xref: /netbsd-src/sys/dev/pci/if_sip.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: if_sip.c,v 1.155 2012/09/23 01:10:59 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.155 2012/09/23 01:10:59 chs Exp $");
77 
78 
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91 
92 #include <sys/rnd.h>
93 
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98 
99 #include <net/bpf.h>
100 
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104 
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108 
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112 
113 #include <dev/pci/if_sipreg.h>
114 
115 /*
116  * Transmit descriptor list size.  This is arbitrary, but allocate
117  * enough descriptors for 128 pending transmissions, and 8 segments
118  * per packet (64 for DP83820 for jumbo frames).
119  *
120  * This MUST work out to a power of 2.
121  */
122 #define	GSIP_NTXSEGS_ALLOC 16
123 #define	SIP_NTXSEGS_ALLOC 8
124 
125 #define	SIP_TXQUEUELEN		256
126 #define	MAX_SIP_NTXDESC	\
127     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128 
129 /*
130  * Receive descriptor list size.  We have one Rx buffer per incoming
131  * packet, so this logic is a little simpler.
132  *
133  * Actually, on the DP83820, we allow the packet to consume more than
134  * one buffer, in order to support jumbo Ethernet frames.  In that
135  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
137  * so we'd better be quick about handling receive interrupts.
138  */
139 #define	GSIP_NRXDESC		256
140 #define	SIP_NRXDESC		128
141 
142 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
143 
144 /*
145  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
146  * a single clump that maps to a single DMA segment to make several things
147  * easier.
148  */
149 struct sip_control_data {
150 	/*
151 	 * The transmit descriptors.
152 	 */
153 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154 
155 	/*
156 	 * The receive descriptors.
157 	 */
158 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160 
161 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
162 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
163 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
164 
165 /*
166  * Software state for transmit jobs.
167  */
168 struct sip_txsoft {
169 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
170 	bus_dmamap_t txs_dmamap;	/* our DMA map */
171 	int txs_firstdesc;		/* first descriptor in packet */
172 	int txs_lastdesc;		/* last descriptor in packet */
173 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175 
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177 
178 /*
179  * Software state for receive jobs.
180  */
181 struct sip_rxsoft {
182 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
183 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
184 };
185 
186 enum sip_attach_stage {
187 	  SIP_ATTACH_FIN = 0
188 	, SIP_ATTACH_CREATE_RXMAP
189 	, SIP_ATTACH_CREATE_TXMAP
190 	, SIP_ATTACH_LOAD_MAP
191 	, SIP_ATTACH_CREATE_MAP
192 	, SIP_ATTACH_MAP_MEM
193 	, SIP_ATTACH_ALLOC_MEM
194 	, SIP_ATTACH_INTR
195 	, SIP_ATTACH_MAP
196 };
197 
198 /*
199  * Software state per device.
200  */
201 struct sip_softc {
202 	device_t sc_dev;		/* generic device information */
203 	device_suspensor_t		sc_suspensor;
204 	pmf_qual_t			sc_qual;
205 
206 	bus_space_tag_t sc_st;		/* bus space tag */
207 	bus_space_handle_t sc_sh;	/* bus space handle */
208 	bus_size_t sc_sz;		/* bus space size */
209 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
210 	pci_chipset_tag_t sc_pc;
211 	bus_dma_segment_t sc_seg;
212 	struct ethercom sc_ethercom;	/* ethernet common data */
213 
214 	const struct sip_product *sc_model; /* which model are we? */
215 	int sc_gigabit;			/* 1: 83820, 0: other */
216 	int sc_rev;			/* chip revision */
217 
218 	void *sc_ih;			/* interrupt cookie */
219 
220 	struct mii_data sc_mii;		/* MII/media information */
221 
222 	callout_t sc_tick_ch;		/* tick callout */
223 
224 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
225 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
226 
227 	/*
228 	 * Software state for transmit and receive descriptors.
229 	 */
230 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232 
233 	/*
234 	 * Control data structures.
235 	 */
236 	struct sip_control_data *sc_control_data;
237 #define	sc_txdescs	sc_control_data->scd_txdescs
238 #define	sc_rxdescs	sc_control_data->scd_rxdescs
239 
240 #ifdef SIP_EVENT_COUNTERS
241 	/*
242 	 * Event counters.
243 	 */
244 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
245 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
246 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
247 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
248 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
249 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
250 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
251 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
252 	/* DP83820 only */
253 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
254 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
255 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
256 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
257 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
258 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
259 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261 
262 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
263 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
264 	u_int32_t sc_imr;		/* prototype IMR register */
265 	u_int32_t sc_rfcr;		/* prototype RFCR register */
266 
267 	u_int32_t sc_cfg;		/* prototype CFG register */
268 
269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
270 
271 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
272 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
273 
274 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
275 
276 	int	sc_flowflags;		/* 802.3x flow control flags */
277 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
278 	int	sc_paused;		/* paused indication */
279 
280 	int	sc_txfree;		/* number of free Tx descriptors */
281 	int	sc_txnext;		/* next ready Tx descriptor */
282 	int	sc_txwin;		/* Tx descriptors since last intr */
283 
284 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
285 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
286 
287 	/* values of interface state at last init */
288 	struct {
289 		/* if_capenable */
290 		uint64_t	if_capenable;
291 		/* ec_capenable */
292 		int		ec_capenable;
293 		/* VLAN_ATTACHED */
294 		int		is_vlan;
295 	}	sc_prev;
296 
297 	short	sc_if_flags;
298 
299 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
300 	int	sc_rxdiscard;
301 	int	sc_rxlen;
302 	struct mbuf *sc_rxhead;
303 	struct mbuf *sc_rxtail;
304 	struct mbuf **sc_rxtailp;
305 
306 	int sc_ntxdesc;
307 	int sc_ntxdesc_mask;
308 
309 	int sc_nrxdesc_mask;
310 
311 	const struct sip_parm {
312 		const struct sip_regs {
313 			int r_rxcfg;
314 			int r_txcfg;
315 		} p_regs;
316 
317 		const struct sip_bits {
318 			uint32_t b_txcfg_mxdma_8;
319 			uint32_t b_txcfg_mxdma_16;
320 			uint32_t b_txcfg_mxdma_32;
321 			uint32_t b_txcfg_mxdma_64;
322 			uint32_t b_txcfg_mxdma_128;
323 			uint32_t b_txcfg_mxdma_256;
324 			uint32_t b_txcfg_mxdma_512;
325 			uint32_t b_txcfg_flth_mask;
326 			uint32_t b_txcfg_drth_mask;
327 
328 			uint32_t b_rxcfg_mxdma_8;
329 			uint32_t b_rxcfg_mxdma_16;
330 			uint32_t b_rxcfg_mxdma_32;
331 			uint32_t b_rxcfg_mxdma_64;
332 			uint32_t b_rxcfg_mxdma_128;
333 			uint32_t b_rxcfg_mxdma_256;
334 			uint32_t b_rxcfg_mxdma_512;
335 
336 			uint32_t b_isr_txrcmp;
337 			uint32_t b_isr_rxrcmp;
338 			uint32_t b_isr_dperr;
339 			uint32_t b_isr_sserr;
340 			uint32_t b_isr_rmabt;
341 			uint32_t b_isr_rtabt;
342 
343 			uint32_t b_cmdsts_size_mask;
344 		} p_bits;
345 		int		p_filtmem;
346 		int		p_rxbuf_len;
347 		bus_size_t	p_tx_dmamap_size;
348 		int		p_ntxsegs;
349 		int		p_ntxsegs_alloc;
350 		int		p_nrxdesc;
351 	} *sc_parm;
352 
353 	void (*sc_rxintr)(struct sip_softc *);
354 
355 	krndsource_t rnd_source;	/* random source */
356 };
357 
358 #define	sc_bits	sc_parm->p_bits
359 #define	sc_regs	sc_parm->p_regs
360 
361 static const struct sip_parm sip_parm = {
362 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
364 	, .p_tx_dmamap_size = MCLBYTES
365 	, .p_ntxsegs = 16
366 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 	, .p_nrxdesc = SIP_NRXDESC
368 	, .p_bits = {
369 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
370 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
371 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
372 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
373 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
374 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
375 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
376 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
377 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
378 
379 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
380 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
381 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
382 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
383 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
384 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
385 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
386 
387 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
388 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
389 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
390 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
391 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
392 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
393 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 	}
395 	, .p_regs = {
396 		.r_rxcfg = OTHER_SIP_RXCFG,
397 		.r_txcfg = OTHER_SIP_TXCFG
398 	}
399 }, gsip_parm = {
400 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 	, .p_rxbuf_len = MCLBYTES - 8
402 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 	, .p_ntxsegs = 64
404 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 	, .p_nrxdesc = GSIP_NRXDESC
406 	, .p_bits = {
407 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
408 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
409 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
410 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
411 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
412 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
413 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
414 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
415 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
416 
417 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
418 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
419 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
420 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
421 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
422 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
423 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
424 
425 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
426 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
427 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
428 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
429 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
430 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
431 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 	}
433 	, .p_regs = {
434 		.r_rxcfg = DP83820_SIP_RXCFG,
435 		.r_txcfg = DP83820_SIP_TXCFG
436 	}
437 };
438 
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 	return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444 
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 	return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450 
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 	sc->sc_rxtailp = &sc->sc_rxhead;
456 	*sc->sc_rxtailp = NULL;
457 	sc->sc_rxlen = 0;
458 }
459 
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 	*sc->sc_rxtailp = sc->sc_rxtail = m;
465 	sc->sc_rxtailp = &m->m_next;
466 }
467 
468 #ifdef SIP_EVENT_COUNTERS
469 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
470 #else
471 #define	SIP_EVCNT_INCR(ev)	/* nothing */
472 #endif
473 
474 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
476 
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 	int x, n;
481 
482 	x = x0;
483 	n = n0;
484 
485 	/* If it will wrap around, sync to the end of the ring. */
486 	if (x + n > sc->sc_ntxdesc) {
487 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 		    (sc->sc_ntxdesc - x), ops);
490 		n -= (sc->sc_ntxdesc - x);
491 		x = 0;
492 	}
493 
494 	/* Now sync whatever is left. */
495 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498 
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505 
506 #if 0
507 #ifdef DP83820
508 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
509 	u_int32_t	sipd_cmdsts;	/* command/status word */
510 #else
511 	u_int32_t	sipd_cmdsts;	/* command/status word */
512 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515 
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521 
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527 
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
533 
534 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 	sipd->sipd_extsts = 0;
539 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541 
542 #define	SIP_CHIP_VERS(sc, v, p, r)					\
543 	((sc)->sc_model->sip_vendor == (v) &&				\
544 	 (sc)->sc_model->sip_product == (p) &&				\
545 	 (sc)->sc_rev == (r))
546 
547 #define	SIP_CHIP_MODEL(sc, v, p)					\
548 	((sc)->sc_model->sip_vendor == (v) &&				\
549 	 (sc)->sc_model->sip_product == (p))
550 
551 #define	SIP_SIS900_REV(sc, rev)						\
552 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553 
554 #define SIP_TIMEOUT 1000
555 
556 static int	sip_ifflags_cb(struct ethercom *);
557 static void	sipcom_start(struct ifnet *);
558 static void	sipcom_watchdog(struct ifnet *);
559 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int	sipcom_init(struct ifnet *);
561 static void	sipcom_stop(struct ifnet *, int);
562 
563 static bool	sipcom_reset(struct sip_softc *);
564 static void	sipcom_rxdrain(struct sip_softc *);
565 static int	sipcom_add_rxbuf(struct sip_softc *, int);
566 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
567 				      u_int16_t *);
568 static void	sipcom_tick(void *);
569 
570 static void	sipcom_sis900_set_filter(struct sip_softc *);
571 static void	sipcom_dp83815_set_filter(struct sip_softc *);
572 
573 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
574 		    const struct pci_attach_args *, u_int8_t *);
575 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
577 		    const struct pci_attach_args *, u_int8_t *);
578 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
579 		    const struct pci_attach_args *, u_int8_t *);
580 
581 static int	sipcom_intr(void *);
582 static void	sipcom_txintr(struct sip_softc *);
583 static void	sip_rxintr(struct sip_softc *);
584 static void	gsip_rxintr(struct sip_softc *);
585 
586 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
589 
590 static int	sipcom_sis900_mii_readreg(device_t, int, int);
591 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void	sipcom_sis900_mii_statchg(struct ifnet *);
593 
594 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
597 
598 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599 
600 static int	sipcom_match(device_t, cfdata_t, void *);
601 static void	sipcom_attach(device_t, device_t, void *);
602 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int	sipcom_detach(device_t, int);
604 static bool	sipcom_resume(device_t, const pmf_qual_t *);
605 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
606 
607 int	gsip_copy_small = 0;
608 int	sip_copy_small = 0;
609 
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612     DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615     DVF_DETACH_SHUTDOWN);
616 
617 /*
618  * Descriptions of the variants of the SiS900.
