xref: /netbsd-src/sys/dev/pci/eap.c (revision bada23909e740596d0a3785a73bd3583a9807fb8)
1 /*	$NetBSD: eap.c,v 1.25 1999/02/18 07:59:30 mycroft Exp $	*/
2 
3 /*
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Lennart Augustsson <augustss@netbsd.org> and Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Debugging:   Andreas Gustafsson <gson@araneus.fi>
41  * Testing:     Chuck Cranor       <chuck@maria.wustl.edu>
42  *              Phil Nelson        <phil@cs.wwu.edu>
43  */
44 
45 /*
46  * Ensoniq AudoiPCI ES1370 + AK4531 driver.
47  * Data sheets can be found at
48  * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
49  * and
50  * http://206.214.38.151/pdf/4531.pdf
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/malloc.h>
57 #include <sys/device.h>
58 
59 #include <dev/pci/pcidevs.h>
60 #include <dev/pci/pcivar.h>
61 
62 #include <sys/audioio.h>
63 #include <dev/audio_if.h>
64 #include <dev/mulaw.h>
65 #include <dev/auconv.h>
66 
67 #include <machine/bus.h>
68 
69 #define	PCI_CBIO		0x10
70 
71 #define EAP_ICSC		0x00    /* interrupt / chip select control */
72 #define  EAP_SERR_DISABLE	0x00000001
73 #define  EAP_CDC_EN		0x00000002
74 #define  EAP_JYSTK_EN		0x00000004
75 #define  EAP_UART_EN		0x00000008
76 #define  EAP_ADC_EN		0x00000010
77 #define  EAP_DAC2_EN		0x00000020
78 #define  EAP_DAC1_EN		0x00000040
79 #define  EAP_BREQ		0x00000080
80 #define  EAP_XTCL0		0x00000100
81 #define  EAP_M_CB		0x00000200
82 #define  EAP_CCB_INTRM		0x00000400
83 #define  EAP_DAC_SYNC		0x00000800
84 #define  EAP_WTSRSEL		0x00003000
85 #define   EAP_WTSRSEL_5		0x00000000
86 #define   EAP_WTSRSEL_11	0x00001000
87 #define   EAP_WTSRSEL_22	0x00002000
88 #define   EAP_WTSRSEL_44	0x00003000
89 #define  EAP_M_SBB		0x00004000
90 #define  EAP_MSFMTSEL		0x00008000
91 #define  EAP_SET_PCLKDIV(n)	(((n)&0x1fff)<<16)
92 #define  EAP_GET_PCLKDIV(n)	(((n)>>16)&0x1fff)
93 #define  EAP_PCLKBITS		0x1fff0000
94 #define  EAP_XTCL1		0x40000000
95 #define  EAP_ADC_STOP		0x80000000
96 
97 #define EAP_ICSS		0x04	/* interrupt / chip select status */
98 #define  EAP_I_ADC		0x00000001
99 #define  EAP_I_DAC2		0x00000002
100 #define  EAP_I_DAC1		0x00000004
101 #define  EAP_I_UART		0x00000008
102 #define  EAP_I_MCCB		0x00000010
103 #define  EAP_VC			0x00000060
104 #define  EAP_CWRIP		0x00000100
105 #define  EAP_CBUSY		0x00000200
106 #define  EAP_CSTAT		0x00000400
107 #define  EAP_INTR		0x80000000
108 
109 #define EAP_UART_DATA		0x08
110 #define EAP_UART_STATUS		0x09
111 #define EAP_UART_CONTROL	0x09
112 #define EAP_MEMPAGE		0x0c
113 #define EAP_CODEC		0x10
114 #define  EAP_SET_CODEC(a,d)	(((a)<<8) | (d))
115 
116 #define EAP_SIC			0x20
117 #define  EAP_P1_S_MB		0x00000001
118 #define  EAP_P1_S_EB		0x00000002
119 #define  EAP_P2_S_MB		0x00000004
120 #define  EAP_P2_S_EB		0x00000008
121 #define  EAP_R1_S_MB		0x00000010
122 #define  EAP_R1_S_EB		0x00000020
123 #define  EAP_P2_DAC_SEN		0x00000040
124 #define  EAP_P1_SCT_RLD		0x00000080
125 #define  EAP_P1_INTR_EN		0x00000100
126 #define  EAP_P2_INTR_EN		0x00000200
127 #define  EAP_R1_INTR_EN		0x00000400
128 #define  EAP_P1_PAUSE		0x00000800
129 #define  EAP_P2_PAUSE		0x00001000
130 #define  EAP_P1_LOOP_SEL	0x00002000
131 #define  EAP_P2_LOOP_SEL	0x00004000
132 #define  EAP_R1_LOOP_SEL	0x00008000
133 #define  EAP_SET_P2_ST_INC(i)	((i) << 16)
134 #define  EAP_SET_P2_END_INC(i)	((i) << 19)
135 #define  EAP_INC_BITS		0x003f0000
136 
137 #define EAP_DAC1_CSR		0x24
138 #define EAP_DAC2_CSR		0x28
139 #define EAP_ADC_CSR		0x2c
140 #define  EAP_GET_CURRSAMP(r)	((r) >> 16)
141 
142 #define EAP_DAC_PAGE		0xc
143 #define EAP_ADC_PAGE		0xd
144 #define EAP_UART_PAGE1		0xe
145 #define EAP_UART_PAGE2		0xf
146 
147 #define EAP_DAC1_ADDR		0x30
148 #define EAP_DAC1_SIZE		0x34
149 #define EAP_DAC2_ADDR		0x38
150 #define EAP_DAC2_SIZE		0x3c
151 #define EAP_ADC_ADDR		0x30
152 #define EAP_ADC_SIZE		0x34
153 #define  EAP_SET_SIZE(c,s)	(((c)<<16) | (s))
154 
155 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
156 
157 /* AK4531 registers */
158 #define AK_MASTER_L		0x00
159 #define AK_MASTER_R		0x01
160 #define AK_VOICE_L		0x02
161 #define AK_VOICE_R		0x03
162 #define AK_FM_L			0x04
163 #define AK_FM_R			0x05
164 #define AK_CD_L			0x06
165 #define AK_CD_R			0x07
166 #define AK_LINE_L		0x08
167 #define AK_LINE_R		0x09
168 #define AK_AUX_L		0x0a
169 #define AK_AUX_R		0x0b
170 #define AK_MONO1		0x0c
171 #define AK_MONO2		0x0d
172 #define AK_MIC			0x0e
173 #define AK_MONO			0x0f
174 #define AK_OUT_MIXER1		0x10
175 #define  AK_M_FM_L		0x40
176 #define  AK_M_FM_R		0x20
177 #define  AK_M_LINE_L		0x10
178 #define  AK_M_LINE_R		0x08
179 #define  AK_M_CD_L		0x04
180 #define  AK_M_CD_R		0x02
181 #define  AK_M_MIC		0x01
