xref: /netbsd-src/sys/dev/pci/if_msk.c (revision 2d8e86c2f207da6fbbd50f11b6f33765ebdfa0e9)
1 /* $NetBSD: if_msk.c,v 1.91 2019/06/03 05:22:57 msaitoh Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.91 2019/06/03 05:22:57 msaitoh Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71  #define letoh16 htole16
72  #define letoh32 htole32
73 #endif
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78 
79 #include <net/if_media.h>
80 
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87 
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91 
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94 
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124 
125 void msk_update_int_mod(struct sk_softc *, int);
126 
127 int msk_miibus_readreg(device_t, int, int, uint16_t *);
128 int msk_miibus_writereg(device_t, int, int, uint16_t);
129 void msk_miibus_statchg(struct ifnet *);
130 
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135 
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x)	if (mskdebug) printf x
139 #define DPRINTFN(n, x)	if (mskdebug >= (n)) printf x
140 int	mskdebug = MSK_DEBUG;
141 
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n, x)
148 #endif
149 
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152 
153 #define MSK_ADDR_LO(x)	((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x)	((uint64_t) (x) >> 32)
155 
156 /* supported device vendors */
157 static const struct msk_product {
158 	pci_vendor_id_t		msk_vendor;
159 	pci_product_id_t	msk_product;
160 } msk_products[] = {
161 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
162 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550T_B1 },
163 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
164 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
170 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
171 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
172 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
173 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040 },
174 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040T },
175 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8042 },
176 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8048 },
177 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
178 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
179 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
180 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
181 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
183 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8057 },
184 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8058 },
185 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8059 },
186 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8070 },
191 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8071 },
192 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8072 },
193 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8075 },
194 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8079 },
195 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
196 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
197 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
198 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
199 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
200 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 	{ 0,				0 }
203 };
204 
205 static inline uint32_t
206 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
207 {
208 	return CSR_READ_4(sc, reg);
209 }
210 
211 static inline uint16_t
212 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
213 {
214 	return CSR_READ_2(sc, reg);
215 }
216 
217 static inline uint8_t
218 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
219 {
220 	return CSR_READ_1(sc, reg);
221 }
222 
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
225 {
226 	CSR_WRITE_4(sc, reg, x);
227 }
228 
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
231 {
232 	CSR_WRITE_2(sc, reg, x);
233 }
234 
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
237 {
238 	CSR_WRITE_1(sc, reg, x);
239 }
240 
241 int
242 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
243 {
244 	struct sk_if_softc *sc_if = device_private(dev);
245 	uint16_t data;
246 	int i;
247 
248 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250 
251 	for (i = 0; i < SK_TIMEOUT; i++) {
252 		DELAY(1);
253 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 		if (data & YU_SMICR_READ_VALID)
255 			break;
256 	}
257 
258 	if (i == SK_TIMEOUT) {
259 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 		return ETIMEDOUT;
261 	}
262 
263 	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
264 
265 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
266 
267 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
268 		phy, reg, *val));
269 
270 	return 0;
271 }
272 
273 int
274 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
275 {
276 	struct sk_if_softc *sc_if = device_private(dev);
277 	int i;
278 
279 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
280 		     phy, reg, val));
281 
282 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
283 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
284 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
285 
286 	for (i = 0; i < SK_TIMEOUT; i++) {
287 		DELAY(1);
288 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
289 			break;
290 	}
291 
292 	if (i == SK_TIMEOUT) {
293 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
294 		return ETIMEDOUT;
295 	}
296 
297 	return 0;
298 }
299 
300 void
301 msk_miibus_statchg(struct ifnet *ifp)
302 {
303 	struct sk_if_softc *sc_if = ifp->if_softc;
304 	struct mii_data *mii = &sc_if->sk_mii;
305 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
306 	int gpcr;
307 
308 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
309 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
310 
311 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
312 	    sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
313 		/* Set speed. */
314 		gpcr |= YU_GPCR_SPEED_DIS;
315 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 		case IFM_1000_SX:
317 		case IFM_1000_LX:
318 		case IFM_1000_CX:
319 		case IFM_1000_T:
320 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
321 			break;
322 		case IFM_100_TX:
323 			gpcr |= YU_GPCR_SPEED;
324 			break;
325 		}
326 
327 		/* Set duplex. */
328 		gpcr |= YU_GPCR_DPLX_DIS;
329 		if ((mii->mii_media_active & IFM_FDX) != 0)
330 			gpcr |= YU_GPCR_DUPLEX;
331 
332 		/* Disable flow control. */
333 		gpcr |= YU_GPCR_FCTL_DIS;
334 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
335 	}
336 
337 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
338 
339 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
340 		     SK_YU_READ_2(sc_if, YUKON_GPCR)));
341 }
342 
343 void
344 msk_setmulti(struct sk_if_softc *sc_if)
345 {
346 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
347 	uint32_t hashes[2] = { 0, 0 };
348 	int h;
349 	struct ethercom *ec = &sc_if->sk_ethercom;
350 	struct ether_multi *enm;
351 	struct ether_multistep step;
352 	uint16_t reg;
353 
354 	/* First, zot all the existing filters. */
355 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
356 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
357 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
358 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
359 
360 
361 	/* Now program new ones. */
362 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
363 	reg |= YU_RCR_UFLEN;
364 allmulti:
365 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
366 		if ((ifp->if_flags & IFF_PROMISC) != 0)
367 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
368 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
369 			hashes[0] = 0xFFFFFFFF;
370 			hashes[1] = 0xFFFFFFFF;
371 		}
372 	} else {
373 		/* First find the tail of the list. */
374 		ETHER_LOCK(ec);
375 		ETHER_FIRST_MULTI(step, ec, enm);
376 		while (enm != NULL) {
377 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
378 				 ETHER_ADDR_LEN)) {
379 				ifp->if_flags |= IFF_ALLMULTI;
380 				ETHER_UNLOCK(ec);
381 				goto allmulti;
382 			}
383 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
384 			    ((1 << SK_HASH_BITS) - 1);
385 			if (h < 32)
386 				hashes[0] |= (1 << h);
387 			else
388 				hashes[1] |= (1 << (h - 32));
389 
390 			ETHER_NEXT_MULTI(step, enm);
391 		}
392 		ETHER_UNLOCK(ec);
393 		reg |= YU_RCR_MUFLEN;
394 	}
395 
396 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
397 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
398 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
399 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
400 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
401 }
402 
403 void
404 msk_setpromisc(struct sk_if_softc *sc_if)
405 {
406 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
407 
408 	if (ifp->if_flags & IFF_PROMISC)
409 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
410 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
411 	else
412 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
413 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
414 }
415 
416 int
417 msk_init_rx_ring(struct sk_if_softc *sc_if)
418 {
419 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
420 	struct msk_ring_data	*rd = sc_if->sk_rdata;
421 	struct msk_rx_desc	*r;
422 	int			i, nexti;
423 
424 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
425 
426 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
427 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
428 		if (i == (MSK_RX_RING_CNT - 1))
429 			nexti = 0;
430 		else
431 			nexti = i + 1;
432 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
433 	}
434 
435 	sc_if->sk_cdata.sk_rx_prod = 0;
436 	sc_if->sk_cdata.sk_rx_cons = 0;
437 	sc_if->sk_cdata.sk_rx_cnt = 0;
438 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
439 
440 	/* Mark the first ring element to initialize the high address. */
441 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
442 	r = &rd->sk_rx_ring[cd->sk_rx_prod];
443 	r->sk_addr = htole32(cd->sk_rx_hiaddr);
444 	r->sk_len = 0;
445 	r->sk_ctl = 0;
446 	r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
447 	MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
448 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
449 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
450 	sc_if->sk_cdata.sk_rx_cnt++;
451 
452 	msk_fill_rx_ring(sc_if);
453 	return 0;
454 }
455 
456 int
457 msk_init_tx_ring(struct sk_if_softc *sc_if)
458 {
459 	struct sk_softc		*sc = sc_if->sk_softc;
460 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
461 	struct msk_ring_data	*rd = sc_if->sk_rdata;
462 	struct msk_tx_desc	*t;
463 	bus_dmamap_t		dmamap;
464 	struct sk_txmap_entry	*entry;
465 	int			i, nexti;
466 
467 	memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
468 
469 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
470 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
471 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
472 		if (i == (MSK_TX_RING_CNT - 1))
473 			nexti = 0;
474 		else
475 			nexti = i + 1;
476 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
477 
478 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
479 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
480 			return ENOBUFS;
481 
482 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
483 		if (!entry) {
484 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
485 			return ENOBUFS;
486 		}
487 		entry->dmamap = dmamap;
488 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
489 	}
490 
491 	sc_if->sk_cdata.sk_tx_prod = 0;
492 	sc_if->sk_cdata.sk_tx_cons = 0;
493 	sc_if->sk_cdata.sk_tx_cnt = 0;
494 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
495 
496 	/* Mark the first ring element to initialize the high address. */
497 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
498 	t = &rd->sk_tx_ring[cd->sk_tx_prod];
499 	t->sk_addr = htole32(cd->sk_tx_hiaddr);
500 	t->sk_len = 0;
501 	t->sk_ctl = 0;
502 	t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
503 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
504 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
505 	SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
506 	sc_if->sk_cdata.sk_tx_cnt++;
507 
508 	return 0;
509 }
510 
511 int
512 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
513 {
514 	struct mbuf		*m_new = NULL;
515 	struct sk_chain		*c;
516 	struct msk_rx_desc	*r;
517 	void			*buf = NULL;
518 	bus_addr_t		addr;
519 
520 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
521 	if (m_new == NULL)
522 		return ENOBUFS;
523 
524 	/* Allocate the jumbo buffer */
525 	buf = msk_jalloc(sc_if);
526 	if (buf == NULL) {
527 		m_freem(m_new);
528 		DPRINTFN(1, ("%s jumbo allocation failed -- packet "
529 		    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
530 		return ENOBUFS;
531 	}
532 
533 	/* Attach the buffer to the mbuf */
534 	m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
535 	MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
536 
537 	m_adj(m_new, ETHER_ALIGN);
538 
539 	addr = dmamap->dm_segs[0].ds_addr +
540 		  ((vaddr_t)m_new->m_data -
541 		   (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
542 
543 	if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
544 		c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
545 		r = c->sk_le;
546 		c->sk_mbuf = NULL;
547 		r->sk_addr = htole32(MSK_ADDR_HI(addr));
548 		r->sk_len = 0;
549 		r->sk_ctl = 0;
550 		r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
551 		sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
552 
553 		MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
554 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
555 
556 		SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
557 		sc_if->sk_cdata.sk_rx_cnt++;
558 
559 		DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
560 		    sc_if->sk_ethercom.ec_if.if_xname,
561 			(unsigned)MSK_ADDR_HI(addr)));
562 	}
563 
564 	c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
565 	r = c->sk_le;
566 	c->sk_mbuf = m_new;
567 	r->sk_addr = htole32(MSK_ADDR_LO(addr));
568 	r->sk_len = htole16(SK_JLEN);
569 	r->sk_ctl = 0;
570 	r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
571 
572 	MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
573 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
574 
575 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
576 	sc_if->sk_cdata.sk_rx_cnt++;
577 
578 	return 0;
579 }
580 
581 /*
582  * Memory management for jumbo frames.
