xref: /netbsd-src/sys/dev/pci/if_et.c (revision 2d8e86c2f207da6fbbd50f11b6f33765ebdfa0e9)
1 /*	$NetBSD: if_et.c,v 1.26 2019/08/01 13:36:37 msaitoh Exp $	*/
2 /*	$OpenBSD: if_et.c,v 1.12 2008/07/11 09:29:02 kevlo $	*/
3 /*
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.26 2019/08/01 13:36:37 msaitoh Exp $");
41 
42 #include "opt_inet.h"
43 #include "vlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56 
57 #include <sys/bus.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72 
73 #include <net/bpf.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81 
82 #include <dev/pci/if_etreg.h>
83 
84 int	et_match(device_t, cfdata_t, void *);
85 void	et_attach(device_t, device_t, void *);
86 int	et_detach(device_t, int);
87 int	et_shutdown(device_t);
88 
89 int	et_miibus_readreg(device_t, int, int, uint16_t *);
90 int	et_miibus_writereg(device_t, int, int, uint16_t);
91 void	et_miibus_statchg(struct ifnet *);
92 
93 int	et_init(struct ifnet *);
94 int	et_ioctl(struct ifnet *, u_long, void *);
95 void	et_start(struct ifnet *);
96 void	et_watchdog(struct ifnet *);
97 static int	et_ifmedia_upd(struct ifnet *);
98 static void	et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
99 
100 int	et_intr(void *);
101 void	et_enable_intrs(struct et_softc *, uint32_t);
102 void	et_disable_intrs(struct et_softc *);
103 void	et_rxeof(struct et_softc *);
104 void	et_txeof(struct et_softc *);
105 void	et_txtick(void *);
106 
107 int	et_dma_alloc(struct et_softc *);
108 void	et_dma_free(struct et_softc *);
109 int	et_dma_mem_create(struct et_softc *, bus_size_t,
110 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
111 void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
112 int	et_dma_mbuf_create(struct et_softc *);
113 void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
114 
115 int	et_init_tx_ring(struct et_softc *);
116 int	et_init_rx_ring(struct et_softc *);
117 void	et_free_tx_ring(struct et_softc *);
118 void	et_free_rx_ring(struct et_softc *);
119 int	et_encap(struct et_softc *, struct mbuf **);
120 int	et_newbuf(struct et_rxbuf_data *, int, int, int);
121 int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
122 int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
123 
124 void	et_stop(struct et_softc *);
125 int	et_chip_init(struct et_softc *);
126 void	et_chip_attach(struct et_softc *);
127 void	et_init_mac(struct et_softc *);
128 void	et_init_rxmac(struct et_softc *);
129 void	et_init_txmac(struct et_softc *);
130 int	et_init_rxdma(struct et_softc *);
131 int	et_init_txdma(struct et_softc *);
132 int	et_start_rxdma(struct et_softc *);
133 int	et_start_txdma(struct et_softc *);
134 int	et_stop_rxdma(struct et_softc *);
135 int	et_stop_txdma(struct et_softc *);
136 void	et_reset(struct et_softc *);
137 int	et_bus_config(struct et_softc *);
138 void	et_get_eaddr(struct et_softc *, uint8_t[]);
139 void	et_setmulti(struct et_softc *);
140 void	et_tick(void *);
141 
142 static int	et_rx_intr_npkts = 32;
143 static int	et_rx_intr_delay = 20;		/* x10 usec */
144 static int	et_tx_intr_nsegs = 128;
145 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
146 
147 struct et_bsize {
148 	int		bufsize;
149 	et_newbuf_t	newbuf;
150 };
151 
152 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
153 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
154 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
155 };
156 
157 const struct et_product {
158 	pci_vendor_id_t		vendor;
159 	pci_product_id_t	product;
160 } et_devices[] = {
161 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
162 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
163 };
164 
165 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
166 	NULL);
167 
168 int
169 et_match(device_t dev, cfdata_t match, void *aux)
170 {
171 	struct pci_attach_args *pa = aux;
172 	const struct et_product *ep;
173 	int i;
174 
175 	for (i = 0; i < __arraycount(et_devices); i++) {
176 		ep = &et_devices[i];
177 		if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
178 		    PCI_PRODUCT(pa->pa_id) == ep->product)
179 			return 1;
180 	}
181 	return 0;
182 }
183 
184 void
185 et_attach(device_t parent, device_t self, void *aux)
186 {
187 	struct et_softc *sc = device_private(self);
188 	struct pci_attach_args *pa = aux;
189 	pci_chipset_tag_t pc = pa->pa_pc;
190 	pci_intr_handle_t ih;
191 	const char *intrstr;
192 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
193 	struct mii_data * const mii = &sc->sc_miibus;
194 	uint32_t pmcfg;
195 	pcireg_t memtype;
196 	int error;
197 	char intrbuf[PCI_INTRSTR_LEN];
198 
199 	pci_aprint_devinfo(pa, "Ethernet controller");
200 
201 	sc->sc_dev = self;
202 
203 	/*
204 	 * Initialize tunables
205 	 */
206 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
207 	sc->sc_rx_intr_delay = et_rx_intr_delay;
208 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
209 	sc->sc_timer = et_timer;
210 
211 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
212 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
213 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
214 		aprint_error_dev(self, "could not map mem space\n");
215 		return;
216 	}
217 
218 	if (pci_intr_map(pa, &ih) != 0) {
219 		aprint_error_dev(self, "could not map interrupt\n");
220 		goto fail;
221 	}
222 
223 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
224 	sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, et_intr,
225 	    sc, device_xname(self));
226 	if (sc->sc_irq_handle == NULL) {
227 		aprint_error_dev(self, "could not establish interrupt");
228 		if (intrstr != NULL)
229 			aprint_error(" at %s", intrstr);
230 		aprint_error("\n");
231 		goto fail;
232 	}
233 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
234 
235 	sc->sc_dmat = pa->pa_dmat;
236 	sc->sc_pct = pa->pa_pc;
237 	sc->sc_pcitag = pa->pa_tag;
238 
239 	if (pa->pa_id == PCI_PRODUCT_LUCENT_ET1301)
240 		sc->sc_flags |= ET_FLAG_FASTETHER;
241 
242 	error = et_bus_config(sc);
243 	if (error)
244 		goto fail;
245 
246 	et_get_eaddr(sc, sc->sc_enaddr);
247 
248 	aprint_normal_dev(self, "Ethernet address %s\n",
249 	    ether_sprintf(sc->sc_enaddr));
250 
251 	/* Take PHY out of COMA and enable clocks. */
252 	pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE;
253 	if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
254 		pmcfg |= EM_PM_GIGEPHY_ENB;
255 	CSR_WRITE_4(sc, ET_PM, pmcfg);
256 
257 	et_reset(sc);
258 
259 	et_disable_intrs(sc);
260 
261 	error = et_dma_alloc(sc);
262 	if (error)
263 		goto fail;
264 
265 	ifp->if_softc = sc;
266 	ifp->if_mtu = ETHERMTU;
267 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
268 	ifp->if_init = et_init;
269 	ifp->if_ioctl = et_ioctl;
270 	ifp->if_start = et_start;