182 #define AK_OUT_MIXER2		0x11
183 #define  AK_M_AUX_L		0x20
184 #define  AK_M_AUX_R		0x10
185 #define  AK_M_VOICE_L		0x08
186 #define  AK_M_VOICE_R		0x04
187 #define  AK_M_MONO2		0x02
188 #define  AK_M_MONO1		0x01
189 #define AK_IN_MIXER1_L		0x12
190 #define AK_IN_MIXER1_R		0x13
191 #define AK_IN_MIXER2_L		0x14
192 #define AK_IN_MIXER2_R		0x15
193 #define  AK_M_TMIC		0x80
194 #define  AK_M_TMONO1		0x40
195 #define  AK_M_TMONO2		0x20
196 #define  AK_M2_AUX_L		0x10
197 #define  AK_M2_AUX_R		0x08
198 #define  AK_M_VOICE		0x04
199 #define  AK_M2_MONO2		0x02
200 #define  AK_M2_MONO1		0x01
201 #define AK_RESET		0x16
202 #define  AK_PD			0x02
203 #define  AK_NRST		0x01
204 #define AK_CS			0x17
205 #define AK_ADSEL		0x18
206 #define AK_MGAIN		0x19
207 
208 #define AK_NPORTS 16
209 
210 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
211 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
212 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
213 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
214 #define VOL_0DB 200
215 
216 #define EAP_MASTER_VOL		0
217 #define EAP_VOICE_VOL		1
218 #define EAP_FM_VOL		2
219 #define EAP_CD_VOL		3
220 #define EAP_LINE_VOL		4
221 #define EAP_AUX_VOL		5
222 #define EAP_MIC_VOL		6
223 #define	EAP_RECORD_SOURCE 	7
224 #define EAP_OUTPUT_SELECT	8
225 #define	EAP_MIC_PREAMP		9
226 #define EAP_OUTPUT_CLASS	10
227 #define EAP_RECORD_CLASS	11
228 #define EAP_INPUT_CLASS		12
229 
230 #ifdef AUDIO_DEBUG
231 #define DPRINTF(x)	if (eapdebug) printf x
232 #define DPRINTFN(n,x)	if (eapdebug>(n)) printf x
233 int	eapdebug = 0;
234 #else
235 #define DPRINTF(x)
236 #define DPRINTFN(n,x)
237 #endif
238 
239 int	eap_match __P((struct device *, struct cfdata *, void *));
240 void	eap_attach __P((struct device *, struct device *, void *));
241 int	eap_intr __P((void *));
242 
243 struct eap_dma {
244 	bus_dmamap_t map;
245 	caddr_t addr;
246 	bus_dma_segment_t segs[1];
247 	int nsegs;
248 	size_t size;
249 	struct eap_dma *next;
250 };
251 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
252 #define KERNADDR(p) ((void *)((p)->addr))
253 
254 struct eap_softc {
255 	struct device sc_dev;		/* base device */
256 	void *sc_ih;			/* interrupt vectoring */
257 	bus_space_tag_t iot;
258 	bus_space_handle_t ioh;
259 	bus_dma_tag_t sc_dmatag;	/* DMA tag */
260 
261 	struct eap_dma *sc_dmas;
262 
263 	void	(*sc_pintr)(void *);	/* dma completion intr handler */
264 	void	*sc_parg;		/* arg for sc_intr() */
265 #ifdef DIAGNOSTIC
266 	char	sc_prun;
267 #endif
268 
269 	void	(*sc_rintr)(void *);	/* dma completion intr handler */
270 	void	*sc_rarg;		/* arg for sc_intr() */
271 #ifdef DIAGNOSTIC
272 	char	sc_rrun;
273 #endif
274 
275 	u_char	sc_port[AK_NPORTS];	/* mirror of the hardware setting */
276 	u_int	sc_record_source;	/* recording source mask */
277 	u_int	sc_output_source;	/* output source mask */
278 	u_int	sc_mic_preamp;
279 };
280 
281 int	eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
282 int	eap_freemem __P((struct eap_softc *, struct eap_dma *));
283 
284 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
285 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
286 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
287 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
288 
289 struct cfattach eap_ca = {
290 	sizeof(struct eap_softc), eap_match, eap_attach
291 };
292 
293 int	eap_open __P((void *, int));
294 void	eap_close __P((void *));
295 int	eap_query_encoding __P((void *, struct audio_encoding *));
296 int	eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
297 int	eap_round_blocksize __P((void *, int));
298 int	eap_trigger_output __P((void *, void *, void *, int, void (*)(void *),
299 	    void *, struct audio_params *));
300 int	eap_trigger_input __P((void *, void *, void *, int, void (*)(void *),
301 	    void *, struct audio_params *));
302 int	eap_halt_output __P((void *));
303 int	eap_halt_input __P((void *));
304 int	eap_getdev __P((void *, struct audio_device *));
305 int	eap_mixer_set_port __P((void *, mixer_ctrl_t *));
306 int	eap_mixer_get_port __P((void *, mixer_ctrl_t *));
307 int	eap_query_devinfo __P((void *, mixer_devinfo_t *));
308 void   *eap_malloc __P((void *, int, size_t, int, int));
309 void	eap_free __P((void *, void *, int));
310 size_t	eap_round_buffersize __P((void *, int, size_t));
311 int	eap_mappage __P((void *, void *, int, int));
312 int	eap_get_props __P((void *));
313 void	eap_write_codec __P((struct eap_softc *sc, int a, int d));
314 void	eap_set_mixer __P((struct eap_softc *sc, int a, int d));
315 
316 struct audio_hw_if eap_hw_if = {
317 	eap_open,
318 	eap_close,
319 	NULL,
320 	eap_query_encoding,
321 	eap_set_params,