583  */
584 
585 int
586 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
587 {
588 	struct sk_softc		*sc = sc_if->sk_softc;
589 	char *ptr, *kva;
590 	int		i, state, error;
591 	struct sk_jpool_entry	*entry;
592 
593 	state = error = 0;
594 
595 	/* Grab a big chunk o' storage. */
596 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
597 	     &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
598 	     BUS_DMA_NOWAIT)) {
599 		aprint_error(": can't alloc rx buffers");
600 		return ENOBUFS;
601 	}
602 
603 	state = 1;
604 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
605 	    sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
606 	    BUS_DMA_NOWAIT)) {
607 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
608 		error = ENOBUFS;
609 		goto out;
610 	}
611 
612 	state = 2;
613 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
614 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
615 		aprint_error(": can't create dma map");
616 		error = ENOBUFS;
617 		goto out;
618 	}
619 
620 	state = 3;
621 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
622 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
623 		aprint_error(": can't load dma map");
624 		error = ENOBUFS;
625 		goto out;
626 	}
627 
628 	state = 4;
629 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
630 	DPRINTFN(1,("msk_jumbo_buf = %p\n",
631 		(void *)sc_if->sk_cdata.sk_jumbo_buf));
632 
633 	LIST_INIT(&sc_if->sk_jfree_listhead);
634 	LIST_INIT(&sc_if->sk_jinuse_listhead);
635 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
636 
637 	/*
638 	 * Now divide it up into 9K pieces and save the addresses
639 	 * in an array.
640 	 */
641 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
642 	for (i = 0; i < MSK_JSLOTS; i++) {
643 		sc_if->sk_cdata.sk_jslots[i] = ptr;
644 		ptr += SK_JLEN;
645 		entry = malloc(sizeof(struct sk_jpool_entry),
646 		    M_DEVBUF, M_NOWAIT);
647 		if (entry == NULL) {
648 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
649 			aprint_error(": no memory for jumbo buffer queue!");
650 			error = ENOBUFS;
651 			goto out;
652 		}
653 		entry->slot = i;
654 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
655 				 entry, jpool_entries);
656 	}
657 out:
658 	if (error != 0) {
659 		switch (state) {
660 		case 4:
661 			bus_dmamap_unload(sc->sc_dmatag,
662 			    sc_if->sk_cdata.sk_rx_jumbo_map);
663 			/* FALLTHROUGH */
664 		case 3:
665 			bus_dmamap_destroy(sc->sc_dmatag,
666 			    sc_if->sk_cdata.sk_rx_jumbo_map);
667 			/* FALLTHROUGH */
668 		case 2:
669 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
670 			/* FALLTHROUGH */
671 		case 1:
672 			bus_dmamem_free(sc->sc_dmatag,
673 			    &sc_if->sk_cdata.sk_jumbo_seg,
674 			    sc_if->sk_cdata.sk_jumbo_nseg);
675 			break;
676 		default:
677 			break;
678 		}
679 	}
680 
681 	return error;
682 }
683 
684 static void
685 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
686 {
687 	struct sk_softc		*sc = sc_if->sk_softc;
688 
689 	bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
690 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
691 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
692 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
693 	    sc_if->sk_cdata.sk_jumbo_nseg);
694 }
695 
696 /*
697  * Allocate a jumbo buffer.
698  */
699 void *
700 msk_jalloc(struct sk_if_softc *sc_if)
701 {
702 	struct sk_jpool_entry	*entry;
703 
704 	mutex_enter(&sc_if->sk_jpool_mtx);
705 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
706 
707 	if (entry == NULL) {
708 		mutex_exit(&sc_if->sk_jpool_mtx);
709 		return NULL;
710 	}
711 
712 	LIST_REMOVE(entry, jpool_entries);
713 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
714 	mutex_exit(&sc_if->sk_jpool_mtx);
715 	return sc_if->sk_cdata.sk_jslots[entry->slot];
716 }
717 
718 /*
719  * Release a jumbo buffer.
720  */
721 void
722 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
723 {
724 	struct sk_jpool_entry *entry;
725 	struct sk_if_softc *sc;
726 	int i;
727 
728 	/* Extract the softc struct pointer. */
729 	sc = (struct sk_if_softc *)arg;
730 
731 	if (sc == NULL)
732 		panic("msk_jfree: can't find softc pointer!");
733 
734 	/* calculate the slot this buffer belongs to */
735 	i = ((vaddr_t)buf
736 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
737 
738 	if ((i < 0) || (i >= MSK_JSLOTS))
739 		panic("msk_jfree: asked to free buffer that we don't manage!");
740 
741 	mutex_enter(&sc->sk_jpool_mtx);
742 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
743 	if (entry == NULL)
744 		panic("msk_jfree: buffer not in use!");
745 	entry->slot = i;
746 	LIST_REMOVE(entry, jpool_entries);
747 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
748 	mutex_exit(&sc->sk_jpool_mtx);
749 
750 	if (__predict_true(m != NULL))
751 		pool_cache_put(mb_cache, m);
752 
753 	/* Now that we know we have a free RX buffer, refill if running out */
754 	if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
755 	    && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
756 		callout_schedule(&sc->sk_tick_rx, 0);
757 }
758 
759 int
760 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
761 {
762 	struct sk_if_softc *sc = ifp->if_softc;
763 	int s, error;
764 
765 	s = splnet();
766 
767 	DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
768 	switch (cmd) {
769 	case SIOCSIFFLAGS:
770 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
771 			break;
772 
773 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
774 		case IFF_RUNNING:
775 			msk_stop(ifp, 1);
776 			break;
777 		case IFF_UP:
778 			msk_init(ifp);
779 			break;
780 		case IFF_UP | IFF_RUNNING:
781 			if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
782 				msk_setpromisc(sc);
783 				msk_setmulti(sc);
784 			} else
785 				msk_init(ifp);
786 			break;
787 		}
788 		sc->sk_if_flags = ifp->if_flags;
789 		break;
790 	default:
791 		error = ether_ioctl(ifp, cmd, data);
792 		if (error == ENETRESET) {
793 			error = 0;
794 			if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
795 				;
796 			else if (ifp->if_flags & IFF_RUNNING) {
797 				/*
798 				 * Multicast list has changed; set the hardware
799 				 * filter accordingly.
800 				 */
801 				msk_setmulti(sc);
802 			}
803 		}
804 		break;
805 	}
806 
807 	splx(s);
808 	return error;
809 }
810 
811 void
812 msk_update_int_mod(struct sk_softc *sc, int verbose)
813 {
814 	uint32_t imtimer_ticks;
815 
816 	/*
817  	 * Configure interrupt moderation. The moderation timer
818 	 * defers interrupts specified in the interrupt moderation
819 	 * timer mask based on the timeout specified in the interrupt
820 	 * moderation timer init register. Each bit in the timer
821 	 * register represents one tick, so to specify a timeout in
822 	 * microseconds, we have to multiply by the correct number of
823 	 * ticks-per-microsecond.