619  */
620 struct sip_variant {
621 	int	(*sipv_mii_readreg)(device_t, int, int);
622 	void	(*sipv_mii_writereg)(device_t, int, int, int);
623 	void	(*sipv_mii_statchg)(struct ifnet *);
624 	void	(*sipv_set_filter)(struct sip_softc *);
625 	void	(*sipv_read_macaddr)(struct sip_softc *,
626 		    const struct pci_attach_args *, u_int8_t *);
627 };
628 
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
631 
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 	sipcom_mii_bitbang_read,
634 	sipcom_mii_bitbang_write,
635 	{
636 		EROMAR_MDIO,		/* MII_BIT_MDO */
637 		EROMAR_MDIO,		/* MII_BIT_MDI */
638 		EROMAR_MDC,		/* MII_BIT_MDC */
639 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
640 		0,			/* MII_BIT_DIR_PHY_HOST */
641 	}
642 };
643 
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 	sipcom_dp83820_mii_readreg,
646 	sipcom_dp83820_mii_writereg,
647 	sipcom_dp83820_mii_statchg,
648 	sipcom_dp83815_set_filter,
649 	sipcom_dp83820_read_macaddr,
650 };
651 
652 static const struct sip_variant sipcom_variant_sis900 = {
653 	sipcom_sis900_mii_readreg,
654 	sipcom_sis900_mii_writereg,
655 	sipcom_sis900_mii_statchg,
656 	sipcom_sis900_set_filter,
657 	sipcom_sis900_read_macaddr,
658 };
659 
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 	sipcom_dp83815_mii_readreg,
662 	sipcom_dp83815_mii_writereg,
663 	sipcom_dp83815_mii_statchg,
664 	sipcom_dp83815_set_filter,
665 	sipcom_dp83815_read_macaddr,
666 };
667 
668 
669 /*
670  * Devices supported by this driver.
671  */
672 static const struct sip_product {
673 	pci_vendor_id_t		sip_vendor;
674 	pci_product_id_t	sip_product;
675 	const char		*sip_name;
676 	const struct sip_variant *sip_variant;
677 	int			sip_gigabit;
678 } sipcom_products[] = {
679 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
680 	  "NatSemi DP83820 Gigabit Ethernet",
681 	  &sipcom_variant_dp83820, 1 },
682 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
683 	  "SiS 900 10/100 Ethernet",
684 	  &sipcom_variant_sis900, 0 },
685 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
686 	  "SiS 7016 10/100 Ethernet",
687 	  &sipcom_variant_sis900, 0 },
688 
689 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
690 	  "NatSemi DP83815 10/100 Ethernet",
691 	  &sipcom_variant_dp83815, 0 },
692 
693 	{ 0,			0,
694 	  NULL,
695 	  NULL, 0 },
696 };
697 
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 	const struct sip_product *sip;
702 
703 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 		    sip->sip_gigabit == gigabit)
707 			return sip;
708 	}
709 	return NULL;
710 }
711 
712 /*
713  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
714  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
715  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716  * which means we try to use 64-bit data transfers on those cards if we
717  * happen to be plugged into a 32-bit slot.
718  *
719  * What we do is use this table of cards known to be 64-bit cards.  If
720  * you have a 64-bit card who's subsystem ID is not listed in this table,
721  * send the output of "pcictl dump ..." of the device to me so that your
722  * card will use the 64-bit data path when plugged into a 64-bit slot.
723  *
724  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
725  *	   June 30, 2002
726  */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 	static const struct {
731 		pci_vendor_id_t c64_vendor;
732 		pci_product_id_t c64_product;
733 	} card64[] = {
734 		/* Asante GigaNIX */
735 		{ 0x128a,	0x0002 },
736 
737 		/* Accton EN1407-T, Planex GN-1000TE */
738 		{ 0x1113,	0x1407 },
739 
740 		/* Netgear GA621 */
741 		{ 0x1385,	0x621a },
742 
743 		/* Netgear GA622 */
744 		{ 0x1385,	0x622a },
745 
746 		/* SMC EZ Card 1000 (9462TX) */
747 		{ 0x10b8,	0x9462 },
748 
749 		{ 0, 0}
750 	};
751 	pcireg_t subsys;
752 	int i;
753 
754 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755 
756 	for (i = 0; card64[i].c64_vendor != 0; i++) {
757 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
759 			return (1);
760 	}
761 
762 	return (0);
763 }
764 
765 static int
766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 	struct pci_attach_args *pa = aux;
769 
770 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 		return 1;
772 
773 	return 0;
774 }
775 
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 	u_int32_t reg;
780 	int i;
781 
782 	/*
783 	 * Cause the chip to load configuration data from the EEPROM.
784 	 */
785 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 	for (i = 0; i < 10000; i++) {
787 		delay(10);
788 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 		    PTSCR_EELOAD_EN) == 0)
790 			break;
791 	}
792 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 	    PTSCR_EELOAD_EN) {
794 		printf("%s: timeout loading configuration from EEPROM\n",
795 		    device_xname(sc->sc_dev));
796 		return;
797 	}
798 
799 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800 
801 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 	if (reg & CFG_PCI64_DET) {
803 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
804 		/*
805 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
806 		 * data transfers.
807 		 *
808 		 * We can't use the DATA64_EN bit in the EEPROM, because
809 		 * vendors of 32-bit cards fail to clear that bit in many
810 		 * cases (yet the card still detects that it's in a 64-bit
811 		 * slot; go figure).
812 		 */
813 		if (sipcom_check_64bit(pa)) {
814 			sc->sc_cfg |= CFG_DATA64_EN;
815 			printf(", using 64-bit data transfers");
816 		}
817 		printf("\n");
818 	}
819 
820 	/*
821 	 * XXX Need some PCI flags indicating support for
822 	 * XXX 64-bit addressing.
823 	 */
824 #if 0
825 	if (reg & CFG_M64ADDR)
826 		sc->sc_cfg |= CFG_M64ADDR;
827 	if (reg & CFG_T64ADDR)
828 		sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830 
831 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 		const char *sep = "";
833 		printf("%s: using ", device_xname(sc->sc_dev));
834 		if (reg & CFG_EXT_125) {
835 			sc->sc_cfg |= CFG_EXT_125;
836 			printf("%s125MHz clock", sep);
837 			sep = ", ";
838 		}
839 		if (reg & CFG_TBI_EN) {
840 			sc->sc_cfg |= CFG_TBI_EN;
841 			printf("%sten-bit interface", sep);
842 			sep = ", ";
843 		}
844 		printf("\n");
845 	}
846 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 	    (reg & CFG_MRM_DIS) != 0)
848 		sc->sc_cfg |= CFG_MRM_DIS;
849 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 	    (reg & CFG_MWI_DIS) != 0)
851 		sc->sc_cfg |= CFG_MWI_DIS;
852 
853 	/*
854 	 * Use the extended descriptor format on the DP83820.  This
855 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 	 * checksumming.
857 	 */
858 	sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860 
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 	int s;
865 
866 	s = splnet();
867 	sipcom_do_detach(self, SIP_ATTACH_FIN);
868 	splx(s);
869 
870 	return 0;
871 }
872 
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 	int i;
877 	struct sip_softc *sc = device_private(self);
878 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879 
880 	/*
881 	 * Free any resources we've allocated during attach.
882 	 * Do this in reverse order and fall through.
883 	 */
884 	switch (stage) {
885 	case SIP_ATTACH_FIN:
886 		sipcom_stop(ifp, 1);
887 		pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 		/*
890 		 * Attach event counters.
891 		 */
892 		evcnt_detach(&sc->sc_ev_txforceintr);
893 		evcnt_detach(&sc->sc_ev_txdstall);
894 		evcnt_detach(&sc->sc_ev_txsstall);
895 		evcnt_detach(&sc->sc_ev_hiberr);
896 		evcnt_detach(&sc->sc_ev_rxintr);
897 		evcnt_detach(&sc->sc_ev_txiintr);
898 		evcnt_detach(&sc->sc_ev_txdintr);
899 		if (!sc->sc_gigabit) {
900 			evcnt_detach(&sc->sc_ev_rxpause);
901 		} else {
902 			evcnt_detach(&sc->sc_ev_txudpsum);
903 			evcnt_detach(&sc->sc_ev_txtcpsum);
904 			evcnt_detach(&sc->sc_ev_txipsum);
905 			evcnt_detach(&sc->sc_ev_rxudpsum);
906 			evcnt_detach(&sc->sc_ev_rxtcpsum);
907 			evcnt_detach(&sc->sc_ev_rxipsum);
908 			evcnt_detach(&sc->sc_ev_txpause);
909 			evcnt_detach(&sc->sc_ev_rxpause);
910 		}
911 #endif /* SIP_EVENT_COUNTERS */
912 
913 		rnd_detach_source(&sc->rnd_source);
914 
915 		ether_ifdetach(ifp);
916 		if_detach(ifp);
917 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
918 
919 		/*FALLTHROUGH*/
920 	case SIP_ATTACH_CREATE_RXMAP:
921 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
922 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
923 				bus_dmamap_destroy(sc->sc_dmat,
924 				    sc->sc_rxsoft[i].rxs_dmamap);
925 		}
926 		/*FALLTHROUGH*/
927 	case SIP_ATTACH_CREATE_TXMAP:
928 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
929 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
930 				bus_dmamap_destroy(sc->sc_dmat,
931 				    sc->sc_txsoft[i].txs_dmamap);
932 		}
933 		/*FALLTHROUGH*/
934 	case SIP_ATTACH_LOAD_MAP:
935 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
936 		/*FALLTHROUGH*/
937 	case SIP_ATTACH_CREATE_MAP:
938 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
939 		/*FALLTHROUGH*/
940 	case SIP_ATTACH_MAP_MEM:
941 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
942 		    sizeof(struct sip_control_data));
943 		/*FALLTHROUGH*/
944 	case SIP_ATTACH_ALLOC_MEM:
945 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
946 		/* FALLTHROUGH*/
947 	case SIP_ATTACH_INTR:
948 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
949 		/* FALLTHROUGH*/
950 	case SIP_ATTACH_MAP:
951 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
952 		break;
953 	default:
954 		break;
955 	}
956 	return;
957 }
958 
959 static bool
960 sipcom_resume(device_t self, const pmf_qual_t *qual)
961 {
962 	struct sip_softc *sc = device_private(self);
963 
964 	return sipcom_reset(sc);
965 }
966 
967 static bool
968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
969 {
970 	struct sip_softc *sc = device_private(self);
971 
972 	sipcom_rxdrain(sc);
973 	return true;
974 }
975 
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 	struct sip_softc *sc = device_private(self);
980 	struct pci_attach_args *pa = aux;
981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 	pci_chipset_tag_t pc = pa->pa_pc;
983 	pci_intr_handle_t ih;
984 	const char *intrstr = NULL;
985 	bus_space_tag_t iot, memt;
986 	bus_space_handle_t ioh, memh;
987 	bus_size_t iosz, memsz;
988 	int ioh_valid, memh_valid;
989 	int i, rseg, error;
990 	const struct sip_product *sip;
991 	u_int8_t enaddr[ETHER_ADDR_LEN];
992 	pcireg_t csr;
993 	pcireg_t memtype;
994 	bus_size_t tx_dmamap_size;
995 	int ntxsegs_alloc;
996 	cfdata_t cf = device_cfdata(self);
997 
998 	callout_init(&sc->sc_tick_ch, 0);
999 
1000 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1001 	if (sip == NULL) {
1002 		printf("\n");
1003 		panic("%s: impossible", __func__);
1004 	}
1005 	sc->sc_dev = self;
1006 	sc->sc_gigabit = sip->sip_gigabit;
1007 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1008 	sc->sc_pc = pc;
1009 
1010 	if (sc->sc_gigabit) {
1011 		sc->sc_rxintr = gsip_rxintr;
1012 		sc->sc_parm = &gsip_parm;
1013 	} else {
1014 		sc->sc_rxintr = sip_rxintr;
1015 		sc->sc_parm = &sip_parm;
1016 	}
1017 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1018 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1019 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1020 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1021 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1022 
1023 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1024 
1025 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1026 
1027 	sc->sc_model = sip;
1028 
1029 	/*
1030 	 * XXX Work-around broken PXE firmware on some boards.
1031 	 *
1032 	 * The DP83815 shares an address decoder with the MEM BAR
1033 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1034 	 * so that memory mapped access works.
1035 	 */
1036 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1037 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1038 	    ~PCI_MAPREG_ROM_ENABLE);
1039 
1040 	/*
1041 	 * Map the device.
1042 	 */
1043 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1044 	    PCI_MAPREG_TYPE_IO, 0,
1045 	    &iot, &ioh, NULL, &iosz) == 0);
1046 	if (sc->sc_gigabit) {
1047 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1048 		switch (memtype) {
1049 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1050 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1051 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1052 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1053 			break;
1054 		default:
1055 			memh_valid = 0;
1056 		}
1057 	} else {
1058 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1059 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1060 		    &memt, &memh, NULL, &memsz) == 0);
1061 	}
1062 
1063 	if (memh_valid) {
1064 		sc->sc_st = memt;
1065 		sc->sc_sh = memh;
1066 		sc->sc_sz = memsz;
1067 	} else if (ioh_valid) {
1068 		sc->sc_st = iot;
1069 		sc->sc_sh = ioh;
1070 		sc->sc_sz = iosz;
1071 	} else {
1072 		printf("%s: unable to map device registers\n",
1073 		    device_xname(sc->sc_dev));
1074 		return;
1075 	}
1076 
1077 	sc->sc_dmat = pa->pa_dmat;
1078 
1079 	/*
1080 	 * Make sure bus mastering is enabled.  Also make sure
1081 	 * Write/Invalidate is enabled if we're allowed to use it.
1082 	 */
1083 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1084 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1085 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1086 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1087 	    csr | PCI_COMMAND_MASTER_ENABLE);
1088 
1089 	/* power up chip */
1090 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1091 	if (error != 0 && error != EOPNOTSUPP) {
1092 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1093 		return;
1094 	}
1095 
1096 	/*
1097 	 * Map and establish our interrupt.