322 	eap_round_blocksize,
323 	NULL,
324 	NULL,
325 	NULL,
326 	NULL,
327 	NULL,
328 	eap_halt_output,
329 	eap_halt_input,
330 	NULL,
331 	eap_getdev,
332 	NULL,
333 	eap_mixer_set_port,
334 	eap_mixer_get_port,
335 	eap_query_devinfo,
336 	eap_malloc,
337 	eap_free,
338 	eap_round_buffersize,
339 	eap_mappage,
340 	eap_get_props,
341 	eap_trigger_output,
342 	eap_trigger_input,
343 };
344 
345 struct audio_device eap_device = {
346 	"Ensoniq AudioPCI",
347 	"",
348 	"eap"
349 };
350 
351 int
352 eap_match(parent, match, aux)
353 	struct device *parent;
354 	struct cfdata *match;
355 	void *aux;
356 {
357 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
358 
359 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
360 		return (0);
361 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
362 		return (0);
363 
364 	return (1);
365 }
366 
367 void
368 eap_write_codec(sc, a, d)
369 	struct eap_softc *sc;
370 	int a, d;
371 {
372 	int icss;
373 
374 	do {
375 		icss = EREAD4(sc, EAP_ICSS);
376 		DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
377 	} while(icss & EAP_CWRIP);
378 	EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
379 }
380 
381 void
382 eap_attach(parent, self, aux)
383 	struct device *parent;
384 	struct device *self;
385 	void *aux;
386 {
387 	struct eap_softc *sc = (struct eap_softc *)self;
388 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
389 	pci_chipset_tag_t pc = pa->pa_pc;
390 	char const *intrstr;
391 	pci_intr_handle_t ih;
392 	pcireg_t csr;
393 	char devinfo[256];
394 	mixer_ctrl_t ctl;
395 
396 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
397 	printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
398 
399 	/* Map I/O register */
400 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
401 	      &sc->iot, &sc->ioh, NULL, NULL)) {
402 		printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
403 		return;
404 	}
405 
406 	sc->sc_dmatag = pa->pa_dmat;
407 
408 	/* Enable the device. */
409 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
410 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
411 		       csr | PCI_COMMAND_MASTER_ENABLE);
412 
413 	/* Map and establish the interrupt. */
414 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
415 	    pa->pa_intrline, &ih)) {
416 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
417 		return;
418 	}
419 	intrstr = pci_intr_string(pc, ih);
420 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
421 	if (sc->sc_ih == NULL) {
422 		printf("%s: couldn't establish interrupt",
423 		    sc->sc_dev.dv_xname);
424 		if (intrstr != NULL)
425 			printf(" at %s", intrstr);
426 		printf("\n");
427 		return;
428 	}
429 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
430 
431 	/* Enable interrupts and looping mode. */
432 	EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
433 	EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
434 
435 	eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
436 	eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST);	/* normal operation */
437 	eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
438 
439 	/* Enable all relevant mixer switches. */
440 	ctl.dev = EAP_OUTPUT_SELECT;
441 	ctl.type = AUDIO_MIXER_SET;
442 	ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL | 1 << EAP_CD_VOL |
443 	    1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
444 	eap_mixer_set_port(sc, &ctl);
445 
446 	ctl.type = AUDIO_MIXER_VALUE;
447 	ctl.un.value.num_channels = 1;
448 	for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
449 		ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
450 		eap_mixer_set_port(sc, &ctl);
451 	}
452 	ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
453 	eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
454 	ctl.dev = EAP_MIC_PREAMP;
455 	ctl.type = AUDIO_MIXER_ENUM;
456 	ctl.un.ord = 0;
457 	eap_mixer_set_port(sc, &ctl);
458 	ctl.dev = EAP_RECORD_SOURCE;
459 	ctl.type = AUDIO_MIXER_SET;
460 	ctl.un.mask = 1 << EAP_MIC_VOL;
461 	eap_mixer_set_port(sc, &ctl);
462 
463 	audio_attach_mi(&eap_hw_if, sc, &sc->sc_dev);
464 }
465 
466 int
467 eap_intr(p)
468 	void *p;
469 {
470 	struct eap_softc *sc = p;
471 	u_int32_t intr, sic;
472 
473 	intr = EREAD4(sc, EAP_ICSS);
474 	if (!(intr & EAP_INTR))
475 		return (0);
476 	sic = EREAD4(sc, EAP_SIC);
477 	DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
478 	if (intr & EAP_I_ADC) {
479 		/*
480 		 * XXX This is a hack!
481 		 * The EAP chip sometimes generates the recording interrupt
482 		 * while it is still transferring the data.  To make sure
483 		 * it has all arrived we busy wait until the count is right.
484 		 * The transfer we are waiting for is 8 longwords.