824 	 */
825 	switch (sc->sk_type) {
826 	case SK_YUKON_EC:
827 	case SK_YUKON_EC_U:
828 	case SK_YUKON_EX:
829 	case SK_YUKON_SUPR:
830 	case SK_YUKON_ULTRA2:
831 	case SK_YUKON_OPTIMA:
832 	case SK_YUKON_PRM:
833 	case SK_YUKON_OPTIMA2:
834 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
835 		break;
836 	case SK_YUKON_FE:
837 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
838 		break;
839 	case SK_YUKON_FE_P:
840 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
841 		break;
842 	case SK_YUKON_XL:
843 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
844 		break;
845 	default:
846 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
847 	}
848 	if (verbose)
849 		aprint_verbose_dev(sc->sk_dev,
850 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
851 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
852 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
853 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
854 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
855 	sc->sk_int_mod_pending = 0;
856 }
857 
858 static int
859 msk_lookup(const struct pci_attach_args *pa)
860 {
861 	const struct msk_product *pmsk;
862 
863 	for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
864 		if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
865 		    PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
866 			return 1;
867 	}
868 	return 0;
869 }
870 
871 /*
872  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
873  * IDs against our list and return a device name if we find a match.
874  */
875 int
876 mskc_probe(device_t parent, cfdata_t match, void *aux)
877 {
878 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
879 
880 	return msk_lookup(pa);
881 }
882 
883 /*
884  * Force the GEnesis into reset, then bring it out of reset.
885  */
886 void
887 mskc_reset(struct sk_softc *sc)
888 {
889 	uint32_t imtimer_ticks, reg1;
890 	int reg;
891 
892 	DPRINTFN(2, ("mskc_reset\n"));
893 
894 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
895 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
896 
897 	DELAY(1000);
898 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
899 	DELAY(2);
900 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
901 	sk_win_write_1(sc, SK_TESTCTL1, 2);
902 
903 	if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
904 	    sc->sk_type >= SK_YUKON_FE_P) {
905 		uint32_t our;
906 
907 		CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
908 
909 		/* enable all clocks. */
910 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
911 		our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
912 		our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
913 			SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
914 			SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
915 			SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
916 		/* Set all bits to 0 except bits 15..12 */
917 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
918 		/* Set to default value */
919 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
920 
921 		/*
922 		 * Disable status race, workaround for Yukon EC Ultra &
923 		 * Yukon EX.
924 		 */
925 		reg1 = sk_win_read_4(sc, SK_GPIO);
926 		reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
927 		sk_win_write_4(sc, SK_GPIO, reg1);
928 		sk_win_read_4(sc, SK_GPIO);
929 	}
930 
931 	/* release PHY from PowerDown/Coma mode. */
932 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
933 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
934 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
935 	else
936 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
937 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
938 
939 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
940 		sk_win_write_1(sc, SK_Y2_CLKGATE,
941 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
942 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
943 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
944 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
945 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
946 	else
947 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
948 
949 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
950 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
951 	DELAY(1000);
952 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
953 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
954 
955 	if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
956 		CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
957 		    SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
958 	}
959 
960 	sk_win_write_1(sc, SK_TESTCTL1, 1);
961 
962 	DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
963 	DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
964 		     CSR_READ_2(sc, SK_LINK_CTRL)));
965 
966 	/* Disable ASF */
967 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
968 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
969 
970 	/* Clear I2C IRQ noise */
971 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
972 
973 	/* Disable hardware timer */
974 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
975 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
976 
977 	/* Disable descriptor polling */
978 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
979 
980 	/* Disable time stamps */
981 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
982 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
983 
984 	/* Enable RAM interface */
985 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
986 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
987 		sk_win_write_1(sc, reg, 36);
988 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
989 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
990 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
991 
992 	/*
993 	 * Configure interrupt moderation. The moderation timer
994 	 * defers interrupts specified in the interrupt moderation
995 	 * timer mask based on the timeout specified in the interrupt
996 	 * moderation timer init register. Each bit in the timer
997 	 * register represents one tick, so to specify a timeout in
998 	 * microseconds, we have to multiply by the correct number of
999 	 * ticks-per-microsecond.
1000 	 */
1001 	switch (sc->sk_type) {
1002 	case SK_YUKON_EC:
1003 	case SK_YUKON_EC_U:
1004 	case SK_YUKON_EX:
1005 	case SK_YUKON_SUPR:
1006 	case SK_YUKON_ULTRA2:
1007 	case SK_YUKON_OPTIMA:
1008 	case SK_YUKON_PRM:
1009 	case SK_YUKON_OPTIMA2:
1010 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1011 		break;
1012 	case SK_YUKON_FE:
1013 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1014 		break;
1015 	case SK_YUKON_FE_P:
1016 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1017 		break;
1018 	case SK_YUKON_XL:
1019 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1020 		break;
1021 	default:
1022 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1023 		break;
1024 	}
1025 
1026 	/* Reset status ring. */
1027 	memset(sc->sk_status_ring, 0,
1028 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1029 	bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1030 	    sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1031 	sc->sk_status_idx = 0;
1032 
1033 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1034 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1035 
1036 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1037 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1038 	    MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1039 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1040 	    MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1041 	if (sc->sk_type == SK_YUKON_EC &&
1042 	    sc->sk_rev == SK_YUKON_EC_REV_A1) {
1043 		/* WA for dev. #4.3 */
1044 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1045 		    SK_STAT_BMU_TXTHIDX_MSK);
1046 		/* WA for dev. #4.18 */
1047 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1048 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1049 	} else {
1050 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1051 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1052 		if (sc->sk_type == SK_YUKON_XL)
1053 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1054 		else
1055 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1056 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1057 	}
1058 
1059 #if 0
1060 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1061 #endif
1062 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1063 
1064 	/* Enable status unit. */
1065 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1066 
1067 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1068 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1069 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1070 
1071 	msk_update_int_mod(sc, 0);
1072 }
1073 
1074 int
1075 msk_probe(device_t parent, cfdata_t match, void *aux)
1076 {
1077 	struct skc_attach_args *sa = aux;
1078 
1079 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1080 		return 0;
1081 
1082 	switch (sa->skc_type) {
1083 	case SK_YUKON_XL:
1084 	case SK_YUKON_EC_U:
1085 	case SK_YUKON_EX:
1086 	case SK_YUKON_EC:
1087 	case SK_YUKON_FE:
1088 	case SK_YUKON_FE_P:
1089 	case SK_YUKON_SUPR:
1090 	case SK_YUKON_ULTRA2:
1091 	case SK_YUKON_OPTIMA:
1092 	case SK_YUKON_PRM:
1093 	case SK_YUKON_OPTIMA2:
1094 		return 1;
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 void
1101 msk_reset(struct sk_if_softc *sc_if)
1102 {
1103 	/* GMAC and GPHY Reset */
1104 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1105 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1106 	DELAY(1000);
1107 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1108 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1109 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1110 }
1111 
1112 static bool
1113 msk_resume(device_t dv, const pmf_qual_t *qual)
1114 {
1115 	struct sk_if_softc *sc_if = device_private(dv);
1116 
1117 	msk_init_yukon(sc_if);
1118 	return true;
1119 }
1120 
1121 /*
1122  * Each XMAC chip is attached as a separate logical IP interface.
1123  * Single port cards will have only one logical interface of course.
1124  */
1125 void
1126 msk_attach(device_t parent, device_t self, void *aux)
1127 {
1128 	struct sk_if_softc *sc_if = device_private(self);
1129 	struct sk_softc *sc = device_private(parent);
1130 	struct skc_attach_args *sa = aux;
1131 	struct ifnet *ifp;
1132 	struct mii_data * const mii = &sc_if->sk_mii;
1133 	void *kva;
1134 	int i;
1135 	uint32_t chunk;
1136 	int mii_flags;
1137 
1138 	sc_if->sk_dev = self;
1139 	sc_if->sk_port = sa->skc_port;
1140 	sc_if->sk_softc = sc;
1141 	sc->sk_if[sa->skc_port] = sc_if;
1142 
1143 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1144 
1145 	/*
1146 	 * Get station address for this interface. Note that
1147 	 * dual port cards actually come with three station
1148 	 * addresses: one for each port, plus an extra. The
1149 	 * extra one is used by the SysKonnect driver software
1150 	 * as a 'virtual' station address for when both ports
1151 	 * are operating in failover mode. Currently we don't
1152 	 * use this extra address.
1153 	 */
1154 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1155 		sc_if->sk_enaddr[i] =
1156 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1157 
1158 	aprint_normal(": Ethernet address %s\n",
1159 	    ether_sprintf(sc_if->sk_enaddr));
1160 
1161 	/*
1162 	 * Set up RAM buffer addresses. The Yukon2 has a small amount
1163 	 * of SRAM on it, somewhere between 4K and 48K.  We need to
1164 	 * divide this up between the transmitter and receiver.  We
1165 	 * give the receiver 2/3 of the memory (rounded down), and the
1166 	 * transmitter whatever remains.