1098 	 */
1099 	if (pci_intr_map(pa, &ih)) {
1100 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1101 		return;
1102 	}
1103 	intrstr = pci_intr_string(pc, ih);
1104 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1105 	if (sc->sc_ih == NULL) {
1106 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1107 		if (intrstr != NULL)
1108 			aprint_error(" at %s", intrstr);
1109 		aprint_error("\n");
1110 		sipcom_do_detach(self, SIP_ATTACH_MAP);
1111 		return;
1112 	}
1113 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1114 
1115 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1116 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1117 
1118 	/*
1119 	 * Allocate the control data structures, and create and load the
1120 	 * DMA map for it.
1121 	 */
1122 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1123 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1124 	    &rseg, 0)) != 0) {
1125 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1126 		    error);
1127 		sipcom_do_detach(self, SIP_ATTACH_INTR);
1128 		return;
1129 	}
1130 
1131 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1132 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1133 	    BUS_DMA_COHERENT)) != 0) {
1134 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1135 		    error);
1136 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1137 	}
1138 
1139 	if ((error = bus_dmamap_create(sc->sc_dmat,
1140 	    sizeof(struct sip_control_data), 1,
1141 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1142 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1143 		    "error = %d\n", error);
1144 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1145 	}
1146 
1147 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1148 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1149 	    0)) != 0) {
1150 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1151 		    error);
1152 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1153 	}
1154 
1155 	/*
1156 	 * Create the transmit buffer DMA maps.
1157 	 */
1158 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1159 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1160 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1161 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1162 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1163 			    "error = %d\n", i, error);
1164 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * Create the receive buffer DMA maps.
1170 	 */
1171 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1172 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1173 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1174 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1175 			    "error = %d\n", i, error);
1176 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1177 		}
1178 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1179 	}
1180 
1181 	/*
1182 	 * Reset the chip to a known state.
1183 	 */
1184 	sipcom_reset(sc);
1185 
1186 	/*
1187 	 * Read the Ethernet address from the EEPROM.  This might
1188 	 * also fetch other stuff from the EEPROM and stash it
1189 	 * in the softc.
1190 	 */
1191 	sc->sc_cfg = 0;
1192 	if (!sc->sc_gigabit) {
1193 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1194 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1195 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1196 
1197 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1198 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1199 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1200 			sc->sc_cfg |=
1201 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1202 			     CFG_EDBMASTEN);
1203 	}
1204 
1205 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1206 
1207 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1208 	    ether_sprintf(enaddr));
1209 
1210 	/*
1211 	 * Initialize the configuration register: aggressive PCI
1212 	 * bus request algorithm, default backoff, default OW timer,
1213 	 * default parity error detection.
1214 	 *
1215 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1216 	 * friends -- it affects packet data, not descriptors.
1217 	 */
1218 	if (sc->sc_gigabit)
1219 		sipcom_dp83820_attach(sc, pa);
1220 
1221 	/*
1222 	 * Initialize our media structures and probe the MII.
1223 	 */
1224 	sc->sc_mii.mii_ifp = ifp;
1225 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1226 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1227 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1228 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1229 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1230 	    sipcom_mediastatus);
1231 
1232 	/*
1233 	 * XXX We cannot handle flow control on the DP83815.
1234 	 */
1235 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 			   MII_OFFSET_ANY, 0);
1238 	else
1239 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1242 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1243 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1244 	} else
1245 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1246 
1247 	ifp = &sc->sc_ethercom.ec_if;
1248 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1249 	ifp->if_softc = sc;
1250 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 	sc->sc_if_flags = ifp->if_flags;
1252 	ifp->if_ioctl = sipcom_ioctl;
1253 	ifp->if_start = sipcom_start;
1254 	ifp->if_watchdog = sipcom_watchdog;
1255 	ifp->if_init = sipcom_init;
1256 	ifp->if_stop = sipcom_stop;
1257 	IFQ_SET_READY(&ifp->if_snd);
1258 
1259 	/*
1260 	 * We can support 802.1Q VLAN-sized frames.
1261 	 */
1262 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263 
1264 	if (sc->sc_gigabit) {
1265 		/*
1266 		 * And the DP83820 can do VLAN tagging in hardware, and
1267 		 * support the jumbo Ethernet MTU.
1268 		 */
1269 		sc->sc_ethercom.ec_capabilities |=
1270 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271 
1272 		/*
1273 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1274 		 * in hardware.
1275 		 */
1276 		ifp->if_capabilities |=
1277 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1278 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1279 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1280 	}
1281 
1282 	/*
1283 	 * Attach the interface.
1284 	 */
1285 	if_attach(ifp);
1286 	ether_ifattach(ifp, enaddr);
1287 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1288 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1289 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1290 	sc->sc_prev.if_capenable = ifp->if_capenable;
1291 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1292 	    RND_TYPE_NET, 0);
1293 
1294 	/*
1295 	 * The number of bytes that must be available in
1296 	 * the Tx FIFO before the bus master can DMA more
1297 	 * data into the FIFO.
1298 	 */
1299 	sc->sc_tx_fill_thresh = 64 / 32;
1300 
1301 	/*
1302 	 * Start at a drain threshold of 512 bytes.  We will
1303 	 * increase it if a DMA underrun occurs.
1304 	 *
1305 	 * XXX The minimum value of this variable should be
1306 	 * tuned.  We may be able to improve performance
1307 	 * by starting with a lower value.  That, however,
1308 	 * may trash the first few outgoing packets if the
1309 	 * PCI bus is saturated.
1310 	 */
1311 	if (sc->sc_gigabit)
1312 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1313 	else
1314 		sc->sc_tx_drain_thresh = 1504 / 32;
1315 
1316 	/*
1317 	 * Initialize the Rx FIFO drain threshold.
1318 	 *
1319 	 * This is in units of 8 bytes.
1320 	 *
1321 	 * We should never set this value lower than 2; 14 bytes are
1322 	 * required to filter the packet.
1323 	 */
1324 	sc->sc_rx_drain_thresh = 128 / 8;
1325 
1326 #ifdef SIP_EVENT_COUNTERS
1327 	/*
1328 	 * Attach event counters.
1329 	 */
1330 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1331 	    NULL, device_xname(sc->sc_dev), "txsstall");
1332 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1333 	    NULL, device_xname(sc->sc_dev), "txdstall");
1334 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1335 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1336 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1337 	    NULL, device_xname(sc->sc_dev), "txdintr");
1338 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1339 	    NULL, device_xname(sc->sc_dev), "txiintr");
1340 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1341 	    NULL, device_xname(sc->sc_dev), "rxintr");
1342 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1343 	    NULL, device_xname(sc->sc_dev), "hiberr");
1344 	if (!sc->sc_gigabit) {
1345 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1346 		    NULL, device_xname(sc->sc_dev), "rxpause");
1347 	} else {
1348 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1349 		    NULL, device_xname(sc->sc_dev), "rxpause");
1350 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1351 		    NULL, device_xname(sc->sc_dev), "txpause");
1352 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1353 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1354 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1355 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1356 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1357 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1358 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1359 		    NULL, device_xname(sc->sc_dev), "txipsum");
1360 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1361 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1362 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1363 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1364 	}
1365 #endif /* SIP_EVENT_COUNTERS */
1366 
1367 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1368 		pmf_class_network_register(self, ifp);
1369 	else
1370 		aprint_error_dev(self, "couldn't establish power handler\n");
1371 }
1372 
1373 static inline void
1374 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1375     uint64_t capenable)
1376 {
1377 	struct m_tag *mtag;
1378 	u_int32_t extsts;
1379 #ifdef DEBUG
1380 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1381 #endif
1382 	/*
1383 	 * If VLANs are enabled and the packet has a VLAN tag, set
1384 	 * up the descriptor to encapsulate the packet for us.
1385 	 *
1386 	 * This apparently has to be on the last descriptor of
1387 	 * the packet.
1388 	 */
1389 
1390 	/*
1391 	 * Byte swapping is tricky. We need to provide the tag
1392 	 * in a network byte order. On a big-endian machine,
1393 	 * the byteorder is correct, but we need to swap it
1394 	 * anyway, because this will be undone by the outside
1395 	 * htole32(). That's why there must be an
1396 	 * unconditional swap instead of htons() inside.
1397 	 */
1398 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1399 		sc->sc_txdescs[lasttx].sipd_extsts |=
1400 		    htole32(EXTSTS_VPKT |
1401 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1402 				 EXTSTS_VTCI));
1403 	}
1404 
1405 	/*
1406 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1407 	 * checksumming, set up the descriptor to do this work
1408 	 * for us.
1409 	 *
1410 	 * This apparently has to be on the first descriptor of
1411 	 * the packet.
1412 	 *
1413 	 * Byte-swap constants so the compiler can optimize.
1414 	 */
1415 	extsts = 0;
1416 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1417 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1418 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1419 		extsts |= htole32(EXTSTS_IPPKT);
1420 	}
1421 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1422 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1423 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1424 		extsts |= htole32(EXTSTS_TCPPKT);
1425 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1426 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1427 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1428 		extsts |= htole32(EXTSTS_UDPPKT);
1429 	}
1430 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1431 }
1432 
1433 /*
1434  * sip_start:		[ifnet interface function]
1435  *
1436  *	Start packet transmission on the interface.
1437  */
1438 static void
1439 sipcom_start(struct ifnet *ifp)
1440 {
1441 	struct sip_softc *sc = ifp->if_softc;
1442 	struct mbuf *m0;
1443 	struct mbuf *m;
1444 	struct sip_txsoft *txs;
1445 	bus_dmamap_t dmamap;
1446 	int error, nexttx, lasttx, seg;
1447 	int ofree = sc->sc_txfree;
1448 #if 0
1449 	int firsttx = sc->sc_txnext;
1450 #endif
1451 
1452 	/*
1453 	 * If we've been told to pause, don't transmit any more packets.
1454 	 */
1455 	if (!sc->sc_gigabit && sc->sc_paused)
1456 		ifp->if_flags |= IFF_OACTIVE;
1457 
1458 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1459 		return;
1460 
1461 	/*
1462 	 * Loop through the send queue, setting up transmit descriptors
1463 	 * until we drain the queue, or use up all available transmit
1464 	 * descriptors.
1465 	 */
1466 	for (;;) {
1467 		/* Get a work queue entry. */
1468 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1469 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1470 			break;
1471 		}
1472 
1473 		/*
1474 		 * Grab a packet off the queue.
1475 		 */
1476 		IFQ_POLL(&ifp->if_snd, m0);
1477 		if (m0 == NULL)
1478 			break;
1479 		m = NULL;
1480 
1481 		dmamap = txs->txs_dmamap;
1482 
1483 		/*
1484 		 * Load the DMA map.  If this fails, the packet either
1485 		 * didn't fit in the alloted number of segments, or we
1486 		 * were short on resources.
1487 		 */
1488 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1489 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1490 		/* In the non-gigabit case, we'll copy and try again. */
1491 		if (error != 0 && !sc->sc_gigabit) {
1492 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1493 			if (m == NULL) {
1494 				printf("%s: unable to allocate Tx mbuf\n",
1495 				    device_xname(sc->sc_dev));
1496 				break;
1497 			}
1498 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1499 			if (m0->m_pkthdr.len > MHLEN) {
1500 				MCLGET(m, M_DONTWAIT);
1501 				if ((m->m_flags & M_EXT) == 0) {
1502 					printf("%s: unable to allocate Tx "
1503 					    "cluster\n", device_xname(sc->sc_dev));
1504 					m_freem(m);
1505 					break;
1506 				}
1507 			}
1508 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1509 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1510 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1511 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1512 			if (error) {
1513 				printf("%s: unable to load Tx buffer, "
1514 				    "error = %d\n", device_xname(sc->sc_dev), error);
1515 				break;
1516 			}
1517 		} else if (error == EFBIG) {
1518 			/*
1519 			 * For the too-many-segments case, we simply
1520 			 * report an error and drop the packet,
1521 			 * since we can't sanely copy a jumbo packet
1522 			 * to a single buffer.
1523 			 */
1524 			printf("%s: Tx packet consumes too many "
1525 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1526 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1527 			m_freem(m0);
1528 			continue;
1529 		} else if (error != 0) {
1530 			/*
1531 			 * Short on resources, just stop for now.
1532 			 */
1533 			break;
1534 		}
1535 
1536 		/*
1537 		 * Ensure we have enough descriptors free to describe
1538 		 * the packet.  Note, we always reserve one descriptor
1539 		 * at the end of the ring as a termination point, to
1540 		 * prevent wrap-around.
1541 		 */
1542 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1543 			/*
1544 			 * Not enough free descriptors to transmit this
1545 			 * packet.  We haven't committed anything yet,
1546 			 * so just unload the DMA map, put the packet
1547 			 * back on the queue, and punt.  Notify the upper
1548 			 * layer that there are not more slots left.
1549 			 *
1550 			 * XXX We could allocate an mbuf and copy, but
1551 			 * XXX is it worth it?
1552 			 */
1553 			ifp->if_flags |= IFF_OACTIVE;
1554 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1555 			if (m != NULL)
1556 				m_freem(m);
1557 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1558 			break;
1559 		}
1560 
1561 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1562 		if (m != NULL) {
1563 			m_freem(m0);
1564 			m0 = m;
1565 		}
1566 
1567 		/*
1568 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1569 		 */
1570 
1571 		/* Sync the DMA map. */
1572 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1573 		    BUS_DMASYNC_PREWRITE);
1574 
1575 		/*
1576 		 * Initialize the transmit descriptors.
1577 		 */
1578 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1579 		     seg < dmamap->dm_nsegs;
1580 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1581 			/*
1582 			 * If this is the first descriptor we're
1583 			 * enqueueing, don't set the OWN bit just
1584 			 * yet.  That could cause a race condition.