485 		 */
486 		int s, nw, n;
487 		EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
488 		s = EREAD4(sc, EAP_ADC_CSR);
489 		nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
490 		n = 0;
491 		while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
492 			delay(10);
493 			if (++n > 100) {
494 				printf("eapintr: dma fix timeout");
495 				break;
496 			}
497 		}
498 		/* Continue with normal interrupt handling. */
499 		EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
500 		EWRITE4(sc, EAP_SIC, sic);
501 		if (sc->sc_rintr)
502 			sc->sc_rintr(sc->sc_rarg);
503 	}
504 	if (intr & EAP_I_DAC2) {
505 		EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
506 		EWRITE4(sc, EAP_SIC, sic);
507 		if (sc->sc_pintr)
508 			sc->sc_pintr(sc->sc_parg);
509 	}
510 	return (1);
511 }
512 
513 int
514 eap_allocmem(sc, size, align, p)
515 	struct eap_softc *sc;
516 	size_t size;
517 	size_t align;
518 	struct eap_dma *p;
519 {
520 	int error;
521 
522 	p->size = size;
523 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
524 				 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
525 				 &p->nsegs, BUS_DMA_NOWAIT);
526 	if (error)
527 		return (error);
528 
529 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
530 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
531 	if (error)
532 		goto free;
533 
534 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
535 				  0, BUS_DMA_NOWAIT, &p->map);
536 	if (error)
537 		goto unmap;
538 
539 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
540 				BUS_DMA_NOWAIT);
541 	if (error)
542 		goto destroy;
543 	return (0);
544 
545 destroy:
546 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
547 unmap:
548 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
549 free:
550 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
551 	return (error);
552 }
553 
554 int
555 eap_freemem(sc, p)
556 	struct eap_softc *sc;
557 	struct eap_dma *p;
558 {
559 	bus_dmamap_unload(sc->sc_dmatag, p->map);
560 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
561 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
562 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
563 	return (0);
564 }
565 
566 int
567 eap_open(addr, flags)
568 	void *addr;
569 	int flags;
570 {
571 
572 	return (0);
573 }
574 
575 /*
576  * Close function is called at splaudio().
577  */
578 void
579 eap_close(addr)
580 	void *addr;
581 {
582 	struct eap_softc *sc = addr;
583 
584 	eap_halt_output(sc);
585 	eap_halt_input(sc);
586 
587 	sc->sc_pintr = 0;
588 	sc->sc_rintr = 0;
589 }
590 
591 int
592 eap_query_encoding(addr, fp)
593 	void *addr;
594 	struct audio_encoding *fp;
595 {
596 	switch (fp->index) {
597 	case 0:
598 		strcpy(fp->name, AudioEulinear);
599 		fp->encoding = AUDIO_ENCODING_ULINEAR;
600 		fp->precision = 8;
601 		fp->flags = 0;
602 		return (0);
603 	case 1:
604 		strcpy(fp->name, AudioEmulaw);
605 		fp->encoding = AUDIO_ENCODING_ULAW;
606 		fp->precision = 8;
607 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
608 		return (0);
609 	case 2:
610 		strcpy(fp->name, AudioEalaw);
611 		fp->encoding = AUDIO_ENCODING_ALAW;
612 		fp->precision = 8;
613 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
614 		return (0);
615 	case 3:
616 		strcpy(fp->name, AudioEslinear);
617 		fp->encoding = AUDIO_ENCODING_SLINEAR;
618 		fp->precision = 8;
619 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
620 		return (0);
621 	case 4:
622 		strcpy(fp->name, AudioEslinear_le);
623 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
624 		fp->precision = 16;
625 		fp->flags = 0;
626 		return (0);
627 	case 5:
628 		strcpy(fp->name, AudioEulinear_le);
629 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
630 		fp->precision = 16;
631 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
632 		return (0);
633 	case 6:
634 		strcpy(fp->name, AudioEslinear_be);
635 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
636 		fp->precision = 16;
637 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
638 		return (0);
639 	case 7:
640 		strcpy(fp->name, AudioEulinear_be);
641 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
642 		fp->precision = 16;
643 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
644 		return (0);
645 	default:
646 		return (EINVAL);
647 	}
648 }
649 
650 int
651 eap_set_params(addr, setmode, usemode, play, rec)
652 	void *addr;
653 	int setmode, usemode;
654 	struct audio_params *play, *rec;
655 {
656 	struct eap_softc *sc = addr;
657 	struct audio_params *p;
658 	int mode;
659 	u_int32_t div;
660 
661 	/*
662 	 * This device only has one clock, so make the sample rates match.