1167 	 */
1168 	if (sc->sk_ramsize) {
1169 		chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1170 		sc_if->sk_rx_ramstart = 0;
1171 		sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1172 		chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1173 		sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1174 		sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1175 
1176 		DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1177 			     "           tx_ramstart=%#x tx_ramend=%#x\n",
1178 			     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1179 			     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1180 	}
1181 
1182 	/* Allocate the descriptor queues. */
1183 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1184 	    PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1185 	    BUS_DMA_NOWAIT)) {
1186 		aprint_error(": can't alloc rx buffers\n");
1187 		goto fail;
1188 	}
1189 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1190 	    sc_if->sk_ring_nseg,
1191 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1192 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1193 		       sizeof(struct msk_ring_data));
1194 		goto fail_1;
1195 	}
1196 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1197 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1198 	    &sc_if->sk_ring_map)) {
1199 		aprint_error(": can't create dma map\n");
1200 		goto fail_2;
1201 	}
1202 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1203 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1204 		aprint_error(": can't load dma map\n");
1205 		goto fail_3;
1206 	}
1207 	sc_if->sk_rdata = (struct msk_ring_data *)kva;
1208 	memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1209 
1210 	if (sc->sk_type != SK_YUKON_FE &&
1211 	    sc->sk_type != SK_YUKON_FE_P)
1212 		sc_if->sk_pktlen = SK_JLEN;
1213 	else
1214 		sc_if->sk_pktlen = MCLBYTES;
1215 
1216 	/* Try to allocate memory for jumbo buffers. */
1217 	if (msk_alloc_jumbo_mem(sc_if)) {
1218 		aprint_error(": jumbo buffer allocation failed\n");
1219 		goto fail_3;
1220 	}
1221 
1222 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1223 	if (sc->sk_type != SK_YUKON_FE &&
1224 	    sc->sk_type != SK_YUKON_FE_P)
1225 		sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1226 
1227 	ifp = &sc_if->sk_ethercom.ec_if;
1228 	ifp->if_softc = sc_if;
1229 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1230 	ifp->if_ioctl = msk_ioctl;
1231 	ifp->if_start = msk_start;
1232 	ifp->if_stop = msk_stop;
1233 	ifp->if_init = msk_init;
1234 	ifp->if_watchdog = msk_watchdog;
1235 	ifp->if_baudrate = 1000000000;
1236 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1237 	IFQ_SET_READY(&ifp->if_snd);
1238 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1239 
1240 	msk_reset(sc_if);
1241 
1242 	/*
1243 	 * Do miibus setup.
1244 	 */
1245 	DPRINTFN(2, ("msk_attach: 1\n"));
1246 
1247 	mii->mii_ifp = ifp;
1248 	mii->mii_readreg = msk_miibus_readreg;
1249 	mii->mii_writereg = msk_miibus_writereg;
1250 	mii->mii_statchg = msk_miibus_statchg;
1251 
1252 	sc_if->sk_ethercom.ec_mii = mii;
1253 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1254 	mii_flags = MIIF_DOPAUSE;
1255 	if (sc->sk_fibertype)
1256 		mii_flags |= MIIF_HAVEFIBER;
1257 	mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1258 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1259 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1260 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1261 			    0, NULL);
1262 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1263 	} else
1264 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1265 
1266 	callout_init(&sc_if->sk_tick_ch, 0);
1267 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1268 	callout_schedule(&sc_if->sk_tick_ch, hz);
1269 
1270 	callout_init(&sc_if->sk_tick_rx, 0);
1271 	callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1272 
1273 	/*
1274 	 * Call MI attach routines.
1275 	 */
1276 	if_attach(ifp);
1277 	if_deferred_start_init(ifp, NULL);
1278 	ether_ifattach(ifp, sc_if->sk_enaddr);
1279 
1280 	if (pmf_device_register(self, NULL, msk_resume))
1281 		pmf_class_network_register(self, ifp);
1282 	else
1283 		aprint_error_dev(self, "couldn't establish power handler\n");
1284 
1285 	if (sc->rnd_attached++ == 0) {
1286 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1287 			RND_TYPE_NET, RND_FLAG_DEFAULT);
1288 	}
1289 
1290 	DPRINTFN(2, ("msk_attach: end\n"));
1291 	return;
1292 
1293 fail_3:
1294 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1295 fail_2:
1296 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1297 fail_1:
1298 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1299 fail:
1300 	sc->sk_if[sa->skc_port] = NULL;
1301 }
1302 
1303 int
1304 msk_detach(device_t self, int flags)
1305 {
1306 	struct sk_if_softc *sc_if = device_private(self);
1307 	struct sk_softc *sc = sc_if->sk_softc;
1308 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1309 
1310 	if (sc->sk_if[sc_if->sk_port] == NULL)
1311 		return 0;
1312 
1313 	msk_stop(ifp, 1);
1314 
1315 	if (--sc->rnd_attached == 0)
1316 		rnd_detach_source(&sc->rnd_source);
1317 
1318 	callout_halt(&sc_if->sk_tick_ch, NULL);
1319 	callout_destroy(&sc_if->sk_tick_ch);
1320 
1321 	callout_halt(&sc_if->sk_tick_rx, NULL);
1322 	callout_destroy(&sc_if->sk_tick_rx);
1323 
1324 	/* Detach any PHYs we might have. */
1325 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1326 		mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1327 
1328 	/* Delete any remaining media. */
1329 	ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1330 
1331 	pmf_device_deregister(self);
1332 
1333 	ether_ifdetach(ifp);
1334 	if_detach(ifp);
1335 
1336 	msk_free_jumbo_mem(sc_if);
1337 
1338 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1339 	    sizeof(struct msk_ring_data));
1340 	bus_dmamem_free(sc->sc_dmatag,
1341 	    &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1342 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1343 	sc->sk_if[sc_if->sk_port] = NULL;
1344 
1345 	return 0;
1346 }
1347 
1348 int
1349 mskcprint(void *aux, const char *pnp)
1350 {
1351 	struct skc_attach_args *sa = aux;
1352 
1353 	if (pnp)
1354 		aprint_normal("msk port %c at %s",
1355 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1356 	else
1357 		aprint_normal(" port %c",
1358 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1359 	return UNCONF;
1360 }
1361 
1362 /*
1363  * Attach the interface. Allocate softc structures, do ifmedia
1364  * setup and ethernet/BPF attach.
1365  */
1366 void
1367 mskc_attach(device_t parent, device_t self, void *aux)
1368 {
1369 	struct sk_softc *sc = device_private(self);
1370 	struct pci_attach_args *pa = aux;
1371 	struct skc_attach_args skca;
1372 	pci_chipset_tag_t pc = pa->pa_pc;
1373 	pcireg_t command, memtype;
1374 	const char *intrstr = NULL;
1375 	int rc, sk_nodenum;
1376 	uint8_t hw, pmd;
1377 	const char *revstr = NULL;
1378 	const struct sysctlnode *node;
1379 	void *kva;
1380 	char intrbuf[PCI_INTRSTR_LEN];
1381 
1382 	DPRINTFN(2, ("begin mskc_attach\n"));
1383 
1384 	sc->sk_dev = self;
1385 	/*
1386 	 * Handle power management nonsense.
1387 	 */
1388 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1389 
1390 	if (command == 0x01) {
1391 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1392 		if (command & SK_PSTATE_MASK) {
1393 			uint32_t		iobase, membase, irq;
1394 
1395 			/* Save important PCI config data. */
1396 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1397 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1398 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1399 
1400 			/* Reset the power state. */
1401 			aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1402 			    "mode -- setting to D0\n",
1403 			    command & SK_PSTATE_MASK);
1404 			command &= 0xFFFFFFFC;
1405 			pci_conf_write(pc, pa->pa_tag,
1406 			    SK_PCI_PWRMGMTCTRL, command);
1407 
1408 			/* Restore PCI config data. */
1409 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1410 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1411 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * Map control/status registers.
