xref: /netbsd-src/sys/dev/ic/wi.c (revision b19e9f6776dfba359eaedbfd67d0367bca2f732e)
1 /*	$NetBSD: wi.c,v 1.16 2001/06/04 03:34:47 toshii Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37  *
38  * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45  * from Lucent. Unlike the older cards, the new ones are programmed
46  * entirely via a firmware-driven controller called the Hermes.
47  * Unfortunately, Lucent will not release the Hermes programming manual
48  * without an NDA (if at all). What they do release is an API library
49  * called the HCF (Hardware Control Functions) which is supposed to
50  * do the device-specific operations of a device driver for you. The
51  * publically available version of the HCF library (the 'HCF Light') is
52  * a) extremely gross, b) lacks certain features, particularly support
53  * for 802.11 frames, and c) is contaminated by the GNU Public License.
54  *
55  * This driver does not use the HCF or HCF Light at all. Instead, it
56  * programs the Hermes controller directly, using information gleaned
57  * from the HCF Light code and corresponding documentation.
58  *
59  * This driver supports both the PCMCIA and ISA versions of the
60  * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61  * anything of the sort: it's actually a PCMCIA bridge adapter
62  * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63  * inserted. Consequently, you need to use the pccard support for
64  * both the ISA and PCMCIA adapters.
65  */
66 
67 /*
68  * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69  * Oslo IETF plenary meeting.
70  */
71 
72 #define WI_HERMES_AUTOINC_WAR	/* Work around data write autoinc bug. */
73 #define WI_HERMES_STATS_WAR	/* Work around stats counter bug. */
74 
75 #include "opt_inet.h"
76 #include "bpfilter.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/device.h>
82 #include <sys/socket.h>
83 #include <sys/mbuf.h>
84 #include <sys/ioctl.h>
85 #include <sys/kernel.h>		/* for hz */
86 #include <sys/proc.h>
87 
88 #include <net/if.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_ether.h>
92 #include <net/if_ieee80211.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/ip.h>
99 #include <netinet/if_inarp.h>
100 #endif
101 
102 #if NBPFILTER > 0
103 #include <net/bpf.h>
104 #include <net/bpfdesc.h>
105 #endif
106 
107 #include <dev/pcmcia/pcmciareg.h>
108 #include <dev/pcmcia/pcmciavar.h>
109 #include <dev/pcmcia/pcmciadevs.h>
110 
111 #include <dev/ic/wi_ieee.h>
112 #include <dev/ic/wireg.h>
113 #include <dev/ic/wivar.h>
114 
115 static void wi_reset		__P((struct wi_softc *));
116 static int wi_ioctl		__P((struct ifnet *, u_long, caddr_t));
117 static void wi_start		__P((struct ifnet *));
118 static void wi_watchdog		__P((struct ifnet *));
119 static int wi_init		__P((struct ifnet *));
120 static void wi_stop		__P((struct ifnet *, int));
121 static void wi_rxeof		__P((struct wi_softc *));
122 static void wi_txeof		__P((struct wi_softc *, int));
123 static void wi_update_stats	__P((struct wi_softc *));
124 static void wi_setmulti		__P((struct wi_softc *));
125 
126 static int wi_cmd		__P((struct wi_softc *, int, int));
127 static int wi_read_record	__P((struct wi_softc *, struct wi_ltv_gen *));
128 static int wi_write_record	__P((struct wi_softc *, struct wi_ltv_gen *));
129 static int wi_read_data		__P((struct wi_softc *, int,
130 					int, caddr_t, int));
131 static int wi_write_data	__P((struct wi_softc *, int,
132 					int, caddr_t, int));
133 static int wi_seek		__P((struct wi_softc *, int, int, int));
134 static int wi_alloc_nicmem	__P((struct wi_softc *, int, int *));
135 static void wi_inquire		__P((void *));
136 static int wi_setdef		__P((struct wi_softc *, struct wi_req *));
137 static int wi_getdef		__P((struct wi_softc *, struct wi_req *));
138 static int wi_mgmt_xmit		__P((struct wi_softc *, caddr_t, int));
139 
140 static int wi_media_change __P((struct ifnet *));
141 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
142 
143 static void wi_get_id		__P((struct wi_softc *));
144 
145 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
146 static void wi_request_fill_ssid __P((struct wi_req *,
147     struct ieee80211_nwid *));
148 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
149     struct ieee80211_nwid *));
150 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
151 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
152 static int wi_sync_media __P((struct wi_softc *, int, int));
153 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
154 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
155 
156 int
157 wi_attach(sc)
158 	struct wi_softc *sc;
159 {
160 	struct ifnet *ifp = sc->sc_ifp;
161 	struct wi_ltv_macaddr   mac;
162 	struct wi_ltv_gen       gen;
163 	static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
164 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
165 	};
166 	int s;
167 
168 	s = splnet();
169 
170 	callout_init(&sc->wi_inquire_ch);
171 
172 	/* Make sure interrupts are disabled. */
173 	CSR_WRITE_2(sc, WI_INT_EN, 0);
174 	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
175 
176 	/* Reset the NIC. */
177 	wi_reset(sc);
178 
179 	memset(&mac, 0, sizeof(mac));
180 	/* Read the station address. */
181 	mac.wi_type = WI_RID_MAC_NODE;
182 	mac.wi_len = 4;
183 	wi_read_record(sc, (struct wi_ltv_gen *)&mac);
184 	memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
185 
186 	/*
187 	 * Check if we got anything meaningful.
188 	 *
189 	 * Is it really enough just checking against null ethernet address?
190 	 * Or, check against possible vendor?  XXX.