1585 			 * We'll do it below.
1586 			 */
1587 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1588 			    htole32(dmamap->dm_segs[seg].ds_addr);
1589 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1590 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1591 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1592 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1593 			lasttx = nexttx;
1594 		}
1595 
1596 		/* Clear the MORE bit on the last segment. */
1597 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1598 		    htole32(~CMDSTS_MORE);
1599 
1600 		/*
1601 		 * If we're in the interrupt delay window, delay the
1602 		 * interrupt.
1603 		 */
1604 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1605 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1606 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1607 			    htole32(CMDSTS_INTR);
1608 			sc->sc_txwin = 0;
1609 		}
1610 
1611 		if (sc->sc_gigabit)
1612 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1613 
1614 		/* Sync the descriptors we're using. */
1615 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1616 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1617 
1618 		/*
1619 		 * The entire packet is set up.  Give the first descrptor
1620 		 * to the chip now.
1621 		 */
1622 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1623 		    htole32(CMDSTS_OWN);
1624 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1625 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1626 
1627 		/*
1628 		 * Store a pointer to the packet so we can free it later,
1629 		 * and remember what txdirty will be once the packet is
1630 		 * done.
1631 		 */
1632 		txs->txs_mbuf = m0;
1633 		txs->txs_firstdesc = sc->sc_txnext;
1634 		txs->txs_lastdesc = lasttx;
1635 
1636 		/* Advance the tx pointer. */
1637 		sc->sc_txfree -= dmamap->dm_nsegs;
1638 		sc->sc_txnext = nexttx;
1639 
1640 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1641 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1642 
1643 		/*
1644 		 * Pass the packet to any BPF listeners.
1645 		 */
1646 		bpf_mtap(ifp, m0);
1647 	}
1648 
1649 	if (txs == NULL || sc->sc_txfree == 0) {
1650 		/* No more slots left; notify upper layer. */
1651 		ifp->if_flags |= IFF_OACTIVE;
1652 	}
1653 
1654 	if (sc->sc_txfree != ofree) {
1655 		/*
1656 		 * Start the transmit process.  Note, the manual says
1657 		 * that if there are no pending transmissions in the
1658 		 * chip's internal queue (indicated by TXE being clear),
1659 		 * then the driver software must set the TXDP to the
1660 		 * first descriptor to be transmitted.  However, if we
1661 		 * do this, it causes serious performance degredation on
1662 		 * the DP83820 under load, not setting TXDP doesn't seem
1663 		 * to adversely affect the SiS 900 or DP83815.
1664 		 *
1665 		 * Well, I guess it wouldn't be the first time a manual
1666 		 * has lied -- and they could be speaking of the NULL-
1667 		 * terminated descriptor list case, rather than OWN-
1668 		 * terminated rings.
1669 		 */
1670 #if 0
1671 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1672 		     CR_TXE) == 0) {
1673 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1674 			    SIP_CDTXADDR(sc, firsttx));
1675 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1676 		}
1677 #else
1678 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1679 #endif
1680 
1681 		/* Set a watchdog timer in case the chip flakes out. */
1682 		/* Gigabit autonegotiation takes 5 seconds. */
1683 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1684 	}
1685 }
1686 
1687 /*
1688  * sip_watchdog:	[ifnet interface function]
1689  *
1690  *	Watchdog timer handler.
1691  */
1692 static void
1693 sipcom_watchdog(struct ifnet *ifp)
1694 {
1695 	struct sip_softc *sc = ifp->if_softc;
1696 
1697 	/*
1698 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1699 	 * If we get a timeout, try and sweep up transmit descriptors.
1700 	 * If we manage to sweep them all up, ignore the lack of
1701 	 * interrupt.
1702 	 */
1703 	sipcom_txintr(sc);
1704 
1705 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1706 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1707 		ifp->if_oerrors++;
1708 
1709 		/* Reset the interface. */
1710 		(void) sipcom_init(ifp);
1711 	} else if (ifp->if_flags & IFF_DEBUG)
1712 		printf("%s: recovered from device timeout\n",
1713 		    device_xname(sc->sc_dev));
1714 
1715 	/* Try to get more packets going. */
1716 	sipcom_start(ifp);
1717 }
1718 
1719 /* If the interface is up and running, only modify the receive
1720  * filter when setting promiscuous or debug mode.  Otherwise fall
1721  * through to ether_ioctl, which will reset the chip.
1722  */
1723 static int
1724 sip_ifflags_cb(struct ethercom *ec)
1725 {
1726 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1727 			 == (sc)->sc_ethercom.ec_capenable)		\
1728 			&& ((sc)->sc_prev.is_vlan ==			\
1729 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1730 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1731 	struct ifnet *ifp = &ec->ec_if;
1732 	struct sip_softc *sc = ifp->if_softc;
1733 	int change = ifp->if_flags ^ sc->sc_if_flags;
1734 
1735 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1736 	    !COMPARE_IC(sc, ifp))
1737 		return ENETRESET;
1738 	/* Set up the receive filter. */
1739 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1740 	return 0;
1741 }
1742 
1743 /*
1744  * sip_ioctl:		[ifnet interface function]
1745  *
1746  *	Handle control requests from the operator.
1747  */
1748 static int
1749 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1750 {
1751 	struct sip_softc *sc = ifp->if_softc;
1752 	struct ifreq *ifr = (struct ifreq *)data;
1753 	int s, error;
1754 
1755 	s = splnet();
1756 
1757 	switch (cmd) {
1758 	case SIOCSIFMEDIA:
1759 		/* Flow control requires full-duplex mode. */
1760 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1761 		    (ifr->ifr_media & IFM_FDX) == 0)
1762 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1763 
1764 		/* XXX */
1765 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1766 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1767 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1768 			if (sc->sc_gigabit &&
1769 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1770 				/* We can do both TXPAUSE and RXPAUSE. */
1771 				ifr->ifr_media |=
1772 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1773 			} else if (ifr->ifr_media & IFM_FLOW) {
1774 				/*
1775 				 * Both TXPAUSE and RXPAUSE must be set.
1776 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1777 				 * feature.)
1778 				 *
1779 				 * XXX Can SiS900 and DP83815 send PAUSE?
1780 				 */
1781 				ifr->ifr_media |=
1782 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1783 			}
1784 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1785 		}
1786 		/*FALLTHROUGH*/
1787 	default:
1788 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1789 			break;
1790 
1791 		error = 0;
1792 
1793 		if (cmd == SIOCSIFCAP)
1794 			error = (*ifp->if_init)(ifp);
1795 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1796 			;
1797 		else if (ifp->if_flags & IFF_RUNNING) {
1798 			/*
1799 			 * Multicast list has changed; set the hardware filter
1800 			 * accordingly.
1801 			 */
1802 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1803 		}
1804 		break;
1805 	}
1806 
1807 	/* Try to get more packets going. */
1808 	sipcom_start(ifp);
1809 
1810 	sc->sc_if_flags = ifp->if_flags;
1811 	splx(s);
1812 	return (error);
1813 }
1814 
1815 /*
1816  * sip_intr:
1817  *
1818  *	Interrupt service routine.
1819  */
1820 static int
1821 sipcom_intr(void *arg)
1822 {
1823 	struct sip_softc *sc = arg;
1824 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1825 	u_int32_t isr;
1826 	int handled = 0;
1827 
1828 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1829 		return 0;
1830 
1831 	/* Disable interrupts. */
1832 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1833 
1834 	for (;;) {
1835 		/* Reading clears interrupt. */
1836 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1837 		if ((isr & sc->sc_imr) == 0)
1838 			break;
1839 
1840 		rnd_add_uint32(&sc->rnd_source, isr);
1841 
1842 		handled = 1;
1843 
1844 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1845 			break;
1846 
1847 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1848 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1849 
1850 			/* Grab any new packets. */
1851 			(*sc->sc_rxintr)(sc);
1852 
1853 			if (isr & ISR_RXORN) {
1854 				printf("%s: receive FIFO overrun\n",
1855 				    device_xname(sc->sc_dev));
1856 
1857 				/* XXX adjust rx_drain_thresh? */
1858 			}
1859 
1860 			if (isr & ISR_RXIDLE) {
1861 				printf("%s: receive ring overrun\n",
1862 				    device_xname(sc->sc_dev));
1863 
1864 				/* Get the receive process going again. */
1865 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1866 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1867 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1868 				    SIP_CR, CR_RXE);
1869 			}
1870 		}
1871 
1872 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1873 #ifdef SIP_EVENT_COUNTERS
1874 			if (isr & ISR_TXDESC)
1875 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1876 			else if (isr & ISR_TXIDLE)
1877 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1878 #endif
1879 
1880 			/* Sweep up transmit descriptors. */
1881 			sipcom_txintr(sc);
1882 
1883 			if (isr & ISR_TXURN) {
1884 				u_int32_t thresh;
1885 				int txfifo_size = (sc->sc_gigabit)
1886 				    ? DP83820_SIP_TXFIFO_SIZE
1887 				    : OTHER_SIP_TXFIFO_SIZE;
1888 
1889 				printf("%s: transmit FIFO underrun",
1890 				    device_xname(sc->sc_dev));
1891 				thresh = sc->sc_tx_drain_thresh + 1;
1892 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1893 				&& (thresh * 32) <= (txfifo_size -
1894 				     (sc->sc_tx_fill_thresh * 32))) {
1895 					printf("; increasing Tx drain "
1896 					    "threshold to %u bytes\n",
1897 					    thresh * 32);
1898 					sc->sc_tx_drain_thresh = thresh;
1899 					(void) sipcom_init(ifp);
1900 				} else {
1901 					(void) sipcom_init(ifp);
1902 					printf("\n");
1903 				}
1904 			}
1905 		}
1906 
1907 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1908 			if (isr & ISR_PAUSE_ST) {
1909 				sc->sc_paused = 1;
1910 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1911 				ifp->if_flags |= IFF_OACTIVE;
1912 			}
1913 			if (isr & ISR_PAUSE_END) {
1914 				sc->sc_paused = 0;
1915 				ifp->if_flags &= ~IFF_OACTIVE;
1916 			}
1917 		}
1918 
1919 		if (isr & ISR_HIBERR) {
1920 			int want_init = 0;
1921 
1922 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1923 
1924 #define	PRINTERR(bit, str)						\
1925 			do {						\
1926 				if ((isr & (bit)) != 0) {		\
1927 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1928 						printf("%s: %s\n",	\
1929 						    device_xname(sc->sc_dev), str); \
1930 					want_init = 1;			\
1931 				}					\
1932 			} while (/*CONSTCOND*/0)
1933 
1934 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1935 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1936 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1937 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1938 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1939 			/*
1940 			 * Ignore:
1941 			 *	Tx reset complete
1942 			 *	Rx reset complete
1943 			 */
1944 			if (want_init)
1945 				(void) sipcom_init(ifp);
1946 #undef PRINTERR
1947 		}
1948 	}
1949 
1950 	/* Re-enable interrupts. */
1951 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1952 
1953 	/* Try to get more packets going. */
1954 	sipcom_start(ifp);
1955 
1956 	return (handled);
1957 }
1958 
1959 /*
1960  * sip_txintr:
1961  *
1962  *	Helper; handle transmit interrupts.
1963  */
1964 static void
1965 sipcom_txintr(struct sip_softc *sc)
1966 {
1967 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1968 	struct sip_txsoft *txs;
1969 	u_int32_t cmdsts;
1970 
1971 	if (sc->sc_paused == 0)
1972 		ifp->if_flags &= ~IFF_OACTIVE;
1973 
1974 	/*
1975 	 * Go through our Tx list and free mbufs for those
1976 	 * frames which have been transmitted.
1977 	 */
1978 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1979 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1980 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1981 
1982 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1983 		if (cmdsts & CMDSTS_OWN)
1984 			break;
1985 
1986 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1987 
1988 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1989 
1990 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1991 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1992 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1993 		m_freem(txs->txs_mbuf);
1994 		txs->txs_mbuf = NULL;
1995 
1996 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1997 
1998 		/*
1999 		 * Check for errors and collisions.
2000 		 */
2001 		if (cmdsts &
2002 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2003 			ifp->if_oerrors++;
2004 			if (cmdsts & CMDSTS_Tx_EC)
2005 				ifp->if_collisions += 16;
2006 			if (ifp->if_flags & IFF_DEBUG) {
2007 				if (cmdsts & CMDSTS_Tx_ED)
2008 					printf("%s: excessive deferral\n",
2009 					    device_xname(sc->sc_dev));
2010 				if (cmdsts & CMDSTS_Tx_EC)
2011 					printf("%s: excessive collisions\n",
2012 					    device_xname(sc->sc_dev));
2013 			}
2014 		} else {
2015 			/* Packet was transmitted successfully. */
2016 			ifp->if_opackets++;
2017 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2018 		}
2019 	}
2020 
2021 	/*
2022 	 * If there are no more pending transmissions, cancel the watchdog
2023 	 * timer.
2024 	 */
2025 	if (txs == NULL) {
2026 		ifp->if_timer = 0;
2027 		sc->sc_txwin = 0;
2028 	}
2029 }
2030 
2031 /*
2032  * gsip_rxintr:
2033  *
2034  *	Helper; handle receive interrupts on gigabit parts.
