xref: /netbsd-src/sys/dev/mm.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: mm.c,v 1.23 2018/12/05 18:16:51 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2008, 2010 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christos Zoulas, Joerg Sonnenberger and Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Special /dev/{mem,kmem,zero,null} memory devices.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: mm.c,v 1.23 2018/12/05 18:16:51 christos Exp $");
38 
39 #include "opt_compat_netbsd.h"
40 
41 #include <sys/param.h>
42 #include <sys/conf.h>
43 #include <sys/ioctl.h>
44 #include <sys/mman.h>
45 #include <sys/uio.h>
46 #include <sys/termios.h>
47 
48 #include <dev/mm.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 static void *		dev_zero_page	__read_mostly;
53 static kmutex_t		dev_mem_lock	__cacheline_aligned;
54 static vaddr_t		dev_mem_addr	__read_mostly;
55 
56 static dev_type_open(mm_open);
57 static dev_type_read(mm_readwrite);
58 static dev_type_ioctl(mm_ioctl);
59 static dev_type_mmap(mm_mmap);
60 static dev_type_ioctl(mm_ioctl);
61 
62 const struct cdevsw mem_cdevsw = {
63 	.d_open = mm_open,
64 	.d_close = nullclose,
65 	.d_read = mm_readwrite,
66 	.d_write = mm_readwrite,
67 	.d_ioctl = mm_ioctl,
68 	.d_stop = nostop,
69 	.d_tty = notty,
70 	.d_poll = nopoll,
71 	.d_mmap = mm_mmap,
72 	.d_kqfilter = nokqfilter,
73 	.d_discard = nodiscard,
74 	.d_flag = D_MPSAFE
75 };
76 
77 #ifdef pmax	/* XXX */
78 const struct cdevsw mem_ultrix_cdevsw = {
79 	.d_open = nullopen,
80 	.d_close = nullclose,
81 	.d_read = mm_readwrite,
82 	.d_write = mm_readwrite,
83 	.d_ioctl = mm_ioctl,
84 	.d_stop = nostop,
85 	.d_tty = notty,
86 	.d_poll = nopoll,
87 	.d_mmap = mm_mmap,
88 	.d_kqfilter = nokqfilter,
89 	.d_discard = nodiscard,
90 	.d_flag = D_MPSAFE
91 };
92 #endif
93 
94 static int
95 mm_open(dev_t dev, int flag, int mode, struct lwp *l)
96 {
97 #ifdef __HAVE_MM_MD_OPEN
98 	int error;
99 	if ((error = mm_md_open(dev, flag, mode, l)) != 0)
100 		return error;
101 #endif
102 	l->l_proc->p_flag |= PK_KMEM;
103 	return 0;
104 }
105 
106 /*
107  * mm_init: initialize memory device driver.
108  */
109 void
110 mm_init(void)
111 {
112 	vaddr_t pg;
113 
114 	mutex_init(&dev_mem_lock, MUTEX_DEFAULT, IPL_NONE);
115 
116 	/* Read-only zero-page. */
117 	pg = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
118 	KASSERT(pg != 0);
119 	pmap_protect(pmap_kernel(), pg, pg + PAGE_SIZE, VM_PROT_READ);
120 	pmap_update(pmap_kernel());
121 	dev_zero_page = (void *)pg;
122 
123 #ifndef __HAVE_MM_MD_CACHE_ALIASING
124 	/* KVA for mappings during I/O. */
125 	dev_mem_addr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
126 	    UVM_KMF_VAONLY|UVM_KMF_WAITVA);
127 	KASSERT(dev_mem_addr != 0);
128 #else
129 	dev_mem_addr = 0;
130 #endif
131 }
132 
133 
134 /*
135  * dev_mem_getva: get a special virtual address.  If architecture requires,
136  * allocate VA according to PA, which avoids cache-aliasing issues.  Use a
137  * constant, general mapping address otherwise.
138  */
139 static inline vaddr_t
140 dev_mem_getva(paddr_t pa, int color)
141 {
142 #ifdef __HAVE_MM_MD_CACHE_ALIASING
143 	return uvm_km_alloc(kernel_map, PAGE_SIZE,
144 	    color & uvmexp.colormask,
145 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
146 #else
147 	return dev_mem_addr;
148 #endif
149 }
150 
151 static inline void
152 dev_mem_relva(paddr_t pa, vaddr_t va)
153 {
154 #ifdef __HAVE_MM_MD_CACHE_ALIASING
155 	uvm_km_free(kernel_map, va, PAGE_SIZE, UVM_KMF_VAONLY);
156 #else
157 	KASSERT(dev_mem_addr == va);
158 #endif
159 }
160 
161 /*
162  * dev_kmem_readwrite: helper for DEV_MEM (/dev/mem) case of R/W.
