			 * enqueueing, don't set the OWN bit just
1585 			 * yet.  That could cause a race condition.
1586 			 * We'll do it below.
1587 			 */
1588 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1589 			    htole32(dmamap->dm_segs[seg].ds_addr);
1590 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1591 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1592 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1593 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1594 			lasttx = nexttx;
1595 		}
1596 
1597 		/* Clear the MORE bit on the last segment. */
1598 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1599 		    htole32(~CMDSTS_MORE);
1600 
1601 		/*
1602 		 * If we're in the interrupt delay window, delay the
1603 		 * interrupt.
1604 		 */
1605 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1606 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1607 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1608 			    htole32(CMDSTS_INTR);
1609 			sc->sc_txwin = 0;
1610 		}
1611 
1612 		if (sc->sc_gigabit)
1613 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1614 
1615 		/* Sync the descriptors we're using. */
1616 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1617 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1618 
1619 		/*
1620 		 * The entire packet is set up.  Give the first descrptor
1621 		 * to the chip now.
1622 		 */
1623 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1624 		    htole32(CMDSTS_OWN);
1625 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1626 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1627 
1628 		/*
1629 		 * Store a pointer to the packet so we can free it later,
1630 		 * and remember what txdirty will be once the packet is
1631 		 * done.
1632 		 */
1633 		txs->txs_mbuf = m0;
1634 		txs->txs_firstdesc = sc->sc_txnext;
1635 		txs->txs_lastdesc = lasttx;
1636 
1637 		/* Advance the tx pointer. */
1638 		sc->sc_txfree -= dmamap->dm_nsegs;
1639 		sc->sc_txnext = nexttx;
1640 
1641 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1642 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1643 
1644 		/*
1645 		 * Pass the packet to any BPF listeners.
1646 		 */
1647 		bpf_mtap(ifp, m0);
1648 	}
1649 
1650 	if (txs == NULL || sc->sc_txfree == 0) {
1651 		/* No more slots left; notify upper layer. */
1652 		ifp->if_flags |= IFF_OACTIVE;
1653 	}
1654 
1655 	if (sc->sc_txfree != ofree) {
1656 		/*
1657 		 * Start the transmit process.  Note, the manual says
1658 		 * that if there are no pending transmissions in the
1659 		 * chip's internal queue (indicated by TXE being clear),
1660 		 * then the driver software must set the TXDP to the
1661 		 * first descriptor to be transmitted.  However, if we
1662 		 * do this, it causes serious performance degredation on
1663 		 * the DP83820 under load, not setting TXDP doesn't seem
1664 		 * to adversely affect the SiS 900 or DP83815.
1665 		 *
1666 		 * Well, I guess it wouldn't be the first time a manual
1667 		 * has lied -- and they could be speaking of the NULL-
1668 		 * terminated descriptor list case, rather than OWN-
1669 		 * terminated rings.
1670 		 */
1671 #if 0
1672 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1673 		     CR_TXE) == 0) {
1674 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1675 			    SIP_CDTXADDR(sc, firsttx));
1676 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1677 		}
1678 #else
1679 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1680 #endif
1681 
1682 		/* Set a watchdog timer in case the chip flakes out. */
1683 		/* Gigabit autonegotiation takes 5 seconds. */
1684 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1685 	}
1686 }
1687 
1688 /*
1689  * sip_watchdog:	[ifnet interface function]
1690  *
1691  *	Watchdog timer handler.
1692  */
1693 static void
1694 sipcom_watchdog(struct ifnet *ifp)
1695 {
1696 	struct sip_softc *sc = ifp->if_softc;
1697 
1698 	/*
1699 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1700 	 * If we get a timeout, try and sweep up transmit descriptors.
1701 	 * If we manage to sweep them all up, ignore the lack of
1702 	 * interrupt.
1703 	 */
1704 	sipcom_txintr(sc);
1705 
1706 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1707 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1708 		ifp->if_oerrors++;
1709 
1710 		/* Reset the interface. */
1711 		(void) sipcom_init(ifp);
1712 	} else if (ifp->if_flags & IFF_DEBUG)
1713 		printf("%s: recovered from device timeout\n",
1714 		    device_xname(sc->sc_dev));
1715 
1716 	/* Try to get more packets going. */
1717 	sipcom_start(ifp);
1718 }
1719 
1720 /* If the interface is up and running, only modify the receive
1721  * filter when setting promiscuous or debug mode.  Otherwise fall
1722  * through to ether_ioctl, which will reset the chip.
1723  */
1724 static int
1725 sip_ifflags_cb(struct ethercom *ec)
1726 {
1727 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1728 			 == (sc)->sc_ethercom.ec_capenable)		\
1729 			&& ((sc)->sc_prev.is_vlan ==			\
1730 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1731 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1732 	struct ifnet *ifp = &ec->ec_if;
1733 	struct sip_softc *sc = ifp->if_softc;
1734 	int change = ifp->if_flags ^ sc->sc_if_flags;
1735 
1736 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1737 	    !COMPARE_IC(sc, ifp))
1738 		return ENETRESET;
1739 	/* Set up the receive filter. */
1740 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1741 	return 0;
1742 }
1743 
1744 /*
1745  * sip_ioctl:		[ifnet interface function]
1746  *
1747  *	Handle control requests from the operator.
1748  */
1749 static int
1750 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1751 {
1752 	struct sip_softc *sc = ifp->if_softc;
1753 	struct ifreq *ifr = (struct ifreq *)data;
1754 	int s, error;
1755 
1756 	s = splnet();
1757 
1758 	switch (cmd) {
1759 	case SIOCSIFMEDIA:
1760 		/* Flow control requires full-duplex mode. */
1761 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1762 		    (ifr->ifr_media & IFM_FDX) == 0)
1763 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1764 
1765 		/* XXX */
1766 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1767 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1768 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1769 			if (sc->sc_gigabit &&
1770 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1771 				/* We can do both TXPAUSE and RXPAUSE. */
1772 				ifr->ifr_media |=
1773 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1774 			} else if (ifr->ifr_media & IFM_FLOW) {
1775 				/*
1776 				 * Both TXPAUSE and RXPAUSE must be set.
1777 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1778 				 * feature.)
1779 				 *
1780 				 * XXX Can SiS900 and DP83815 send PAUSE?
1781 				 */
1782 				ifr->ifr_media |=
1783 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1784 			}
1785 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1786 		}
1787 		/*FALLTHROUGH*/
1788 	default:
1789 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1790 			break;
1791 
1792 		error = 0;
1793 
1794 		if (cmd == SIOCSIFCAP)
1795 			error = (*ifp->if_init)(ifp);
1796 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1797 			;
1798 		else if (ifp->if_flags & IFF_RUNNING) {
1799 			/*
1800 			 * Multicast list has changed; set the hardware filter
1801 			 * accordingly.
1802 			 */
1803 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1804 		}
1805 		break;
1806 	}
1807 
1808 	/* Try to get more packets going. */
1809 	sipcom_start(ifp);
1810 
1811 	sc->sc_if_flags = ifp->if_flags;
1812 	splx(s);
1813 	return (error);
1814 }
1815 
1816 /*
1817  * sip_intr:
1818  *
1819  *	Interrupt service routine.