2035  */
2036 static void
2037 gsip_rxintr(struct sip_softc *sc)
2038 {
2039 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2040 	struct sip_rxsoft *rxs;
2041 	struct mbuf *m;
2042 	u_int32_t cmdsts, extsts;
2043 	int i, len;
2044 
2045 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2046 		rxs = &sc->sc_rxsoft[i];
2047 
2048 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2049 
2050 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2051 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2052 		len = CMDSTS_SIZE(sc, cmdsts);
2053 
2054 		/*
2055 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2056 		 * consumer of the receive ring, so if the bit is clear,
2057 		 * we have processed all of the packets.
2058 		 */
2059 		if ((cmdsts & CMDSTS_OWN) == 0) {
2060 			/*
2061 			 * We have processed all of the receive buffers.
2062 			 */
2063 			break;
2064 		}
2065 
2066 		if (__predict_false(sc->sc_rxdiscard)) {
2067 			sip_init_rxdesc(sc, i);
2068 			if ((cmdsts & CMDSTS_MORE) == 0) {
2069 				/* Reset our state. */
2070 				sc->sc_rxdiscard = 0;
2071 			}
2072 			continue;
2073 		}
2074 
2075 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2076 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2077 
2078 		m = rxs->rxs_mbuf;
2079 
2080 		/*
2081 		 * Add a new receive buffer to the ring.
2082 		 */
2083 		if (sipcom_add_rxbuf(sc, i) != 0) {
2084 			/*
2085 			 * Failed, throw away what we've done so
2086 			 * far, and discard the rest of the packet.
2087 			 */
2088 			ifp->if_ierrors++;
2089 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2090 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2091 			sip_init_rxdesc(sc, i);
2092 			if (cmdsts & CMDSTS_MORE)
2093 				sc->sc_rxdiscard = 1;
2094 			if (sc->sc_rxhead != NULL)
2095 				m_freem(sc->sc_rxhead);
2096 			sip_rxchain_reset(sc);
2097 			continue;
2098 		}
2099 
2100 		sip_rxchain_link(sc, m);
2101 
2102 		m->m_len = len;
2103 
2104 		/*
2105 		 * If this is not the end of the packet, keep
2106 		 * looking.
2107 		 */
2108 		if (cmdsts & CMDSTS_MORE) {
2109 			sc->sc_rxlen += len;
2110 			continue;
2111 		}
2112 
2113 		/*
2114 		 * Okay, we have the entire packet now.  The chip includes
2115 		 * the FCS, so we need to trim it.
2116 		 */
2117 		m->m_len -= ETHER_CRC_LEN;
2118 
2119 		*sc->sc_rxtailp = NULL;
2120 		len = m->m_len + sc->sc_rxlen;
2121 		m = sc->sc_rxhead;
2122 
2123 		sip_rxchain_reset(sc);
2124 
2125 		/*
2126 		 * If an error occurred, update stats and drop the packet.
2127 		 */
2128 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2129 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2130 			ifp->if_ierrors++;
2131 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2132 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2133 				/* Receive overrun handled elsewhere. */
2134 				printf("%s: receive descriptor error\n",
2135 				    device_xname(sc->sc_dev));
2136 			}
2137 #define	PRINTERR(bit, str)						\
2138 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2139 			    (cmdsts & (bit)) != 0)			\
2140 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2141 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2142 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2143 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2144 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2145 #undef PRINTERR
2146 			m_freem(m);
2147 			continue;
2148 		}
2149 
2150 		/*
2151 		 * If the packet is small enough to fit in a
2152 		 * single header mbuf, allocate one and copy
2153 		 * the data into it.  This greatly reduces
2154 		 * memory consumption when we receive lots
2155 		 * of small packets.
2156 		 */
2157 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2158 			struct mbuf *nm;
2159 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2160 			if (nm == NULL) {
2161 				ifp->if_ierrors++;
2162 				m_freem(m);
2163 				continue;
2164 			}
2165 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2166 			nm->m_data += 2;
2167 			nm->m_pkthdr.len = nm->m_len = len;
2168 			m_copydata(m, 0, len, mtod(nm, void *));
2169 			m_freem(m);
2170 			m = nm;
2171 		}
2172 #ifndef __NO_STRICT_ALIGNMENT
2173 		else {
2174 			/*
2175 			 * The DP83820's receive buffers must be 4-byte
2176 			 * aligned.  But this means that the data after
2177 			 * the Ethernet header is misaligned.  To compensate,
2178 			 * we have artificially shortened the buffer size
2179 			 * in the descriptor, and we do an overlapping copy
2180 			 * of the data two bytes further in (in the first
2181 			 * buffer of the chain only).
2182 			 */
2183 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2184 			    m->m_len);
2185 			m->m_data += 2;
2186 		}
2187 #endif /* ! __NO_STRICT_ALIGNMENT */
2188 
2189 		/*
2190 		 * If VLANs are enabled, VLAN packets have been unwrapped
2191 		 * for us.  Associate the tag with the packet.
2192 		 */
2193 
2194 		/*
2195 		 * Again, byte swapping is tricky. Hardware provided
2196 		 * the tag in the network byte order, but extsts was
2197 		 * passed through le32toh() in the meantime. On a
2198 		 * big-endian machine, we need to swap it again. On a
2199 		 * little-endian machine, we need to convert from the
2200 		 * network to host byte order. This means that we must
2201 		 * swap it in any case, so unconditional swap instead
2202 		 * of htons() is used.
2203 		 */
2204 		if ((extsts & EXTSTS_VPKT) != 0) {
2205 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2206 			    continue);
2207 		}
2208 
2209 		/*
2210 		 * Set the incoming checksum information for the
2211 		 * packet.
2212 		 */
2213 		if ((extsts & EXTSTS_IPPKT) != 0) {
2214 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2215 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2216 			if (extsts & EXTSTS_Rx_IPERR)
2217 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2218 			if (extsts & EXTSTS_TCPPKT) {
2219 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2220 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2221 				if (extsts & EXTSTS_Rx_TCPERR)
2222 					m->m_pkthdr.csum_flags |=
2223 					    M_CSUM_TCP_UDP_BAD;
2224 			} else if (extsts & EXTSTS_UDPPKT) {
2225 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2226 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2227 				if (extsts & EXTSTS_Rx_UDPERR)
2228 					m->m_pkthdr.csum_flags |=
2229 					    M_CSUM_TCP_UDP_BAD;
2230 			}
2231 		}
2232 
2233 		ifp->if_ipackets++;
2234 		m->m_pkthdr.rcvif = ifp;
2235 		m->m_pkthdr.len = len;
2236 
2237 		/*
2238 		 * Pass this up to any BPF listeners, but only
2239 		 * pass if up the stack if it's for us.
2240 		 */
2241 		bpf_mtap(ifp, m);
2242 
2243 		/* Pass it on. */
2244 		(*ifp->if_input)(ifp, m);
2245 	}
2246 
2247 	/* Update the receive pointer. */
2248 	sc->sc_rxptr = i;
2249 }
2250 
2251 /*
2252  * sip_rxintr:
2253  *
2254  *	Helper; handle receive interrupts on 10/100 parts.
2255  */
2256 static void
2257 sip_rxintr(struct sip_softc *sc)
2258 {
2259 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2260 	struct sip_rxsoft *rxs;
2261 	struct mbuf *m;
2262 	u_int32_t cmdsts;
2263 	int i, len;
2264 
2265 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2266 		rxs = &sc->sc_rxsoft[i];
2267 
2268 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2269 
2270 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2271 
2272 		/*
2273 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2274 		 * consumer of the receive ring, so if the bit is clear,
2275 		 * we have processed all of the packets.
2276 		 */
2277 		if ((cmdsts & CMDSTS_OWN) == 0) {
2278 			/*
2279 			 * We have processed all of the receive buffers.
2280 			 */
2281 			break;
2282 		}
2283 
2284 		/*
2285 		 * If any collisions were seen on the wire, count one.
2286 		 */
2287 		if (cmdsts & CMDSTS_Rx_COL)
2288 			ifp->if_collisions++;
2289 
2290 		/*
2291 		 * If an error occurred, update stats, clear the status
2292 		 * word, and leave the packet buffer in place.  It will
2293 		 * simply be reused the next time the ring comes around.
2294 		 */
2295 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2296 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2297 			ifp->if_ierrors++;
2298 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2299 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2300 				/* Receive overrun handled elsewhere. */
2301 				printf("%s: receive descriptor error\n",
2302 				    device_xname(sc->sc_dev));
2303 			}
2304 #define	PRINTERR(bit, str)						\
2305 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2306 			    (cmdsts & (bit)) != 0)			\
2307 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2308 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2309 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2310 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2311 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2312 #undef PRINTERR
2313 			sip_init_rxdesc(sc, i);
2314 			continue;
2315 		}
2316 
2317 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2318 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2319 
2320 		/*
2321 		 * No errors; receive the packet.  Note, the SiS 900
2322 		 * includes the CRC with every packet.
2323 		 */
2324 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2325 
2326 #ifdef __NO_STRICT_ALIGNMENT
2327 		/*
2328 		 * If the packet is small enough to fit in a
2329 		 * single header mbuf, allocate one and copy
2330 		 * the data into it.  This greatly reduces
2331 		 * memory consumption when we receive lots
2332 		 * of small packets.
2333 		 *
2334 		 * Otherwise, we add a new buffer to the receive
2335 		 * chain.  If this fails, we drop the packet and
2336 		 * recycle the old buffer.
2337 		 */
2338 		if (sip_copy_small != 0 && len <= MHLEN) {
2339 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2340 			if (m == NULL)
2341 				goto dropit;
2342 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2343 			memcpy(mtod(m, void *),
2344 			    mtod(rxs->rxs_mbuf, void *), len);
2345 			sip_init_rxdesc(sc, i);
2346 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2347 			    rxs->rxs_dmamap->dm_mapsize,
2348 			    BUS_DMASYNC_PREREAD);
2349 		} else {
2350 			m = rxs->rxs_mbuf;
2351 			if (sipcom_add_rxbuf(sc, i) != 0) {
2352  dropit:
2353 				ifp->if_ierrors++;
2354 				sip_init_rxdesc(sc, i);
2355 				bus_dmamap_sync(sc->sc_dmat,
2356 				    rxs->rxs_dmamap, 0,
2357 				    rxs->rxs_dmamap->dm_mapsize,
2358 				    BUS_DMASYNC_PREREAD);
2359 				continue;
2360 			}
2361 		}
2362 #else
2363 		/*
2364 		 * The SiS 900's receive buffers must be 4-byte aligned.
2365 		 * But this means that the data after the Ethernet header
2366 		 * is misaligned.  We must allocate a new buffer and
2367 		 * copy the data, shifted forward 2 bytes.
2368 		 */
2369 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2370 		if (m == NULL) {
2371  dropit:
2372 			ifp->if_ierrors++;
2373 			sip_init_rxdesc(sc, i);
2374 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2375 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2376 			continue;
2377 		}
2378 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2379 		if (len > (MHLEN - 2)) {
2380 			MCLGET(m, M_DONTWAIT);
2381 			if ((m->m_flags & M_EXT) == 0) {
2382 				m_freem(m);
2383 				goto dropit;
2384 			}
2385 		}
2386 		m->m_data += 2;
2387 
2388 		/*
2389 		 * Note that we use clusters for incoming frames, so the
2390 		 * buffer is virtually contiguous.
2391 		 */
2392 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2393 
2394 		/* Allow the receive descriptor to continue using its mbuf. */
2395 		sip_init_rxdesc(sc, i);
2396 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2397 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2398 #endif /* __NO_STRICT_ALIGNMENT */
2399 
2400 		ifp->if_ipackets++;
2401 		m->m_pkthdr.rcvif = ifp;
2402 		m->m_pkthdr.len = m->m_len = len;
2403 
2404 		/*
2405 		 * Pass this up to any BPF listeners, but only
2406 		 * pass if up the stack if it's for us.
2407 		 */
2408 		bpf_mtap(ifp, m);
2409 
2410 		/* Pass it on. */
2411 		(*ifp->if_input)(ifp, m);
2412 	}
2413 
2414 	/* Update the receive pointer. */
2415 	sc->sc_rxptr = i;
2416 }
2417 
2418 /*
2419  * sip_tick:
2420  *
2421  *	One second timer, used to tick the MII.
2422  */
2423 static void
2424 sipcom_tick(void *arg)
2425 {
2426 	struct sip_softc *sc = arg;
2427 	int s;
2428 
2429 	s = splnet();
2430 #ifdef SIP_EVENT_COUNTERS
2431 	if (sc->sc_gigabit) {
2432 		/* Read PAUSE related counts from MIB registers. */
2433 		sc->sc_ev_rxpause.ev_count +=
2434 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2435 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2436 		sc->sc_ev_txpause.ev_count +=
2437 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2438 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2439 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2440 	}
2441 #endif /* SIP_EVENT_COUNTERS */
2442 	mii_tick(&sc->sc_mii);
2443 	splx(s);
2444 
2445 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2446 }
2447 
2448 /*
2449  * sip_reset:
2450  *
2451  *	Perform a soft reset on the SiS 900.
2452  */
2453 static bool
2454 sipcom_reset(struct sip_softc *sc)
2455 {
2456 	bus_space_tag_t st = sc->sc_st;
2457 	bus_space_handle_t sh = sc->sc_sh;
2458 	int i;
2459 
2460 	bus_space_write_4(st, sh, SIP_IER, 0);
2461 	bus_space_write_4(st, sh, SIP_IMR, 0);
2462 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2463 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2464 
2465 	for (i = 0; i < SIP_TIMEOUT; i++) {
2466 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2467 			break;
2468 		delay(2);
2469 	}
2470 
2471 	if (i == SIP_TIMEOUT) {
2472 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2473 		return false;
2474 	}
2475 
2476 	delay(1000);
2477 
2478 	if (sc->sc_gigabit) {
2479 		/*
2480 		 * Set the general purpose I/O bits.  Do it here in case we
2481 		 * need to have GPIO set up to talk to the media interface.