191 	 */
192 	if (bcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
193 		printf("%s: could not get mac address, attach failed\n",
194 		    sc->sc_dev.dv_xname);
195 			return 1;
196 	}
197 
198 	printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
199 
200 	/* Read NIC identification */
201 	wi_get_id(sc);
202 
203 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
204 	ifp->if_softc = sc;
205 	ifp->if_start = wi_start;
206 	ifp->if_ioctl = wi_ioctl;
207 	ifp->if_watchdog = wi_watchdog;
208 	ifp->if_init = wi_init;
209 	ifp->if_stop = wi_stop;
210 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
211 #ifdef IFF_NOTRAILERS
212 	ifp->if_flags |= IFF_NOTRAILERS;
213 #endif
214 	IFQ_SET_READY(&ifp->if_snd);
215 
216 	(void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
217 	    sizeof(WI_DEFAULT_NODENAME) - 1);
218 	(void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
219 	    sizeof(WI_DEFAULT_NETNAME) - 1);
220 	(void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
221 	    sizeof(WI_DEFAULT_IBSS) - 1);
222 
223 	sc->wi_portnum = WI_DEFAULT_PORT;
224 	sc->wi_ptype = WI_PORTTYPE_BSS;
225 	sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
226 	sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
227 	sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
228 	sc->wi_max_data_len = WI_DEFAULT_DATALEN;
229 	sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
230 	sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
231 	sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
232 	sc->wi_roaming = WI_DEFAULT_ROAMING;
233 	sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
234 
235 	/*
236 	 * Read the default channel from the NIC. This may vary
237 	 * depending on the country where the NIC was purchased, so
238 	 * we can't hard-code a default and expect it to work for
239 	 * everyone.
240 	 */
241 	gen.wi_type = WI_RID_OWN_CHNL;
242 	gen.wi_len = 2;
243 	wi_read_record(sc, &gen);
244 	sc->wi_channel = le16toh(gen.wi_val);
245 
246 	bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats));
247 
248 	/*
249 	 * Find out if we support WEP on this card.
250 	 */
251 	gen.wi_type = WI_RID_WEP_AVAIL;
252 	gen.wi_len = 2;
253 	wi_read_record(sc, &gen);
254 	sc->wi_has_wep = le16toh(gen.wi_val);
255 
256 	ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
257 #define	IFM_AUTOADHOC \
258 	IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
259 #define	ADD(m, c)	ifmedia_add(&sc->sc_media, (m), (c), NULL)
260 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
261 	ADD(IFM_AUTOADHOC, 0);
262 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
263 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
264 	    IFM_IEEE80211_ADHOC, 0), 0);
265 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
266 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
267 	    IFM_IEEE80211_ADHOC, 0), 0);
268 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
269 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
270 	    IFM_IEEE80211_ADHOC, 0), 0);
271 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
272 #undef ADD
273 	ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
274 
275 	/*
276 	 * Call MI attach routines.
277 	 */
278 	if_attach(ifp);
279 	ether_ifattach(ifp, mac.wi_mac_addr);
280 
281 	ifp->if_baudrate = IF_Mbps(2);
282 
283 	/* Attach is successful. */
284 	sc->sc_attached = 1;
285 
286 	splx(s);
287 	return 0;
288 }
289 
290 static void wi_rxeof(sc)
291 	struct wi_softc		*sc;
292 {
293 	struct ifnet		*ifp;
294 	struct ether_header	*eh;
295 	struct wi_frame		rx_frame;
296 	struct mbuf		*m;
297 	int			id;
298 
299 	ifp = sc->sc_ifp;
300 
301 	id = CSR_READ_2(sc, WI_RX_FID);
302 
303 	/* First read in the frame header */
304 	if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
305 		ifp->if_ierrors++;
306 		return;
307 	}
308 
309 	if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
310 		ifp->if_ierrors++;
311 		return;
312 	}
313 
314 	MGETHDR(m, M_DONTWAIT, MT_DATA);
315 	if (m == NULL) {
316 		ifp->if_ierrors++;
317 		return;
318 	}
319 	MCLGET(m, M_DONTWAIT);
320 	if (!(m->m_flags & M_EXT)) {
321 		m_freem(m);
322 		ifp->if_ierrors++;
323 		return;
324 	}
325 
326 	/* Align the data after the ethernet header */
327 	m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
328 	    - sizeof(struct ether_header);
329 
330 	eh = mtod(m, struct ether_header *);
331 	m->m_pkthdr.rcvif = ifp;
332 
333 	if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
334 	    le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
335 	    le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
336 		if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
337 			printf("%s: oversized packet received "
338 			    "(wi_dat_len=%d, wi_status=0x%x)\n",
339 			    sc->sc_dev.dv_xname,
340 			    le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
341 			m_freem(m);
342 			ifp->if_ierrors++;
343 			return;
344 		}
345 		m->m_pkthdr.len = m->m_len =
346 		    le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
347 
348 		bcopy((char *)&rx_frame.wi_dst_addr,
349 		    (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
350 		bcopy((char *)&rx_frame.wi_src_addr,
351 		    (char *)&eh->ether_shost, ETHER_ADDR_LEN);
352 		bcopy((char *)&rx_frame.wi_type,
353 		    (char *)&eh->ether_type, sizeof(u_int16_t));
354 
355 		if (wi_read_data(sc, id, WI_802_11_OFFSET,
356 		    mtod(m, caddr_t) + sizeof(struct ether_header),
357 		    m->m_len + 2)) {
358 			m_freem(m);
359 			ifp->if_ierrors++;
360 			return;
361 		}
362 	} else {
363 		if ((le16toh(rx_frame.wi_dat_len) +
364 		    sizeof(struct ether_header)) > MCLBYTES) {