1820  */
1821 static int
1822 sipcom_intr(void *arg)
1823 {
1824 	struct sip_softc *sc = arg;
1825 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1826 	u_int32_t isr;
1827 	int handled = 0;
1828 
1829 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1830 		return 0;
1831 
1832 	/* Disable interrupts. */
1833 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1834 
1835 	for (;;) {
1836 		/* Reading clears interrupt. */
1837 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1838 		if ((isr & sc->sc_imr) == 0)
1839 			break;
1840 
1841 		rnd_add_uint32(&sc->rnd_source, isr);
1842 
1843 		handled = 1;
1844 
1845 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1846 			break;
1847 
1848 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1849 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1850 
1851 			/* Grab any new packets. */
1852 			(*sc->sc_rxintr)(sc);
1853 
1854 			if (isr & ISR_RXORN) {
1855 				printf("%s: receive FIFO overrun\n",
1856 				    device_xname(sc->sc_dev));
1857 
1858 				/* XXX adjust rx_drain_thresh? */
1859 			}
1860 
1861 			if (isr & ISR_RXIDLE) {
1862 				printf("%s: receive ring overrun\n",
1863 				    device_xname(sc->sc_dev));
1864 
1865 				/* Get the receive process going again. */
1866 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1867 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1868 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1869 				    SIP_CR, CR_RXE);
1870 			}
1871 		}
1872 
1873 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1874 #ifdef SIP_EVENT_COUNTERS
1875 			if (isr & ISR_TXDESC)
1876 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1877 			else if (isr & ISR_TXIDLE)
1878 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1879 #endif
1880 
1881 			/* Sweep up transmit descriptors. */
1882 			sipcom_txintr(sc);
1883 
1884 			if (isr & ISR_TXURN) {
1885 				u_int32_t thresh;
1886 				int txfifo_size = (sc->sc_gigabit)
1887 				    ? DP83820_SIP_TXFIFO_SIZE
1888 				    : OTHER_SIP_TXFIFO_SIZE;
1889 
1890 				printf("%s: transmit FIFO underrun",
1891 				    device_xname(sc->sc_dev));
1892 				thresh = sc->sc_tx_drain_thresh + 1;
1893 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1894 				&& (thresh * 32) <= (txfifo_size -
1895 				     (sc->sc_tx_fill_thresh * 32))) {
1896 					printf("; increasing Tx drain "
1897 					    "threshold to %u bytes\n",
1898 					    thresh * 32);
1899 					sc->sc_tx_drain_thresh = thresh;
1900 					(void) sipcom_init(ifp);
1901 				} else {
1902 					(void) sipcom_init(ifp);
1903 					printf("\n");
1904 				}
1905 			}
1906 		}
1907 
1908 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1909 			if (isr & ISR_PAUSE_ST) {
1910 				sc->sc_paused = 1;
1911 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1912 				ifp->if_flags |= IFF_OACTIVE;
1913 			}
1914 			if (isr & ISR_PAUSE_END) {
1915 				sc->sc_paused = 0;
1916 				ifp->if_flags &= ~IFF_OACTIVE;
1917 			}
1918 		}
1919 
1920 		if (isr & ISR_HIBERR) {
1921 			int want_init = 0;
1922 
1923 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1924 
1925 #define	PRINTERR(bit, str)						\
1926 			do {						\
1927 				if ((isr & (bit)) != 0) {		\
1928 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1929 						printf("%s: %s\n",	\
1930 						    device_xname(sc->sc_dev), str); \
1931 					want_init = 1;			\
1932 				}					\
1933 			} while (/*CONSTCOND*/0)
1934 
1935 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1936 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1937 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1938 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1939 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1940 			/*
1941 			 * Ignore:
1942 			 *	Tx reset complete
1943 			 *	Rx reset complete
1944 			 */
1945 			if (want_init)
1946 				(void) sipcom_init(ifp);
1947 #undef PRINTERR
1948 		}
1949 	}
1950 
1951 	/* Re-enable interrupts. */
1952 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1953 
1954 	/* Try to get more packets going. */
1955 	sipcom_start(ifp);
1956 
1957 	return (handled);
1958 }
1959 
1960 /*
1961  * sip_txintr:
1962  *
1963  *	Helper; handle transmit interrupts.
1964  */
1965 static void
1966 sipcom_txintr(struct sip_softc *sc)
1967 {
1968 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1969 	struct sip_txsoft *txs;
1970 	u_int32_t cmdsts;
1971 
1972 	if (sc->sc_paused == 0)
1973 		ifp->if_flags &= ~IFF_OACTIVE;
1974 
1975 	/*
1976 	 * Go through our Tx list and free mbufs for those
1977 	 * frames which have been transmitted.
1978 	 */
1979 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1980 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1981 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1982 
1983 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1984 		if (cmdsts & CMDSTS_OWN)
1985 			break;
1986 
1987 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1988 
1989 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1990 
1991 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1992 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1993 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1994 		m_freem(txs->txs_mbuf);
1995 		txs->txs_mbuf = NULL;
1996 
1997 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1998 
1999 		/*
2000 		 * Check for errors and collisions.
2001 		 */
2002 		if (cmdsts &
2003 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2004 			ifp->if_oerrors++;
2005 			if (cmdsts & CMDSTS_Tx_EC)
2006 				ifp->if_collisions += 16;
2007 			if (ifp->if_flags & IFF_DEBUG) {
2008 				if (cmdsts & CMDSTS_Tx_ED)
2009 					printf("%s: excessive deferral\n",
2010 					    device_xname(sc->sc_dev));
2011 				if (cmdsts & CMDSTS_Tx_EC)
2012 					printf("%s: excessive collisions\n",
2013 					    device_xname(sc->sc_dev));
2014 			}
2015 		} else {
2016 			/* Packet was transmitted successfully. */
2017 			ifp->if_opackets++;
2018 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2019 		}
2020 	}
2021 
2022 	/*
2023 	 * If there are no more pending transmissions, cancel the watchdog
2024 	 * timer.
2025 	 */
2026 	if (txs == NULL) {
2027 		ifp->if_timer = 0;
2028 		sc->sc_txwin = 0;
2029 	}
2030 }
2031 
2032 /*
2033  * gsip_rxintr:
2034  *
2035  *	Helper; handle receive interrupts on gigabit parts.
2036  */
2037 static void
2038 gsip_rxintr(struct sip_softc *sc)
2039 {
2040 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2041 	struct sip_rxsoft *rxs;
2042 	struct mbuf *m;
2043 	u_int32_t cmdsts, extsts;
2044 	int i, len;
2045 
2046 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2047 		rxs = &sc->sc_rxsoft[i];
2048 
2049 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2050 
2051 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2052 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2053 		len = CMDSTS_SIZE(sc, cmdsts);
2054 
2055 		/*
2056 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2057 		 * consumer of the receive ring, so if the bit is clear,
2058 		 * we have processed all of the packets.
2059 		 */
2060 		if ((cmdsts & CMDSTS_OWN) == 0) {
2061 			/*
2062 			 * We have processed all of the receive buffers.
2063 			 */
2064 			break;
2065 		}
2066 
2067 		if (__predict_false(sc->sc_rxdiscard)) {
2068 			sip_init_rxdesc(sc, i);
2069 			if ((cmdsts & CMDSTS_MORE) == 0) {
2070 				/* Reset our state. */
2071 				sc->sc_rxdiscard = 0;
2072 			}
2073 			continue;
2074 		}
2075 
2076 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2077 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2078 
2079 		m = rxs->rxs_mbuf;
2080 
2081 		/*
2082 		 * Add a new receive buffer to the ring.
2083 		 */
2084 		if (sipcom_add_rxbuf(sc, i) != 0) {
2085 			/*
2086 			 * Failed, throw away what we've done so
2087 			 * far, and discard the rest of the packet.
2088 			 */
2089 			ifp->if_ierrors++;
2090 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2091 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2092 			sip_init_rxdesc(sc, i);
2093 			if (cmdsts & CMDSTS_MORE)
2094 				sc->sc_rxdiscard = 1;
2095 			if (sc->sc_rxhead != NULL)
2096 				m_freem(sc->sc_rxhead);
2097 			sip_rxchain_reset(sc);
2098 			continue;
2099 		}
2100 
2101 		sip_rxchain_link(sc, m);
2102 
2103 		m->m_len = len;
2104 
2105 		/*
2106 		 * If this is not the end of the packet, keep
2107 		 * looking.
2108 		 */
2109 		if (cmdsts & CMDSTS_MORE) {
2110 			sc->sc_rxlen += len;
2111 			continue;
2112 		}
2113 
2114 		/*
2115 		 * Okay, we have the entire packet now.  The chip includes
2116 		 * the FCS, so we need to trim it.
2117 		 */
2118 		m->m_len -= ETHER_CRC_LEN;
2119 
2120 		*sc->sc_rxtailp = NULL;
2121 		len = m->m_len + sc->sc_rxlen;
2122 		m = sc->sc_rxhead;
2123 
2124 		sip_rxchain_reset(sc);
2125 
2126 		/*
2127 		 * If an error occurred, update stats and drop the packet.
2128 		 */
2129 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2130 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2131 			ifp->if_ierrors++;
2132 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2133 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2134 				/* Receive overrun handled elsewhere. */
2135 				printf("%s: receive descriptor error\n",
2136 				    device_xname(sc->sc_dev));
2137 			}
2138 #define	PRINTERR(bit, str)						\
2139 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2140 			    (cmdsts & (bit)) != 0)			\
2141 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2142 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2143 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2144 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2145 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2146 #undef PRINTERR
2147 			m_freem(m);
2148 			continue;
2149 		}
2150 
2151 		/*
2152 		 * If the packet is small enough to fit in a
2153 		 * single header mbuf, allocate one and copy
2154 		 * the data into it.  This greatly reduces
2155 		 * memory consumption when we receive lots
2156 		 * of small packets.