163  */
164 static int
165 dev_mem_readwrite(struct uio *uio, struct iovec *iov)
166 {
167 	paddr_t paddr;
168 	vaddr_t vaddr;
169 	vm_prot_t prot;
170 	size_t len, offset;
171 	bool have_direct;
172 	int error;
173 	int color = 0;
174 
175 	/* Check for wrap around. */
176 	if ((uintptr_t)uio->uio_offset != uio->uio_offset) {
177 		return EFAULT;
178 	}
179 	paddr = uio->uio_offset & ~PAGE_MASK;
180 	prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
181 	error = mm_md_physacc(paddr, prot);
182 	if (error) {
183 		return error;
184 	}
185 	offset = uio->uio_offset & PAGE_MASK;
186 	len = MIN(uio->uio_resid, PAGE_SIZE - offset);
187 
188 #ifdef __HAVE_MM_MD_CACHE_ALIASING
189 	have_direct = mm_md_page_color(paddr, &color);
190 #else
191 	have_direct = true;
192 	color = 0;
193 #endif
194 
195 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
196 	/* Is physical address directly mapped?  Return VA. */
197 	if (have_direct)
198 		have_direct = mm_md_direct_mapped_phys(paddr, &vaddr);
199 #else
200 	vaddr = 0;
201 	have_direct = false;
202 #endif
203 	if (!have_direct) {
204 		/* Get a special virtual address. */
205 		const vaddr_t va = dev_mem_getva(paddr, color);
206 
207 		/* Map selected KVA to physical address. */
208 		mutex_enter(&dev_mem_lock);
209 		pmap_kenter_pa(va, paddr, prot, 0);
210 		pmap_update(pmap_kernel());
211 
212 		/* Perform I/O. */
213 		vaddr = va + offset;
214 		error = uiomove((void *)vaddr, len, uio);
215 
216 		/* Unmap, flush before unlock. */
217 		pmap_kremove(va, PAGE_SIZE);
218 		pmap_update(pmap_kernel());
219 		mutex_exit(&dev_mem_lock);
220 
221 		/* "Release" the virtual address. */
222 		dev_mem_relva(paddr, va);
223 	} else {
224 		/* Direct map, just perform I/O. */
225 		vaddr += offset;
226 		error = uiomove((void *)vaddr, len, uio);
227 	}
228 	return error;
229 }
230 
231 /*
232  * dev_kmem_readwrite: helper for DEV_KMEM (/dev/kmem) case of R/W.
233  */
234 static int
235 dev_kmem_readwrite(struct uio *uio, struct iovec *iov)
236 {
237 	void *addr;
238 	size_t len, offset;
239 	vm_prot_t prot;
240 	int error;
241 	bool md_kva;
242 
243 	/* Check for wrap around. */
244 	addr = (void *)(intptr_t)uio->uio_offset;
245 	if ((uintptr_t)addr != uio->uio_offset) {
246 		return EFAULT;
247 	}
248 	/*
249 	 * Handle non-page aligned offset.
250 	 * Otherwise, we operate in page-by-page basis.
251 	 */
252 	offset = uio->uio_offset & PAGE_MASK;
253 	len = MIN(uio->uio_resid, PAGE_SIZE - offset);
254 	prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
255 
256 	md_kva = false;
257 
258 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_IO
259 	paddr_t paddr;
260 	/* MD case: is this is a directly mapped address? */
261 	if (mm_md_direct_mapped_io(addr, &paddr)) {
262 		/* If so, validate physical address. */
263 		error = mm_md_physacc(paddr, prot);
264 		if (error) {
265 			return error;
266 		}
267 		md_kva = true;
268 	}
269 #endif
270 	if (!md_kva) {
271 		bool checked = false;
272 
273 #ifdef __HAVE_MM_MD_KERNACC
274 		/* MD check for the address. */
275 		error = mm_md_kernacc(addr, prot, &checked);
276 		if (error) {
277 			return error;
278 		}
279 #endif
280 		/* UVM check for the address (unless MD indicated to not). */
281 		if (!checked && !uvm_kernacc(addr, len, prot)) {
282 			return EFAULT;
283 		}
284 	}
285 	error = uiomove(addr, len, uio);
286 	return error;
287 }
288 
289 /*
290  * dev_zero_readwrite: helper for DEV_ZERO (/dev/null) case of R/W.
291  */
292 static inline int
293 dev_zero_readwrite(struct uio *uio, struct iovec *iov)
294 {
295 	size_t len;
296 
297 	/* Nothing to do for the write case. */
298 	if (uio->uio_rw == UIO_WRITE) {
299 		uio->uio_resid = 0;
300 		return 0;
301 	}
302 	/*
303 	 * Read in page-by-page basis, caller will continue.