365 			printf("%s: oversized packet received "
366 			    "(wi_dat_len=%d, wi_status=0x%x)\n",
367 			    sc->sc_dev.dv_xname,
368 			    le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
369 			m_freem(m);
370 			ifp->if_ierrors++;
371 			return;
372 		}
373 		m->m_pkthdr.len = m->m_len =
374 		    le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
375 
376 		if (wi_read_data(sc, id, WI_802_3_OFFSET,
377 		    mtod(m, caddr_t), m->m_len + 2)) {
378 			m_freem(m);
379 			ifp->if_ierrors++;
380 			return;
381 		}
382 	}
383 
384 	ifp->if_ipackets++;
385 
386 #if NBPFILTER > 0
387 	/* Handle BPF listeners. */
388 	if (ifp->if_bpf)
389 		bpf_mtap(ifp->if_bpf, m);
390 #endif
391 
392 	/* Receive packet. */
393 	(*ifp->if_input)(ifp, m);
394 }
395 
396 static void wi_txeof(sc, status)
397 	struct wi_softc	*sc;
398 	int		status;
399 {
400 	struct ifnet	*ifp = sc->sc_ifp;
401 
402 	ifp->if_timer = 0;
403 	ifp->if_flags &= ~IFF_OACTIVE;
404 
405 	if (status & WI_EV_TX_EXC)
406 		ifp->if_oerrors++;
407 	else
408 		ifp->if_opackets++;
409 
410 	return;
411 }
412 
413 void wi_inquire(xsc)
414 	void			*xsc;
415 {
416 	struct wi_softc		*sc;
417 	struct ifnet		*ifp;
418 
419 	sc = xsc;
420 	ifp = &sc->sc_ethercom.ec_if;
421 
422 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
423 		return;
424 
425 	callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
426 
427 	/* Don't do this while we're transmitting */
428 	if (ifp->if_flags & IFF_OACTIVE)
429 		return;
430 
431 	wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
432 
433 	return;
434 }
435 
436 void wi_update_stats(sc)
437 	struct wi_softc		*sc;
438 {
439 	struct wi_ltv_gen	gen;
440 	u_int16_t		id;
441 	struct ifnet		*ifp;
442 	u_int32_t		*ptr;
443 	int			len, i;
444 	u_int16_t		t;
445 
446 	ifp = &sc->sc_ethercom.ec_if;
447 
448 	id = CSR_READ_2(sc, WI_INFO_FID);
449 
450 	wi_read_data(sc, id, 0, (char *)&gen, 4);
451 
452 	if (gen.wi_type != WI_INFO_COUNTERS)
453 		return;
454 
455 	/* some card versions have a larger stats structure */
456 	len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
457 		gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
458 	ptr = (u_int32_t *)&sc->wi_stats;
459 
460 	for (i = 0; i < len; i++) {
461 		t = CSR_READ_2(sc, WI_DATA1);
462 #ifdef WI_HERMES_STATS_WAR
463 		if (t > 0xF000)
464 			t = ~t & 0xFFFF;
465 #endif
466 		ptr[i] += t;
467 	}
468 
469 	ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
470 	    sc->wi_stats.wi_tx_multi_retries +
471 	    sc->wi_stats.wi_tx_retry_limit;
472 
473 	return;
474 }
475 
476 int wi_intr(arg)
477 	void *arg;
478 {
479 	struct wi_softc		*sc = arg;
480 	struct ifnet		*ifp;
481 	u_int16_t		status;
482 
483 	if (sc->sc_enabled == 0 ||
484 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
485 	    (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
486 		return (0);
487 
488 	ifp = &sc->sc_ethercom.ec_if;
489 
490 	if (!(ifp->if_flags & IFF_UP)) {
491 		CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
492 		CSR_WRITE_2(sc, WI_INT_EN, 0);
493 		return 1;
494 	}
495 
496 	/* Disable interrupts. */
497 	CSR_WRITE_2(sc, WI_INT_EN, 0);
498 
499 	status = CSR_READ_2(sc, WI_EVENT_STAT);
500 	CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
501 
502 	if (status & WI_EV_RX) {
503 		wi_rxeof(sc);
504 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
505 	}
506 
507 	if (status & WI_EV_TX) {
508 		wi_txeof(sc, status);
509 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
510 	}
511 
512 	if (status & WI_EV_ALLOC) {
513 		int			id;
514 		id = CSR_READ_2(sc, WI_ALLOC_FID);
515 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
516 		if (id == sc->wi_tx_data_id)
517 			wi_txeof(sc, status);
518 	}
519 
520 	if (status & WI_EV_INFO) {
521 		wi_update_stats(sc);
522 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
523 	}
524 
525 	if (status & WI_EV_TX_EXC) {
526 		wi_txeof(sc, status);
527 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
528 	}
529 
530 	if (status & WI_EV_INFO_DROP) {
531 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
532 	}
533 
534 	/* Re-enable interrupts. */
535 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
536 
537 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
538 		wi_start(ifp);
539 
540 	return 1;
541 }
542 
543 static int
544 wi_cmd(sc, cmd, val)
545 	struct wi_softc		*sc;
546 	int			cmd;
547 	int			val;
548 {
549 	int			i, s = 0;
550 
551 	/* wait for the busy bit to clear */
552 	for (i = 0; i < WI_TIMEOUT; i++) {
553 		if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
554 			break;
555 	}
556 
557 	CSR_WRITE_2(sc, WI_PARAM0, val);
558 	CSR_WRITE_2(sc, WI_PARAM1, 0);
559 	CSR_WRITE_2(sc, WI_PARAM2, 0);
560 	CSR_WRITE_2(sc, WI_COMMAND, cmd);
561 
562 	/* wait for the cmd completed bit */
563 	for (i = 0; i < WI_TIMEOUT; i++) {
564 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
565 			break;
566 		DELAY(1);
567 	}
568 
569 	/* Ack the command */
570 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
571 
572 	s = CSR_READ_2(sc, WI_STATUS);
573 	if (s & WI_STAT_CMD_RESULT)
574 		return(EIO);
575 
576 	if (i == WI_TIMEOUT)
577 		return(ETIMEDOUT);
578 
579 	return(0);
580 }
581 
582 static void
583 wi_reset(sc)
584 	struct wi_softc		*sc;
585 {
586 	DELAY(100*1000); /* 100 m sec */
587 	if (wi_cmd(sc, WI_CMD_INI, 0))
588 		printf("%s: init failed\n", sc->sc_dev.dv_xname);
589 	CSR_WRITE_2(sc, WI_INT_EN, 0);
590 	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
591 
592 	/* Calibrate timer. */
593 	WI_SETVAL(WI_RID_TICK_TIME, 8);
594 
595 	return;
596 }
597 
598 /*
599  * Read an LTV record from the NIC.