2157 		 */
2158 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2159 			struct mbuf *nm;
2160 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2161 			if (nm == NULL) {
2162 				ifp->if_ierrors++;
2163 				m_freem(m);
2164 				continue;
2165 			}
2166 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2167 			nm->m_data += 2;
2168 			nm->m_pkthdr.len = nm->m_len = len;
2169 			m_copydata(m, 0, len, mtod(nm, void *));
2170 			m_freem(m);
2171 			m = nm;
2172 		}
2173 #ifndef __NO_STRICT_ALIGNMENT
2174 		else {
2175 			/*
2176 			 * The DP83820's receive buffers must be 4-byte
2177 			 * aligned.  But this means that the data after
2178 			 * the Ethernet header is misaligned.  To compensate,
2179 			 * we have artificially shortened the buffer size
2180 			 * in the descriptor, and we do an overlapping copy
2181 			 * of the data two bytes further in (in the first
2182 			 * buffer of the chain only).
2183 			 */
2184 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2185 			    m->m_len);
2186 			m->m_data += 2;
2187 		}
2188 #endif /* ! __NO_STRICT_ALIGNMENT */
2189 
2190 		/*
2191 		 * If VLANs are enabled, VLAN packets have been unwrapped
2192 		 * for us.  Associate the tag with the packet.
2193 		 */
2194 
2195 		/*
2196 		 * Again, byte swapping is tricky. Hardware provided
2197 		 * the tag in the network byte order, but extsts was
2198 		 * passed through le32toh() in the meantime. On a
2199 		 * big-endian machine, we need to swap it again. On a
2200 		 * little-endian machine, we need to convert from the
2201 		 * network to host byte order. This means that we must
2202 		 * swap it in any case, so unconditional swap instead
2203 		 * of htons() is used.
2204 		 */
2205 		if ((extsts & EXTSTS_VPKT) != 0) {
2206 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2207 			    continue);
2208 		}
2209 
2210 		/*
2211 		 * Set the incoming checksum information for the
2212 		 * packet.
2213 		 */
2214 		if ((extsts & EXTSTS_IPPKT) != 0) {
2215 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2216 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2217 			if (extsts & EXTSTS_Rx_IPERR)
2218 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2219 			if (extsts & EXTSTS_TCPPKT) {
2220 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2221 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2222 				if (extsts & EXTSTS_Rx_TCPERR)
2223 					m->m_pkthdr.csum_flags |=
2224 					    M_CSUM_TCP_UDP_BAD;
2225 			} else if (extsts & EXTSTS_UDPPKT) {
2226 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2227 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2228 				if (extsts & EXTSTS_Rx_UDPERR)
2229 					m->m_pkthdr.csum_flags |=
2230 					    M_CSUM_TCP_UDP_BAD;
2231 			}
2232 		}
2233 
2234 		ifp->if_ipackets++;
2235 		m->m_pkthdr.rcvif = ifp;
2236 		m->m_pkthdr.len = len;
2237 
2238 		/*
2239 		 * Pass this up to any BPF listeners, but only
2240 		 * pass if up the stack if it's for us.
2241 		 */
2242 		bpf_mtap(ifp, m);
2243 
2244 		/* Pass it on. */
2245 		(*ifp->if_input)(ifp, m);
2246 	}
2247 
2248 	/* Update the receive pointer. */
2249 	sc->sc_rxptr = i;
2250 }
2251 
2252 /*
2253  * sip_rxintr:
2254  *
2255  *	Helper; handle receive interrupts on 10/100 parts.
2256  */
2257 static void
2258 sip_rxintr(struct sip_softc *sc)
2259 {
2260 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2261 	struct sip_rxsoft *rxs;
2262 	struct mbuf *m;
2263 	u_int32_t cmdsts;
2264 	int i, len;
2265 
2266 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2267 		rxs = &sc->sc_rxsoft[i];
2268 
2269 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2270 
2271 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2272 
2273 		/*
2274 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2275 		 * consumer of the receive ring, so if the bit is clear,
2276 		 * we have processed all of the packets.
2277 		 */
2278 		if ((cmdsts & CMDSTS_OWN) == 0) {
2279 			/*
2280 			 * We have processed all of the receive buffers.
2281 			 */
2282 			break;
2283 		}
2284 
2285 		/*
2286 		 * If any collisions were seen on the wire, count one.
2287 		 */
2288 		if (cmdsts & CMDSTS_Rx_COL)
2289 			ifp->if_collisions++;
2290 
2291 		/*
2292 		 * If an error occurred, update stats, clear the status
2293 		 * word, and leave the packet buffer in place.  It will
2294 		 * simply be reused the next time the ring comes around.
2295 		 */
2296 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2297 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2298 			ifp->if_ierrors++;
2299 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2300 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2301 				/* Receive overrun handled elsewhere. */
2302 				printf("%s: receive descriptor error\n",
2303 				    device_xname(sc->sc_dev));
2304 			}
2305 #define	PRINTERR(bit, str)						\
2306 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2307 			    (cmdsts & (bit)) != 0)			\
2308 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2309 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2310 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2311 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2312 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2313 #undef PRINTERR
2314 			sip_init_rxdesc(sc, i);
2315 			continue;
2316 		}
2317 
2318 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2319 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2320 
2321 		/*
2322 		 * No errors; receive the packet.  Note, the SiS 900
2323 		 * includes the CRC with every packet.
2324 		 */
2325 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2326 
2327 #ifdef __NO_STRICT_ALIGNMENT
2328 		/*
2329 		 * If the packet is small enough to fit in a
2330 		 * single header mbuf, allocate one and copy
2331 		 * the data into it.  This greatly reduces
2332 		 * memory consumption when we receive lots
2333 		 * of small packets.
2334 		 *
2335 		 * Otherwise, we add a new buffer to the receive
2336 		 * chain.  If this fails, we drop the packet and
2337 		 * recycle the old buffer.
2338 		 */
2339 		if (sip_copy_small != 0 && len <= MHLEN) {
2340 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2341 			if (m == NULL)
2342 				goto dropit;
2343 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2344 			memcpy(mtod(m, void *),
2345 			    mtod(rxs->rxs_mbuf, void *), len);
2346 			sip_init_rxdesc(sc, i);
2347 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2348 			    rxs->rxs_dmamap->dm_mapsize,
2349 			    BUS_DMASYNC_PREREAD);
2350 		} else {
2351 			m = rxs->rxs_mbuf;
2352 			if (sipcom_add_rxbuf(sc, i) != 0) {
2353  dropit:
2354 				ifp->if_ierrors++;
2355 				sip_init_rxdesc(sc, i);
2356 				bus_dmamap_sync(sc->sc_dmat,
2357 				    rxs->rxs_dmamap, 0,
2358 				    rxs->rxs_dmamap->dm_mapsize,
2359 				    BUS_DMASYNC_PREREAD);
2360 				continue;
2361 			}
2362 		}
2363 #else
2364 		/*
2365 		 * The SiS 900's receive buffers must be 4-byte aligned.
2366 		 * But this means that the data after the Ethernet header
2367 		 * is misaligned.  We must allocate a new buffer and
2368 		 * copy the data, shifted forward 2 bytes.
2369 		 */
2370 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2371 		if (m == NULL) {
2372  dropit:
2373 			ifp->if_ierrors++;
2374 			sip_init_rxdesc(sc, i);
2375 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2376 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2377 			continue;
2378 		}
2379 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2380 		if (len > (MHLEN - 2)) {
2381 			MCLGET(m, M_DONTWAIT);
2382 			if ((m->m_flags & M_EXT) == 0) {
2383 				m_freem(m);
2384 				goto dropit;
2385 			}
2386 		}
2387 		m->m_data += 2;
2388 
2389 		/*
2390 		 * Note that we use clusters for incoming frames, so the
2391 		 * buffer is virtually contiguous.
2392 		 */
2393 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2394 
2395 		/* Allow the receive descriptor to continue using its mbuf. */
2396 		sip_init_rxdesc(sc, i);
2397 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2398 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2399 #endif /* __NO_STRICT_ALIGNMENT */
2400 
2401 		ifp->if_ipackets++;
2402 		m->m_pkthdr.rcvif = ifp;
2403 		m->m_pkthdr.len = m->m_len = len;
2404 
2405 		/*
2406 		 * Pass this up to any BPF listeners, but only
2407 		 * pass if up the stack if it's for us.
2408 		 */
2409 		bpf_mtap(ifp, m);
2410 
2411 		/* Pass it on. */
2412 		(*ifp->if_input)(ifp, m);
2413 	}
2414 
2415 	/* Update the receive pointer. */
2416 	sc->sc_rxptr = i;
2417 }
2418 
2419 /*
2420  * sip_tick:
2421  *
2422  *	One second timer, used to tick the MII.