304 	 * Cut appropriately for a single/last-iteration cases.
305 	 */
306 	len = MIN(iov->iov_len, PAGE_SIZE);
307 	return uiomove(dev_zero_page, len, uio);
308 }
309 
310 /*
311  * mm_readwrite: general memory R/W function.
312  */
313 static int
314 mm_readwrite(dev_t dev, struct uio *uio, int flags)
315 {
316 	struct iovec *iov;
317 	int error;
318 
319 #ifdef __HAVE_MM_MD_READWRITE
320 	/* If defined - there are extra MD cases. */
321 	switch (minor(dev)) {
322 	case DEV_MEM:
323 	case DEV_KMEM:
324 	case DEV_NULL:
325 	case DEV_ZERO:
326 #if defined(COMPAT_16) && defined(__arm)
327 	case _DEV_ZERO_oARM:
328 #endif
329 		break;
330 	default:
331 		return mm_md_readwrite(dev, uio);
332 	}
333 #endif
334 	error = 0;
335 	while (uio->uio_resid > 0 && error == 0) {
336 		iov = uio->uio_iov;
337 		if (iov->iov_len == 0) {
338 			/* Processed; next I/O vector. */
339 			uio->uio_iov++;
340 			uio->uio_iovcnt--;
341 			KASSERT(uio->uio_iovcnt >= 0);
342 			continue;
343 		}
344 		/* Helper functions will process in page-by-page basis. */
345 		switch (minor(dev)) {
346 		case DEV_MEM:
347 			error = dev_mem_readwrite(uio, iov);
348 			break;
349 		case DEV_KMEM:
350 			error = dev_kmem_readwrite(uio, iov);
351 			break;
352 		case DEV_NULL:
353 			if (uio->uio_rw == UIO_WRITE) {
354 				uio->uio_resid = 0;
355 			}
356 			/* Break directly out of the loop. */
357 			return 0;
358 		case DEV_FULL:
359 			if (uio->uio_rw == UIO_WRITE) {
360 				return ENOSPC;
361 			}
362 			/*FALLTHROUGH*/
363 #if defined(COMPAT_16) && defined(__arm)
364 		case _DEV_ZERO_oARM:
365 #endif
366 		case DEV_ZERO:
367 			error = dev_zero_readwrite(uio, iov);
368 			break;
369 		default:
370 			error = ENXIO;
371 			break;
372 		}
373 	}
374 	return error;
375 }
376 
377 /*
378  * mm_mmap: general mmap() handler.
379  */
380 static paddr_t
381 mm_mmap(dev_t dev, off_t off, int acc)
382 {
383 	vm_prot_t prot;
384 
385 #ifdef __HAVE_MM_MD_MMAP
386 	/* If defined - there are extra mmap() MD cases. */
387 	switch (minor(dev)) {
388 	case DEV_MEM:
389 	case DEV_KMEM:
390 	case DEV_NULL:
391 #if defined(COMPAT_16) && defined(__arm)
392 	case _DEV_ZERO_oARM:
393 #endif
394 	case DEV_ZERO:
395 		break;
396 	default:
397 		return mm_md_mmap(dev, off, acc);
398 	}
399 #endif
400 	/*
401 	 * /dev/null does not make sense, /dev/kmem is volatile and
402 	 * /dev/zero is handled in mmap already.
403 	 */
404 	if (minor(dev) != DEV_MEM) {
405 		return -1;
406 	}
407 
408 	prot = 0;
409 	if (acc & PROT_EXEC)
410 		prot |= VM_PROT_EXECUTE;
411 	if (acc & PROT_READ)
412 		prot |= VM_PROT_READ;
413 	if (acc & PROT_WRITE)
414 		prot |= VM_PROT_WRITE;
415 
416 	/* Validate the physical address. */
417 	if (mm_md_physacc(off, prot) != 0) {
418 		return -1;
419 	}
420 	return off >> PGSHIFT;
421 }
422 
423 static int
424 mm_ioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
425 {
426 
427 	switch (cmd) {
428 	case FIONBIO:
429 		/* We never block anyway. */
430 		return 0;
431 
432 	case FIOSETOWN:
433 	case FIOGETOWN:
434 	case TIOCGPGRP:
435 	case TIOCSPGRP:
436 	case TIOCGETA:
437 		return ENOTTY;
438 
439 	case FIOASYNC:
440 		if ((*(int *)data) == 0) {
441 			return 0;
442 		}
443 		/* FALLTHROUGH */
444 	default:
445 		return EOPNOTSUPP;
446 	}
447 }
448