271 	ifp->if_watchdog = et_watchdog;
272 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
273 	IFQ_SET_READY(&ifp->if_snd);
274 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
275 
276 	et_chip_attach(sc);
277 
278 	mii->mii_ifp = ifp;
279 	mii->mii_readreg = et_miibus_readreg;
280 	mii->mii_writereg = et_miibus_writereg;
281 	mii->mii_statchg = et_miibus_statchg;
282 
283 	sc->sc_ethercom.ec_mii = mii;
284 	ifmedia_init(&mii->mii_media, 0, et_ifmedia_upd, et_ifmedia_sts);
285 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
286 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
287 		aprint_error_dev(self, "no PHY found!\n");
288 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
289 		    0, NULL);
290 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
291 	} else
292 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
293 
294 	if_attach(ifp);
295 	if_deferred_start_init(ifp, NULL);
296 	ether_ifattach(ifp, sc->sc_enaddr);
297 
298 	callout_init(&sc->sc_tick, 0);
299 	callout_setfunc(&sc->sc_tick, et_tick, sc);
300 	callout_init(&sc->sc_txtick, 0);
301 	callout_setfunc(&sc->sc_txtick, et_txtick, sc);
302 
303 	if (pmf_device_register(self, NULL, NULL))
304 		pmf_class_network_register(self, ifp);
305 	else
306 		aprint_error_dev(self, "couldn't establish power handler\n");
307 
308 	return;
309 
310 fail:
311 	et_dma_free(sc);
312 	if (sc->sc_irq_handle != NULL) {
313 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
314 		sc->sc_irq_handle = NULL;
315 	}
316 	if (sc->sc_mem_size) {
317 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
318 		sc->sc_mem_size = 0;
319 	}
320 }
321 
322 int
323 et_detach(device_t self, int flags)
324 {
325 	struct et_softc *sc = device_private(self);
326 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
327 	int s;
328 
329 	pmf_device_deregister(self);
330 	s = splnet();
331 	et_stop(sc);
332 	splx(s);
333 
334 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
335 
336 	/* Delete all remaining media. */
337 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
338 
339 	ether_ifdetach(ifp);
340 	if_detach(ifp);
341 	et_dma_free(sc);
342 
343 	if (sc->sc_irq_handle != NULL) {
344 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
345 		sc->sc_irq_handle = NULL;
346 	}
347 
348 	if (sc->sc_mem_size) {
349 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
350 		sc->sc_mem_size = 0;
351 	}
352 
353 	return 0;
354 }
355 
356 int
357 et_shutdown(device_t self)
358 {
359 	struct et_softc *sc = device_private(self);
360 	int s;
361 
362 	s = splnet();
363 	et_stop(sc);
364 	splx(s);
365 
366 	return 0;
367 }
368 
369 int
370 et_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
371 {
372 	struct et_softc *sc = device_private(dev);
373 	uint32_t data;
374 	int i, ret;
375 
376 	/* Stop any pending operations */
377 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
378 
379 	data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
380 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
381 	CSR_WRITE_4(sc, ET_MII_ADDR, data);
382 
383 	/* Start reading */
384 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
385 
386 #define NRETRY	50
387 
388 	for (i = 0; i < NRETRY; ++i) {
389 		data = CSR_READ_4(sc, ET_MII_IND);
390 		if ((data & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
391 			break;
392 		DELAY(50);
393 	}
394 	if (i == NRETRY) {
395 		aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
396 		    phy, reg);
397 		ret = ETIMEDOUT;
398 		goto back;
399 	}
400 
401 #undef NRETRY
402 
403 	data = CSR_READ_4(sc, ET_MII_STAT);
404 	*val = __SHIFTOUT(data, ET_MII_STAT_VALUE);
405 	ret = 0;
406 
407 back:
408 	/* Make sure that the current operation is stopped */
409 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
410 	return ret;
411 }
412 
413 int
414 et_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
415 {
416 	struct et_softc *sc = device_private(dev);
417 	uint32_t data;
418 	uint16_t tmp;
419 	int rv = 0;
420 	int i;
421 
422 	/* Stop any pending operations */
423 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
424 
425 	data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
426 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
427 	CSR_WRITE_4(sc, ET_MII_ADDR, data);
428 
429 	/* Start writing */
430 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val, ET_MII_CTRL_VALUE));
431 
432 #define NRETRY 100
433 
434 	for (i = 0; i < NRETRY; ++i) {
435 		data = CSR_READ_4(sc, ET_MII_IND);
436 		if ((data & ET_MII_IND_BUSY) == 0)
437 			break;
438 		DELAY(50);
439 	}
440 	if (i == NRETRY) {
441 		aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
442 		    phy, reg);
443 		et_miibus_readreg(dev, phy, reg, &tmp);
444 		rv = ETIMEDOUT;
445 	}
446 
447 #undef NRETRY
448 
449 	/* Make sure that the current operation is stopped */
450 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
451 
452 	return rv;
453 }
454 
455 void
456 et_miibus_statchg(struct ifnet *ifp)
457 {
458 	struct et_softc *sc = ifp->if_softc;
459 	struct mii_data *mii = &sc->sc_miibus;
460 	uint32_t cfg1, cfg2, ctrl;
461 	int i;
462 
463 	sc->sc_flags &= ~ET_FLAG_LINK;
464 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
465 	    (IFM_ACTIVE | IFM_AVALID)) {
466 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
467 		case IFM_10_T:
468 		case IFM_100_TX:
469 			sc->sc_flags |= ET_FLAG_LINK;
470 			break;
471 		case IFM_1000_T:
472 			if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
473 				sc->sc_flags |= ET_FLAG_LINK;
474 			break;
475 		}
476 	}
477 
478 	/* XXX Stop TX/RX MAC? */
479 	if ((sc->sc_flags & ET_FLAG_LINK) == 0)
480 		return;
481 
482 	/* Program MACs with resolved speed/duplex/flow-control. */
483 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
484 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
485 	cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
486 	cfg1 &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
487 	    ET_MAC_CFG1_LOOPBACK);
488 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
489 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
490 	    ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
491 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
492 	    __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
493 
494 
495 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
496 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
497 	else {
498 		cfg2 |= ET_MAC_CFG2_MODE_MII;
499 		ctrl |= ET_MAC_CTRL_MODE_MII;
500 	}
501 
502 	if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
503 		cfg2 |= ET_MAC_CFG2_FDX;
504 		/*
505 		 * Controller lacks automatic TX pause frame
506 		 * generation so it should be handled by driver.