663 	 */
664 	if (play->sample_rate != rec->sample_rate &&
665 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
666 		if (setmode == AUMODE_PLAY) {
667 			rec->sample_rate = play->sample_rate;
668 			setmode |= AUMODE_RECORD;
669 		} else if (setmode == AUMODE_RECORD) {
670 			play->sample_rate = rec->sample_rate;
671 			setmode |= AUMODE_PLAY;
672 		} else
673 			return (EINVAL);
674 	}
675 
676 	for (mode = AUMODE_RECORD; mode != -1;
677 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
678 		if ((setmode & mode) == 0)
679 			continue;
680 
681 		p = mode == AUMODE_PLAY ? play : rec;
682 
683 		if (p->sample_rate < 4000 || p->sample_rate > 50000 ||
684 		    (p->precision != 8 && p->precision != 16) ||
685 		    (p->channels != 1 && p->channels != 2))
686 			return (EINVAL);
687 
688 		p->factor = 1;
689 		p->sw_code = 0;
690 		switch (p->encoding) {
691 		case AUDIO_ENCODING_SLINEAR_BE:
692 			if (p->precision == 16)
693 				p->sw_code = swap_bytes;
694 			else
695 				p->sw_code = change_sign8;
696 			break;
697 		case AUDIO_ENCODING_SLINEAR_LE:
698 			if (p->precision != 16)
699 				p->sw_code = change_sign8;
700 			break;
701 		case AUDIO_ENCODING_ULINEAR_BE:
702 			if (p->precision == 16) {
703 				if (mode == AUMODE_PLAY)
704 					p->sw_code = swap_bytes_change_sign16;
705 				else
706 					p->sw_code = change_sign16_swap_bytes;
707 			}
708 			break;
709 		case AUDIO_ENCODING_ULINEAR_LE:
710 			if (p->precision == 16)
711 				p->sw_code = change_sign16;
712 			break;
713 		case AUDIO_ENCODING_ULAW:
714 			if (mode == AUMODE_PLAY) {
715 				p->factor = 2;
716 				p->sw_code = mulaw_to_slinear16;
717 			} else
718 				p->sw_code = ulinear8_to_mulaw;
719 			break;
720 		case AUDIO_ENCODING_ALAW:
721 			if (mode == AUMODE_PLAY) {
722 				p->factor = 2;
723 				p->sw_code = alaw_to_slinear16;
724 			} else
725 				p->sw_code = ulinear8_to_alaw;
726 			break;
727 		default:
728 			return (EINVAL);
729 		}
730 	}
731 
732 	/* Set the speed */
733 	DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
734 		     EREAD4(sc, EAP_ICSC)));
735 	div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
736 	/*
737 	 * XXX
738 	 * The -2 isn't documented, but seemed to make the wall time match
739 	 * what I expect.  - mycroft
740 	 */
741 	if (usemode == AUMODE_RECORD)
742 		div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / rec->sample_rate - 2);
743 	else
744 		div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / play->sample_rate - 2);
745 	div |= EAP_CCB_INTRM;
746 	EWRITE4(sc, EAP_ICSC, div);
747 	DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
748 
749 	return (0);
750 }
751 
752 int
753 eap_round_blocksize(addr, blk)
754 	void *addr;
755 	int blk;
756 {
757 	return (blk & -32);	/* keep good alignment */
758 }
759 
760 int
761 eap_trigger_output(addr, start, end, blksize, intr, arg, param)
762 	void *addr;
763 	void *start, *end;
764 	int blksize;
765 	void (*intr) __P((void *));
766 	void *arg;
767 	struct audio_params *param;
768 {
769 	struct eap_softc *sc = addr;
770 	struct eap_dma *p;
771 	u_int32_t icsc, sic;
772 	int sampshift;
773 
774 #ifdef DIAGNOSTIC
775 	if (sc->sc_prun)
776 		panic("eap_trigger_output: already running");
777 	sc->sc_prun = 1;
778 #endif
779 
780 	DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
781 	    addr, start, end, blksize, intr, arg));
782 	sc->sc_pintr = intr;
783 	sc->sc_parg = arg;
784 
785 	icsc = EREAD4(sc, EAP_ICSC);
786 	EWRITE4(sc, EAP_ICSC, icsc & ~EAP_DAC2_EN);
787 
788 	sic = EREAD4(sc, EAP_SIC);
789 	sic &= ~(EAP_P2_S_EB | EAP_P2_S_MB | EAP_INC_BITS);
790 	sic |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(param->precision * param->factor / 8);
791 	sampshift = 0;
792 	if (param->precision * param->factor == 16) {
793 		sic |= EAP_P2_S_EB;
794 		sampshift++;
795 	}
796 	if (param->channels == 2) {
797 		sic |= EAP_P2_S_MB;
798 		sampshift++;
799 	}
800 	EWRITE4(sc, EAP_SIC, sic);
801 
802 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
803 		;
804 	if (!p) {
805 		printf("eap_trigger_output: bad addr %p\n", start);
806 		return (EINVAL);
807 	}
808 
809 	DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
810 		 (int)DMAADDR(p),
811 		 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
812 	EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
813 	EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
814 	EWRITE4(sc, EAP_DAC2_SIZE,
815 		EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
816 
817 	EWRITE2(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
818 
819 	EWRITE4(sc, EAP_ICSC, icsc | EAP_DAC2_EN);
820 
821 	DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", icsc));
822 
823 	return (0);
824 }
825 
826 int
827 eap_trigger_input(addr, start, end, blksize, intr, arg, param)
828 	void *addr;
829 	void *start, *end;
830 	int blksize;
831 	void (*intr) __P((void *));
832 	void *arg;
833 	struct audio_params *param;
834 {
835 	struct eap_softc *sc = addr;
836 	struct eap_dma *p;
837 	u_int32_t icsc, sic;
838 	int sampshift;
839 
840 #ifdef DIAGNOSTIC