2482 		 */
2483 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2484 		delay(1000);
2485 	}
2486 	return true;
2487 }
2488 
2489 static void
2490 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2491 {
2492 	u_int32_t reg;
2493 	bus_space_tag_t st = sc->sc_st;
2494 	bus_space_handle_t sh = sc->sc_sh;
2495 	/*
2496 	 * Initialize the VLAN/IP receive control register.
2497 	 * We enable checksum computation on all incoming
2498 	 * packets, and do not reject packets w/ bad checksums.
2499 	 */
2500 	reg = 0;
2501 	if (capenable &
2502 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2503 		reg |= VRCR_IPEN;
2504 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2505 		reg |= VRCR_VTDEN|VRCR_VTREN;
2506 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2507 
2508 	/*
2509 	 * Initialize the VLAN/IP transmit control register.
2510 	 * We enable outgoing checksum computation on a
2511 	 * per-packet basis.
2512 	 */
2513 	reg = 0;
2514 	if (capenable &
2515 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2516 		reg |= VTCR_PPCHK;
2517 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2518 		reg |= VTCR_VPPTI;
2519 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2520 
2521 	/*
2522 	 * If we're using VLANs, initialize the VLAN data register.
2523 	 * To understand why we bswap the VLAN Ethertype, see section
2524 	 * 4.2.36 of the DP83820 manual.
2525 	 */
2526 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2527 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2528 }
2529 
2530 /*
2531  * sip_init:		[ ifnet interface function ]
2532  *
2533  *	Initialize the interface.  Must be called at splnet().
2534  */
2535 static int
2536 sipcom_init(struct ifnet *ifp)
2537 {
2538 	struct sip_softc *sc = ifp->if_softc;
2539 	bus_space_tag_t st = sc->sc_st;
2540 	bus_space_handle_t sh = sc->sc_sh;
2541 	struct sip_txsoft *txs;
2542 	struct sip_rxsoft *rxs;
2543 	struct sip_desc *sipd;
2544 	int i, error = 0;
2545 
2546 	if (device_is_active(sc->sc_dev)) {
2547 		/*
2548 		 * Cancel any pending I/O.
2549 		 */
2550 		sipcom_stop(ifp, 0);
2551 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2552 	           !device_is_active(sc->sc_dev))
2553 		return 0;
2554 
2555 	/*
2556 	 * Reset the chip to a known state.
2557 	 */
2558 	if (!sipcom_reset(sc))
2559 		return EBUSY;
2560 
2561 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2562 		/*
2563 		 * DP83815 manual, page 78:
2564 		 *    4.4 Recommended Registers Configuration
2565 		 *    For optimum performance of the DP83815, version noted
2566 		 *    as DP83815CVNG (SRR = 203h), the listed register
2567 		 *    modifications must be followed in sequence...
2568 		 *
2569 		 * It's not clear if this should be 302h or 203h because that
2570 		 * chip name is listed as SRR 302h in the description of the
2571 		 * SRR register.  However, my revision 302h DP83815 on the
2572 		 * Netgear FA311 purchased in 02/2001 needs these settings
2573 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2574 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2575 		 * this set or not.  [briggs -- 09 March 2001]
2576 		 *
2577 		 * Note that only the low-order 12 bits of 0xe4 are documented
2578 		 * and that this sets reserved bits in that register.
2579 		 */
2580 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2581 
2582 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2583 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2584 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2585 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2586 
2587 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2588 	}
2589 
2590 	/*
2591 	 * Initialize the transmit descriptor ring.
2592 	 */
2593 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2594 		sipd = &sc->sc_txdescs[i];
2595 		memset(sipd, 0, sizeof(struct sip_desc));
2596 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2597 	}
2598 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2599 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2600 	sc->sc_txfree = sc->sc_ntxdesc;
2601 	sc->sc_txnext = 0;
2602 	sc->sc_txwin = 0;
2603 
2604 	/*
2605 	 * Initialize the transmit job descriptors.
2606 	 */
2607 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2608 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2609 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2610 		txs = &sc->sc_txsoft[i];
2611 		txs->txs_mbuf = NULL;
2612 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2613 	}
2614 
2615 	/*
2616 	 * Initialize the receive descriptor and receive job
2617 	 * descriptor rings.
2618 	 */
2619 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2620 		rxs = &sc->sc_rxsoft[i];
2621 		if (rxs->rxs_mbuf == NULL) {
2622 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2623 				printf("%s: unable to allocate or map rx "
2624 				    "buffer %d, error = %d\n",
2625 				    device_xname(sc->sc_dev), i, error);
2626 				/*
2627 				 * XXX Should attempt to run with fewer receive
2628 				 * XXX buffers instead of just failing.
2629 				 */
2630 				sipcom_rxdrain(sc);
2631 				goto out;
2632 			}
2633 		} else
2634 			sip_init_rxdesc(sc, i);
2635 	}
2636 	sc->sc_rxptr = 0;
2637 	sc->sc_rxdiscard = 0;
2638 	sip_rxchain_reset(sc);
2639 
2640 	/*
2641 	 * Set the configuration register; it's already initialized
2642 	 * in sip_attach().
2643 	 */
2644 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2645 
2646 	/*
2647 	 * Initialize the prototype TXCFG register.
2648 	 */
2649 	if (sc->sc_gigabit) {
2650 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2651 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2652 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2653 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2654 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2655 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2656 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2657 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2658 	} else {
2659 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2660 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2661 	}
2662 
2663 	sc->sc_txcfg |= TXCFG_ATP |
2664 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2665 	    sc->sc_tx_drain_thresh;
2666 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2667 
2668 	/*
2669 	 * Initialize the receive drain threshold if we have never
2670 	 * done so.
2671 	 */
2672 	if (sc->sc_rx_drain_thresh == 0) {
2673 		/*
2674 		 * XXX This value should be tuned.  This is set to the
2675 		 * maximum of 248 bytes, and we may be able to improve
2676 		 * performance by decreasing it (although we should never
2677 		 * set this value lower than 2; 14 bytes are required to
2678 		 * filter the packet).
2679 		 */
2680 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2681 	}
2682 
2683 	/*
2684 	 * Initialize the prototype RXCFG register.
2685 	 */
2686 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2687 	/*
2688 	 * Accept long packets (including FCS) so we can handle
2689 	 * 802.1q-tagged frames and jumbo frames properly.
2690 	 */
2691 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2692 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2693 		sc->sc_rxcfg |= RXCFG_ALP;
2694 
2695 	/*
2696 	 * Checksum offloading is disabled if the user selects an MTU
2697 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2698 	 * evidence that >8109 does not work on some boards, such as the
2699 	 * Planex GN-1000TE).
2700 	 */
2701 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2702 	    (ifp->if_capenable &
2703 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2704 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2705 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2706 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2707 		       "disabled.\n", device_xname(sc->sc_dev));
2708 		ifp->if_capenable &=
2709 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2710 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2711 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2712 		ifp->if_csum_flags_tx = 0;
2713 		ifp->if_csum_flags_rx = 0;
2714 	}
2715 
2716 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2717 
2718 	if (sc->sc_gigabit)
2719 		sipcom_dp83820_init(sc, ifp->if_capenable);
2720 
2721 	/*
2722 	 * Give the transmit and receive rings to the chip.
2723 	 */
2724 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2725 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2726 
2727 	/*
2728 	 * Initialize the interrupt mask.
2729 	 */
2730 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2731 	             sc->sc_bits.b_isr_sserr |
2732 		     sc->sc_bits.b_isr_rmabt |
2733 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2734 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2735 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2736 
2737 	/* Set up the receive filter. */
2738 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2739 
2740 	/*
2741 	 * Tune sc_rx_flow_thresh.
2742 	 * XXX "More than 8KB" is too short for jumbo frames.
2743 	 * XXX TODO: Threshold value should be user-settable.
2744 	 */
2745 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2746 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2747 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2748 
2749 	/*
2750 	 * Set the current media.  Do this after initializing the prototype
2751 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2752 	 * control.
2753 	 */
2754 	if ((error = ether_mediachange(ifp)) != 0)
2755 		goto out;
2756 
2757 	/*
2758 	 * Set the interrupt hold-off timer to 100us.
2759 	 */
2760 	if (sc->sc_gigabit)
2761 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2762 
2763 	/*
2764 	 * Enable interrupts.
2765 	 */
2766 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2767 
2768 	/*
2769 	 * Start the transmit and receive processes.
2770 	 */
2771 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2772 
2773 	/*
2774 	 * Start the one second MII clock.
2775 	 */
2776 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2777 
2778 	/*
2779 	 * ...all done!
2780 	 */
2781 	ifp->if_flags |= IFF_RUNNING;
2782 	ifp->if_flags &= ~IFF_OACTIVE;
2783 	sc->sc_if_flags = ifp->if_flags;
2784 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2785 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2786 	sc->sc_prev.if_capenable = ifp->if_capenable;
2787 
2788  out:
2789 	if (error)
2790 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2791 	return (error);
2792 }
2793 
2794 /*
2795  * sip_drain:
2796  *
2797  *	Drain the receive queue.
2798  */
2799 static void
2800 sipcom_rxdrain(struct sip_softc *sc)
2801 {
2802 	struct sip_rxsoft *rxs;
2803 	int i;
2804 
2805 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2806 		rxs = &sc->sc_rxsoft[i];
2807 		if (rxs->rxs_mbuf != NULL) {
2808 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2809 			m_freem(rxs->rxs_mbuf);
2810 			rxs->rxs_mbuf = NULL;
2811 		}
2812 	}
2813 }
2814 
2815 /*
2816  * sip_stop:		[ ifnet interface function ]
2817  *
2818  *	Stop transmission on the interface.
2819  */
2820 static void
2821 sipcom_stop(struct ifnet *ifp, int disable)
2822 {
2823 	struct sip_softc *sc = ifp->if_softc;
2824 	bus_space_tag_t st = sc->sc_st;
2825 	bus_space_handle_t sh = sc->sc_sh;
2826 	struct sip_txsoft *txs;
2827 	u_int32_t cmdsts = 0;		/* DEBUG */
2828 
2829 	/*
2830 	 * Stop the one second clock.
2831 	 */
2832 	callout_stop(&sc->sc_tick_ch);
2833 
2834 	/* Down the MII. */
2835 	mii_down(&sc->sc_mii);
2836 
2837 	if (device_is_active(sc->sc_dev)) {
2838 		/*
2839 		 * Disable interrupts.
2840 		 */
2841 		bus_space_write_4(st, sh, SIP_IER, 0);
2842 
2843 		/*
2844 		 * Stop receiver and transmitter.
2845 		 */
2846 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2847 	}
2848 
2849 	/*
2850 	 * Release any queued transmit buffers.
2851 	 */
2852 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2853 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2854 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2855 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2856 		     CMDSTS_INTR) == 0)
2857 			printf("%s: sip_stop: last descriptor does not "
2858 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2859 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2860 #ifdef DIAGNOSTIC
2861 		if (txs->txs_mbuf == NULL) {
2862 			printf("%s: dirty txsoft with no mbuf chain\n",
2863 			    device_xname(sc->sc_dev));
2864 			panic("sip_stop");
2865 		}
2866 #endif
2867 		cmdsts |=		/* DEBUG */
2868 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2869 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2870 		m_freem(txs->txs_mbuf);
2871 		txs->txs_mbuf = NULL;
2872 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2873 	}
2874 
2875 	/*
2876 	 * Mark the interface down and cancel the watchdog timer.
2877 	 */
2878 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2879 	ifp->if_timer = 0;
2880 
2881 	if (disable)
2882 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2883 
2884 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2885 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2886 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2887 		    "descriptors\n", device_xname(sc->sc_dev));
2888 }
2889 
2890 /*
2891  * sip_read_eeprom:
2892  *
2893  *	Read data from the serial EEPROM.
2894  */
2895 static void
2896 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2897     u_int16_t *data)
2898 {
2899 	bus_space_tag_t st = sc->sc_st;
2900 	bus_space_handle_t sh = sc->sc_sh;
2901 	u_int16_t reg;
2902 	int i, x;
2903 
2904 	for (i = 0; i < wordcnt; i++) {
2905 		/* Send CHIP SELECT. */
2906 		reg = EROMAR_EECS;
2907 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2908 
2909 		/* Shift in the READ opcode. */
2910 		for (x = 3; x > 0; x--) {
2911 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2912 				reg |= EROMAR_EEDI;
2913 			else
2914 				reg &= ~EROMAR_EEDI;
2915 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2916 			bus_space_write_4(st, sh, SIP_EROMAR,
2917 			    reg | EROMAR_EESK);
2918 			delay(4);
2919 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2920 			delay(4);
2921 		}
2922 
2923 		/* Shift in address. */
2924 		for (x = 6; x > 0; x--) {
2925 			if ((word + i) & (1 << (x - 1)))
2926 				reg |= EROMAR_EEDI;
2927 			else
2928 				reg &= ~EROMAR_EEDI;
2929 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2930 			bus_space_write_4(st, sh, SIP_EROMAR,
2931 			    reg | EROMAR_EESK);
2932 			delay(4);
2933 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2934 			delay(4);
2935 		}
2936 
2937 		/* Shift out data. */
2938 		reg = EROMAR_EECS;
2939 		data[i] = 0;
2940 		for (x = 16; x > 0; x--) {
2941 			bus_space_write_4(st, sh, SIP_EROMAR,
2942 			    reg | EROMAR_EESK);
2943 			delay(4);
2944 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2945 				data[i] |= (1 << (x - 1));
2946 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2947 			delay(4);
2948 		}
2949 
2950 		/* Clear CHIP SELECT. */
2951 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2952 		delay(4);
2953 	}
2954 }
2955 
2956 /*
2957  * sipcom_add_rxbuf:
2958  *
2959  *	Add a receive buffer to the indicated descriptor.