507 		 * Even though driver can send pause frame with
508 		 * arbitrary pause time, controller does not
509 		 * provide a way that tells how many free RX
510 		 * buffers are available in controller.  This
511 		 * limitation makes it hard to generate XON frame
512 		 * in time on driver side so don't enable TX flow
513 		 * control.
514 		 */
515 #ifdef notyet
516 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
517 			cfg1 |= ET_MAC_CFG1_TXFLOW;
518 #endif
519 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
520 			cfg1 |= ET_MAC_CFG1_RXFLOW;
521 	} else
522 		ctrl |= ET_MAC_CTRL_GHDX;
523 
524 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
525 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
526 	cfg1 |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
527 	CSR_WRITE_4(sc, ET_MAC_CFG1, cfg1);
528 
529 #define NRETRY	100
530 
531 	for (i = 0; i < NRETRY; ++i) {
532 		cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
533 		if ((cfg1 & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
534 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
535 			break;
536 
537 		DELAY(10);
538 	}
539 	/* Note: Timeout always happens when cable is not plugged in. */
540 
541 	sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
542 
543 #undef NRETRY
544 }
545 
546 static int
547 et_ifmedia_upd(struct ifnet *ifp)
548 {
549 	struct et_softc *sc;
550 	struct mii_data *mii;
551 	struct mii_softc *miisc;
552 
553 	sc = ifp->if_softc;
554 	mii = &sc->sc_miibus;
555 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
556 		PHY_RESET(miisc);
557 	return (mii_mediachg(mii));
558 }
559 
560 static void
561 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
562 {
563 	struct et_softc *sc;
564 	struct mii_data *mii;
565 
566 	sc = ifp->if_softc;
567 	mii = &sc->sc_miibus;
568 	mii_pollstat(mii);
569 	ifmr->ifm_active = mii->mii_media_active;
570 	ifmr->ifm_status = mii->mii_media_status;
571 }
572 
573 void
574 et_stop(struct et_softc *sc)
575 {
576 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
577 
578 	callout_stop(&sc->sc_tick);
579 	callout_stop(&sc->sc_txtick);
580 
581 	et_stop_rxdma(sc);
582 	et_stop_txdma(sc);
583 
584 	et_disable_intrs(sc);
585 
586 	et_free_tx_ring(sc);
587 	et_free_rx_ring(sc);
588 
589 	et_reset(sc);
590 
591 	sc->sc_tx = 0;
592 	sc->sc_tx_intr = 0;
593 	sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
594 
595 	ifp->if_timer = 0;
596 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
597 }
598 
599 int
600 et_bus_config(struct et_softc *sc)
601 {
602 	uint32_t val; //, max_plsz;
603 //	uint16_t ack_latency, replay_timer;
604 
605 	/*
606 	 * Test whether EEPROM is valid
607 	 * NOTE: Read twice to get the correct value
608 	 */
609 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
610 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
611 
612 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
613 		aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
614 		return ENXIO;
615 	}
616 
617 	/* TODO: LED */
618 #if 0
619 	/*
620 	 * Configure ACK latency and replay timer according to
621 	 * max playload size
622 	 */
623 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
624 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
625 
626 	switch (max_plsz) {
627 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
628 		ack_latency = ET_PCIV_ACK_LATENCY_128;
629 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
630 		break;
631 
632 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
633 		ack_latency = ET_PCIV_ACK_LATENCY_256;
634 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
635 		break;
636 
637 	default:
638 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
639 		    ET_PCIR_ACK_LATENCY) >> 16;
640 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
641 		    ET_PCIR_REPLAY_TIMER) >> 16;
642 		aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
643 		    ack_latency, replay_timer);
644 		break;
645 	}
646 	if (ack_latency != 0) {
647 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
648 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
649 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
650 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
651 	}
652 
653 	/*
654 	 * Set L0s and L1 latency timer to 2us
655 	 */
656 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
657 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
658 	    val << 24);
659 
660 	/*
661 	 * Set max read request size to 2048 bytes
662 	 */
663 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
664 	    ET_PCIR_DEVICE_CTRL) >> 16;
665 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
666 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
667 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
668 	    val << 16);
669 #endif
670 
671 	return 0;
672 }
673 
674 void
675 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
676 {
677 	uint32_t r;
678 
679 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
680 	eaddr[0] = r & 0xff;
681 	eaddr[1] = (r >> 8) & 0xff;
682 	eaddr[2] = (r >> 16) & 0xff;
683 	eaddr[3] = (r >> 24) & 0xff;
684 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
685 	eaddr[4] = r & 0xff;
686 	eaddr[5] = (r >> 8) & 0xff;
687 }
688 
689 void
690 et_reset(struct et_softc *sc)
691 {
692 
693 	CSR_WRITE_4(sc, ET_MAC_CFG1,
694 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
695 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
696 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
697 
698 	CSR_WRITE_4(sc, ET_SWRST,
699 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
700 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
701 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
702 
703 	CSR_WRITE_4(sc, ET_MAC_CFG1,
704 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
705 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
706 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
707 }
708 
709 void
710 et_disable_intrs(struct et_softc *sc)
711 {
712 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
713 }
714 
715 void
716 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
717 {
718 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
719 }
720 
721 int
722 et_dma_alloc(struct et_softc *sc)
723 {
724 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
725 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
726 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
727 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
728 	int i, error;
729 
730 	/*
731 	 * Create TX ring DMA stuffs
732 	 */
733 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
734 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
735 	    &tx_ring->tr_seg);
736 	if (error) {
737 		aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
738 		return error;
739 	}
740 
741 	/*
742 	 * Create TX status DMA stuffs
743 	 */
744 	error = et_dma_mem_create(sc, sizeof(uint32_t),
745 	    (void **)&txsd->txsd_status,
746 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
747 	if (error) {
748 		aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
749 		return error;
750 	}
751 
752 	/*
753 	 * Create DMA stuffs for RX rings
754 	 */
755 	for (i = 0; i < ET_RX_NRING; ++i) {
756 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
757 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
758 
759 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
760 
761 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
762 		    (void **)&rx_ring->rr_desc,
763 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
764 		if (error) {
765 			aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
766 			    "the %d RX ring\n", i);
767 			return error;
768 		}
769 		rx_ring->rr_posreg = rx_ring_posreg[i];
770 	}
771 
772 	/*
773 	 * Create RX stat ring DMA stuffs
774 	 */
775 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
776 	    (void **)&rxst_ring->rsr_stat,
777 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
778 	if (error) {
779 		aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
780 		return error;
781 	}
782 
783 	/*
784 	 * Create RX status DMA stuffs
785 	 */
786 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
787 	    (void **)&rxsd->rxsd_status,
788 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
789 	if (error) {
790 		aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
791 		return error;
792 	}
793 
794 	/*
795 	 * Create mbuf DMA stuffs
796 	 */
797 	error = et_dma_mbuf_create(sc);
798 	if (error)
799 		return error;
800 
801 	return 0;
802 }
803 
804 void
805 et_dma_free(struct et_softc *sc)
806 {
807 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
808 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