841 	if (sc->sc_rrun)
842 		panic("eap_trigger_input: already running");
843 	sc->sc_rrun = 1;
844 #endif
845 
846 	DPRINTFN(1, ("eap_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
847 	    addr, start, end, blksize, intr, arg));
848 	sc->sc_rintr = intr;
849 	sc->sc_rarg = arg;
850 
851 	icsc = EREAD4(sc, EAP_ICSC);
852 	EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
853 
854 	sic = EREAD4(sc, EAP_SIC);
855 	sic &= ~(EAP_R1_S_EB | EAP_R1_S_MB);
856 	sampshift = 0;
857 	if (param->precision * param->factor == 16) {
858 		sic |= EAP_R1_S_EB;
859 		sampshift++;
860 	}
861 	if (param->channels == 2) {
862 		sic |= EAP_R1_S_MB;
863 		sampshift++;
864 	}
865 	EWRITE4(sc, EAP_SIC, sic);
866 
867 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
868 		;
869 	if (!p) {
870 		printf("eap_trigger_input: bad addr %p\n", start);
871 		return (EINVAL);
872 	}
873 
874 	DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
875 		 (int)DMAADDR(p),
876 		 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
877 	EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
878 	EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
879 	EWRITE4(sc, EAP_ADC_SIZE,
880 		EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
881 
882 	EWRITE2(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
883 
884 	EWRITE4(sc, EAP_ICSC, icsc | EAP_ADC_EN);
885 
886 	DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", icsc));
887 
888 	return (0);
889 }
890 
891 int
892 eap_halt_output(addr)
893 	void *addr;
894 {
895 	struct eap_softc *sc = addr;
896 	u_int32_t icsc;
897 
898 	DPRINTF(("eap: eap_halt_output\n"));
899 	icsc = EREAD4(sc, EAP_ICSC);
900 	EWRITE4(sc, EAP_ICSC, icsc & ~EAP_DAC2_EN);
901 #ifdef DIAGNOSTIC
902 	sc->sc_prun = 0;
903 #endif
904 	return (0);
905 }
906 
907 int
908 eap_halt_input(addr)
909 	void *addr;
910 {
911 	struct eap_softc *sc = addr;
912 	u_int32_t icsc;
913 
914 	DPRINTF(("eap: eap_halt_input\n"));
915 	icsc = EREAD4(sc, EAP_ICSC);
916 	EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
917 #ifdef DIAGNOSTIC
918 	sc->sc_rrun = 0;
919 #endif
920 	return (0);
921 }
922 
923 int
924 eap_getdev(addr, retp)
925 	void *addr;
926 	struct audio_device *retp;
927 {
928 	*retp = eap_device;
929 	return (0);
930 }
931 
932 void
933 eap_set_mixer(sc, a, d)
934 	struct eap_softc *sc;
935 	int a, d;
936 {
937 	eap_write_codec(sc, a, d);
938 	DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
939 }
940 
941 
942 int
943 eap_mixer_set_port(addr, cp)
944 	void *addr;
945 	mixer_ctrl_t *cp;
946 {
947 	struct eap_softc *sc = addr;
948 	int lval, rval, l, r, la, ra;
949 	int l1, r1, l2, r2, m, o1, o2;
950 
951 	if (cp->dev == EAP_RECORD_SOURCE) {
952 		if (cp->type != AUDIO_MIXER_SET)
953 			return (EINVAL);
954 		m = sc->sc_record_source = cp->un.mask;
955 		l1 = l2 = r1 = r2 = 0;
956 		if (m & (1 << EAP_VOICE_VOL))
957 			l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
958 		if (m & (1 << EAP_FM_VOL))
959 			l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
960 		if (m & (1 << EAP_CD_VOL))
961 			l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
962 		if (m & (1 << EAP_LINE_VOL))
963 			l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
964 		if (m & (1 << EAP_AUX_VOL))
965 			l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
966 		if (m & (1 << EAP_MIC_VOL))
967 			l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
968 		eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
969 		eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
970 		eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
971 		eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
972 		return (0);
973 	}
974 	if (cp->dev == EAP_OUTPUT_SELECT) {
975 		if (cp->type != AUDIO_MIXER_SET)
976 			return (EINVAL);
977 		m = sc->sc_output_source = cp->un.mask;
978 		o1 = o2 = 0;
979 		if (m & (1 << EAP_VOICE_VOL))
980 			o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
981 		if (m & (1 << EAP_FM_VOL))
982 			o1 |= AK_M_FM_L | AK_M_FM_R;
983 		if (m & (1 << EAP_CD_VOL))
984 			o1 |= AK_M_CD_L | AK_M_CD_R;
985 		if (m & (1 << EAP_LINE_VOL))
986 			o1 |= AK_M_LINE_L | AK_M_LINE_R;
987 		if (m & (1 << EAP_AUX_VOL))
988 			o2 |= AK_M_AUX_L | AK_M_AUX_R;
989 		if (m & (1 << EAP_MIC_VOL))
990 			o1 |= AK_M_MIC;
991 		eap_set_mixer(sc, AK_OUT_MIXER1, o1);
992 		eap_set_mixer(sc, AK_OUT_MIXER2, o2);
993 		return (0);
994 	}
995 	if (cp->dev == EAP_MIC_PREAMP) {
996 		if (cp->type != AUDIO_MIXER_ENUM)
997 			return (EINVAL);
998 		if (cp->un.ord != 0 && cp->un.ord != 1)
999 			return (EINVAL);
1000 		sc->sc_mic_preamp = cp->un.ord;
1001 		eap_set_mixer(sc, AK_MGAIN, cp->un.ord);
1002 		return (0);
1003 	}
1004 	if (cp->type != AUDIO_MIXER_VALUE)
1005 		return (EINVAL);
1006 	if (cp->un.value.num_channels == 1)
1007 		lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1008 	else if (cp->un.value.num_channels == 2) {
1009 		lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1010 		rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1011 	} else