2960  */
2961 static int
2962 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2963 {
2964 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2965 	struct mbuf *m;
2966 	int error;
2967 
2968 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2969 	if (m == NULL)
2970 		return (ENOBUFS);
2971 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2972 
2973 	MCLGET(m, M_DONTWAIT);
2974 	if ((m->m_flags & M_EXT) == 0) {
2975 		m_freem(m);
2976 		return (ENOBUFS);
2977 	}
2978 
2979 	/* XXX I don't believe this is necessary. --dyoung */
2980 	if (sc->sc_gigabit)
2981 		m->m_len = sc->sc_parm->p_rxbuf_len;
2982 
2983 	if (rxs->rxs_mbuf != NULL)
2984 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2985 
2986 	rxs->rxs_mbuf = m;
2987 
2988 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2989 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2990 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2991 	if (error) {
2992 		printf("%s: can't load rx DMA map %d, error = %d\n",
2993 		    device_xname(sc->sc_dev), idx, error);
2994 		panic("%s", __func__);		/* XXX */
2995 	}
2996 
2997 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2998 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2999 
3000 	sip_init_rxdesc(sc, idx);
3001 
3002 	return (0);
3003 }
3004 
3005 /*
3006  * sip_sis900_set_filter:
3007  *
3008  *	Set up the receive filter.
3009  */
3010 static void
3011 sipcom_sis900_set_filter(struct sip_softc *sc)
3012 {
3013 	bus_space_tag_t st = sc->sc_st;
3014 	bus_space_handle_t sh = sc->sc_sh;
3015 	struct ethercom *ec = &sc->sc_ethercom;
3016 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3017 	struct ether_multi *enm;
3018 	const u_int8_t *cp;
3019 	struct ether_multistep step;
3020 	u_int32_t crc, mchash[16];
3021 
3022 	/*
3023 	 * Initialize the prototype RFCR.
3024 	 */
3025 	sc->sc_rfcr = RFCR_RFEN;
3026 	if (ifp->if_flags & IFF_BROADCAST)
3027 		sc->sc_rfcr |= RFCR_AAB;
3028 	if (ifp->if_flags & IFF_PROMISC) {
3029 		sc->sc_rfcr |= RFCR_AAP;
3030 		goto allmulti;
3031 	}
3032 
3033 	/*
3034 	 * Set up the multicast address filter by passing all multicast
3035 	 * addresses through a CRC generator, and then using the high-order
3036 	 * 6 bits as an index into the 128 bit multicast hash table (only
3037 	 * the lower 16 bits of each 32 bit multicast hash register are
3038 	 * valid).  The high order bits select the register, while the
3039 	 * rest of the bits select the bit within the register.
3040 	 */
3041 
3042 	memset(mchash, 0, sizeof(mchash));
3043 
3044 	/*
3045 	 * SiS900 (at least SiS963) requires us to register the address of
3046 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3047 	 */
3048 	crc = 0x0ed423f9;
3049 
3050 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3051 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3052 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3053 		/* Just want the 8 most significant bits. */
3054 		crc >>= 24;
3055 	} else {
3056 		/* Just want the 7 most significant bits. */
3057 		crc >>= 25;
3058 	}
3059 
3060 	/* Set the corresponding bit in the hash table. */
3061 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3062 
3063 	ETHER_FIRST_MULTI(step, ec, enm);
3064 	while (enm != NULL) {
3065 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3066 			/*
3067 			 * We must listen to a range of multicast addresses.
3068 			 * For now, just accept all multicasts, rather than
3069 			 * trying to set only those filter bits needed to match
3070 			 * the range.  (At this time, the only use of address
3071 			 * ranges is for IP multicast routing, for which the
3072 			 * range is big enough to require all bits set.)
3073 			 */
3074 			goto allmulti;
3075 		}
3076 
3077 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3078 
3079 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3080 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3081 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3082 			/* Just want the 8 most significant bits. */
3083 			crc >>= 24;
3084 		} else {
3085 			/* Just want the 7 most significant bits. */
3086 			crc >>= 25;
3087 		}
3088 
3089 		/* Set the corresponding bit in the hash table. */
3090 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3091 
3092 		ETHER_NEXT_MULTI(step, enm);
3093 	}
3094 
3095 	ifp->if_flags &= ~IFF_ALLMULTI;
3096 	goto setit;
3097 
3098  allmulti:
3099 	ifp->if_flags |= IFF_ALLMULTI;
3100 	sc->sc_rfcr |= RFCR_AAM;
3101 
3102  setit:
3103 #define	FILTER_EMIT(addr, data)						\
3104 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3105 	delay(1);							\
3106 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3107 	delay(1)
3108 
3109 	/*
3110 	 * Disable receive filter, and program the node address.
3111 	 */
3112 	cp = CLLADDR(ifp->if_sadl);
3113 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3114 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3115 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3116 
3117 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3118 		/*
3119 		 * Program the multicast hash table.
3120 		 */
3121 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3122 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3123 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3124 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3125 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3126 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3127 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3128 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3129 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3130 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3131 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3132 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3133 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3134 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3135 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3136 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3137 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3138 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3139 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3140 		}
3141 	}
3142 #undef FILTER_EMIT
3143 
3144 	/*
3145 	 * Re-enable the receiver filter.
3146 	 */
3147 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3148 }
3149 
3150 /*
3151  * sip_dp83815_set_filter:
3152  *
3153  *	Set up the receive filter.
3154  */
3155 static void
3156 sipcom_dp83815_set_filter(struct sip_softc *sc)
3157 {
3158 	bus_space_tag_t st = sc->sc_st;
3159 	bus_space_handle_t sh = sc->sc_sh;
3160 	struct ethercom *ec = &sc->sc_ethercom;
3161 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3162 	struct ether_multi *enm;
3163 	const u_int8_t *cp;
3164 	struct ether_multistep step;
3165 	u_int32_t crc, hash, slot, bit;
3166 #define	MCHASH_NWORDS_83820	128
3167 #define	MCHASH_NWORDS_83815	32
3168 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3169 	u_int16_t mchash[MCHASH_NWORDS];
3170 	int i;
3171 
3172 	/*
3173 	 * Initialize the prototype RFCR.
3174 	 * Enable the receive filter, and accept on
3175 	 *    Perfect (destination address) Match
3176 	 * If IFF_BROADCAST, also accept all broadcast packets.
3177 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3178 	 *    IFF_ALLMULTI and accept all multicast, too).
3179 	 */
3180 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3181 	if (ifp->if_flags & IFF_BROADCAST)
3182 		sc->sc_rfcr |= RFCR_AAB;
3183 	if (ifp->if_flags & IFF_PROMISC) {
3184 		sc->sc_rfcr |= RFCR_AAP;
3185 		goto allmulti;
3186 	}
3187 
3188 	/*
3189          * Set up the DP83820/DP83815 multicast address filter by
3190          * passing all multicast addresses through a CRC generator,
3191          * and then using the high-order 11/9 bits as an index into
3192          * the 2048/512 bit multicast hash table.  The high-order
3193          * 7/5 bits select the slot, while the low-order 4 bits
3194          * select the bit within the slot.  Note that only the low
3195          * 16-bits of each filter word are used, and there are
3196          * 128/32 filter words.
3197 	 */
3198 
3199 	memset(mchash, 0, sizeof(mchash));
3200 
3201 	ifp->if_flags &= ~IFF_ALLMULTI;
3202 	ETHER_FIRST_MULTI(step, ec, enm);
3203 	if (enm == NULL)
3204 		goto setit;
3205 	while (enm != NULL) {
3206 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3207 			/*
3208 			 * We must listen to a range of multicast addresses.
3209 			 * For now, just accept all multicasts, rather than
3210 			 * trying to set only those filter bits needed to match
3211 			 * the range.  (At this time, the only use of address
3212 			 * ranges is for IP multicast routing, for which the
3213 			 * range is big enough to require all bits set.)
3214 			 */
3215 			goto allmulti;
3216 		}
3217 
3218 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3219 
3220 		if (sc->sc_gigabit) {
3221 			/* Just want the 11 most significant bits. */
3222 			hash = crc >> 21;
3223 		} else {
3224 			/* Just want the 9 most significant bits. */
3225 			hash = crc >> 23;
3226 		}
3227 
3228 		slot = hash >> 4;
3229 		bit = hash & 0xf;
3230 
3231 		/* Set the corresponding bit in the hash table. */
3232 		mchash[slot] |= 1 << bit;
3233 
3234 		ETHER_NEXT_MULTI(step, enm);
3235 	}
3236 	sc->sc_rfcr |= RFCR_MHEN;
3237 	goto setit;
3238 
3239  allmulti:
3240 	ifp->if_flags |= IFF_ALLMULTI;
3241 	sc->sc_rfcr |= RFCR_AAM;
3242 
3243  setit:
3244 #define	FILTER_EMIT(addr, data)						\
3245 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3246 	delay(1);							\
3247 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3248 	delay(1)
3249 
3250 	/*
3251 	 * Disable receive filter, and program the node address.
3252 	 */
3253 	cp = CLLADDR(ifp->if_sadl);
3254 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3255 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3256 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3257 
3258 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3259 		int nwords =
3260 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3261 		/*
3262 		 * Program the multicast hash table.
3263 		 */
3264 		for (i = 0; i < nwords; i++) {
3265 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3266 		}
3267 	}
3268 #undef FILTER_EMIT
3269 #undef MCHASH_NWORDS
3270 #undef MCHASH_NWORDS_83815
3271 #undef MCHASH_NWORDS_83820
3272 
3273 	/*
3274 	 * Re-enable the receiver filter.
3275 	 */
3276 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3277 }
3278 
3279 /*
3280  * sip_dp83820_mii_readreg:	[mii interface function]
3281  *
3282  *	Read a PHY register on the MII of the DP83820.
3283  */
3284 static int
3285 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3286 {
3287 	struct sip_softc *sc = device_private(self);
3288 
3289 	if (sc->sc_cfg & CFG_TBI_EN) {
3290 		bus_addr_t tbireg;
3291 		int rv;
3292 
3293 		if (phy != 0)
3294 			return (0);
3295 
3296 		switch (reg) {
3297 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3298 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3299 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3300 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3301 		case MII_ANER:		tbireg = SIP_TANER; break;
3302 		case MII_EXTSR:
3303 			/*
3304 			 * Don't even bother reading the TESR register.
3305 			 * The manual documents that the device has
3306 			 * 1000baseX full/half capability, but the
3307 			 * register itself seems read back 0 on some
3308 			 * boards.  Just hard-code the result.
3309 			 */
3310 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3311 
3312 		default:
3313 			return (0);
3314 		}
3315 
3316 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3317 		if (tbireg == SIP_TBISR) {
3318 			/* LINK and ACOMP are switched! */
3319 			int val = rv;
3320 
3321 			rv = 0;
3322 			if (val & TBISR_MR_LINK_STATUS)
3323 				rv |= BMSR_LINK;
3324 			if (val & TBISR_MR_AN_COMPLETE)
3325 				rv |= BMSR_ACOMP;
3326 
3327 			/*
3328 			 * The manual claims this register reads back 0
3329 			 * on hard and soft reset.  But we want to let
3330 			 * the gentbi driver know that we support auto-
3331 			 * negotiation, so hard-code this bit in the
3332 			 * result.
3333 			 */
3334 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3335 		}
3336 
3337 		return (rv);
3338 	}
3339 
3340 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3341 }
3342 
3343 /*
3344  * sip_dp83820_mii_writereg:	[mii interface function]
3345  *
3346  *	Write a PHY register on the MII of the DP83820.
3347  */
3348 static void
3349 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3350 {
3351 	struct sip_softc *sc = device_private(self);
3352 
3353 	if (sc->sc_cfg & CFG_TBI_EN) {
3354 		bus_addr_t tbireg;
3355 
3356 		if (phy != 0)
3357 			return;
3358 
3359 		switch (reg) {
3360 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3361 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3362 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3363 		default:
3364 			return;
3365 		}
3366 
3367 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3368 		return;
3369 	}
3370 
3371 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3372 }
3373 
3374 /*
3375  * sip_dp83820_mii_statchg:	[mii interface function]
3376  *
3377  *	Callback from MII layer when media changes.
3378  */
3379 static void
3380 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3381 {
3382 	struct sip_softc *sc = ifp->if_softc;
3383 	struct mii_data *mii = &sc->sc_mii;
3384 	u_int32_t cfg, pcr;
3385 
3386 	/*
3387 	 * Get flow control negotiation result.
3388 	 */
3389 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3390 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3391 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3392 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3393 	}
3394 
3395 	/*
3396 	 * Update TXCFG for full-duplex operation.
3397 	 */
3398 	if ((mii->mii_media_active & IFM_FDX) != 0)
3399 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3400 	else
3401 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3402 
3403 	/*
3404 	 * Update RXCFG for full-duplex or loopback.
3405 	 */
3406 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3407 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3408 		sc->sc_rxcfg |= RXCFG_ATX;
3409 	else
3410 		sc->sc_rxcfg &= ~RXCFG_ATX;
3411 
3412 	/*
3413 	 * Update CFG for MII/GMII.