2423  */
2424 static void
2425 sipcom_tick(void *arg)
2426 {
2427 	struct sip_softc *sc = arg;
2428 	int s;
2429 
2430 	s = splnet();
2431 #ifdef SIP_EVENT_COUNTERS
2432 	if (sc->sc_gigabit) {
2433 		/* Read PAUSE related counts from MIB registers. */
2434 		sc->sc_ev_rxpause.ev_count +=
2435 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2436 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2437 		sc->sc_ev_txpause.ev_count +=
2438 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2439 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2440 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2441 	}
2442 #endif /* SIP_EVENT_COUNTERS */
2443 	mii_tick(&sc->sc_mii);
2444 	splx(s);
2445 
2446 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2447 }
2448 
2449 /*
2450  * sip_reset:
2451  *
2452  *	Perform a soft reset on the SiS 900.
2453  */
2454 static bool
2455 sipcom_reset(struct sip_softc *sc)
2456 {
2457 	bus_space_tag_t st = sc->sc_st;
2458 	bus_space_handle_t sh = sc->sc_sh;
2459 	int i;
2460 
2461 	bus_space_write_4(st, sh, SIP_IER, 0);
2462 	bus_space_write_4(st, sh, SIP_IMR, 0);
2463 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2464 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2465 
2466 	for (i = 0; i < SIP_TIMEOUT; i++) {
2467 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2468 			break;
2469 		delay(2);
2470 	}
2471 
2472 	if (i == SIP_TIMEOUT) {
2473 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2474 		return false;
2475 	}
2476 
2477 	delay(1000);
2478 
2479 	if (sc->sc_gigabit) {
2480 		/*
2481 		 * Set the general purpose I/O bits.  Do it here in case we
2482 		 * need to have GPIO set up to talk to the media interface.
2483 		 */
2484 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2485 		delay(1000);
2486 	}
2487 	return true;
2488 }
2489 
2490 static void
2491 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2492 {
2493 	u_int32_t reg;
2494 	bus_space_tag_t st = sc->sc_st;
2495 	bus_space_handle_t sh = sc->sc_sh;
2496 	/*
2497 	 * Initialize the VLAN/IP receive control register.
2498 	 * We enable checksum computation on all incoming
2499 	 * packets, and do not reject packets w/ bad checksums.
2500 	 */
2501 	reg = 0;
2502 	if (capenable &
2503 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2504 		reg |= VRCR_IPEN;
2505 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2506 		reg |= VRCR_VTDEN|VRCR_VTREN;
2507 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2508 
2509 	/*
2510 	 * Initialize the VLAN/IP transmit control register.
2511 	 * We enable outgoing checksum computation on a
2512 	 * per-packet basis.
2513 	 */
2514 	reg = 0;
2515 	if (capenable &
2516 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2517 		reg |= VTCR_PPCHK;
2518 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2519 		reg |= VTCR_VPPTI;
2520 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2521 
2522 	/*
2523 	 * If we're using VLANs, initialize the VLAN data register.
2524 	 * To understand why we bswap the VLAN Ethertype, see section
2525 	 * 4.2.36 of the DP83820 manual.
2526 	 */
2527 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2528 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2529 }
2530 
2531 /*
2532  * sip_init:		[ ifnet interface function ]
2533  *
2534  *	Initialize the interface.  Must be called at splnet().
2535  */
2536 static int
2537 sipcom_init(struct ifnet *ifp)
2538 {
2539 	struct sip_softc *sc = ifp->if_softc;
2540 	bus_space_tag_t st = sc->sc_st;
2541 	bus_space_handle_t sh = sc->sc_sh;
2542 	struct sip_txsoft *txs;
2543 	struct sip_rxsoft *rxs;
2544 	struct sip_desc *sipd;
2545 	int i, error = 0;
2546 
2547 	if (device_is_active(sc->sc_dev)) {
2548 		/*
2549 		 * Cancel any pending I/O.
2550 		 */
2551 		sipcom_stop(ifp, 0);
2552 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2553 	           !device_is_active(sc->sc_dev))
2554 		return 0;
2555 
2556 	/*
2557 	 * Reset the chip to a known state.
2558 	 */
2559 	if (!sipcom_reset(sc))
2560 		return EBUSY;
2561 
2562 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2563 		/*
2564 		 * DP83815 manual, page 78:
2565 		 *    4.4 Recommended Registers Configuration
2566 		 *    For optimum performance of the DP83815, version noted
2567 		 *    as DP83815CVNG (SRR = 203h), the listed register
2568 		 *    modifications must be followed in sequence...
2569 		 *
2570 		 * It's not clear if this should be 302h or 203h because that
2571 		 * chip name is listed as SRR 302h in the description of the
2572 		 * SRR register.  However, my revision 302h DP83815 on the
2573 		 * Netgear FA311 purchased in 02/2001 needs these settings
2574 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2575 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2576 		 * this set or not.  [briggs -- 09 March 2001]
2577 		 *
2578 		 * Note that only the low-order 12 bits of 0xe4 are documented
2579 		 * and that this sets reserved bits in that register.
2580 		 */
2581 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2582 
2583 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2584 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2585 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2586 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2587 
2588 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2589 	}
2590 
2591 	/*
2592 	 * Initialize the transmit descriptor ring.
2593 	 */
2594 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2595 		sipd = &sc->sc_txdescs[i];
2596 		memset(sipd, 0, sizeof(struct sip_desc));
2597 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2598 	}
2599 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2600 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2601 	sc->sc_txfree = sc->sc_ntxdesc;
2602 	sc->sc_txnext = 0;
2603 	sc->sc_txwin = 0;
2604 
2605 	/*
2606 	 * Initialize the transmit job descriptors.
2607 	 */
2608 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2609 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2610 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2611 		txs = &sc->sc_txsoft[i];
2612 		txs->txs_mbuf = NULL;
2613 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2614 	}
2615 
2616 	/*
2617 	 * Initialize the receive descriptor and receive job
2618 	 * descriptor rings.
2619 	 */
2620 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2621 		rxs = &sc->sc_rxsoft[i];
2622 		if (rxs->rxs_mbuf == NULL) {
2623 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2624 				printf("%s: unable to allocate or map rx "
2625 				    "buffer %d, error = %d\n",
2626 				    device_xname(sc->sc_dev), i, error);
2627 				/*
2628 				 * XXX Should attempt to run with fewer receive
2629 				 * XXX buffers instead of just failing.
2630 				 */
2631 				sipcom_rxdrain(sc);
2632 				goto out;
2633 			}
2634 		} else
2635 			sip_init_rxdesc(sc, i);
2636 	}
2637 	sc->sc_rxptr = 0;
2638 	sc->sc_rxdiscard = 0;
2639 	sip_rxchain_reset(sc);
2640 
2641 	/*
2642 	 * Set the configuration register; it's already initialized
2643 	 * in sip_attach().
2644 	 */
2645 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2646 
2647 	/*
2648 	 * Initialize the prototype TXCFG register.
2649 	 */
2650 	if (sc->sc_gigabit) {
2651 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2652 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2653 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2654 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2655 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2656 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2657 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2658 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2659 	} else {
2660 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2661 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2662 	}
2663 
2664 	sc->sc_txcfg |= TXCFG_ATP |
2665 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2666 	    sc->sc_tx_drain_thresh;
2667 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2668 
2669 	/*
2670 	 * Initialize the receive drain threshold if we have never
2671 	 * done so.
2672 	 */
2673 	if (sc->sc_rx_drain_thresh == 0) {
2674 		/*
2675 		 * XXX This value should be tuned.  This is set to the
2676 		 * maximum of 248 bytes, and we may be able to improve
2677 		 * performance by decreasing it (although we should never
2678 		 * set this value lower than 2; 14 bytes are required to
2679 		 * filter the packet).
2680 		 */
2681 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2682 	}
2683 
2684 	/*
2685 	 * Initialize the prototype RXCFG register.
2686 	 */
2687 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2688 	/*
2689 	 * Accept long packets (including FCS) so we can handle
2690 	 * 802.1q-tagged frames and jumbo frames properly.
2691 	 */
2692 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2693 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2694 		sc->sc_rxcfg |= RXCFG_ALP;
2695 
2696 	/*
2697 	 * Checksum offloading is disabled if the user selects an MTU
2698 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2699 	 * evidence that >8109 does not work on some boards, such as the
2700 	 * Planex GN-1000TE).