1417 	 */
1418 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1419 	if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1420 	    &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1421 		aprint_error(": can't map mem space\n");
1422 		return;
1423 	}
1424 
1425 	if (pci_dma64_available(pa))
1426 		sc->sc_dmatag = pa->pa_dmat64;
1427 	else
1428 		sc->sc_dmatag = pa->pa_dmat;
1429 
1430 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1431 	command |= PCI_COMMAND_MASTER_ENABLE;
1432 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1433 
1434 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1435 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1436 
1437 	/* bail out here if chip is not recognized */
1438 	if (!(SK_IS_YUKON2(sc))) {
1439 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1440 		goto fail_1;
1441 	}
1442 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1443 
1444 	/* Allocate interrupt */
1445 	if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1446 		aprint_error(": couldn't map interrupt\n");
1447 		goto fail_1;
1448 	}
1449 
1450 	intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1451 	sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1452 	    msk_intr, sc, device_xname(sc->sk_dev));
1453 	if (sc->sk_intrhand == NULL) {
1454 		aprint_error(": couldn't establish interrupt");
1455 		if (intrstr != NULL)
1456 			aprint_error(" at %s", intrstr);
1457 		aprint_error("\n");
1458 		goto fail_1;
1459 	}
1460 	sc->sk_pc = pc;
1461 
1462 	if (bus_dmamem_alloc(sc->sc_dmatag,
1463 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1464 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1465 	    0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1466 		aprint_error(": can't alloc status buffers\n");
1467 		goto fail_2;
1468 	}
1469 
1470 	if (bus_dmamem_map(sc->sc_dmatag,
1471 	    &sc->sk_status_seg, sc->sk_status_nseg,
1472 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1473 	    &kva, BUS_DMA_NOWAIT)) {
1474 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1475 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1476 		goto fail_3;
1477 	}
1478 	if (bus_dmamap_create(sc->sc_dmatag,
1479 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1480 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1481 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1482 		aprint_error(": can't create dma map\n");
1483 		goto fail_4;
1484 	}
1485 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1486 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1487 	    NULL, BUS_DMA_NOWAIT)) {
1488 		aprint_error(": can't load dma map\n");
1489 		goto fail_5;
1490 	}
1491 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1492 
1493 	sc->sk_int_mod = SK_IM_DEFAULT;
1494 	sc->sk_int_mod_pending = 0;
1495 
1496 	/* Reset the adapter. */
1497 	mskc_reset(sc);
1498 
1499 	sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1500 	DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1501 
1502 	pmd = sk_win_read_1(sc, SK_PMDTYPE);
1503 	if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1504 		sc->sk_fibertype = 1;
1505 
1506 	switch (sc->sk_type) {
1507 	case SK_YUKON_XL:
1508 		sc->sk_name = "Yukon-2 XL";
1509 		break;
1510 	case SK_YUKON_EC_U:
1511 		sc->sk_name = "Yukon-2 EC Ultra";
1512 		break;
1513 	case SK_YUKON_EX:
1514 		sc->sk_name = "Yukon-2 Extreme";
1515 		break;
1516 	case SK_YUKON_EC:
1517 		sc->sk_name = "Yukon-2 EC";
1518 		break;
1519 	case SK_YUKON_FE:
1520 		sc->sk_name = "Yukon-2 FE";
1521 		break;
1522 	case SK_YUKON_FE_P:
1523 		sc->sk_name = "Yukon-2 FE+";
1524 		break;
1525 	case SK_YUKON_SUPR:
1526 		sc->sk_name = "Yukon-2 Supreme";
1527 		break;
1528 	case SK_YUKON_ULTRA2:
1529 		sc->sk_name = "Yukon-2 Ultra 2";
1530 		break;
1531 	case SK_YUKON_OPTIMA:
1532 		sc->sk_name = "Yukon-2 Optima";
1533 		break;
1534 	case SK_YUKON_PRM:
1535 		sc->sk_name = "Yukon-2 Optima Prime";
1536 		break;
1537 	case SK_YUKON_OPTIMA2:
1538 		sc->sk_name = "Yukon-2 Optima 2";
1539 		break;
1540 	default:
1541 		sc->sk_name = "Yukon (Unknown)";
1542 	}
1543 
1544 	if (sc->sk_type == SK_YUKON_XL) {
1545 		switch (sc->sk_rev) {
1546 		case SK_YUKON_XL_REV_A0:
1547 			revstr = "A0";
1548 			break;
1549 		case SK_YUKON_XL_REV_A1:
1550 			revstr = "A1";
1551 			break;
1552 		case SK_YUKON_XL_REV_A2:
1553 			revstr = "A2";
1554 			break;
1555 		case SK_YUKON_XL_REV_A3:
1556 			revstr = "A3";
1557 			break;
1558 		default:
1559 			break;
1560 		}
1561 	}
1562 
1563 	if (sc->sk_type == SK_YUKON_EC) {
1564 		switch (sc->sk_rev) {
1565 		case SK_YUKON_EC_REV_A1:
1566 			revstr = "A1";
1567 			break;
1568 		case SK_YUKON_EC_REV_A2:
1569 			revstr = "A2";
1570 			break;
1571 		case SK_YUKON_EC_REV_A3:
1572 			revstr = "A3";
1573 			break;
1574 		default:
1575 			break;
1576 		}
1577 	}
1578 
1579 	if (sc->sk_type == SK_YUKON_FE) {
1580 		switch (sc->sk_rev) {
1581 		case SK_YUKON_FE_REV_A1:
1582 			revstr = "A1";
1583 			break;
1584 		case SK_YUKON_FE_REV_A2:
1585 			revstr = "A2";
1586 			break;
1587 		default:
1588 			break;
1589 		}
1590 	}
1591 
1592 	if (sc->sk_type == SK_YUKON_EC_U) {
1593 		switch (sc->sk_rev) {
1594 		case SK_YUKON_EC_U_REV_A0:
1595 			revstr = "A0";
1596 			break;
1597 		case SK_YUKON_EC_U_REV_A1:
1598 			revstr = "A1";
1599 			break;
1600 		case SK_YUKON_EC_U_REV_B0:
1601 			revstr = "B0";
1602 			break;
1603 		case SK_YUKON_EC_U_REV_B1:
1604 			revstr = "B1";
1605 			break;
1606 		default:
1607 			break;
1608 		}
1609 	}
1610 
1611 	if (sc->sk_type == SK_YUKON_FE) {
1612 		switch (sc->sk_rev) {
1613 		case SK_YUKON_FE_REV_A1:
1614 			revstr = "A1";
1615 			break;
1616 		case SK_YUKON_FE_REV_A2:
1617 			revstr = "A2";
1618 			break;
1619 		default:
1620 			;
1621 		}
1622 	}
1623 
1624 	if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1625 		revstr = "A0";
1626 
1627 	if (sc->sk_type == SK_YUKON_EX) {
1628 		switch (sc->sk_rev) {
1629 		case SK_YUKON_EX_REV_A0:
1630 			revstr = "A0";
1631 			break;
1632 		case SK_YUKON_EX_REV_B0:
1633 			revstr = "B0";
1634 			break;
1635 		default:
1636 			;
1637 		}
1638 	}
1639 
1640 	if (sc->sk_type == SK_YUKON_SUPR) {
1641 		switch (sc->sk_rev) {
1642 		case SK_YUKON_SUPR_REV_A0:
1643 			revstr = "A0";
1644 			break;
1645 		case SK_YUKON_SUPR_REV_B0:
1646 			revstr = "B0";
1647 			break;
1648 		case SK_YUKON_SUPR_REV_B1:
1649 			revstr = "B1";
1650 			break;
1651 		default:
1652 			;
1653 		}
1654 	}
1655 
1656 	if (sc->sk_type == SK_YUKON_PRM) {
1657 		switch (sc->sk_rev) {
1658 		case SK_YUKON_PRM_REV_Z1:
1659 			revstr = "Z1";
1660 			break;
1661 		case SK_YUKON_PRM_REV_A0:
1662 			revstr = "A0";
1663 			break;
1664 		default:
1665 			;
1666 		}
1667 	}
1668 
1669 	/* Announce the product name. */
1670 	aprint_normal(", %s", sc->sk_name);
1671 	if (revstr != NULL)
1672 		aprint_normal(" rev. %s", revstr);
1673 	aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1674 
1675 	sc->sk_macs = 1;
1676 
1677 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1678 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1679 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1680 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1681 			sc->sk_macs++;
1682 	}
1683 
1684 	skca.skc_port = SK_PORT_A;
1685 	skca.skc_type = sc->sk_type;
1686 	skca.skc_rev = sc->sk_rev;
1687 	(void)config_found(sc->sk_dev, &skca, mskcprint);
1688 
1689 	if (sc->sk_macs > 1) {
1690 		skca.skc_port = SK_PORT_B;
1691 		skca.skc_type = sc->sk_type;
1692 		skca.skc_rev = sc->sk_rev;
1693 		(void)config_found(sc->sk_dev, &skca, mskcprint);
1694 	}
1695 
1696 	/* Turn on the 'driver is loaded' LED. */
1697 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1698 
1699 	/* skc sysctl setup */
1700 
1701 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1702 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1703 	    SYSCTL_DESCR("mskc per-controller controls"),
1704 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1705 	    CTL_EOL)) != 0) {
1706 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1707 		goto fail_6;
1708 	}
1709 
1710 	sk_nodenum = node->sysctl_num;
1711 
1712 	/* interrupt moderation time in usecs */
1713 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1714 	    CTLFLAG_READWRITE,
1715 	    CTLTYPE_INT, "int_mod",
1716 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1717 	    msk_sysctl_handler, 0, (void *)sc,
1718 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1719 	    CTL_EOL)) != 0) {
1720 		aprint_normal_dev(sc->sk_dev,
1721 		    "couldn't create int_mod sysctl node\n");
1722 		goto fail_6;
1723 	}
1724 
1725 	if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1726 		aprint_error_dev(self, "couldn't establish power handler\n");
1727 
1728 	return;
1729 
1730 fail_6:
1731 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1732 fail_4:
1733 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1734 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1735 fail_3:
1736 	bus_dmamem_free(sc->sc_dmatag,
1737 	    &sc->sk_status_seg, sc->sk_status_nseg);
1738 	sc->sk_status_nseg = 0;
1739 fail_5:
1740 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1741 fail_2:
1742 	pci_intr_disestablish(pc, sc->sk_intrhand);
1743 	sc->sk_intrhand = NULL;
1744 fail_1:
1745 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1746 	sc->sk_bsize = 0;
1747 }
1748 
1749 int
1750 mskc_detach(device_t self, int flags)
1751 {
1752 	struct sk_softc *sc = device_private(self);
1753 	int rv;
1754 
1755 	if (sc->sk_intrhand) {
1756 		pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1757 		sc->sk_intrhand = NULL;
1758 	}
1759 
1760 	if (sc->sk_pihp != NULL) {
1761 		pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1762 		sc->sk_pihp = NULL;
1763 	}
1764 
1765 	rv = config_detach_children(self, flags);
1766 	if (rv != 0)
1767 		return rv;
1768 
1769 	if (sc->sk_status_nseg > 0) {
1770 		bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1771 		bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1772 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1773 		bus_dmamem_free(sc->sc_dmatag,
1774 		    &sc->sk_status_seg, sc->sk_status_nseg);
1775 	}
1776 
1777 	if (sc->sk_bsize > 0)
1778 		bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1779 
1780 	return 0;
1781 }
1782 
1783 int
1784 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1785 {
1786 	struct sk_softc		*sc = sc_if->sk_softc;
1787 	struct msk_tx_desc		*f = NULL;
1788 	uint32_t		frag, cur, hiaddr, old_hiaddr, total;
1789 	uint32_t		entries = 0;
1790 	size_t			i;
1791 	struct sk_txmap_entry	*entry;
1792 	bus_dmamap_t		txmap;
1793 	bus_addr_t		addr;
1794 
1795 	DPRINTFN(2, ("msk_encap\n"));
1796 
1797 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1798 	if (entry == NULL) {
1799 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1800 		return ENOBUFS;
1801 	}
1802 	txmap = entry->dmamap;
1803 
1804 	cur = frag = *txidx;
1805 
1806 #ifdef MSK_DEBUG
1807 	if (mskdebug >= 2)
1808 		msk_dump_mbuf(m_head);
1809 #endif
1810 
1811 	/*
1812 	 * Start packing the mbufs in this chain into
1813 	 * the fragment pointers. Stop when we run out
1814 	 * of fragments or hit the end of the mbuf chain.