809 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
810 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
811 	int i, rx_done[ET_RX_NRING];
812 
813 	/*
814 	 * Destroy TX ring DMA stuffs
815 	 */
816 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
817 
818 	/*
819 	 * Destroy TX status DMA stuffs
820 	 */
821 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
822 
823 	/*
824 	 * Destroy DMA stuffs for RX rings
825 	 */
826 	for (i = 0; i < ET_RX_NRING; ++i) {
827 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
828 
829 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
830 	}
831 
832 	/*
833 	 * Destroy RX stat ring DMA stuffs
834 	 */
835 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
836 
837 	/*
838 	 * Destroy RX status DMA stuffs
839 	 */
840 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
841 
842 	/*
843 	 * Destroy mbuf DMA stuffs
844 	 */
845 	for (i = 0; i < ET_RX_NRING; ++i)
846 		rx_done[i] = ET_RX_NDESC;
847 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
848 }
849 
850 int
851 et_dma_mbuf_create(struct et_softc *sc)
852 {
853 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
854 	int i, error, rx_done[ET_RX_NRING];
855 
856 	/*
857 	 * Create spare DMA map for RX mbufs
858 	 */
859 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
860 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
861 	if (error) {
862 		aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
863 		return error;
864 	}
865 
866 	/*
867 	 * Create DMA maps for RX mbufs
868 	 */
869 	bzero(rx_done, sizeof(rx_done));
870 	for (i = 0; i < ET_RX_NRING; ++i) {
871 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
872 		int j;
873 
874 		for (j = 0; j < ET_RX_NDESC; ++j) {
875 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
876 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
877 			    &rbd->rbd_buf[j].rb_dmap);
878 			if (error) {
879 				aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
880 				    "for %d RX ring\n", j, i);
881 				rx_done[i] = j;
882 				et_dma_mbuf_destroy(sc, 0, rx_done);
883 				return error;
884 			}
885 		}
886 		rx_done[i] = ET_RX_NDESC;
887 
888 		rbd->rbd_softc = sc;
889 		rbd->rbd_ring = &sc->sc_rx_ring[i];
890 	}
891 
892 	/*
893 	 * Create DMA maps for TX mbufs
894 	 */
895 	for (i = 0; i < ET_TX_NDESC; ++i) {
896 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
897 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
898 		if (error) {
899 			aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
900 			    "DMA map\n", i);
901 			et_dma_mbuf_destroy(sc, i, rx_done);
902 			return error;
903 		}
904 	}
905 
906 	return 0;
907 }
908 
909 void
910 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
911 {
912 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
913 	int i;
914 
915 	/*
916 	 * Destroy DMA maps for RX mbufs
917 	 */
918 	for (i = 0; i < ET_RX_NRING; ++i) {
919 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
920 		int j;
921 
922 		for (j = 0; j < rx_done[i]; ++j) {
923 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
924 
925 			KASSERTMSG(rb->rb_mbuf == NULL,
926 			    "RX mbuf in %d RX ring is not freed yet\n", i);
927 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
928 		}
929 	}
930 
931 	/*
932 	 * Destroy DMA maps for TX mbufs
933 	 */
934 	for (i = 0; i < tx_done; ++i) {
935 		struct et_txbuf *tb = &tbd->tbd_buf[i];
936 
937 		KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
938 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
939 	}
940 
941 	/*
942 	 * Destroy spare mbuf DMA map
943 	 */
944 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
945 }
946 
947 int
948 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
949     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
950 {
951 	int error, nsegs;
952 
953 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
954 	    dmap);
955 	if (error) {
956 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
957 		return error;
958 	}
959 
960 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
961 	    1, &nsegs, BUS_DMA_WAITOK);
962 	if (error) {
963 		aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
964 		return error;
965 	}
966 
967 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
968 	    size, (void **)addr, BUS_DMA_NOWAIT);
969 	if (error) {
970 		aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
971 		return (error);
972 	}
973 
974 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
975 	    BUS_DMA_WAITOK);
976 	if (error) {
977 		aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
978 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
979 		return error;
980 	}
981 
982 	memset(*addr, 0, size);
983 
984 	*paddr = (*dmap)->dm_segs[0].ds_addr;
985 
986 	return 0;
987 }
988 
989 void
990 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
991 {
992 	bus_dmamap_unload(sc->sc_dmat, dmap);
993 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
994 }
995 
996 void
997 et_chip_attach(struct et_softc *sc)
998 {
999 	uint32_t val;
1000 
1001 	/*
1002 	 * Perform minimal initialization
1003 	 */
1004 
1005 	/* Disable loopback */
1006 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1007 
1008 	/* Reset MAC */
1009 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1010 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1011 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1012 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1013 
1014 	/*
1015 	 * Setup half duplex mode
1016 	 */
1017 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1018 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1019 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1020 	      ET_MAC_HDX_EXC_DEFER;
1021 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1022 
1023 	/* Clear MAC control */
1024 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1025 
1026 	/* Reset MII */
1027 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1028 
1029 	/* Bring MAC out of reset state */
1030 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1031 
1032 	/* Enable memory controllers */
1033 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1034 }
1035 
1036 int
1037 et_intr(void *xsc)
1038 {
1039 	struct et_softc *sc = xsc;
1040 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1041 	uint32_t intrs;
1042 
1043 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1044 		return (0);
1045 
1046 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1047 	if (intrs == 0 || intrs == 0xffffffff)
1048 		return (0);
1049 
1050 	et_disable_intrs(sc);
1051 	intrs &= ET_INTRS;
1052 	if (intrs == 0)	/* Not interested */
1053 		goto back;
1054 
1055 	if (intrs & ET_INTR_RXEOF)
1056 		et_rxeof(sc);
1057 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1058 		et_txeof(sc);
1059 	if (intrs & ET_INTR_TIMER)
1060 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1061 back:
1062 	et_enable_intrs(sc, ET_INTRS);
1063 
1064 	return (1);
1065 }
1066 
1067 int
1068 et_init(struct ifnet *ifp)
1069 {
1070 	struct et_softc *sc = ifp->if_softc;
1071 	int error, i, s;
1072 
1073 	if (ifp->if_flags & IFF_RUNNING)
1074 		return 0;
1075 
1076 	s = splnet();
1077 
1078 	et_stop(sc);
1079 	et_reset(sc);
1080 
1081 	for (i = 0; i < ET_RX_NRING; ++i) {
1082 		sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
1083 		sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
1084 	}
1085 
1086 	error = et_init_tx_ring(sc);
1087 	if (error)
1088 		goto back;
1089 
1090 	error = et_init_rx_ring(sc);
1091 	if (error)
1092 		goto back;
1093 
1094 	error = et_chip_init(sc);
1095 	if (error)
1096 		goto back;
1097 
1098 	error = et_start_rxdma(sc);
1099 	if (error)
1100 		goto back;
1101 
1102 	error = et_start_txdma(sc);
1103 	if (error)
1104 		goto back;
1105 
1106 	/* Enable interrupts. */
1107 	et_enable_intrs(sc, ET_INTRS);
1108 
1109 	callout_schedule(&sc->sc_tick, hz);
1110 
1111 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1112 
1113 	ifp->if_flags |= IFF_RUNNING;
1114 	ifp->if_flags &= ~IFF_OACTIVE;
1115 
1116 	sc->sc_flags &= ~ET_FLAG_LINK;
1117 	et_ifmedia_upd(ifp);
1118 back:
1119 	if (error)
1120 		et_stop(sc);
1121 
1122 	splx(s);
1123 
1124 	return (0);
1125 }
1126 
1127 int
1128 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1129 {
1130 	struct et_softc *sc = ifp->if_softc;
1131 	int s, error = 0;
1132 
1133 	s = splnet();
1134 
1135 	switch (cmd) {
1136 	case SIOCSIFFLAGS:
1137 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1138 			break;
1139 		if (ifp->if_flags & IFF_UP) {
1140 			/*
1141 			 * If only the PROMISC or ALLMULTI flag changes, then
1142 			 * don't do a full re-init of the chip, just update
1143 			 * the Rx filter.