2701 	 */
2702 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2703 	    (ifp->if_capenable &
2704 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2705 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2706 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2707 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2708 		       "disabled.\n", device_xname(sc->sc_dev));
2709 		ifp->if_capenable &=
2710 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2711 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2712 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2713 		ifp->if_csum_flags_tx = 0;
2714 		ifp->if_csum_flags_rx = 0;
2715 	}
2716 
2717 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2718 
2719 	if (sc->sc_gigabit)
2720 		sipcom_dp83820_init(sc, ifp->if_capenable);
2721 
2722 	/*
2723 	 * Give the transmit and receive rings to the chip.
2724 	 */
2725 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2726 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2727 
2728 	/*
2729 	 * Initialize the interrupt mask.
2730 	 */
2731 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2732 	             sc->sc_bits.b_isr_sserr |
2733 		     sc->sc_bits.b_isr_rmabt |
2734 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2735 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2736 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2737 
2738 	/* Set up the receive filter. */
2739 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2740 
2741 	/*
2742 	 * Tune sc_rx_flow_thresh.
2743 	 * XXX "More than 8KB" is too short for jumbo frames.
2744 	 * XXX TODO: Threshold value should be user-settable.
2745 	 */
2746 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2747 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2748 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2749 
2750 	/*
2751 	 * Set the current media.  Do this after initializing the prototype
2752 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2753 	 * control.
2754 	 */
2755 	if ((error = ether_mediachange(ifp)) != 0)
2756 		goto out;
2757 
2758 	/*
2759 	 * Set the interrupt hold-off timer to 100us.
2760 	 */
2761 	if (sc->sc_gigabit)
2762 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2763 
2764 	/*
2765 	 * Enable interrupts.
2766 	 */
2767 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2768 
2769 	/*
2770 	 * Start the transmit and receive processes.
2771 	 */
2772 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2773 
2774 	/*
2775 	 * Start the one second MII clock.
2776 	 */
2777 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2778 
2779 	/*
2780 	 * ...all done!
2781 	 */
2782 	ifp->if_flags |= IFF_RUNNING;
2783 	ifp->if_flags &= ~IFF_OACTIVE;
2784 	sc->sc_if_flags = ifp->if_flags;
2785 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2786 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2787 	sc->sc_prev.if_capenable = ifp->if_capenable;
2788 
2789  out:
2790 	if (error)
2791 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2792 	return (error);
2793 }
2794 
2795 /*
2796  * sip_drain:
2797  *
2798  *	Drain the receive queue.
2799  */
2800 static void
2801 sipcom_rxdrain(struct sip_softc *sc)
2802 {
2803 	struct sip_rxsoft *rxs;
2804 	int i;
2805 
2806 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2807 		rxs = &sc->sc_rxsoft[i];
2808 		if (rxs->rxs_mbuf != NULL) {
2809 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2810 			m_freem(rxs->rxs_mbuf);
2811 			rxs->rxs_mbuf = NULL;
2812 		}
2813 	}
2814 }
2815 
2816 /*
2817  * sip_stop:		[ ifnet interface function ]
2818  *
2819  *	Stop transmission on the interface.
2820  */
2821 static void
2822 sipcom_stop(struct ifnet *ifp, int disable)
2823 {
2824 	struct sip_softc *sc = ifp->if_softc;
2825 	bus_space_tag_t st = sc->sc_st;
2826 	bus_space_handle_t sh = sc->sc_sh;
2827 	struct sip_txsoft *txs;
2828 	u_int32_t cmdsts = 0;		/* DEBUG */
2829 
2830 	/*
2831 	 * Stop the one second clock.
2832 	 */
2833 	callout_stop(&sc->sc_tick_ch);
2834 
2835 	/* Down the MII. */
2836 	mii_down(&sc->sc_mii);
2837 
2838 	if (device_is_active(sc->sc_dev)) {
2839 		/*
2840 		 * Disable interrupts.
2841 		 */
2842 		bus_space_write_4(st, sh, SIP_IER, 0);
2843 
2844 		/*
2845 		 * Stop receiver and transmitter.
2846 		 */
2847 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2848 	}
2849 
2850 	/*
2851 	 * Release any queued transmit buffers.
2852 	 */
2853 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2854 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2855 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2856 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2857 		     CMDSTS_INTR) == 0)
2858 			printf("%s: sip_stop: last descriptor does not "
2859 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2860 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2861 #ifdef DIAGNOSTIC
2862 		if (txs->txs_mbuf == NULL) {
2863 			printf("%s: dirty txsoft with no mbuf chain\n",
2864 			    device_xname(sc->sc_dev));
2865 			panic("sip_stop");
2866 		}
2867 #endif
2868 		cmdsts |=		/* DEBUG */
2869 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2870 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2871 		m_freem(txs->txs_mbuf);
2872 		txs->txs_mbuf = NULL;
2873 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2874 	}
2875 
2876 	/*
2877 	 * Mark the interface down and cancel the watchdog timer.
2878 	 */
2879 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2880 	ifp->if_timer = 0;
2881 
2882 	if (disable)
2883 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2884 
2885 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2886 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2887 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2888 		    "descriptors\n", device_xname(sc->sc_dev));
2889 }
2890 
2891 /*
2892  * sip_read_eeprom:
2893  *
2894  *	Read data from the serial EEPROM.
2895  */
2896 static void
2897 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2898     u_int16_t *data)
2899 {
2900 	bus_space_tag_t st = sc->sc_st;
2901 	bus_space_handle_t sh = sc->sc_sh;
2902 	u_int16_t reg;
2903 	int i, x;
2904 
2905 	for (i = 0; i < wordcnt; i++) {
2906 		/* Send CHIP SELECT. */
2907 		reg = EROMAR_EECS;
2908 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2909 
2910 		/* Shift in the READ opcode. */
2911 		for (x = 3; x > 0; x--) {
2912 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2913 				reg |= EROMAR_EEDI;
2914 			else
2915 				reg &= ~EROMAR_EEDI;
2916 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2917 			bus_space_write_4(st, sh, SIP_EROMAR,
2918 			    reg | EROMAR_EESK);
2919 			delay(4);
2920 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2921 			delay(4);
2922 		}
2923 
2924 		/* Shift in address. */
2925 		for (x = 6; x > 0; x--) {
2926 			if ((word + i) & (1 << (x - 1)))
2927 				reg |= EROMAR_EEDI;
2928 			else
2929 				reg &= ~EROMAR_EEDI;
2930 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2931 			bus_space_write_4(st, sh, SIP_EROMAR,
2932 			    reg | EROMAR_EESK);
2933 			delay(4);
2934 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2935 			delay(4);
2936 		}
2937 
2938 		/* Shift out data. */
2939 		reg = EROMAR_EECS;
2940 		data[i] = 0;
2941 		for (x = 16; x > 0; x--) {
2942 			bus_space_write_4(st, sh, SIP_EROMAR,
2943 			    reg | EROMAR_EESK);
2944 			delay(4);
2945 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2946 				data[i] |= (1 << (x - 1));
2947 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2948 			delay(4);
2949 		}
2950 
2951 		/* Clear CHIP SELECT. */
2952 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2953 		delay(4);
2954 	}
2955 }
2956 
2957 /*
2958  * sipcom_add_rxbuf:
2959  *
2960  *	Add a receive buffer to the indicated descriptor.
2961  */
2962 static int
2963 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2964 {
2965 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2966 	struct mbuf *m;
2967 	int error;
2968 
2969 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2970 	if (m == NULL)
2971 		return (ENOBUFS);
2972 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2973 
2974 	MCLGET(m, M_DONTWAIT);
2975 	if ((m->m_flags & M_EXT) == 0) {
2976 		m_freem(m);
2977 		return (ENOBUFS);
2978 	}
2979 
2980 	/* XXX I don't believe this is necessary. --dyoung */
2981 	if (sc->sc_gigabit)
2982 		m->m_len = sc->sc_parm->p_rxbuf_len;
2983 
2984 	if (rxs->rxs_mbuf != NULL)
2985 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2986 
2987 	rxs->rxs_mbuf = m;
2988 
2989 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2990 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2991 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2992 	if (error) {
2993 		printf("%s: can't load rx DMA map %d, error = %d\n",
2994 		    device_xname(sc->sc_dev), idx, error);
2995 		panic("%s", __func__);		/* XXX */
2996 	}
2997 
2998 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2999 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3000 
3001 	sip_init_rxdesc(sc, idx);
3002 
3003 	return (0);
3004 }
3005 
3006 /*
3007  * sip_sis900_set_filter:
3008  *
3009  *	Set up the receive filter.