1012 		return (EINVAL);
1013 	ra = -1;
1014 	switch (cp->dev) {
1015 	case EAP_MASTER_VOL:
1016 		l = VOL_TO_ATT5(lval);
1017 		r = VOL_TO_ATT5(rval);
1018 		la = AK_MASTER_L;
1019 		ra = AK_MASTER_R;
1020 		break;
1021 	case EAP_MIC_VOL:
1022 		if (cp->un.value.num_channels != 1)
1023 			return (EINVAL);
1024 		la = AK_MIC;
1025 		goto lr;
1026 	case EAP_VOICE_VOL:
1027 		la = AK_VOICE_L;
1028 		ra = AK_VOICE_R;
1029 		goto lr;
1030 	case EAP_FM_VOL:
1031 		la = AK_FM_L;
1032 		ra = AK_FM_R;
1033 		goto lr;
1034 	case EAP_CD_VOL:
1035 		la = AK_CD_L;
1036 		ra = AK_CD_R;
1037 		goto lr;
1038 	case EAP_LINE_VOL:
1039 		la = AK_LINE_L;
1040 		ra = AK_LINE_R;
1041 		goto lr;
1042 	case EAP_AUX_VOL:
1043 		la = AK_AUX_L;
1044 		ra = AK_AUX_R;
1045 	lr:
1046 		l = VOL_TO_GAIN5(lval);
1047 		r = VOL_TO_GAIN5(rval);
1048 		break;
1049 	default:
1050 		return (EINVAL);
1051 	}
1052 	eap_set_mixer(sc, la, l);
1053 	sc->sc_port[la] = l;
1054 	if (ra >= 0) {
1055 		eap_set_mixer(sc, ra, r);
1056 		sc->sc_port[ra] = r;
1057 	}
1058 	return (0);
1059 }
1060 
1061 int
1062 eap_mixer_get_port(addr, cp)
1063 	void *addr;
1064 	mixer_ctrl_t *cp;
1065 {
1066 	struct eap_softc *sc = addr;
1067 	int la, ra, l, r;
1068 
1069 	switch (cp->dev) {
1070 	case EAP_RECORD_SOURCE:
1071 		if (cp->type != AUDIO_MIXER_SET)
1072 			return (EINVAL);
1073 		cp->un.mask = sc->sc_record_source;
1074 		return (0);
1075 	case EAP_OUTPUT_SELECT:
1076 		if (cp->type != AUDIO_MIXER_SET)
1077 			return (EINVAL);
1078 		cp->un.mask = sc->sc_output_source;
1079 		return (0);
1080 	case EAP_MIC_PREAMP:
1081 		if (cp->type != AUDIO_MIXER_ENUM)
1082 			return (EINVAL);
1083 		cp->un.ord = sc->sc_mic_preamp;
1084 		return (0);
1085 	case EAP_MASTER_VOL:
1086 		l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1087 		r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1088 		break;
1089 	case EAP_MIC_VOL:
1090 		if (cp->un.value.num_channels != 1)
1091 			return (EINVAL);
1092 		la = ra = AK_MIC;
1093 		goto lr;
1094 	case EAP_VOICE_VOL:
1095 		la = AK_VOICE_L;
1096 		ra = AK_VOICE_R;
1097 		goto lr;
1098 	case EAP_FM_VOL:
1099 		la = AK_FM_L;
1100 		ra = AK_FM_R;
1101 		goto lr;
1102 	case EAP_CD_VOL:
1103 		la = AK_CD_L;
1104 		ra = AK_CD_R;
1105 		goto lr;
1106 	case EAP_LINE_VOL:
1107 		la = AK_LINE_L;
1108 		ra = AK_LINE_R;
1109 		goto lr;
1110 	case EAP_AUX_VOL:
1111 		la = AK_AUX_L;
1112 		ra = AK_AUX_R;
1113 	lr:
1114 		l = GAIN5_TO_VOL(sc->sc_port[la]);
1115 		r = GAIN5_TO_VOL(sc->sc_port[ra]);
1116 		break;
1117 	default:
1118 		return (EINVAL);
1119 	}
1120 	if (cp->un.value.num_channels == 1)
1121 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1122 	else if (cp->un.value.num_channels == 2) {
1123 		cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]  = l;
1124 		cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1125 	} else
1126 		return (EINVAL);
1127 	return (0);
1128 }
1129 
1130 int
1131 eap_query_devinfo(addr, dip)
1132 	void *addr;
1133 	mixer_devinfo_t *dip;
1134 {
1135 	switch (dip->index) {
1136 	case EAP_MASTER_VOL:
1137 		dip->type = AUDIO_MIXER_VALUE;
1138 		dip->mixer_class = EAP_OUTPUT_CLASS;
1139 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1140 		strcpy(dip->label.name, AudioNmaster);
1141 		dip->un.v.num_channels = 2;
1142 		strcpy(dip->un.v.units.name, AudioNvolume);
1143 		return (0);
1144 	case EAP_VOICE_VOL:
1145 		dip->type = AUDIO_MIXER_VALUE;
1146 		dip->mixer_class = EAP_INPUT_CLASS;
1147 		dip->prev = AUDIO_MIXER_LAST;
1148 		dip->next = AUDIO_MIXER_LAST;
1149 		strcpy(dip->label.name, AudioNdac);
1150 		dip->un.v.num_channels = 2;
1151 		strcpy(dip->un.v.units.name, AudioNvolume);
1152 		return (0);
1153 	case EAP_FM_VOL:
1154 		dip->type = AUDIO_MIXER_VALUE;
1155 		dip->mixer_class = EAP_INPUT_CLASS;
1156 		dip->prev = AUDIO_MIXER_LAST;
1157 		dip->next = AUDIO_MIXER_LAST;
1158 		strcpy(dip->label.name, AudioNfmsynth);
1159 		dip->un.v.num_channels = 2;
1160 		strcpy(dip->un.v.units.name, AudioNvolume);
1161 		return (0);
1162 	case EAP_CD_VOL:
1163 		dip->type = AUDIO_MIXER_VALUE;
1164 		dip->mixer_class = EAP_INPUT_CLASS;
1165 		dip->prev = AUDIO_MIXER_LAST;
1166 		dip->next = AUDIO_MIXER_LAST;
1167 		strcpy(dip->label.name, AudioNcd);
1168 		dip->un.v.num_channels = 2;
1169 		strcpy(dip->un.v.units.name, AudioNvolume);
1170 		return (0);
1171 	case EAP_LINE_VOL:
1172 		dip->type = AUDIO_MIXER_VALUE;
1173 		dip->mixer_class = EAP_INPUT_CLASS;
1174 		dip->prev = AUDIO_MIXER_LAST;
1175 		dip->next = AUDIO_MIXER_LAST;
1176 		strcpy(dip->label.name, AudioNline);
1177 		dip->un.v.num_channels = 2;
1178 		strcpy(dip->un.v.units.name, AudioNvolume);
1179 		return (0);
1180 	case EAP_AUX_VOL:
1181 		dip->type = AUDIO_MIXER_VALUE;
1182 		dip->mixer_class = EAP_INPUT_CLASS;
1183 		dip->prev = AUDIO_MIXER_LAST;
1184 		dip->next = AUDIO_MIXER_LAST;
1185 		strcpy(dip->label.name, AudioNaux);
1186 		dip->un.v.num_channels = 2;
1187 		strcpy(dip->un.v.units.name, AudioNvolume);
1188 		return (0);
1189 	case EAP_MIC_VOL:
1190 		dip->type = AUDIO_MIXER_VALUE;