1815 	 */
1816 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1817 	    BUS_DMA_NOWAIT)) {
1818 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1819 		return ENOBUFS;
1820 	}
1821 
1822 	/* Count how many tx descriptors needed. */
1823 	hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1824 	for (total = i = 0; i < txmap->dm_nsegs; i++) {
1825 		if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1826 			hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1827 			total++;
1828 		}
1829 		total++;
1830 	}
1831 
1832 	if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1833 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1834 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1835 		return ENOBUFS;
1836 	}
1837 
1838 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1839 	    txmap->dm_nsegs, total));
1840 
1841 	/* Sync the DMA map. */
1842 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1843 	    BUS_DMASYNC_PREWRITE);
1844 
1845 	old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1846 	for (i = 0; i < txmap->dm_nsegs; i++) {
1847 		addr = txmap->dm_segs[i].ds_addr;
1848 		DPRINTFN(2, ("msk_encap: addr %llx\n",
1849 		    (unsigned long long)addr));
1850 		hiaddr = MSK_ADDR_HI(addr);
1851 
1852 		if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1853 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1854 			f->sk_addr = htole32(hiaddr);
1855 			f->sk_len = 0;
1856 			f->sk_ctl = 0;
1857 			if (i == 0)
1858 				f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1859 			else
1860 				f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1861 			sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1862 			SK_INC(frag, MSK_TX_RING_CNT);
1863 			entries++;
1864 			DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1865 			    sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1866 		}
1867 
1868 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1869 		f->sk_addr = htole32(MSK_ADDR_LO(addr));
1870 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1871 		f->sk_ctl = 0;
1872 		if (i == 0) {
1873 			if (hiaddr != old_hiaddr)
1874 				f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1875 			else
1876 				f->sk_opcode = SK_Y2_TXOPC_PACKET;
1877 		} else
1878 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1879 		cur = frag;
1880 		SK_INC(frag, MSK_TX_RING_CNT);
1881 		entries++;
1882 	}
1883 	KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1884 
1885 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1886 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1887 
1888 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1889 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1890 
1891 	/* Sync descriptors before handing to chip */
1892 	MSK_CDTXSYNC(sc_if, *txidx, entries,
1893 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1894 
1895 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1896 
1897 	/* Sync first descriptor to hand it off */
1898 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1899 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1900 
1901 	sc_if->sk_cdata.sk_tx_cnt += entries;
1902 
1903 #ifdef MSK_DEBUG
1904 	if (mskdebug >= 2) {
1905 		struct msk_tx_desc *le;
1906 		uint32_t idx;
1907 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1908 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1909 			msk_dump_txdesc(le, idx);
1910 		}
1911 	}
1912 #endif
1913 
1914 	*txidx = frag;
1915 
1916 	DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1917 
1918 	return 0;
1919 }
1920 
1921 void
1922 msk_start(struct ifnet *ifp)
1923 {
1924 	struct sk_if_softc	*sc_if = ifp->if_softc;
1925 	struct mbuf		*m_head = NULL;
1926 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1927 	int			pkts = 0;
1928 
1929 	DPRINTFN(2, ("msk_start\n"));
1930 
1931 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1932 		IFQ_POLL(&ifp->if_snd, m_head);
1933 		if (m_head == NULL)
1934 			break;
1935 
1936 		/*
1937 		 * Pack the data into the transmit ring. If we
1938 		 * don't have room, set the OACTIVE flag and wait
1939 		 * for the NIC to drain the ring.
1940 		 */
1941 		if (msk_encap(sc_if, m_head, &idx)) {
1942 			ifp->if_flags |= IFF_OACTIVE;
1943 			break;
1944 		}
1945 
1946 		/* now we are committed to transmit the packet */
1947 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1948 		pkts++;
1949 
1950 		/*
1951 		 * If there's a BPF listener, bounce a copy of this frame
1952 		 * to him.
1953 		 */
1954 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1955 	}
1956 	if (pkts == 0)
1957 		return;
1958 
1959 	/* Transmit */
1960 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1961 		sc_if->sk_cdata.sk_tx_prod = idx;
1962 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1963 
1964 		/* Set a timeout in case the chip goes out to lunch. */
1965 		ifp->if_timer = 5;
1966 	}
1967 }
1968 
1969 void
1970 msk_watchdog(struct ifnet *ifp)
1971 {
1972 	struct sk_if_softc *sc_if = ifp->if_softc;
1973 
1974 	/*
1975 	 * Reclaim first as there is a possibility of losing Tx completion
1976 	 * interrupts.
1977 	 */
1978 	msk_txeof(sc_if);
1979 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1980 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1981 
1982 		ifp->if_oerrors++;
1983 
1984 		/* XXX Resets both ports; we shouldn't do that. */
1985 		mskc_reset(sc_if->sk_softc);
1986 		msk_reset(sc_if);
1987 		msk_init(ifp);
1988 	}
1989 }
1990 
1991 static bool
1992 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1993 {
1994 	struct sk_softc *sc = device_private(dv);
1995 
1996 	DPRINTFN(2, ("mskc_suspend\n"));
1997 
1998 	/* Turn off the 'driver is loaded' LED. */
1999 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2000 
2001 	return true;
2002 }
2003 
2004 static bool
2005 mskc_resume(device_t dv, const pmf_qual_t *qual)
2006 {
2007 	struct sk_softc *sc = device_private(dv);
2008 
2009 	DPRINTFN(2, ("mskc_resume\n"));
2010 
2011 	mskc_reset(sc);
2012 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2013 
2014 	return true;
2015 }
2016 
2017 static __inline int
2018 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2019 {
2020 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2021 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2022 	    YU_RXSTAT_JABBER)) != 0 ||
2023 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2024 	    YU_RXSTAT_BYTES(stat) != len)
2025 		return 0;
2026 
2027 	return 1;
2028 }
2029 
2030 void
2031 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2032 {
2033 	struct sk_softc		*sc = sc_if->sk_softc;
2034 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2035 	struct mbuf		*m;
2036 	unsigned		cur, prod, tail, total_len = len;
2037 	bus_dmamap_t		dmamap;
2038 
2039 	cur = sc_if->sk_cdata.sk_rx_cons;
2040 	prod = sc_if->sk_cdata.sk_rx_prod;
2041 
2042 	/* Sync the descriptor */
2043 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2044 
2045 	DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2046 		sc_if->sk_cdata.sk_rx_cnt));
2047 
2048 	while (prod != cur) {
2049 		tail = cur;
2050 		SK_INC(cur, MSK_RX_RING_CNT);
2051 
2052 		sc_if->sk_cdata.sk_rx_cnt--;
2053 		m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2054 		sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2055 		if (m != NULL)
2056 			break;	/* found it */
2057 	}
2058 	sc_if->sk_cdata.sk_rx_cons = cur;
2059 	DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2060 		sc_if->sk_cdata.sk_rx_cnt, m));
2061 
2062 	if (m == NULL)
2063 		return;
2064 
2065 	dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2066 
2067 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2068 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2069 
2070 	if (total_len < SK_MIN_FRAMELEN ||
2071 	    total_len > ETHER_MAX_LEN_JUMBO ||
2072 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
2073 		ifp->if_ierrors++;
2074 		m_freem(m);
2075 		return;
2076 	}
2077 
2078 	m_set_rcvif(m, ifp);
2079 	m->m_pkthdr.len = m->m_len = total_len;
2080 
2081 	/* pass it on. */
2082 	if_percpuq_enqueue(ifp->if_percpuq, m);
2083 }
2084 
2085 void
2086 msk_txeof(struct sk_if_softc *sc_if)
2087 {
2088 	struct sk_softc		*sc = sc_if->sk_softc;
2089 	struct msk_tx_desc	*cur_tx;
2090 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2091 	uint32_t		idx, reg, sk_ctl;
2092 	struct sk_txmap_entry	*entry;
2093 
2094 	DPRINTFN(2, ("msk_txeof\n"));
2095 
2096 	if (sc_if->sk_port == SK_PORT_A)
2097 		reg = SK_STAT_BMU_TXA1_RIDX;
2098 	else
2099 		reg = SK_STAT_BMU_TXA2_RIDX;
2100 
2101 	/*
2102 	 * Go through our tx ring and free mbufs for those
2103 	 * frames that have been sent.