600  */
601 static int wi_read_record(sc, ltv)
602 	struct wi_softc		*sc;
603 	struct wi_ltv_gen	*ltv;
604 {
605 	u_int16_t		*ptr;
606 	int			len, code;
607 	struct wi_ltv_gen	*oltv, p2ltv;
608 
609 	if (sc->sc_prism2) {
610 		oltv = ltv;
611 		switch (ltv->wi_type) {
612 		case WI_RID_ENCRYPTION:
613 			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
614 			p2ltv.wi_len = 2;
615 			ltv = &p2ltv;
616 			break;
617 		case WI_RID_TX_CRYPT_KEY:
618 			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
619 			p2ltv.wi_len = 2;
620 			ltv = &p2ltv;
621 			break;
622 		}
623 	}
624 
625 	/* Tell the NIC to enter record read mode. */
626 	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
627 		return(EIO);
628 
629 	/* Seek to the record. */
630 	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
631 		return(EIO);
632 
633 	/*
634 	 * Read the length and record type and make sure they
635 	 * match what we expect (this verifies that we have enough
636 	 * room to hold all of the returned data).
637 	 */
638 	len = CSR_READ_2(sc, WI_DATA1);
639 	if (len > ltv->wi_len)
640 		return(ENOSPC);
641 	code = CSR_READ_2(sc, WI_DATA1);
642 	if (code != ltv->wi_type)
643 		return(EIO);
644 
645 	ltv->wi_len = len;
646 	ltv->wi_type = code;
647 
648 	/* Now read the data. */
649 	ptr = &ltv->wi_val;
650 	if (ltv->wi_len > 1)
651 		CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
652 
653 	if (sc->sc_prism2) {
654 		int v;
655 
656 		switch (oltv->wi_type) {
657 		case WI_RID_TX_RATE:
658 		case WI_RID_CUR_TX_RATE:
659 			switch (le16toh(ltv->wi_val)) {
660 			case 1: v = 1; break;
661 			case 2: v = 2; break;
662 			case 3:	v = 6; break;
663 			case 4: v = 5; break;
664 			case 7: v = 7; break;
665 			case 8: v = 11; break;
666 			case 15: v = 3; break;
667 			default: v = 0x100 + le16toh(ltv->wi_val); break;
668 			}
669 			oltv->wi_val = htole16(v);
670 			break;
671 		case WI_RID_ENCRYPTION:
672 			oltv->wi_len = 2;
673 			if (le16toh(ltv->wi_val) & 0x01)
674 				oltv->wi_val = htole16(1);
675 			else
676 				oltv->wi_val = htole16(0);
677 			break;
678 		case WI_RID_TX_CRYPT_KEY:
679 			oltv->wi_len = 2;
680 			oltv->wi_val = ltv->wi_val;
681 			break;
682 		case WI_RID_AUTH_CNTL:
683 			oltv->wi_len = 2;
684 			if (le16toh(ltv->wi_val) & 0x01)
685 				oltv->wi_val = htole16(1);
686 			else if (le16toh(ltv->wi_val) & 0x02)
687 				oltv->wi_val = htole16(2);
688 			break;
689 		}
690 	}
691 
692 	return(0);
693 }
694 
695 /*
696  * Same as read, except we inject data instead of reading it.
697  */
698 static int wi_write_record(sc, ltv)
699 	struct wi_softc		*sc;
700 	struct wi_ltv_gen	*ltv;
701 {
702 	u_int16_t		*ptr;
703 	int			i;
704 	struct wi_ltv_gen	p2ltv;
705 
706 	if (sc->sc_prism2) {
707 		int v;
708 
709 		switch (ltv->wi_type) {
710 		case WI_RID_TX_RATE:
711 			p2ltv.wi_type = WI_RID_TX_RATE;
712 			p2ltv.wi_len = 2;
713 			switch (le16toh(ltv->wi_val)) {
714 			case 1: v = 1; break;
715 			case 2: v = 2; break;
716 			case 3:	v = 15; break;
717 			case 5: v = 4; break;
718 			case 6: v = 3; break;
719 			case 7: v = 7; break;
720 			case 11: v = 8; break;
721 			default: return EINVAL;
722 			}
723 			p2ltv.wi_val = htole16(v);
724 			ltv = &p2ltv;
725 			break;
726 		case WI_RID_ENCRYPTION:
727 			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
728 			p2ltv.wi_len = 2;
729 			if (le16toh(ltv->wi_val))
730 				p2ltv.wi_val = htole16(0x03);
731 			else
732 				p2ltv.wi_val = htole16(0x90);
733 			ltv = &p2ltv;
734 			break;
735 		case WI_RID_TX_CRYPT_KEY:
736 			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
737 			p2ltv.wi_len = 2;
738 			p2ltv.wi_val = ltv->wi_val;
739 			ltv = &p2ltv;
740 			break;
741 		case WI_RID_DEFLT_CRYPT_KEYS:
742 		    {
743 			int error;
744 			struct wi_ltv_str	ws;
745 			struct wi_ltv_keys	*wk = (struct wi_ltv_keys *)ltv;
746 			for (i = 0; i < 4; i++) {
747 				ws.wi_len = 4;
748 				ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
749 				memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5);
750 				ws.wi_str[5] = '\0';
751 				error = wi_write_record(sc,
752 				    (struct wi_ltv_gen *)&ws);
753 				if (error)
754 					return error;
755 			}
756 			return 0;
757 		    }
758 		case WI_RID_AUTH_CNTL:
759 			p2ltv.wi_type = WI_RID_AUTH_CNTL;
760 			p2ltv.wi_len = 2;
761 			if (le16toh(ltv->wi_val) == 1)
762 				p2ltv.wi_val = htole16(0x01);
763 			else if (le16toh(ltv->wi_val) == 2)
764 				p2ltv.wi_val = htole16(0x02);
765 			ltv = &p2ltv;
766 			break;
767 		}
768 	}
769 
770 	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
771 		return(EIO);
772 
773 	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
774 	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
775 
776 	/* Write data */
777 	ptr = &ltv->wi_val;
778 	if (ltv->wi_len > 1)
779 		CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
780 
781 	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
782 		return(EIO);
783 
784 	return(0);
785 }
786 
787 static int wi_seek(sc, id, off, chan)
788 	struct wi_softc		*sc;
789 	int			id, off, chan;
790 {
791 	int			i;
792 	int			selreg, offreg;
793 	int 			status;
794 
795 	switch (chan) {
796 	case WI_BAP0:
797 		selreg = WI_SEL0;
798 		offreg = WI_OFF0;
799 		break;
800 	case WI_BAP1:
801 		selreg = WI_SEL1;
802 		offreg = WI_OFF1;
803 		break;
804 	default:
805 		printf("%s: invalid data path: %x\n",
806 		    sc->sc_dev.dv_xname, chan);
807 		return(EIO);
808 	}
809 
810 	CSR_WRITE_2(sc, selreg, id);
811 	CSR_WRITE_2(sc, offreg, off);
812 
813 	for (i = 0; i < WI_TIMEOUT; i++) {
814 	  	status = CSR_READ_2(sc, offreg);
815 		if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
816 			break;
817 	}
818 
819 	if (i == WI_TIMEOUT) {
820 		printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
821 		       sc->sc_dev.dv_xname, id, off, status);
822 		return(ETIMEDOUT);
823 	}
824 	return(0);
825 }
826 
827 static int wi_read_data(sc, id, off, buf, len)
828 	struct wi_softc		*sc;
829 	int			id, off;
830 	caddr_t			buf;
831 	int			len;
832 {
833 	u_int16_t		*ptr;
834 
835 	if (wi_seek(sc, id, off, WI_BAP1))
836 		return(EIO);
837 
838 	ptr = (u_int16_t *)buf;
839 	CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
840 
841 	return(0);
842 }
843 
844 /*
845  * According to the comments in the HCF Light code, there is a bug in
846  * the Hermes (or possibly in certain Hermes firmware revisions) where
847  * the chip's internal autoincrement counter gets thrown off during
848  * data writes: the autoincrement is missed, causing one data word to
849  * be overwritten and subsequent words to be written to the wrong memory
850  * locations. The end result is that we could end up transmitting bogus
851  * frames without realizing it. The workaround for this is to write a
852  * couple of extra guard words after the end of the transfer, then
853  * attempt to read then back. If we fail to locate the guard words where
854  * we expect them, we preform the transfer over again.
855  */
856 static int wi_write_data(sc, id, off, buf, len)
857 	struct wi_softc		*sc;
858 	int			id, off;
859 	caddr_t			buf;
860 	int			len;
861 {
862 	u_int16_t		*ptr;
863 
864 #ifdef WI_HERMES_AUTOINC_WAR
865 again:
866 #endif
867 
868 	if (wi_seek(sc, id, off, WI_BAP0))
869 		return(EIO);
870 
871 	ptr = (u_int16_t *)buf;
872 	CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
873 
874 #ifdef WI_HERMES_AUTOINC_WAR
875 	CSR_WRITE_2(sc, WI_DATA0, 0x1234);
876 	CSR_WRITE_2(sc, WI_DATA0, 0x5678);
877 
878 	if (wi_seek(sc, id, off + len, WI_BAP0))
879 		return(EIO);
880 
881 	if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
882 	    CSR_READ_2(sc, WI_DATA0) != 0x5678)
883 		goto again;
884 #endif
885 
886 	return(0);
887 }
888 
889 /*
890  * Allocate a region of memory inside the NIC and zero
891  * it out.
892  */
893 static int wi_alloc_nicmem(sc, len, id)
894 	struct wi_softc		*sc;
895 	int			len;
896 	int			*id;
897 {
898 	int			i;
899 
900 	if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
901 		printf("%s: failed to allocate %d bytes on NIC\n",
902 		    sc->sc_dev.dv_xname, len);
903 		return(ENOMEM);
904 	}
905 
906 	for (i = 0; i < WI_TIMEOUT; i++) {
907 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
908 			break;
909 	}
910 
911 	if (i == WI_TIMEOUT) {
912 		printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
913 		return(ETIMEDOUT);
914 	}
915 
916 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
917 	*id = CSR_READ_2(sc, WI_ALLOC_FID);
918 
919 	if (wi_seek(sc, *id, 0, WI_BAP0)) {
920 		printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
921 		return(EIO);
922 	}
923 
924 	for (i = 0; i < len / 2; i++)
925 		CSR_WRITE_2(sc, WI_DATA0, 0);
926 
927 	return(0);
928 }
929 
930 static void wi_setmulti(sc)
931 	struct wi_softc		*sc;
932 {
933 	struct ifnet		*ifp;
934 	int			i = 0;
935 	struct wi_ltv_mcast	mcast;
936 	struct ether_multi *enm;
937 	struct ether_multistep estep;
938 	struct ethercom *ec = &sc->sc_ethercom;
939 
940 	ifp = &sc->sc_ethercom.ec_if;
941 
942 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
943 allmulti:
944 		ifp->if_flags |= IFF_ALLMULTI;
945 		bzero((char *)&mcast, sizeof(mcast));
946 		mcast.wi_type = WI_RID_MCAST;
947 		mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
948 
949 		wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
950 		return;
951 	}
952 
953 	i = 0;
954 	ETHER_FIRST_MULTI(estep, ec, enm);
955 	while (enm != NULL) {
956 		/* Punt on ranges or too many multicast addresses. */
957 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
958 		    ETHER_ADDR_LEN) != 0 ||
959 		    i >= 16)
960 			goto allmulti;
961 
962 		bcopy(enm->enm_addrlo,
963 		    (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN);
964 		i++;
965 		ETHER_NEXT_MULTI(estep, enm);
966 	}
967 
968 	ifp->if_flags &= ~IFF_ALLMULTI;
969 	mcast.wi_type = WI_RID_MCAST;
970 	mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
971 	wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
972 }
973 
974 static int
975 wi_setdef(sc, wreq)
976 	struct wi_softc		*sc;
977 	struct wi_req		*wreq;
978 {
979 	struct sockaddr_dl	*sdl;
980 	struct ifnet		*ifp;
981 	int error = 0;
982 
983 	ifp = &sc->sc_ethercom.ec_if;
984 
985 	switch(wreq->wi_type) {
986 	case WI_RID_MAC_NODE:
987 		sdl = (struct sockaddr_dl *)ifp->if_sadl;
988 		bcopy((char *)&wreq->wi_val, (char *)&sc->sc_macaddr,
989 		    ETHER_ADDR_LEN);
990 		bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
991 		break;
992 	case WI_RID_PORTTYPE:
993 		error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
994 		break;
995 	case WI_RID_TX_RATE:
996 		error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
997 		break;
998 	case WI_RID_MAX_DATALEN:
999 		sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1000 		break;
1001 	case WI_RID_RTS_THRESH:
1002 		sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1003 		break;
1004 	case WI_RID_SYSTEM_SCALE:
1005 		sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1006 		break;
1007 	case WI_RID_CREATE_IBSS:
1008 		sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1009 		break;
1010 	case WI_RID_OWN_CHNL:
1011 		sc->wi_channel = le16toh(wreq->wi_val[0]);
1012 		break;
1013 	case WI_RID_NODENAME:
1014 		error = wi_set_ssid(&sc->wi_nodeid,
1015 		    (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1016 		break;
1017 	case WI_RID_DESIRED_SSID:
1018 		error = wi_set_ssid(&sc->wi_netid,
1019 		    (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1020 		break;
1021 	case WI_RID_OWN_SSID:
1022 		error = wi_set_ssid(&sc->wi_ibssid,
1023 		    (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1024 		break;
1025 	case WI_RID_PM_ENABLED:
1026 		sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1027 		break;
1028 	case WI_RID_MICROWAVE_OVEN:
1029 		sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1030 		break;
1031 	case WI_RID_MAX_SLEEP:
1032 		sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1033 		break;
1034 	case WI_RID_AUTH_CNTL:
1035 		sc->wi_authtype = le16toh(wreq->wi_val[0]);
1036 		break;
1037 	case WI_RID_ROAMING_MODE:
1038 		sc->wi_roaming = le16toh(wreq->wi_val[0]);
1039 		break;
1040 	case WI_RID_ENCRYPTION:
1041 		sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1042 		break;
1043 	case WI_RID_TX_CRYPT_KEY:
1044 		sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1045 		break;
1046 	case WI_RID_DEFLT_CRYPT_KEYS:
1047 		bcopy((char *)wreq, (char *)&sc->wi_keys,
1048 		    sizeof(struct wi_ltv_keys));
1049 		break;
1050 	default:
1051 		error = EINVAL;
1052 		break;
1053 	}
1054 
1055 	return (error);
1056 }
1057 
1058 static int
1059 wi_getdef(sc, wreq)
1060 	struct wi_softc		*sc;
1061 	struct wi_req		*wreq;
1062 {
1063 	struct sockaddr_dl	*sdl;
1064 	struct ifnet		*ifp;
1065 	int error = 0;
1066 
1067 	ifp = &sc->sc_ethercom.ec_if;
1068 
1069 	wreq->wi_len = 2;			/* XXX */
1070 	switch (wreq->wi_type) {
1071 	case WI_RID_MAC_NODE:
1072 		wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1073 		sdl = (struct sockaddr_dl *)ifp->if_sadl;
1074 		bcopy(&sc->sc_macaddr, &wreq->wi_val, ETHER_ADDR_LEN);
1075 		bcopy(LLADDR(sdl), &wreq->wi_val, ETHER_ADDR_LEN);
1076 		break;
1077 	case WI_RID_PORTTYPE:
1078 		wreq->wi_val[0] = htole16(sc->wi_ptype);
1079 		break;
1080 	case WI_RID_TX_RATE:
1081 		wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1082 		break;
1083 	case WI_RID_MAX_DATALEN:
1084 		wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1085 		break;
1086 	case WI_RID_RTS_THRESH:
1087 		wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1088 		break;
1089 	case WI_RID_SYSTEM_SCALE:
1090 		wreq->wi_val[0] = htole16(sc->wi_ap_density);
1091 		break;
1092 	case WI_RID_CREATE_IBSS:
1093 		wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1094 		break;
1095 	case WI_RID_OWN_CHNL:
1096 		wreq->wi_val[0] = htole16(sc->wi_channel);
1097 		break;
1098 	case WI_RID_NODENAME:
1099 		wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1100 		break;
1101 	case WI_RID_DESIRED_SSID:
1102 		wi_request_fill_ssid(wreq, &sc->wi_netid);
1103 		break;
1104 	case WI_RID_OWN_SSID:
1105 		wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1106 		break;
1107 	case WI_RID_PM_ENABLED:
1108 		wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1109 		break;
1110 	case WI_RID_MICROWAVE_OVEN:
1111 		wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1112 		break;
1113 	case WI_RID_MAX_SLEEP:
1114 		wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1115 		break;
1116 	case WI_RID_AUTH_CNTL:
1117 		wreq->wi_val[0] = htole16(sc->wi_authtype);
1118 		break;
1119 	case WI_RID_ROAMING_MODE:
1120 		wreq->wi_val[0] = htole16(sc->wi_roaming);
1121 		break;
1122 	case WI_RID_WEP_AVAIL:
1123 		wreq->wi_val[0] = htole16(sc->wi_has_wep);
1124 		break;
1125 	case WI_RID_ENCRYPTION:
1126 		wreq->wi_val[0] = htole16(sc->wi_use_wep);
1127 		break;
1128 	case WI_RID_TX_CRYPT_KEY:
1129 		wreq->wi_val[0] = htole16(sc->wi_tx_key);
1130 		break;
1131 	case WI_RID_DEFLT_CRYPT_KEYS:
1132 		wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1133 		bcopy(&sc->wi_keys, wreq, sizeof(struct wi_ltv_keys));
1134 		break;
1135 	default:
1136 #if 0
1137 		error = EIO;
1138 #else
1139 #ifdef WI_DEBUG
1140 		printf("%s: wi_getdef: unknown request %d\n",
1141 		    sc->sc_dev.dv_xname, wreq->wi_type);
1142 #endif
1143 #endif
1144 		break;
1145 	}
1146 
1147 	return (error);
1148 }
1149 
1150 static int
1151 wi_ioctl(ifp, command, data)
1152 	struct ifnet		*ifp;
1153 	u_long			command;
1154 	caddr_t			data;
1155 {
1156 	int			s, error = 0;
1157 	struct wi_softc		*sc = ifp->if_softc;
1158 	struct wi_req		wreq;
1159 	struct ifreq		*ifr;
1160 	struct proc *p = curproc;
1161 	struct ieee80211_nwid nwid;
1162 