3010  */
3011 static void
3012 sipcom_sis900_set_filter(struct sip_softc *sc)
3013 {
3014 	bus_space_tag_t st = sc->sc_st;
3015 	bus_space_handle_t sh = sc->sc_sh;
3016 	struct ethercom *ec = &sc->sc_ethercom;
3017 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3018 	struct ether_multi *enm;
3019 	const u_int8_t *cp;
3020 	struct ether_multistep step;
3021 	u_int32_t crc, mchash[16];
3022 
3023 	/*
3024 	 * Initialize the prototype RFCR.
3025 	 */
3026 	sc->sc_rfcr = RFCR_RFEN;
3027 	if (ifp->if_flags & IFF_BROADCAST)
3028 		sc->sc_rfcr |= RFCR_AAB;
3029 	if (ifp->if_flags & IFF_PROMISC) {
3030 		sc->sc_rfcr |= RFCR_AAP;
3031 		goto allmulti;
3032 	}
3033 
3034 	/*
3035 	 * Set up the multicast address filter by passing all multicast
3036 	 * addresses through a CRC generator, and then using the high-order
3037 	 * 6 bits as an index into the 128 bit multicast hash table (only
3038 	 * the lower 16 bits of each 32 bit multicast hash register are
3039 	 * valid).  The high order bits select the register, while the
3040 	 * rest of the bits select the bit within the register.
3041 	 */
3042 
3043 	memset(mchash, 0, sizeof(mchash));
3044 
3045 	/*
3046 	 * SiS900 (at least SiS963) requires us to register the address of
3047 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3048 	 */
3049 	crc = 0x0ed423f9;
3050 
3051 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3052 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3053 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3054 		/* Just want the 8 most significant bits. */
3055 		crc >>= 24;
3056 	} else {
3057 		/* Just want the 7 most significant bits. */
3058 		crc >>= 25;
3059 	}
3060 
3061 	/* Set the corresponding bit in the hash table. */
3062 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3063 
3064 	ETHER_FIRST_MULTI(step, ec, enm);
3065 	while (enm != NULL) {
3066 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3067 			/*
3068 			 * We must listen to a range of multicast addresses.
3069 			 * For now, just accept all multicasts, rather than
3070 			 * trying to set only those filter bits needed to match
3071 			 * the range.  (At this time, the only use of address
3072 			 * ranges is for IP multicast routing, for which the
3073 			 * range is big enough to require all bits set.)
3074 			 */
3075 			goto allmulti;
3076 		}
3077 
3078 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3079 
3080 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3081 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3082 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3083 			/* Just want the 8 most significant bits. */
3084 			crc >>= 24;
3085 		} else {
3086 			/* Just want the 7 most significant bits. */
3087 			crc >>= 25;
3088 		}
3089 
3090 		/* Set the corresponding bit in the hash table. */
3091 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3092 
3093 		ETHER_NEXT_MULTI(step, enm);
3094 	}
3095 
3096 	ifp->if_flags &= ~IFF_ALLMULTI;
3097 	goto setit;
3098 
3099  allmulti:
3100 	ifp->if_flags |= IFF_ALLMULTI;
3101 	sc->sc_rfcr |= RFCR_AAM;
3102 
3103  setit:
3104 #define	FILTER_EMIT(addr, data)						\
3105 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3106 	delay(1);							\
3107 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3108 	delay(1)
3109 
3110 	/*
3111 	 * Disable receive filter, and program the node address.
3112 	 */
3113 	cp = CLLADDR(ifp->if_sadl);
3114 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3115 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3116 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3117 
3118 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3119 		/*
3120 		 * Program the multicast hash table.
3121 		 */
3122 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3123 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3124 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3125 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3126 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3127 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3128 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3129 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3130 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3131 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3132 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3133 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3134 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3135 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3136 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3137 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3138 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3139 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3140 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3141 		}
3142 	}
3143 #undef FILTER_EMIT
3144 
3145 	/*
3146 	 * Re-enable the receiver filter.
3147 	 */
3148 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3149 }
3150 
3151 /*
3152  * sip_dp83815_set_filter:
3153  *
3154  *	Set up the receive filter.
3155  */
3156 static void
3157 sipcom_dp83815_set_filter(struct sip_softc *sc)
3158 {
3159 	bus_space_tag_t st = sc->sc_st;
3160 	bus_space_handle_t sh = sc->sc_sh;
3161 	struct ethercom *ec = &sc->sc_ethercom;
3162 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3163 	struct ether_multi *enm;
3164 	const u_int8_t *cp;
3165 	struct ether_multistep step;
3166 	u_int32_t crc, hash, slot, bit;
3167 #define	MCHASH_NWORDS_83820	128
3168 #define	MCHASH_NWORDS_83815	32
3169 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3170 	u_int16_t mchash[MCHASH_NWORDS];
3171 	int i;
3172 
3173 	/*
3174 	 * Initialize the prototype RFCR.
3175 	 * Enable the receive filter, and accept on
3176 	 *    Perfect (destination address) Match
3177 	 * If IFF_BROADCAST, also accept all broadcast packets.
3178 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3179 	 *    IFF_ALLMULTI and accept all multicast, too).
3180 	 */
3181 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3182 	if (ifp->if_flags & IFF_BROADCAST)
3183 		sc->sc_rfcr |= RFCR_AAB;
3184 	if (ifp->if_flags & IFF_PROMISC) {
3185 		sc->sc_rfcr |= RFCR_AAP;
3186 		goto allmulti;
3187 	}
3188 
3189 	/*
3190          * Set up the DP83820/DP83815 multicast address filter by
3191          * passing all multicast addresses through a CRC generator,
3192          * and then using the high-order 11/9 bits as an index into
3193          * the 2048/512 bit multicast hash table.  The high-order
3194          * 7/5 bits select the slot, while the low-order 4 bits
3195          * select the bit within the slot.  Note that only the low
3196          * 16-bits of each filter word are used, and there are
3197          * 128/32 filter words.
3198 	 */
3199 
3200 	memset(mchash, 0, sizeof(mchash));
3201 
3202 	ifp->if_flags &= ~IFF_ALLMULTI;
3203 	ETHER_FIRST_MULTI(step, ec, enm);
3204 	if (enm == NULL)
3205 		goto setit;
3206 	while (enm != NULL) {
3207 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3208 			/*
3209 			 * We must listen to a range of multicast addresses.
3210 			 * For now, just accept all multicasts, rather than
3211 			 * trying to set only those filter bits needed to match
3212 			 * the range.  (At this time, the only use of address
3213 			 * ranges is for IP multicast routing, for which the
3214 			 * range is big enough to require all bits set.)
3215 			 */
3216 			goto allmulti;
3217 		}
3218 
3219 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3220 
3221 		if (sc->sc_gigabit) {
3222 			/* Just want the 11 most significant bits. */
3223 			hash = crc >> 21;
3224 		} else {
3225 			/* Just want the 9 most significant bits. */
3226 			hash = crc >> 23;
3227 		}
3228 
3229 		slot = hash >> 4;
3230 		bit = hash & 0xf;
3231 
3232 		/* Set the corresponding bit in the hash table. */
3233 		mchash[slot] |= 1 << bit;
3234 
3235 		ETHER_NEXT_MULTI(step, enm);
3236 	}
3237 	sc->sc_rfcr |= RFCR_MHEN;
3238 	goto setit;
3239 
3240  allmulti:
3241 	ifp->if_flags |= IFF_ALLMULTI;
3242 	sc->sc_rfcr |= RFCR_AAM;
3243 
3244  setit:
3245 #define	FILTER_EMIT(addr, data)						\
3246 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3247 	delay(1);							\
3248 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3249 	delay(1)
3250 
3251 	/*
3252 	 * Disable receive filter, and program the node address.
3253 	 */
3254 	cp = CLLADDR(ifp->if_sadl);
3255 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3256 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3257 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3258 
3259 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3260 		int nwords =
3261 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3262 		/*
3263 		 * Program the multicast hash table.
3264 		 */
3265 		for (i = 0; i < nwords; i++) {
3266 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3267 		}
3268 	}
3269 #undef FILTER_EMIT
3270 #undef MCHASH_NWORDS
3271 #undef MCHASH_NWORDS_83815
3272 #undef MCHASH_NWORDS_83820
3273 
3274 	/*
3275 	 * Re-enable the receiver filter.
3276 	 */
3277 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3278 }
3279 
3280 /*
3281  * sip_dp83820_mii_readreg:	[mii interface function]
3282  *
3283  *	Read a PHY register on the MII of the DP83820.