1144 			 */
1145 			if ((ifp->if_flags & IFF_RUNNING) &&
1146 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1147 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1148 				et_setmulti(sc);
1149 			} else {
1150 				if (!(ifp->if_flags & IFF_RUNNING))
1151 					et_init(ifp);
1152 			}
1153 		} else {
1154 			if (ifp->if_flags & IFF_RUNNING)
1155 				et_stop(sc);
1156 		}
1157 		sc->sc_if_flags = ifp->if_flags;
1158 		break;
1159 	default:
1160 		error = ether_ioctl(ifp, cmd, data);
1161 		if (error == ENETRESET) {
1162 			if (ifp->if_flags & IFF_RUNNING)
1163 				et_setmulti(sc);
1164 			error = 0;
1165 		}
1166 		break;
1167 	}
1168 
1169 	splx(s);
1170 
1171 	return error;
1172 }
1173 
1174 void
1175 et_start(struct ifnet *ifp)
1176 {
1177 	struct et_softc *sc = ifp->if_softc;
1178 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1179 	int trans;
1180 	struct mbuf *m;
1181 
1182 	if (((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) ||
1183 	    ((sc->sc_flags & (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) !=
1184 		(ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)))
1185 		return;
1186 
1187 	trans = 0;
1188 	for (;;) {
1189 		IFQ_DEQUEUE(&ifp->if_snd, m);
1190 		if (m == NULL)
1191 			break;
1192 
1193 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1194 			ifp->if_flags |= IFF_OACTIVE;
1195 			break;
1196 		}
1197 
1198 		if (et_encap(sc, &m)) {
1199 			ifp->if_oerrors++;
1200 			ifp->if_flags |= IFF_OACTIVE;
1201 			break;
1202 		}
1203 
1204 		trans = 1;
1205 
1206 		bpf_mtap(ifp, m, BPF_D_OUT);
1207 	}
1208 
1209 	if (trans) {
1210 		callout_schedule(&sc->sc_txtick, hz);
1211 		ifp->if_timer = 5;
1212 	}
1213 }
1214 
1215 void
1216 et_watchdog(struct ifnet *ifp)
1217 {
1218 	struct et_softc *sc = ifp->if_softc;
1219 	aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1220 
1221 	ifp->if_flags &= ~IFF_RUNNING;
1222 	et_init(ifp);
1223 	et_start(ifp);
1224 }
1225 
1226 int
1227 et_stop_rxdma(struct et_softc *sc)
1228 {
1229 
1230 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1231 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1232 
1233 	DELAY(5);
1234 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1235 		aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1236 		return ETIMEDOUT;
1237 	}
1238 	return 0;
1239 }
1240 
1241 int
1242 et_stop_txdma(struct et_softc *sc)
1243 {
1244 
1245 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1246 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1247 	return 0;
1248 }
1249 
1250 void
1251 et_free_tx_ring(struct et_softc *sc)
1252 {
1253 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1254 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1255 	int i;
1256 
1257 	for (i = 0; i < ET_TX_NDESC; ++i) {
1258 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1259 
1260 		if (tb->tb_mbuf != NULL) {
1261 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1262 			m_freem(tb->tb_mbuf);
1263 			tb->tb_mbuf = NULL;
1264 		}
1265 	}
1266 
1267 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1268 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1269 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1270 }
1271 
1272 void
1273 et_free_rx_ring(struct et_softc *sc)
1274 {
1275 	int n;
1276 
1277 	for (n = 0; n < ET_RX_NRING; ++n) {
1278 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1279 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1280 		int i;
1281 
1282 		for (i = 0; i < ET_RX_NDESC; ++i) {
1283 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1284 
1285 			if (rb->rb_mbuf != NULL) {
1286 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1287 				m_freem(rb->rb_mbuf);
1288 				rb->rb_mbuf = NULL;
1289 			}
1290 		}
1291 
1292 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1293 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1294 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1295 	}
1296 }
1297 
1298 void
1299 et_setmulti(struct et_softc *sc)
1300 {
1301 	struct ethercom *ec = &sc->sc_ethercom;
1302 	struct ifnet *ifp = &ec->ec_if;
1303 	uint32_t hash[4] = { 0, 0, 0, 0 };
1304 	uint32_t rxmac_ctrl, pktfilt;
1305 	struct ether_multi *enm;
1306 	struct ether_multistep step;
1307 	uint8_t addr[ETHER_ADDR_LEN];
1308 	int i, count;
1309 
1310 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1311 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1312 
1313 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1314 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1315 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1316 		goto back;
1317 	}
1318 
1319 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1320 
1321 	count = 0;
1322 	ETHER_LOCK(ec);
1323 	ETHER_FIRST_MULTI(step, ec, enm);
1324 	while (enm != NULL) {
1325 		uint32_t *hp, h;
1326 
1327 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1328 			addr[i] &= enm->enm_addrlo[i];
1329 		}
1330 
1331 		h = ether_crc32_be(addr, ETHER_ADDR_LEN);
1332 		h = (h & 0x3f800000) >> 23;
1333 
1334 		hp = &hash[0];
1335 		if (h >= 32 && h < 64) {
1336 			h -= 32;
1337 			hp = &hash[1];
1338 		} else if (h >= 64 && h < 96) {
1339 			h -= 64;
1340 			hp = &hash[2];
1341 		} else if (h >= 96) {
1342 			h -= 96;
1343 			hp = &hash[3];
1344 		}
1345 		*hp |= (1 << h);
1346 
1347 		++count;
1348 		ETHER_NEXT_MULTI(step, enm);
1349 	}
1350 	ETHER_UNLOCK(ec);
1351 
1352 	for (i = 0; i < 4; ++i)
1353 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1354 
1355 	if (count > 0)
1356 		pktfilt |= ET_PKTFILT_MCAST;
1357 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1358 back:
1359 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1360 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1361 }
1362 
1363 int
1364 et_chip_init(struct et_softc *sc)
1365 {
1366 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1367 	uint32_t rxq_end;
1368 	int error;
1369 
1370 	/*
1371 	 * Split internal memory between TX and RX according to MTU
1372 	 */
1373 	if (ifp->if_mtu < 2048)
1374 		rxq_end = 0x2bc;
1375 	else if (ifp->if_mtu < 8192)
1376 		rxq_end = 0x1ff;
1377 	else
1378 		rxq_end = 0x1b3;
1379 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1380 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1381 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1382 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1383 
1384 	/* No loopback */
1385 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1386 
1387 	/* Clear MSI configure */
1388 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1389 
1390 	/* Disable timer */
1391 	CSR_WRITE_4(sc, ET_TIMER, 0);
1392 
1393 	/* Initialize MAC */
1394 	et_init_mac(sc);
1395 
1396 	/* Enable memory controllers */
1397 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1398 
1399 	/* Initialize RX MAC */
1400 	et_init_rxmac(sc);
1401 
1402 	/* Initialize TX MAC */
1403 	et_init_txmac(sc);
1404 
1405 	/* Initialize RX DMA engine */
1406 	error = et_init_rxdma(sc);
1407 	if (error)
1408 		return error;
1409 
1410 	/* Initialize TX DMA engine */
1411 	error = et_init_txdma(sc);
1412 	if (error)
1413 		return error;
1414 
1415 	return 0;
1416 }
1417 
1418 int
1419 et_init_tx_ring(struct et_softc *sc)