2104 	 */
2105 	idx = sc_if->sk_cdata.sk_tx_cons;
2106 	while (idx != sk_win_read_2(sc, reg)) {
2107 		MSK_CDTXSYNC(sc_if, idx, 1,
2108 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2109 
2110 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2111 		sk_ctl = cur_tx->sk_ctl;
2112 #ifdef MSK_DEBUG
2113 		if (mskdebug >= 2)
2114 			msk_dump_txdesc(cur_tx, idx);
2115 #endif
2116 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2117 			ifp->if_opackets++;
2118 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2119 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2120 
2121 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2122 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2123 
2124 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2125 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2126 
2127 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2128 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2129 					  link);
2130 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2131 		}
2132 		sc_if->sk_cdata.sk_tx_cnt--;
2133 		SK_INC(idx, MSK_TX_RING_CNT);
2134 	}
2135 	if (idx == sc_if->sk_cdata.sk_tx_cons)
2136 		return;
2137 
2138 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2139 
2140 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2141 		ifp->if_flags &= ~IFF_OACTIVE;
2142 
2143 	sc_if->sk_cdata.sk_tx_cons = idx;
2144 }
2145 
2146 void
2147 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2148 {
2149 	/* Make sure to not completely wrap around */
2150 	while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2151 		if (msk_newbuf(sc_if,
2152 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2153 			goto schedretry;
2154 		}
2155 	}
2156 
2157 	return;
2158 
2159 schedretry:
2160 	/* Try later */
2161 	callout_schedule(&sc_if->sk_tick_rx, hz/2);
2162 }
2163 
2164 static void
2165 msk_fill_rx_tick(void *xsc_if)
2166 {
2167 	struct sk_if_softc *sc_if = xsc_if;
2168 	int s, rx_prod;
2169 
2170 	KASSERT(KERNEL_LOCKED_P());	/* XXXSMP */
2171 
2172 	s = splnet();
2173 	rx_prod = sc_if->sk_cdata.sk_rx_prod;
2174 	msk_fill_rx_ring(sc_if);
2175 	if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2176 		SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2177 		    sc_if->sk_cdata.sk_rx_prod);
2178 	}
2179 	splx(s);
2180 }
2181 
2182 void
2183 msk_tick(void *xsc_if)
2184 {
2185 	struct sk_if_softc *sc_if = xsc_if;
2186 	struct mii_data *mii = &sc_if->sk_mii;
2187 	int s;
2188 
2189 	s = splnet();
2190 	mii_tick(mii);
2191 	splx(s);
2192 
2193 	callout_schedule(&sc_if->sk_tick_ch, hz);
2194 }
2195 
2196 void
2197 msk_intr_yukon(struct sk_if_softc *sc_if)
2198 {
2199 	uint8_t status;
2200 
2201 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2202 	/* RX overrun */
2203 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2204 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2205 		    SK_RFCTL_RX_FIFO_OVER);
2206 	}
2207 	/* TX underrun */
2208 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2209 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2210 		    SK_TFCTL_TX_FIFO_UNDER);
2211 	}
2212 
2213 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2214 }
2215 
2216 int
2217 msk_intr(void *xsc)
2218 {
2219 	struct sk_softc		*sc = xsc;
2220 	struct sk_if_softc	*sc_if;
2221 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2222 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2223 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2224 	int			claimed = 0;
2225 	uint32_t		status;
2226 	struct msk_status_desc	*cur_st;
2227 
2228 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
2229 	if (status == 0xffffffff)
2230 		return 0;
2231 	if (status == 0) {
2232 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2233 		return 0;
2234 	}
2235 
2236 	status = CSR_READ_4(sc, SK_ISR);
2237 
2238 	if (sc_if0 != NULL)
2239 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2240 	if (sc_if1 != NULL)
2241 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2242 
2243 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2244 	    (ifp0->if_flags & IFF_RUNNING)) {
2245 		msk_intr_yukon(sc_if0);
2246 	}
2247 
2248 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2249 	    (ifp1->if_flags & IFF_RUNNING)) {
2250 		msk_intr_yukon(sc_if1);
2251 	}
2252 
2253 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
2254 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2255 	cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2256 
2257 	while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2258 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2259 		switch (cur_st->sk_opcode) {
2260 		case SK_Y2_STOPC_RXSTAT:
2261 			sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2262 			if (sc_if) {
2263 				msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2264 				    letoh32(cur_st->sk_status));
2265 				if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2266 					msk_fill_rx_tick(sc_if);
2267 			}
2268 			break;
2269 		case SK_Y2_STOPC_TXSTAT:
2270 			if (sc_if0)
2271 				msk_txeof(sc_if0);
2272 			if (sc_if1)
2273 				msk_txeof(sc_if1);
2274 			break;
2275 		default:
2276 			aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2277 			break;
2278 		}
2279 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2280 
2281 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
2282 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2283 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2284 	}
2285 
2286 	if (status & SK_Y2_IMR_BMU) {
2287 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2288 		claimed = 1;
2289 	}
2290 
2291 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2292 
2293 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2294 		if_schedule_deferred_start(ifp0);
2295 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2296 		if_schedule_deferred_start(ifp1);
2297 
2298 	KASSERT(sc->rnd_attached > 0);
2299 	rnd_add_uint32(&sc->rnd_source, status);
2300 
2301 	if (sc->sk_int_mod_pending)
2302 		msk_update_int_mod(sc, 1);
2303 
2304 	return claimed;
2305 }
2306 
2307 void
2308 msk_init_yukon(struct sk_if_softc *sc_if)
2309 {
2310 	uint32_t		v;
2311 	uint16_t		reg;
2312 	struct sk_softc		*sc;
2313 	int			i;
2314 
2315 	sc = sc_if->sk_softc;
2316 
2317 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2318 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2319 
2320 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
2321 
2322 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2323 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2324 
2325 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
2326 
2327 	/* unused read of the interrupt source register */
2328 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
2329 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2330 
2331 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2332 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2333 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2334 
2335 	/* MIB Counter Clear Mode set */
2336 	reg |= YU_PAR_MIB_CLR;
2337 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2338 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2339 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2340 
2341 	/* MIB Counter Clear Mode clear */
2342 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2343 	reg &= ~YU_PAR_MIB_CLR;
2344 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2345 
2346 	/* receive control reg */
2347 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2348 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2349 
2350 	/* transmit control register */
2351 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2352 
2353 	/* transmit flow control register */
2354 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2355 
2356 	/* transmit parameter register */
2357 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2358 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2359 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2360 
2361 	/* serial mode register */
2362 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2363 	reg = YU_SMR_DATA_BLIND(0x1c) |
2364 	      YU_SMR_MFL_VLAN |
2365 	      YU_SMR_IPG_DATA(0x1e);
2366 
2367 	if (sc->sk_type != SK_YUKON_FE &&
2368 	    sc->sk_type != SK_YUKON_FE_P)
2369 		reg |= YU_SMR_MFL_JUMBO;
2370 
2371 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2372 
2373 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2374 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2375 	/* msk_attach calls me before ether_ifattach so check null */
2376 	if (ifp != NULL && ifp->if_sadl != NULL)
2377 		memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2378 		    sizeof(sc_if->sk_enaddr));
2379 	/* Setup Yukon's address */
2380 	for (i = 0; i < 3; i++) {
2381 		/* Write Source Address 1 (unicast filter) */
2382 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2383 			      sc_if->sk_enaddr[i * 2] |
2384 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2385 	}
2386 
2387 	for (i = 0; i < 3; i++) {
2388 		reg = sk_win_read_2(sc_if->sk_softc,
2389 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2390 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2391 	}
2392 
2393 	/* Set promiscuous mode */
2394 	msk_setpromisc(sc_if);
2395 
2396 	/* Set multicast filter */
2397 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2398 	msk_setmulti(sc_if);
2399 
2400 	/* enable interrupt mask for counter overflows */
2401 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2402 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2403 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2404 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2405 
2406 	/* Configure RX MAC FIFO Flush Mask */
2407 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2408 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2409 	    YU_RXSTAT_JABBER;
2410 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2411 
2412 	/* Configure RX MAC FIFO */
2413 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2414 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2415 	    SK_RFCTL_FIFO_FLUSH_ON);
2416 
2417 	/* Increase flush threshold to 64 bytes */
2418 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2419 	    SK_RFCTL_FIFO_THRESHOLD + 1);
2420 
2421 	/* Configure TX MAC FIFO */
2422 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2423 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2424 
2425 #if 1
2426 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2427 #endif
2428 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2429 }
2430 
2431 /*
2432  * Note that to properly initialize any part of the GEnesis chip,
2433  * you first have to take it out of reset mode.