3414 	 */
3415 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3416 		cfg = sc->sc_cfg | CFG_MODE_1000;
3417 	else
3418 		cfg = sc->sc_cfg;
3419 
3420 	/*
3421 	 * 802.3x flow control.
3422 	 */
3423 	pcr = 0;
3424 	if (sc->sc_flowflags & IFM_FLOW) {
3425 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3426 			pcr |= sc->sc_rx_flow_thresh;
3427 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3428 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3429 	}
3430 
3431 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3432 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3433 	    sc->sc_txcfg);
3434 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3435 	    sc->sc_rxcfg);
3436 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3437 }
3438 
3439 /*
3440  * sip_mii_bitbang_read: [mii bit-bang interface function]
3441  *
3442  *	Read the MII serial port for the MII bit-bang module.
3443  */
3444 static u_int32_t
3445 sipcom_mii_bitbang_read(device_t self)
3446 {
3447 	struct sip_softc *sc = device_private(self);
3448 
3449 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3450 }
3451 
3452 /*
3453  * sip_mii_bitbang_write: [mii big-bang interface function]
3454  *
3455  *	Write the MII serial port for the MII bit-bang module.
3456  */
3457 static void
3458 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3459 {
3460 	struct sip_softc *sc = device_private(self);
3461 
3462 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3463 }
3464 
3465 /*
3466  * sip_sis900_mii_readreg:	[mii interface function]
3467  *
3468  *	Read a PHY register on the MII.
3469  */
3470 static int
3471 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3472 {
3473 	struct sip_softc *sc = device_private(self);
3474 	u_int32_t enphy;
3475 
3476 	/*
3477 	 * The PHY of recent SiS chipsets is accessed through bitbang
3478 	 * operations.
3479 	 */
3480 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3481 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3482 		    phy, reg);
3483 
3484 #ifndef SIS900_MII_RESTRICT
3485 	/*
3486 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3487 	 * MII address 0.
3488 	 */
3489 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3490 		return (0);
3491 #endif
3492 
3493 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3494 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3495 	    ENPHY_RWCMD | ENPHY_ACCESS);
3496 	do {
3497 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3498 	} while (enphy & ENPHY_ACCESS);
3499 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3500 }
3501 
3502 /*
3503  * sip_sis900_mii_writereg:	[mii interface function]
3504  *
3505  *	Write a PHY register on the MII.
3506  */
3507 static void
3508 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3509 {
3510 	struct sip_softc *sc = device_private(self);
3511 	u_int32_t enphy;
3512 
3513 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3514 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3515 		    phy, reg, val);
3516 		return;
3517 	}
3518 
3519 #ifndef SIS900_MII_RESTRICT
3520 	/*
3521 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3522 	 * MII address 0.
3523 	 */
3524 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3525 		return;
3526 #endif
3527 
3528 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3529 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3530 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3531 	do {
3532 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3533 	} while (enphy & ENPHY_ACCESS);
3534 }
3535 
3536 /*
3537  * sip_sis900_mii_statchg:	[mii interface function]
3538  *
3539  *	Callback from MII layer when media changes.
3540  */
3541 static void
3542 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3543 {
3544 	struct sip_softc *sc = ifp->if_softc;
3545 	struct mii_data *mii = &sc->sc_mii;
3546 	u_int32_t flowctl;
3547 
3548 	/*
3549 	 * Get flow control negotiation result.
3550 	 */
3551 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3552 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3553 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3554 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3555 	}
3556 
3557 	/*
3558 	 * Update TXCFG for full-duplex operation.
3559 	 */
3560 	if ((mii->mii_media_active & IFM_FDX) != 0)
3561 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3562 	else
3563 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3564 
3565 	/*
3566 	 * Update RXCFG for full-duplex or loopback.
3567 	 */
3568 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3569 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3570 		sc->sc_rxcfg |= RXCFG_ATX;
3571 	else
3572 		sc->sc_rxcfg &= ~RXCFG_ATX;
3573 
3574 	/*
3575 	 * Update IMR for use of 802.3x flow control.
3576 	 */
3577 	if (sc->sc_flowflags & IFM_FLOW) {
3578 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3579 		flowctl = FLOWCTL_FLOWEN;
3580 	} else {
3581 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3582 		flowctl = 0;
3583 	}
3584 
3585 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3586 	    sc->sc_txcfg);
3587 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3588 	    sc->sc_rxcfg);
3589 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3590 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3591 }
3592 
3593 /*
3594  * sip_dp83815_mii_readreg:	[mii interface function]
3595  *
3596  *	Read a PHY register on the MII.
3597  */
3598 static int
3599 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3600 {
3601 	struct sip_softc *sc = device_private(self);
3602 	u_int32_t val;
3603 
3604 	/*
3605 	 * The DP83815 only has an internal PHY.  Only allow
3606 	 * MII address 0.
3607 	 */
3608 	if (phy != 0)
3609 		return (0);
3610 
3611 	/*
3612 	 * Apparently, after a reset, the DP83815 can take a while
3613 	 * to respond.  During this recovery period, the BMSR returns
3614 	 * a value of 0.  Catch this -- it's not supposed to happen
3615 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3616 	 * PHY to come back to life.
3617 	 *
3618 	 * This works out because the BMSR is the first register
3619 	 * read during the PHY probe process.
3620 	 */
3621 	do {
3622 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3623 	} while (reg == MII_BMSR && val == 0);
3624 
3625 	return (val & 0xffff);
3626 }
3627 
3628 /*
3629  * sip_dp83815_mii_writereg:	[mii interface function]
3630  *
3631  *	Write a PHY register to the MII.
3632  */
3633 static void
3634 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3635 {
3636 	struct sip_softc *sc = device_private(self);
3637 
3638 	/*
3639 	 * The DP83815 only has an internal PHY.  Only allow
3640 	 * MII address 0.
3641 	 */
3642 	if (phy != 0)
3643 		return;
3644 
3645 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3646 }
3647 
3648 /*
3649  * sip_dp83815_mii_statchg:	[mii interface function]
3650  *
3651  *	Callback from MII layer when media changes.
3652  */
3653 static void
3654 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3655 {
3656 	struct sip_softc *sc = ifp->if_softc;
3657 
3658 	/*
3659 	 * Update TXCFG for full-duplex operation.
3660 	 */
3661 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3662 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3663 	else
3664 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3665 
3666 	/*
3667 	 * Update RXCFG for full-duplex or loopback.
3668 	 */
3669 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3670 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3671 		sc->sc_rxcfg |= RXCFG_ATX;
3672 	else
3673 		sc->sc_rxcfg &= ~RXCFG_ATX;
3674 
3675 	/*
3676 	 * XXX 802.3x flow control.
3677 	 */
3678 
3679 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3680 	    sc->sc_txcfg);
3681 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3682 	    sc->sc_rxcfg);
3683 
3684 	/*
3685 	 * Some DP83815s experience problems when used with short
3686 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3687 	 * sequence adjusts the DSP's signal attenuation to fix the
3688 	 * problem.
3689 	 */
3690 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3691 		uint32_t reg;
3692 
3693 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3694 
3695 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3696 		reg &= 0x0fff;
3697 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3698 		delay(100);
3699 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3700 		reg &= 0x00ff;
3701 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3702 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3703 			    0x00e8);
3704 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3705 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3706 			    reg | 0x20);
3707 		}
3708 
3709 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3710 	}
3711 }
3712 
3713 static void
3714 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3715     const struct pci_attach_args *pa, u_int8_t *enaddr)
3716 {
3717 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3718 	u_int8_t cksum, *e, match;
3719 	int i;
3720 
3721 	/*
3722 	 * EEPROM data format for the DP83820 can be found in
3723 	 * the DP83820 manual, section 4.2.4.
3724 	 */
3725 
3726 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3727 
3728 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3729 	match = ~(match - 1);
3730 
3731 	cksum = 0x55;
3732 	e = (u_int8_t *) eeprom_data;
3733 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3734 		cksum += *e++;
3735 
3736 	if (cksum != match)
3737 		printf("%s: Checksum (%x) mismatch (%x)",
3738 		    device_xname(sc->sc_dev), cksum, match);
3739 
3740 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3741 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3742 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3743 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3744 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3745 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3746 }
3747 
3748 static void
3749 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3750 {
3751 	int i;
3752 
3753 	/*
3754 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3755 	 * a reason, but I don't know it.
3756 	 */
3757 	for (i = 0; i < 10; i++)
3758 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3759 }
3760 
3761 static void
3762 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3763     const struct pci_attach_args *pa, u_int8_t *enaddr)
3764 {
3765 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3766 
3767 	switch (sc->sc_rev) {
3768 	case SIS_REV_630S:
3769 	case SIS_REV_630E:
3770 	case SIS_REV_630EA1:
3771 	case SIS_REV_630ET:
3772 	case SIS_REV_635:
3773 		/*
3774 		 * The MAC address for the on-board Ethernet of
3775 		 * the SiS 630 chipset is in the NVRAM.  Kick
3776 		 * the chip into re-loading it from NVRAM, and
3777 		 * read the MAC address out of the filter registers.
3778 		 */
3779 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3780 
3781 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3782 		    RFCR_RFADDR_NODE0);
3783 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3784 		    0xffff;
3785 
3786 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3787 		    RFCR_RFADDR_NODE2);
3788 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3789 		    0xffff;
3790 
3791 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3792 		    RFCR_RFADDR_NODE4);
3793 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3794 		    0xffff;
3795 		break;
3796 
3797 	case SIS_REV_960:
3798 		{
3799 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3800 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3801 
3802 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3803 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3804 
3805 			int waittime, i;
3806 
3807 			/* Allow to read EEPROM from LAN. It is shared
3808 			 * between a 1394 controller and the NIC and each
3809 			 * time we access it, we need to set SIS_EECMD_REQ.
3810 			 */
3811 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3812 
3813 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3814 				/* Force EEPROM to idle state. */
3815 
3816 				/*
3817 				 * XXX-cube This is ugly.  I'll look for docs about it.
3818 				 */
3819 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3820 				sipcom_sis900_eeprom_delay(sc);
3821 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3822 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3823 					sipcom_sis900_eeprom_delay(sc);
3824 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3825 					sipcom_sis900_eeprom_delay(sc);
3826 				}
3827 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3828 				sipcom_sis900_eeprom_delay(sc);
3829 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3830 
3831 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3832 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3833 					    sizeof(myea) / sizeof(myea[0]), myea);
3834 					break;
3835 				}
3836 				DELAY(1);
3837 			}
3838 
3839 			/*
3840 			 * Set SIS_EECTL_CLK to high, so a other master
3841 			 * can operate on the i2c bus.
3842 			 */
3843 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3844 
3845 			/* Refuse EEPROM access by LAN */
3846 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3847 		} break;
3848 
3849 	default:
3850 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3851 		    sizeof(myea) / sizeof(myea[0]), myea);
3852 	}
3853 
3854 	enaddr[0] = myea[0] & 0xff;
3855 	enaddr[1] = myea[0] >> 8;
3856 	enaddr[2] = myea[1] & 0xff;
3857 	enaddr[3] = myea[1] >> 8;
3858 	enaddr[4] = myea[2] & 0xff;
3859 	enaddr[5] = myea[2] >> 8;
3860 }
3861 
3862 /* Table and macro to bit-reverse an octet. */
3863 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3864 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3865 
3866 static void
3867 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3868     const struct pci_attach_args *pa, u_int8_t *enaddr)
3869 {
3870 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3871 	u_int8_t cksum, *e, match;
3872 	int i;
3873 
3874 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3875 	    sizeof(eeprom_data[0]), eeprom_data);
3876 
3877 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3878 	match = ~(match - 1);
3879 
3880 	cksum = 0x55;
3881 	e = (u_int8_t *) eeprom_data;
3882 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3883 		cksum += *e++;
3884 	}
3885 	if (cksum != match) {
3886 		printf("%s: Checksum (%x) mismatch (%x)",
3887 		    device_xname(sc->sc_dev), cksum, match);
3888 	}
3889 
3890 	/*
3891 	 * Unrolled because it makes slightly more sense this way.
3892 	 * The DP83815 stores the MAC address in bit 0 of word 6
3893 	 * through bit 15 of word 8.
3894 	 */
3895 	ea = &eeprom_data[6];
3896 	enaddr[0] = ((*ea & 0x1) << 7);
3897 	ea++;
3898 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3899 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3900 	enaddr[2] = ((*ea & 0x1) << 7);
3901 	ea++;
3902 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3903 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3904 	enaddr[4] = ((*ea & 0x1) << 7);
3905 	ea++;
3906 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3907 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3908 
3909 	/*
3910 	 * In case that's not weird enough, we also need to reverse
3911 	 * the bits in each byte.  This all actually makes more sense
3912 	 * if you think about the EEPROM storage as an array of bits
3913 	 * being shifted into bytes, but that's not how we're looking
3914 	 * at it here...
3915 	 */
3916 	for (i = 0; i < 6 ;i++)
3917 		enaddr[i] = bbr(enaddr[i]);
3918 }
3919 
3920 /*
3921  * sip_mediastatus:	[ifmedia interface function]
3922  *
3923  *	Get the current interface media status.
3924  */
3925 static void
3926 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3927 {
3928 	struct sip_softc *sc = ifp->if_softc;
3929 
3930 	if (!device_is_active(sc->sc_dev)) {
3931 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3932 		ifmr->ifm_status = 0;
3933 		return;
3934 	}
3935 	ether_mediastatus(ifp, ifmr);
3936 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3937 			   sc->sc_flowflags;
3938 }
3939