3284  */
3285 static int
3286 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3287 {
3288 	struct sip_softc *sc = device_private(self);
3289 
3290 	if (sc->sc_cfg & CFG_TBI_EN) {
3291 		bus_addr_t tbireg;
3292 		int rv;
3293 
3294 		if (phy != 0)
3295 			return (0);
3296 
3297 		switch (reg) {
3298 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3299 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3300 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3301 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3302 		case MII_ANER:		tbireg = SIP_TANER; break;
3303 		case MII_EXTSR:
3304 			/*
3305 			 * Don't even bother reading the TESR register.
3306 			 * The manual documents that the device has
3307 			 * 1000baseX full/half capability, but the
3308 			 * register itself seems read back 0 on some
3309 			 * boards.  Just hard-code the result.
3310 			 */
3311 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3312 
3313 		default:
3314 			return (0);
3315 		}
3316 
3317 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3318 		if (tbireg == SIP_TBISR) {
3319 			/* LINK and ACOMP are switched! */
3320 			int val = rv;
3321 
3322 			rv = 0;
3323 			if (val & TBISR_MR_LINK_STATUS)
3324 				rv |= BMSR_LINK;
3325 			if (val & TBISR_MR_AN_COMPLETE)
3326 				rv |= BMSR_ACOMP;
3327 
3328 			/*
3329 			 * The manual claims this register reads back 0
3330 			 * on hard and soft reset.  But we want to let
3331 			 * the gentbi driver know that we support auto-
3332 			 * negotiation, so hard-code this bit in the
3333 			 * result.
3334 			 */
3335 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3336 		}
3337 
3338 		return (rv);
3339 	}
3340 
3341 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3342 }
3343 
3344 /*
3345  * sip_dp83820_mii_writereg:	[mii interface function]
3346  *
3347  *	Write a PHY register on the MII of the DP83820.
3348  */
3349 static void
3350 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3351 {
3352 	struct sip_softc *sc = device_private(self);
3353 
3354 	if (sc->sc_cfg & CFG_TBI_EN) {
3355 		bus_addr_t tbireg;
3356 
3357 		if (phy != 0)
3358 			return;
3359 
3360 		switch (reg) {
3361 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3362 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3363 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3364 		default:
3365 			return;
3366 		}
3367 
3368 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3369 		return;
3370 	}
3371 
3372 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3373 }
3374 
3375 /*
3376  * sip_dp83820_mii_statchg:	[mii interface function]
3377  *
3378  *	Callback from MII layer when media changes.
3379  */
3380 static void
3381 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3382 {
3383 	struct sip_softc *sc = ifp->if_softc;
3384 	struct mii_data *mii = &sc->sc_mii;
3385 	u_int32_t cfg, pcr;
3386 
3387 	/*
3388 	 * Get flow control negotiation result.
3389 	 */
3390 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3391 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3392 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3393 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3394 	}
3395 
3396 	/*
3397 	 * Update TXCFG for full-duplex operation.
3398 	 */
3399 	if ((mii->mii_media_active & IFM_FDX) != 0)
3400 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3401 	else
3402 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3403 
3404 	/*
3405 	 * Update RXCFG for full-duplex or loopback.
3406 	 */
3407 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3408 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3409 		sc->sc_rxcfg |= RXCFG_ATX;
3410 	else
3411 		sc->sc_rxcfg &= ~RXCFG_ATX;
3412 
3413 	/*
3414 	 * Update CFG for MII/GMII.
3415 	 */
3416 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3417 		cfg = sc->sc_cfg | CFG_MODE_1000;
3418 	else
3419 		cfg = sc->sc_cfg;
3420 
3421 	/*
3422 	 * 802.3x flow control.
3423 	 */
3424 	pcr = 0;
3425 	if (sc->sc_flowflags & IFM_FLOW) {
3426 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3427 			pcr |= sc->sc_rx_flow_thresh;
3428 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3429 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3430 	}
3431 
3432 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3433 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3434 	    sc->sc_txcfg);
3435 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3436 	    sc->sc_rxcfg);
3437 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3438 }
3439 
3440 /*
3441  * sip_mii_bitbang_read: [mii bit-bang interface function]
3442  *
3443  *	Read the MII serial port for the MII bit-bang module.
3444  */
3445 static u_int32_t
3446 sipcom_mii_bitbang_read(device_t self)
3447 {
3448 	struct sip_softc *sc = device_private(self);
3449 
3450 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3451 }
3452 
3453 /*
3454  * sip_mii_bitbang_write: [mii big-bang interface function]
3455  *
3456  *	Write the MII serial port for the MII bit-bang module.
3457  */
3458 static void
3459 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3460 {
3461 	struct sip_softc *sc = device_private(self);
3462 
3463 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3464 }
3465 
3466 /*
3467  * sip_sis900_mii_readreg:	[mii interface function]
3468  *
3469  *	Read a PHY register on the MII.
3470  */
3471 static int
3472 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3473 {
3474 	struct sip_softc *sc = device_private(self);
3475 	u_int32_t enphy;
3476 
3477 	/*
3478 	 * The PHY of recent SiS chipsets is accessed through bitbang
3479 	 * operations.
3480 	 */
3481 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3482 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3483 		    phy, reg);
3484 
3485 #ifndef SIS900_MII_RESTRICT
3486 	/*
3487 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3488 	 * MII address 0.
3489 	 */
3490 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3491 		return (0);
3492 #endif
3493 
3494 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3495 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3496 	    ENPHY_RWCMD | ENPHY_ACCESS);
3497 	do {
3498 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3499 	} while (enphy & ENPHY_ACCESS);
3500 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3501 }
3502 
3503 /*
3504  * sip_sis900_mii_writereg:	[mii interface function]
3505  *
3506  *	Write a PHY register on the MII.
3507  */
3508 static void
3509 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3510 {
3511 	struct sip_softc *sc = device_private(self);
3512 	u_int32_t enphy;
3513 
3514 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3515 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3516 		    phy, reg, val);
3517 		return;
3518 	}
3519 
3520 #ifndef SIS900_MII_RESTRICT
3521 	/*
3522 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3523 	 * MII address 0.
3524 	 */
3525 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3526 		return;
3527 #endif
3528 
3529 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3530 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3531 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3532 	do {
3533 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3534 	} while (enphy & ENPHY_ACCESS);
3535 }
3536 
3537 /*
3538  * sip_sis900_mii_statchg:	[mii interface function]
3539  *
3540  *	Callback from MII layer when media changes.
3541  */
3542 static void
3543 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3544 {
3545 	struct sip_softc *sc = ifp->if_softc;
3546 	struct mii_data *mii = &sc->sc_mii;
3547 	u_int32_t flowctl;
3548 
3549 	/*
3550 	 * Get flow control negotiation result.
3551 	 */
3552 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3553 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3554 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3555 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3556 	}
3557 
3558 	/*
3559 	 * Update TXCFG for full-duplex operation.
3560 	 */
3561 	if ((mii->mii_media_active & IFM_FDX) != 0)
3562 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3563 	else
3564 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3565 
3566 	/*
3567 	 * Update RXCFG for full-duplex or loopback.
3568 	 */
3569 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3570 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3571 		sc->sc_rxcfg |= RXCFG_ATX;
3572 	else
3573 		sc->sc_rxcfg &= ~RXCFG_ATX;
3574 
3575 	/*
3576 	 * Update IMR for use of 802.3x flow control.
3577 	 */
3578 	if (sc->sc_flowflags & IFM_FLOW) {
3579 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3580 		flowctl = FLOWCTL_FLOWEN;
3581 	} else {
3582 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3583 		flowctl = 0;
3584 	}
3585 
3586 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3587 	    sc->sc_txcfg);
3588 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3589 	    sc->sc_rxcfg);
3590 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3591 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3592 }
3593 
3594 /*
3595  * sip_dp83815_mii_readreg:	[mii interface function]
3596  *
3597  *	Read a PHY register on the MII.
3598  */
3599 static int
3600 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3601 {
3602 	struct sip_softc *sc = device_private(self);
3603 	u_int32_t val;
3604 
3605 	/*
3606 	 * The DP83815 only has an internal PHY.  Only allow
3607 	 * MII address 0.
3608 	 */
3609 	if (phy != 0)
3610 		return (0);
3611 
3612 	/*
3613 	 * Apparently, after a reset, the DP83815 can take a while
3614 	 * to respond.  During this recovery period, the BMSR returns
3615 	 * a value of 0.  Catch this -- it's not supposed to happen
3616 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3617 	 * PHY to come back to life.