1163 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1164 		return (ENXIO);
1165 
1166 	s = splnet();
1167 
1168 	ifr = (struct ifreq *)data;
1169 	switch (command) {
1170 	case SIOCSIFADDR:
1171 	case SIOCGIFADDR:
1172 	case SIOCSIFMTU:
1173 		error = ether_ioctl(ifp, command, data);
1174 		break;
1175 	case SIOCSIFFLAGS:
1176 		if (ifp->if_flags & IFF_UP) {
1177 			if (ifp->if_flags & IFF_RUNNING &&
1178 			    ifp->if_flags & IFF_PROMISC &&
1179 			    !(sc->wi_if_flags & IFF_PROMISC)) {
1180 				WI_SETVAL(WI_RID_PROMISC, 1);
1181 			} else if (ifp->if_flags & IFF_RUNNING &&
1182 			    !(ifp->if_flags & IFF_PROMISC) &&
1183 			    sc->wi_if_flags & IFF_PROMISC) {
1184 				WI_SETVAL(WI_RID_PROMISC, 0);
1185 			}
1186 			wi_init(ifp);
1187 		} else {
1188 			if (ifp->if_flags & IFF_RUNNING) {
1189 				wi_stop(ifp, 0);
1190 			}
1191 		}
1192 		sc->wi_if_flags = ifp->if_flags;
1193 
1194 		if (!(ifp->if_flags & IFF_UP)) {
1195 			if (sc->sc_enabled) {
1196 				if (sc->sc_disable)
1197 					(*sc->sc_disable)(sc);
1198 				sc->sc_enabled = 0;
1199 				ifp->if_flags &= ~IFF_RUNNING;
1200 			}
1201 		}
1202 		error = 0;
1203 		break;
1204 	case SIOCADDMULTI:
1205 	case SIOCDELMULTI:
1206 		error = (command == SIOCADDMULTI) ?
1207 			ether_addmulti(ifr, &sc->sc_ethercom) :
1208 			ether_delmulti(ifr, &sc->sc_ethercom);
1209 		if (error == ENETRESET) {
1210 			if (sc->sc_enabled != 0) {
1211 				/*
1212 				 * Multicast list has changed.  Set the
1213 				 * hardware filter accordingly.
1214 				 */
1215 				wi_setmulti(sc);
1216 			}
1217 			error = 0;
1218 		}
1219 		break;
1220 	case SIOCSIFMEDIA:
1221 	case SIOCGIFMEDIA:
1222 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1223 		break;
1224 	case SIOCGWAVELAN:
1225 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1226 		if (error)
1227 			break;
1228 		if (wreq.wi_type == WI_RID_IFACE_STATS) {
1229 			/* XXX native byte order */
1230 			bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val,
1231 			    sizeof(sc->wi_stats));
1232 			wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1233 		} else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1234 			/* For non-root user, return all-zeroes keys */
1235 			if (suser(p->p_ucred, &p->p_acflag))
1236 				bzero((char *)&wreq,
1237 				    sizeof(struct wi_ltv_keys));
1238 			else
1239 				bcopy((char *)&sc->wi_keys, (char *)&wreq,
1240 				    sizeof(struct wi_ltv_keys));
1241 		} else {
1242 			if (sc->sc_enabled == 0)
1243 				error = wi_getdef(sc, &wreq);
1244 			else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1245 				error = EINVAL;
1246 		}
1247 		if (error == 0)
1248 			error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1249 		break;
1250 	case SIOCSWAVELAN:
1251 		error = suser(p->p_ucred, &p->p_acflag);
1252 		if (error)
1253 			break;
1254 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1255 		if (error)
1256 			break;
1257 		if (wreq.wi_type == WI_RID_IFACE_STATS) {
1258 			error = EINVAL;
1259 			break;
1260 		} else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1261 			error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1262 			    wreq.wi_len);
1263 		} else {
1264 			if (sc->sc_enabled != 0)
1265 				error = wi_write_record(sc,
1266 				    (struct wi_ltv_gen *)&wreq);
1267 			if (error == 0)
1268 				error = wi_setdef(sc, &wreq);
1269 			if (error == 0 && sc->sc_enabled != 0)
1270 				/* Reinitialize WaveLAN. */
1271 				wi_init(ifp);
1272 		}
1273 		break;
1274 	case SIOCG80211NWID:
1275 		if (sc->sc_enabled == 0) {
1276 			/* Return the desired ID */
1277 			error = copyout(&sc->wi_netid, ifr->ifr_data,
1278 			    sizeof(sc->wi_netid));
1279 		} else {
1280 			wreq.wi_type = WI_RID_CURRENT_SSID;
1281 			wreq.wi_len = WI_MAX_DATALEN;
1282 			if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1283 			    le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1284 				error = EINVAL;
1285 			else {
1286 				wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1287 				    le16toh(wreq.wi_val[0]));
1288 				error = copyout(&nwid, ifr->ifr_data,
1289 				    sizeof(nwid));
1290 			}
1291 		}
1292 		break;
1293 	case SIOCS80211NWID:
1294 		error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1295 		if (error != 0)
1296 			break;
1297 		if (nwid.i_len > IEEE80211_NWID_LEN) {
1298 			error = EINVAL;
1299 			break;
1300 		}
1301 		if (sc->wi_netid.i_len == nwid.i_len &&
1302 		    memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1303 			break;
1304 		wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1305 		if (sc->sc_enabled != 0)
1306 			/* Reinitialize WaveLAN. */
1307 			wi_init(ifp);
1308 		break;
1309 	case SIOCS80211NWKEY:
1310 		error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1311 		break;
1312 	case SIOCG80211NWKEY:
1313 		error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1314 		break;
1315 	case SIOCS80211POWER:
1316 		error = wi_set_pm(sc, (struct ieee80211_power *)data);
1317 		break;
1318 	case SIOCG80211POWER:
1319 		error = wi_get_pm(sc, (struct ieee80211_power *)data);
1320 		break;
1321 
1322 	default:
1323 		error = EINVAL;
1324 		break;
1325 	}
1326 
1327 	splx(s);
1328 	return (error);
1329 }
1330 
1331 static int
1332 wi_init(ifp)
1333 	struct ifnet *ifp;
1334 {