1191 		dip->mixer_class = EAP_INPUT_CLASS;
1192 		dip->prev = AUDIO_MIXER_LAST;
1193 		dip->next = EAP_MIC_PREAMP;
1194 		strcpy(dip->label.name, AudioNmicrophone);
1195 		dip->un.v.num_channels = 1;
1196 		strcpy(dip->un.v.units.name, AudioNvolume);
1197 		return (0);
1198 	case EAP_RECORD_SOURCE:
1199 		dip->mixer_class = EAP_RECORD_CLASS;
1200 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1201 		strcpy(dip->label.name, AudioNsource);
1202 		dip->type = AUDIO_MIXER_SET;
1203 		dip->un.s.num_mem = 6;
1204 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1205 		dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1206 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
1207 		dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1208 		strcpy(dip->un.s.member[2].label.name, AudioNline);
1209 		dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1210 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1211 		dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1212 		strcpy(dip->un.s.member[4].label.name, AudioNaux);
1213 		dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1214 		strcpy(dip->un.s.member[5].label.name, AudioNdac);
1215 		dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1216 		return (0);
1217 	case EAP_OUTPUT_SELECT:
1218 		dip->mixer_class = EAP_OUTPUT_CLASS;
1219 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1220 		strcpy(dip->label.name, AudioNselect);
1221 		dip->type = AUDIO_MIXER_SET;
1222 		dip->un.s.num_mem = 6;
1223 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1224 		dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1225 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
1226 		dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1227 		strcpy(dip->un.s.member[2].label.name, AudioNline);
1228 		dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1229 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1230 		dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1231 		strcpy(dip->un.s.member[4].label.name, AudioNaux);
1232 		dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1233 		strcpy(dip->un.s.member[5].label.name, AudioNdac);
1234 		dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1235 		return (0);
1236 	case EAP_MIC_PREAMP:
1237 		dip->type = AUDIO_MIXER_ENUM;
1238 		dip->mixer_class = EAP_INPUT_CLASS;
1239 		dip->prev = EAP_MIC_VOL;
1240 		dip->next = AUDIO_MIXER_LAST;
1241 		strcpy(dip->label.name, AudioNpreamp);
1242 		dip->un.e.num_mem = 2;
1243 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1244 		dip->un.e.member[0].ord = 0;
1245 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1246 		dip->un.e.member[1].ord = 1;
1247 		return (0);
1248 	case EAP_OUTPUT_CLASS:
1249 		dip->type = AUDIO_MIXER_CLASS;
1250 		dip->mixer_class = EAP_OUTPUT_CLASS;
1251 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1252 		strcpy(dip->label.name, AudioCoutputs);
1253 		return (0);
1254 	case EAP_RECORD_CLASS:
1255 		dip->type = AUDIO_MIXER_CLASS;
1256 		dip->mixer_class = EAP_RECORD_CLASS;
1257 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1258 		strcpy(dip->label.name, AudioCrecord);
1259 		return (0);
1260 	case EAP_INPUT_CLASS:
1261 		dip->type = AUDIO_MIXER_CLASS;
1262 		dip->mixer_class = EAP_INPUT_CLASS;
1263 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1264 		strcpy(dip->label.name, AudioCinputs);
1265 		return (0);
1266 	}
1267 	return (ENXIO);
1268 }
1269 
1270 void *
1271 eap_malloc(addr, direction, size, pool, flags)
1272 	void *addr;
1273 	int direction;
1274 	size_t size;
1275 	int pool, flags;
1276 {
1277 	struct eap_softc *sc = addr;
1278 	struct eap_dma *p;
1279 	int error;
1280 
1281 	p = malloc(sizeof(*p), pool, flags);
1282 	if (!p)
1283 		return (0);
1284 	error = eap_allocmem(sc, size, 16, p);
1285 	if (error) {
1286 		free(p, pool);
1287 		return (0);
1288 	}
1289 	p->next = sc->sc_dmas;
1290 	sc->sc_dmas = p;
1291 	return (KERNADDR(p));
1292 }
1293 
1294 void
1295 eap_free(addr, ptr, pool)
1296 	void *addr;
1297 	void *ptr;
1298 	int pool;
1299 {
1300 	struct eap_softc *sc = addr;
1301 	struct eap_dma **p;
1302 
1303 	for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
1304 		if (KERNADDR(*p) == ptr) {
1305 			eap_freemem(sc, *p);
1306 			*p = (*p)->next;
1307 			free(*p, pool);
1308 			return;
1309 		}
1310 	}
1311 }
1312 
1313 size_t
1314 eap_round_buffersize(addr, direction, size)
1315 	void *addr;
1316 	int direction;
1317 	size_t size;
1318 {
1319 	return (size);
1320 }
1321 
1322 int
1323 eap_mappage(addr, mem, off, prot)
1324 	void *addr;
1325 	void *mem;
1326 	int off;
1327 	int prot;
1328 {
1329 	struct eap_softc *sc = addr;
1330 	struct eap_dma *p;
1331 
1332 	if (off < 0)
1333 		return (-1);
1334 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1335 		;
1336 	if (!p)
1337 		return (-1);
1338 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1339 				off, prot, BUS_DMA_WAITOK));
1340 }
1341 
1342 int
1343 eap_get_props(addr)
1344 	void *addr;
1345 {
1346 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1347 }
1348