3618 	 *
3619 	 * This works out because the BMSR is the first register
3620 	 * read during the PHY probe process.
3621 	 */
3622 	do {
3623 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3624 	} while (reg == MII_BMSR && val == 0);
3625 
3626 	return (val & 0xffff);
3627 }
3628 
3629 /*
3630  * sip_dp83815_mii_writereg:	[mii interface function]
3631  *
3632  *	Write a PHY register to the MII.
3633  */
3634 static void
3635 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3636 {
3637 	struct sip_softc *sc = device_private(self);
3638 
3639 	/*
3640 	 * The DP83815 only has an internal PHY.  Only allow
3641 	 * MII address 0.
3642 	 */
3643 	if (phy != 0)
3644 		return;
3645 
3646 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3647 }
3648 
3649 /*
3650  * sip_dp83815_mii_statchg:	[mii interface function]
3651  *
3652  *	Callback from MII layer when media changes.
3653  */
3654 static void
3655 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3656 {
3657 	struct sip_softc *sc = ifp->if_softc;
3658 
3659 	/*
3660 	 * Update TXCFG for full-duplex operation.
3661 	 */
3662 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3663 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3664 	else
3665 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3666 
3667 	/*
3668 	 * Update RXCFG for full-duplex or loopback.
3669 	 */
3670 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3671 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3672 		sc->sc_rxcfg |= RXCFG_ATX;
3673 	else
3674 		sc->sc_rxcfg &= ~RXCFG_ATX;
3675 
3676 	/*
3677 	 * XXX 802.3x flow control.
3678 	 */
3679 
3680 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3681 	    sc->sc_txcfg);
3682 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3683 	    sc->sc_rxcfg);
3684 
3685 	/*
3686 	 * Some DP83815s experience problems when used with short
3687 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3688 	 * sequence adjusts the DSP's signal attenuation to fix the
3689 	 * problem.
3690 	 */
3691 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3692 		uint32_t reg;
3693 
3694 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3695 
3696 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3697 		reg &= 0x0fff;
3698 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3699 		delay(100);
3700 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3701 		reg &= 0x00ff;
3702 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3703 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3704 			    0x00e8);
3705 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3706 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3707 			    reg | 0x20);
3708 		}
3709 
3710 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3711 	}
3712 }
3713 
3714 static void
3715 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3716     const struct pci_attach_args *pa, u_int8_t *enaddr)
3717 {
3718 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3719 	u_int8_t cksum, *e, match;
3720 	int i;
3721 
3722 	/*
3723 	 * EEPROM data format for the DP83820 can be found in
3724 	 * the DP83820 manual, section 4.2.4.
3725 	 */
3726 
3727 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3728 
3729 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3730 	match = ~(match - 1);
3731 
3732 	cksum = 0x55;
3733 	e = (u_int8_t *) eeprom_data;
3734 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3735 		cksum += *e++;
3736 
3737 	if (cksum != match)
3738 		printf("%s: Checksum (%x) mismatch (%x)",
3739 		    device_xname(sc->sc_dev), cksum, match);
3740 
3741 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3742 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3743 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3744 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3745 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3746 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3747 }
3748 
3749 static void
3750 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3751 {
3752 	int i;
3753 
3754 	/*
3755 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3756 	 * a reason, but I don't know it.
3757 	 */
3758 	for (i = 0; i < 10; i++)
3759 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3760 }
3761 
3762 static void
3763 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3764     const struct pci_attach_args *pa, u_int8_t *enaddr)
3765 {
3766 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3767 
3768 	switch (sc->sc_rev) {
3769 	case SIS_REV_630S:
3770 	case SIS_REV_630E:
3771 	case SIS_REV_630EA1:
3772 	case SIS_REV_630ET:
3773 	case SIS_REV_635:
3774 		/*
3775 		 * The MAC address for the on-board Ethernet of
3776 		 * the SiS 630 chipset is in the NVRAM.  Kick
3777 		 * the chip into re-loading it from NVRAM, and
3778 		 * read the MAC address out of the filter registers.
3779 		 */
3780 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3781 
3782 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3783 		    RFCR_RFADDR_NODE0);
3784 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3785 		    0xffff;
3786 
3787 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3788 		    RFCR_RFADDR_NODE2);
3789 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3790 		    0xffff;
3791 
3792 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3793 		    RFCR_RFADDR_NODE4);
3794 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3795 		    0xffff;
3796 		break;
3797 
3798 	case SIS_REV_960:
3799 		{
3800 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3801 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3802 
3803 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3804 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3805 
3806 			int waittime, i;
3807 
3808 			/* Allow to read EEPROM from LAN. It is shared
3809 			 * between a 1394 controller and the NIC and each
3810 			 * time we access it, we need to set SIS_EECMD_REQ.
3811 			 */
3812 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3813 
3814 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3815 				/* Force EEPROM to idle state. */
3816 
3817 				/*
3818 				 * XXX-cube This is ugly.  I'll look for docs about it.
3819 				 */
3820 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3821 				sipcom_sis900_eeprom_delay(sc);
3822 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3823 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3824 					sipcom_sis900_eeprom_delay(sc);
3825 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3826 					sipcom_sis900_eeprom_delay(sc);
3827 				}
3828 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3829 				sipcom_sis900_eeprom_delay(sc);
3830 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3831 
3832 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3833 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3834 					    sizeof(myea) / sizeof(myea[0]), myea);
3835 					break;
3836 				}
3837 				DELAY(1);
3838 			}
3839 
3840 			/*
3841 			 * Set SIS_EECTL_CLK to high, so a other master
3842 			 * can operate on the i2c bus.
3843 			 */
3844 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3845 
3846 			/* Refuse EEPROM access by LAN */
3847 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3848 		} break;
3849 
3850 	default:
3851 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3852 		    sizeof(myea) / sizeof(myea[0]), myea);
3853 	}
3854 
3855 	enaddr[0] = myea[0] & 0xff;
3856 	enaddr[1] = myea[0] >> 8;
3857 	enaddr[2] = myea[1] & 0xff;
3858 	enaddr[3] = myea[1] >> 8;
3859 	enaddr[4] = myea[2] & 0xff;
3860 	enaddr[5] = myea[2] >> 8;
3861 }
3862 
3863 /* Table and macro to bit-reverse an octet. */
3864 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3865 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3866 
3867 static void
3868 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3869     const struct pci_attach_args *pa, u_int8_t *enaddr)
3870 {
3871 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3872 	u_int8_t cksum, *e, match;
3873 	int i;
3874 
3875 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3876 	    sizeof(eeprom_data[0]), eeprom_data);
3877 
3878 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3879 	match = ~(match - 1);
3880 
3881 	cksum = 0x55;
3882 	e = (u_int8_t *) eeprom_data;
3883 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3884 		cksum += *e++;
3885 	}
3886 	if (cksum != match) {
3887 		printf("%s: Checksum (%x) mismatch (%x)",
3888 		    device_xname(sc->sc_dev), cksum, match);
3889 	}
3890 
3891 	/*
3892 	 * Unrolled because it makes slightly more sense this way.
3893 	 * The DP83815 stores the MAC address in bit 0 of word 6
3894 	 * through bit 15 of word 8.
3895 	 */
3896 	ea = &eeprom_data[6];
3897 	enaddr[0] = ((*ea & 0x1) << 7);
3898 	ea++;
3899 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3900 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3901 	enaddr[2] = ((*ea & 0x1) << 7);
3902 	ea++;
3903 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3904 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3905 	enaddr[4] = ((*ea & 0x1) << 7);
3906 	ea++;
3907 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3908 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3909 
3910 	/*
3911 	 * In case that's not weird enough, we also need to reverse
3912 	 * the bits in each byte.  This all actually makes more sense
3913 	 * if you think about the EEPROM storage as an array of bits
3914 	 * being shifted into bytes, but that's not how we're looking
3915 	 * at it here...
3916 	 */
3917 	for (i = 0; i < 6 ;i++)
3918 		enaddr[i] = bbr(enaddr[i]);
3919 }
3920 
3921 /*
3922  * sip_mediastatus:	[ifmedia interface function]
3923  *
3924  *	Get the current interface media status.
3925  */
3926 static void
3927 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3928 {
3929 	struct sip_softc *sc = ifp->if_softc;
3930 
3931 	if (!device_is_active(sc->sc_dev)) {
3932 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3933 		ifmr->ifm_status = 0;
3934 		return;
3935 	}
3936 	ether_mediastatus(ifp, ifmr);
3937 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3938 			   sc->sc_flowflags;
3939 }
3940