1420 {
1421 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1422 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1423 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1424 
1425 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1426 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1427 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1428 
1429 	tbd->tbd_start_index = 0;
1430 	tbd->tbd_start_wrap = 0;
1431 	tbd->tbd_used = 0;
1432 
1433 	bzero(txsd->txsd_status, sizeof(uint32_t));
1434 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1435 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1436 	return 0;
1437 }
1438 
1439 int
1440 et_init_rx_ring(struct et_softc *sc)
1441 {
1442 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1443 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1444 	int n;
1445 
1446 	for (n = 0; n < ET_RX_NRING; ++n) {
1447 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1448 		int i, error;
1449 
1450 		for (i = 0; i < ET_RX_NDESC; ++i) {
1451 			error = rbd->rbd_newbuf(rbd, i, 1);
1452 			if (error) {
1453 				aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1454 				    "%d\n", n, i, error);
1455 				return error;
1456 			}
1457 		}
1458 	}
1459 
1460 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1461 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1462 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1463 
1464 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1465 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1466 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1467 
1468 	return 0;
1469 }
1470 
1471 int
1472 et_init_rxdma(struct et_softc *sc)
1473 {
1474 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1475 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1476 	struct et_rxdesc_ring *rx_ring;
1477 	int error;
1478 
1479 	error = et_stop_rxdma(sc);
1480 	if (error) {
1481 		aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1482 		return error;
1483 	}
1484 
1485 	/*
1486 	 * Install RX status
1487 	 */
1488 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1489 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1490 
1491 	/*
1492 	 * Install RX stat ring
1493 	 */
1494 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1495 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1496 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1497 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1498 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1499 
1500 	/* Match ET_RXSTAT_POS */
1501 	rxst_ring->rsr_index = 0;
1502 	rxst_ring->rsr_wrap = 0;
1503 
1504 	/*
1505 	 * Install the 2nd RX descriptor ring
1506 	 */
1507 	rx_ring = &sc->sc_rx_ring[1];
1508 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1509 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1510 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1511 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1512 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1513 
1514 	/* Match ET_RX_RING1_POS */
1515 	rx_ring->rr_index = 0;
1516 	rx_ring->rr_wrap = 1;
1517 
1518 	/*
1519 	 * Install the 1st RX descriptor ring
1520 	 */
1521 	rx_ring = &sc->sc_rx_ring[0];
1522 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1523 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1524 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1525 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1526 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1527 
1528 	/* Match ET_RX_RING0_POS */
1529 	rx_ring->rr_index = 0;
1530 	rx_ring->rr_wrap = 1;
1531 
1532 	/*
1533 	 * RX intr moderation
1534 	 */
1535 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1536 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1537 
1538 	return 0;
1539 }
1540 
1541 int
1542 et_init_txdma(struct et_softc *sc)
1543 {
1544 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1545 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1546 	int error;
1547 
1548 	error = et_stop_txdma(sc);
1549 	if (error) {
1550 		aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1551 		return error;
1552 	}
1553 
1554 	/*
1555 	 * Install TX descriptor ring
1556 	 */
1557 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1558 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1559 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1560 
1561 	/*
1562 	 * Install TX status
1563 	 */
1564 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1565 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1566 
1567 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1568 
1569 	/* Match ET_TX_READY_POS */
1570 	tx_ring->tr_ready_index = 0;
1571 	tx_ring->tr_ready_wrap = 0;
1572 
1573 	return 0;
1574 }
1575 
1576 void
1577 et_init_mac(struct et_softc *sc)
1578 {
1579 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1580 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1581 	uint32_t val;
1582 
1583 	/* Reset MAC */
1584 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1585 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1586 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1587 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1588 
1589 	/*
1590 	 * Setup inter packet gap
1591 	 */
1592 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1593 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1594 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1595 	      __SHIFTIN(96, ET_IPG_B2B);
1596 	CSR_WRITE_4(sc, ET_IPG, val);
1597 
1598 	/*
1599 	 * Setup half duplex mode
1600 	 */
1601 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1602 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1603 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1604 	      ET_MAC_HDX_EXC_DEFER;
1605 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1606 
1607 	/* Clear MAC control */
1608 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1609 
1610 	/* Reset MII */
1611 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1612 
1613 	/*
1614 	 * Set MAC address
1615 	 */
1616 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1617 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1618 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1619 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1620 
1621 	/* Set max frame length */
1622 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1623 		    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1624 
1625 	/* Bring MAC out of reset state */
1626 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1627 }
1628 
1629 void
1630 et_init_rxmac(struct et_softc *sc)
1631 {
1632 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1633 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1634 	uint32_t val;
1635 	int i;
1636 
1637 	/* Disable RX MAC and WOL */
1638 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1639 
1640 	/*
1641 	 * Clear all WOL related registers
1642 	 */
1643 	for (i = 0; i < 3; ++i)
1644 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1645 	for (i = 0; i < 20; ++i)
1646 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1647 
1648 	/*
1649 	 * Set WOL source address.  XXX is this necessary?