2434  */
2435 int
2436 msk_init(struct ifnet *ifp)
2437 {
2438 	struct sk_if_softc	*sc_if = ifp->if_softc;
2439 	struct sk_softc		*sc = sc_if->sk_softc;
2440 	int			rc = 0, s;
2441 	uint32_t		imr, imtimer_ticks;
2442 
2443 
2444 	DPRINTFN(2, ("msk_init\n"));
2445 
2446 	s = splnet();
2447 
2448 	/* Cancel pending I/O and free all RX/TX buffers. */
2449 	msk_stop(ifp, 1);
2450 
2451 	/* Configure I2C registers */
2452 
2453 	/* Configure XMAC(s) */
2454 	msk_init_yukon(sc_if);
2455 	if ((rc = ether_mediachange(ifp)) != 0)
2456 		goto out;
2457 
2458 	/* Configure transmit arbiter(s) */
2459 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2460 #if 0
2461 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2462 #endif
2463 
2464 	if (sc->sk_ramsize) {
2465 		/* Configure RAMbuffers */
2466 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2467 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2468 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2469 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2470 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2471 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2472 
2473 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2474 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2475 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2476 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2477 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2478 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2479 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2480 	}
2481 
2482 	/* Configure BMUs */
2483 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2484 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2485 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2486 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2487 
2488 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2489 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2490 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2491 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2492 
2493 	/* Make sure the sync transmit queue is disabled. */
2494 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2495 
2496 	/* Init descriptors */
2497 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2498 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2499 		    "memory for rx buffers\n");
2500 		msk_stop(ifp, 1);
2501 		splx(s);
2502 		return ENOBUFS;
2503 	}
2504 
2505 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2506 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2507 		    "memory for tx buffers\n");
2508 		msk_stop(ifp, 1);
2509 		splx(s);
2510 		return ENOBUFS;
2511 	}
2512 
2513 	/* Set interrupt moderation if changed via sysctl. */
2514 	switch (sc->sk_type) {
2515 	case SK_YUKON_EC:
2516 	case SK_YUKON_EC_U:
2517 	case SK_YUKON_EX:
2518 	case SK_YUKON_SUPR:
2519 	case SK_YUKON_ULTRA2:
2520 	case SK_YUKON_OPTIMA:
2521 	case SK_YUKON_PRM:
2522 	case SK_YUKON_OPTIMA2:
2523 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2524 		break;
2525 	case SK_YUKON_FE:
2526 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2527 		break;
2528 	case SK_YUKON_FE_P:
2529 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2530 		break;
2531 	case SK_YUKON_XL:
2532 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2533 		break;
2534 	default:
2535 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2536 	}
2537 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2538 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2539 		sk_win_write_4(sc, SK_IMTIMERINIT,
2540 		    SK_IM_USECS(sc->sk_int_mod));
2541 		aprint_verbose_dev(sc->sk_dev,
2542 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2543 	}
2544 
2545 	/* Initialize prefetch engine. */
2546 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2547 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2548 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2549 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2550 	    MSK_RX_RING_ADDR(sc_if, 0));
2551 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2552 	    (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2553 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2554 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2555 
2556 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2557 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2558 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2559 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2560 	    MSK_TX_RING_ADDR(sc_if, 0));
2561 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2562 	    (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2563 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2564 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2565 
2566 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2567 	    sc_if->sk_cdata.sk_rx_prod);
2568 
2569 	/* Configure interrupt handling */
2570 	if (sc_if->sk_port == SK_PORT_A)
2571 		sc->sk_intrmask |= SK_Y2_INTRS1;
2572 	else
2573 		sc->sk_intrmask |= SK_Y2_INTRS2;
2574 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2575 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2576 
2577 	ifp->if_flags |= IFF_RUNNING;
2578 	ifp->if_flags &= ~IFF_OACTIVE;
2579 
2580 	callout_schedule(&sc_if->sk_tick_ch, hz);
2581 
2582 out:
2583 	splx(s);
2584 	return rc;
2585 }
2586 
2587 /*
2588  * Note: the logic of second parameter is inverted compared to OpenBSD
2589  * code, since this code uses the function as if_stop hook too.
2590  */
2591 void
2592 msk_stop(struct ifnet *ifp, int disable)
2593 {
2594 	struct sk_if_softc	*sc_if = ifp->if_softc;
2595 	struct sk_softc		*sc = sc_if->sk_softc;
2596 	struct sk_txmap_entry	*dma;
2597 	int			i;
2598 
2599 	DPRINTFN(2, ("msk_stop\n"));
2600 
2601 	callout_stop(&sc_if->sk_tick_ch);
2602 	callout_stop(&sc_if->sk_tick_rx);
2603 
2604 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2605 
2606 	/* Stop transfer of Tx descriptors */
2607 
2608 	/* Stop transfer of Rx descriptors */
2609 
2610 	if (disable) {
2611 		/* Turn off various components of this interface. */
2612 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2613 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2614 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2615 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2616 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2617 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2618 		SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2619 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2620 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2621 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2622 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2623 
2624 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2625 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2626 
2627 		/* Disable interrupts */
2628 		if (sc_if->sk_port == SK_PORT_A)
2629 			sc->sk_intrmask &= ~SK_Y2_INTRS1;
2630 		else
2631 			sc->sk_intrmask &= ~SK_Y2_INTRS2;
2632 		CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2633 	}
2634 
2635 	/* Free RX and TX mbufs still in the queues. */
2636 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2637 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2638 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2639 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2640 		}
2641 	}
2642 
2643 	sc_if->sk_cdata.sk_rx_prod = 0;
2644 	sc_if->sk_cdata.sk_rx_cons = 0;
2645 	sc_if->sk_cdata.sk_rx_cnt = 0;
2646 
2647 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2648 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2649 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2650 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2651 #if 1
2652 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2653 			    sc_if->sk_cdata.sk_tx_map[i], link);
2654 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2655 #endif
2656 		}
2657 	}
2658 
2659 #if 1
2660 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2661 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2662 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2663 		free(dma, M_DEVBUF);
2664 	}
2665 #endif
2666 }
2667 
2668 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2669 	mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2670 
2671 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2672 	msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2673 
2674 #ifdef MSK_DEBUG
2675 void
2676 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2677 {
2678 #define DESC_PRINT(X)					\
2679 	if (X)						\
2680 		printf("txdesc[%d]." #X "=%#x\n",	\
2681 		       idx, X);
2682 
2683 	DESC_PRINT(letoh32(le->sk_addr));
2684 	DESC_PRINT(letoh16(le->sk_len));
2685 	DESC_PRINT(le->sk_ctl);
2686 	DESC_PRINT(le->sk_opcode);
2687 #undef DESC_PRINT
2688 }
2689 
2690 void
2691 msk_dump_bytes(const char *data, int len)
2692 {
2693 	int c, i, j;
2694 
2695 	for (i = 0; i < len; i += 16) {
2696 		printf("%08x  ", i);
2697 		c = len - i;
2698 		if (c > 16) c = 16;
2699 
2700 		for (j = 0; j < c; j++) {
2701 			printf("%02x ", data[i + j] & 0xff);
2702 			if ((j & 0xf) == 7 && j > 0)
2703 				printf(" ");
2704 		}
2705 
2706 		for (; j < 16; j++)
2707 			printf("   ");
2708 		printf("  ");
2709 
2710 		for (j = 0; j < c; j++) {
2711 			int ch = data[i + j] & 0xff;
2712 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2713 		}
2714 
2715 		printf("\n");
2716 
2717 		if (c < 16)
2718 			break;
2719 	}
2720 }
2721 
2722 void
2723 msk_dump_mbuf(struct mbuf *m)
2724 {
2725 	int count = m->m_pkthdr.len;
2726 
2727 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2728 
2729 	while (count > 0 && m) {
2730 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2731 		       m, m->m_data, m->m_len);
2732 		if (mskdebug >= 4)
2733 			msk_dump_bytes(mtod(m, char *), m->m_len);
2734 
2735 		count -= m->m_len;
2736 		m = m->m_next;
2737 	}
2738 }
2739 #endif
2740 
2741 static int
2742 msk_sysctl_handler(SYSCTLFN_ARGS)
2743 {
2744 	int error, t;
2745 	struct sysctlnode node;
2746 	struct sk_softc *sc;
2747 
2748 	node = *rnode;
2749 	sc = node.sysctl_data;
2750 	t = sc->sk_int_mod;
2751 	node.sysctl_data = &t;
2752 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2753 	if (error || newp == NULL)
2754 		return error;
2755 
2756 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2757 		return EINVAL;
2758 
2759 	/* update the softc with sysctl-changed value, and mark
2760 	   for hardware update */
2761 	sc->sk_int_mod = t;
2762 	sc->sk_int_mod_pending = 1;
2763 	return 0;
2764 }
2765 
2766 /*
2767  * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2768  * set up in mskc_attach()
2769  */
2770 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2771 {
2772 	int rc;
2773 	const struct sysctlnode *node;
2774 
2775 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2776 	    0, CTLTYPE_NODE, "msk",
2777 	    SYSCTL_DESCR("msk interface controls"),
2778 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2779 		goto err;
2780 	}
2781 
2782 	msk_root_num = node->sysctl_num;
2783 	return;
2784 
2785 err:
2786 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2787 }
2788