1650 	 */
1651 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1652 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1653 	val = (eaddr[0] << 8) | eaddr[1];
1654 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1655 
1656 	/* Clear packet filters */
1657 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1658 
1659 	/* No ucast filtering */
1660 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1661 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1662 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1663 
1664 	if (ifp->if_mtu > 8192) {
1665 		/*
1666 		 * In order to transmit jumbo packets greater than 8k,
1667 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1668 		 * in size to (16k - MTU).  In order to implement this, we
1669 		 * must use "cut through" mode in the RX MAC, which chops
1670 		 * packets down into segments which are (max_size * 16).
1671 		 * In this case we selected 256 bytes, since this is the
1672 		 * size of the PCI-Express TLP's that the 1310 uses.
1673 		 */
1674 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1675 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1676 	} else {
1677 		val = 0;
1678 	}
1679 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1680 
1681 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1682 
1683 	/* Initialize RX MAC management register */
1684 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1685 
1686 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1687 
1688 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1689 		    ET_RXMAC_MGT_PASS_ECRC |
1690 		    ET_RXMAC_MGT_PASS_ELEN |
1691 		    ET_RXMAC_MGT_PASS_ETRUNC |
1692 		    ET_RXMAC_MGT_CHECK_PKT);
1693 
1694 	/*
1695 	 * Configure runt filtering (may not work on certain chip generation)
1696 	 */
1697 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1698 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1699 
1700 	/* Enable RX MAC but leave WOL disabled */
1701 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1702 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1703 
1704 	/*
1705 	 * Setup multicast hash and allmulti/promisc mode
1706 	 */
1707 	et_setmulti(sc);
1708 }
1709 
1710 void
1711 et_init_txmac(struct et_softc *sc)
1712 {
1713 
1714 	/* Disable TX MAC and FC(?) */
1715 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1716 
1717 	/* No flow control yet */
1718 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1719 
1720 	/* Enable TX MAC but leave FC(?) diabled */
1721 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1722 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1723 }
1724 
1725 int
1726 et_start_rxdma(struct et_softc *sc)
1727 {
1728 	uint32_t val = 0;
1729 
1730 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1731 			 ET_RXDMA_CTRL_RING0_SIZE) |
1732 	       ET_RXDMA_CTRL_RING0_ENABLE;
1733 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1734 			 ET_RXDMA_CTRL_RING1_SIZE) |
1735 	       ET_RXDMA_CTRL_RING1_ENABLE;
1736 
1737 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1738 
1739 	DELAY(5);
1740 
1741 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1742 		aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1743 		return ETIMEDOUT;
1744 	}
1745 	return 0;
1746 }
1747 
1748 int
1749 et_start_txdma(struct et_softc *sc)
1750 {
1751 
1752 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1753 	return 0;
1754 }
1755 
1756 void
1757 et_rxeof(struct et_softc *sc)
1758 {
1759 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1760 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1761 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1762 	uint32_t rxs_stat_ring;
1763 	int rxst_wrap, rxst_index;
1764 
1765 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1766 		return;
1767 
1768 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1769 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1770 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1771 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1772 
1773 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1774 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1775 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1776 
1777 	while (rxst_index != rxst_ring->rsr_index ||
1778 	       rxst_wrap != rxst_ring->rsr_wrap) {
1779 		struct et_rxbuf_data *rbd;
1780 		struct et_rxdesc_ring *rx_ring;
1781 		struct et_rxstat *st;
1782 		struct et_rxbuf *rb;
1783 		struct mbuf *m;
1784 		int buflen, buf_idx, ring_idx;
1785 		uint32_t rxstat_pos, rxring_pos;
1786 
1787 		KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1788 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1789 
1790 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1791 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1792 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1793 
1794 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1795 			rxst_ring->rsr_index = 0;
1796 			rxst_ring->rsr_wrap ^= 1;
1797 		}
1798 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1799 				       ET_RXSTAT_POS_INDEX);
1800 		if (rxst_ring->rsr_wrap)
1801 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1802 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1803 
1804 		if (ring_idx >= ET_RX_NRING) {
1805 			ifp->if_ierrors++;
1806 			aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1807 			    ring_idx);
1808 			continue;
1809 		}
1810 		if (buf_idx >= ET_RX_NDESC) {
1811 			ifp->if_ierrors++;
1812 			aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1813 			    buf_idx);
1814 			continue;
1815 		}
1816 
1817 		rbd = &sc->sc_rx_data[ring_idx];
1818 		rb = &rbd->rbd_buf[buf_idx];
1819 		m = rb->rb_mbuf;
1820 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1821 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1822 
1823 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1824 			if (buflen < ETHER_CRC_LEN) {
1825 				m_freem(m);
1826 				ifp->if_ierrors++;
1827 			} else {
1828 				m->m_pkthdr.len = m->m_len = buflen -
1829 				    ETHER_CRC_LEN;
1830 				m_set_rcvif(m, ifp);
1831 
1832 				if_percpuq_enqueue(ifp->if_percpuq, m);
1833 			}
1834 		} else {
1835 			ifp->if_ierrors++;
1836 		}
1837 
1838 		rx_ring = &sc->sc_rx_ring[ring_idx];
1839 
1840 		if (buf_idx != rx_ring->rr_index) {
1841 			aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1842 			    "buf_idx %d, rr_idx %d\n",
1843 			    ring_idx, buf_idx, rx_ring->rr_index);
1844 		}
1845 
1846 		KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1847 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1848 			rx_ring->rr_index = 0;
1849 			rx_ring->rr_wrap ^= 1;
1850 		}
1851 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1852 		if (rx_ring->rr_wrap)
1853 			rxring_pos |= ET_RX_RING_POS_WRAP;
1854 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1855 	}
1856 }
1857 
1858 int
1859 et_encap(struct et_softc *sc, struct mbuf **m0)
1860 {
1861 	struct mbuf *m = *m0;
1862 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1863 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1864 	struct et_txdesc *td;
1865 	bus_dmamap_t map;
1866 	int error, maxsegs, first_idx, last_idx, i;
1867 	uint32_t tx_ready_pos, last_td_ctrl2;
1868 
1869 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1870 	if (maxsegs > ET_NSEG_MAX)
1871 		maxsegs = ET_NSEG_MAX;
1872 	KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1873 		"not enough spare TX desc (%d)\n", maxsegs);
1874 
1875 	KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1876 	first_idx = tx_ring->tr_ready_index;
1877 	map = tbd->tbd_buf[first_idx].tb_dmap;
1878 
1879 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1880 	    BUS_DMA_NOWAIT);
1881 	if (!error && map->dm_nsegs == 0) {
1882 		bus_dmamap_unload(sc->sc_dmat, map);
1883 		error = EFBIG;
1884 	}
1885 	if (error && error != EFBIG) {
1886 		aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1887 		goto back;
1888 	}
1889 	if (error) {	/* error == EFBIG */
1890 		struct mbuf *m_new;
1891 
1892 		error = 0;
1893 
1894 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1895 		if (m_new == NULL) {
1896 			aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1897 			error = ENOBUFS;
1898 			goto back;
1899 		}
1900 
1901 		m_copy_pkthdr(m_new, m);
1902 		if (m->m_pkthdr.len > MHLEN) {
1903 			MCLGET(m_new, M_DONTWAIT);
1904 			if (!(m_new->m_flags & M_EXT)) {
1905 				m_freem(m_new);
1906 				error = ENOBUFS;
1907 			}
1908 		}
1909 
1910 		if (error) {
1911 			aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1912 			goto back;
1913 		}
1914 
1915 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1916 		m_freem(m);
1917 		m_new->m_len = m_new->m_pkthdr.len;
1918 		*m0 = m = m_new;
1919 
1920 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1921 					     BUS_DMA_NOWAIT);
1922 		if (error || map->dm_nsegs == 0) {
1923 			if (map->dm_nsegs == 0) {
1924 				bus_dmamap_unload(sc->sc_dmat, map);
1925 				error = EFBIG;
1926 			}
1927 			aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1928 			goto back;
1929 		}
1930 	}
1931 
1932 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1933 	    BUS_DMASYNC_PREWRITE);
1934 
1935 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1936 	sc->sc_tx += map->dm_nsegs;
1937 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1938 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1939 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1940 	}
1941 
1942 	last_idx = -1;
1943 	for (i = 0; i < map->dm_nsegs; ++i) {
1944 		int idx;
1945 
1946 		idx = (first_idx + i) % ET_TX_NDESC;
1947 		td = &tx_ring->tr_desc[idx];
1948 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1949 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1950 		td->td_ctrl1 =
1951 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1952 
1953 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1954 			td->td_ctrl2 = last_td_ctrl2;
1955 			last_idx = idx;
1956 		}
1957 
1958 		KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1959 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1960 			tx_ring->tr_ready_index = 0;
1961 			tx_ring->tr_ready_wrap ^= 1;
1962 		}
1963 	}
1964 	td = &tx_ring->tr_desc[first_idx];
1965 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1966 
1967 	KASSERT(last_idx >= 0);
1968 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1969 	tbd->tbd_buf[last_idx].tb_dmap = map;
1970 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1971 
1972 	tbd->tbd_used += map->dm_nsegs;
1973 	KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1974 
1975 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1976 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1977 
1978 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1979 		       ET_TX_READY_POS_INDEX);
1980 	if (tx_ring->tr_ready_wrap)
1981 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1982 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1983 
1984 	error = 0;
1985 back:
1986 	if (error) {
1987 		m_freem(m);
1988 		*m0 = NULL;
1989 	}
1990 	return error;
1991 }
1992 
1993 void
1994 et_txeof(struct et_softc *sc)
1995 {
1996 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1997 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1998 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1999 	uint32_t tx_done;
2000 	int end, wrap;
2001 
2002 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
2003 		return;
2004 
2005 	if (tbd->tbd_used == 0)
2006 		return;
2007 
2008 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
2009 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
2010 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
2011 
2012 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
2013 		struct et_txbuf *tb;
2014 
2015 		KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
2016 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
2017 
2018 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2019 		      sizeof(struct et_txdesc));
2020 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
2021 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2022 
2023 		if (tb->tb_mbuf != NULL) {
2024 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
2025 			m_freem(tb->tb_mbuf);
2026 			tb->tb_mbuf = NULL;
2027 			ifp->if_opackets++;
2028 		}
2029 
2030 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
2031 			tbd->tbd_start_index = 0;
2032 			tbd->tbd_start_wrap ^= 1;
2033 		}
2034 
2035 		KASSERT(tbd->tbd_used > 0);
2036 		tbd->tbd_used--;
2037 	}
2038 
2039 	if (tbd->tbd_used == 0) {
2040 		callout_stop(&sc->sc_txtick);
2041 		ifp->if_timer = 0;
2042 	}
2043 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2044 		ifp->if_flags &= ~IFF_OACTIVE;
2045 
2046 	if_schedule_deferred_start(ifp);
2047 }
2048 
2049 void
2050 et_txtick(void *xsc)
2051 {
2052 	struct et_softc *sc = xsc;
2053 	int s;
2054 
2055 	s = splnet();
2056 	et_txeof(sc);
2057 	splx(s);
2058 }
2059 
2060 void
2061 et_tick(void *xsc)
2062 {
2063 	struct et_softc *sc = xsc;
2064 	int s;
2065 
2066 	s = splnet();
2067 	mii_tick(&sc->sc_miibus);
2068 	callout_schedule(&sc->sc_tick, hz);
2069 	splx(s);
2070 }
2071 
2072 int
2073 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2074 {
2075 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2076 }
2077 
2078 int
2079 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2080 {
2081 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2082 }
2083 
2084 int
2085 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2086 {
2087 	struct et_softc *sc = rbd->rbd_softc;
2088 	struct et_rxdesc_ring *rx_ring;
2089 	struct et_rxdesc *desc;
2090 	struct et_rxbuf *rb;
2091 	struct mbuf *m;
2092 	bus_dmamap_t dmap;
2093 	int error, len;
2094 
2095 	KASSERT(buf_idx < ET_RX_NDESC);
2096 	rb = &rbd->rbd_buf[buf_idx];
2097 
2098 	if (len0 >= MINCLSIZE) {
2099 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2100 		if (m == NULL)
2101 			return (ENOBUFS);
2102 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2103 		if ((m->m_flags & M_EXT) == 0) {
2104 			m_freem(m);
2105 			return (ENOBUFS);
2106 		}
2107 		len = MCLBYTES;
2108 	} else {
2109 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2110 		len = MHLEN;
2111 	}
2112 
2113 	if (m == NULL) {
2114 		error = ENOBUFS;
2115 
2116 		/* XXX for debug */
2117 		aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2118 		if (init) {
2119 			return error;
2120 		} else {
2121 			goto back;
2122 		}
2123 	}
2124 	m->m_len = m->m_pkthdr.len = len;
2125 
2126 	/*
2127 	 * Try load RX mbuf into temporary DMA tag
2128 	 */
2129 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2130 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2131 	if (error) {
2132 		m_freem(m);
2133 
2134 		/* XXX for debug */
2135 		aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2136 		if (init) {
2137 			return error;
2138 		} else {
2139 			goto back;
2140 		}
2141 	}
2142 
2143 	if (!init)
2144 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2145 	rb->rb_mbuf = m;
2146 
2147 	/*
2148 	 * Swap RX buf's DMA map with the loaded temporary one
2149 	 */
2150 	dmap = rb->rb_dmap;
2151 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2152 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2153 	sc->sc_mbuf_tmp_dmap = dmap;
2154 
2155 	error = 0;
2156 back:
2157 	rx_ring = rbd->rbd_ring;
2158 	desc = &rx_ring->rr_desc[buf_idx];
2159 
2160 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2161 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2162 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2163 
2164 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2165 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2166 	return error;
2167 }
2168