1335 	struct wi_softc *sc = ifp->if_softc;
1336 	struct wi_req wreq;
1337 	struct wi_ltv_macaddr mac;
1338 	int error, id = 0;
1339 
1340 	if (!sc->sc_enabled) {
1341 		if ((error = (*sc->sc_enable)(sc)) != 0)
1342 			goto out;
1343 		sc->sc_enabled = 1;
1344 	}
1345 
1346 	wi_stop(ifp, 0);
1347 	wi_reset(sc);
1348 
1349 	/* Program max data length. */
1350 	WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1351 
1352 	/* Enable/disable IBSS creation. */
1353 	WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1354 
1355 	/* Set the port type. */
1356 	WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1357 
1358 	/* Program the RTS/CTS threshold. */
1359 	WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1360 
1361 	/* Program the TX rate */
1362 	WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1363 
1364 	/* Access point density */
1365 	WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1366 
1367 	/* Power Management Enabled */
1368 	WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1369 
1370 	/* Power Managment Max Sleep */
1371 	WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1372 
1373 	/* Roaming type */
1374 	WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1375 
1376 	/* Specify the IBSS name */
1377 	wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1378 
1379 	/* Specify the network name */
1380 	wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1381 
1382 	/* Specify the frequency to use */
1383 	WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1384 
1385 	/* Program the nodename. */
1386 	wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1387 
1388 	/* Set our MAC address. */
1389 	mac.wi_len = 4;
1390 	mac.wi_type = WI_RID_MAC_NODE;
1391 	memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1392 	wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1393 
1394 	/* Initialize promisc mode. */
1395 	if (ifp->if_flags & IFF_PROMISC) {
1396 		WI_SETVAL(WI_RID_PROMISC, 1);
1397 	} else {
1398 		WI_SETVAL(WI_RID_PROMISC, 0);
1399 	}
1400 
1401 	/* Configure WEP. */
1402 	if (sc->wi_has_wep) {
1403 		WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1404 		WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1405 		sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1406 		sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1407 		wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1408 		if (sc->sc_prism2 && sc->wi_use_wep) {
1409 			/*
1410 			 * ONLY HWB3163 EVAL-CARD Firmware version
1411 			 * less than 0.8 variant3
1412 			 *
1413 			 *   If promiscuous mode disable, Prism2 chip
1414 			 *  does not work with WEP .
1415 			 * It is under investigation for details.
1416 			 * (ichiro@netbsd.org)
1417 			 */
1418 			if (sc->sc_prism2_ver < 83 ) {
1419 				/* firm ver < 0.8 variant 3 */
1420 				WI_SETVAL(WI_RID_PROMISC, 1);
1421 			}
1422 			WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1423 		}
1424 	}
1425 
1426 	/* Set multicast filter. */
1427 	wi_setmulti(sc);
1428 
1429 	/* Enable desired port */
1430 	wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1431 
1432 	if ((error = wi_alloc_nicmem(sc,
1433 	    1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1434 		printf("%s: tx buffer allocation failed\n",
1435 		    sc->sc_dev.dv_xname);
1436 		goto out;
1437 	}
1438 	sc->wi_tx_data_id = id;
1439 
1440 	if ((error = wi_alloc_nicmem(sc,
1441 	    1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1442 		printf("%s: mgmt. buffer allocation failed\n",
1443 		    sc->sc_dev.dv_xname);
1444 		goto out;
1445 	}
1446 	sc->wi_tx_mgmt_id = id;
1447 
1448 	/* Enable interrupts */
1449 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1450 
1451 	ifp->if_flags |= IFF_RUNNING;
1452 	ifp->if_flags &= ~IFF_OACTIVE;
1453 
1454 	callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1455 
1456  out:
1457 	if (error) {
1458 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1459 		ifp->if_timer = 0;
1460 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1461 	}
1462 	return (error);
1463 }
1464 
1465 static void
1466 wi_start(ifp)
1467 	struct ifnet		*ifp;
1468 {
1469 	struct wi_softc		*sc;
1470 	struct mbuf		*m0;
1471 	struct wi_frame		tx_frame;
1472 	struct ether_header	*eh;
1473 	int			id;
1474 
1475 	sc = ifp->if_softc;
1476 
1477 	if (ifp->if_flags & IFF_OACTIVE)
1478 		return;
1479 
1480 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1481 	if (m0 == NULL)
1482 		return;
1483 
1484 	bzero((char *)&tx_frame, sizeof(tx_frame));
1485 	id = sc->wi_tx_data_id;
1486 	eh = mtod(m0, struct ether_header *);
1487 
1488 	/*
1489 	 * Use RFC1042 encoding for IP and ARP datagrams,
1490 	 * 802.3 for anything else.
1491 	 */
1492 	if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1493 	    ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1494 	    ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1495 	    ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1496 		bcopy((char *)&eh->ether_dhost,
1497 		    (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN);
1498 		bcopy((char *)&eh->ether_shost,
1499 		    (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
1500 		bcopy((char *)&eh->ether_dhost,
1501 		    (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
1502 		bcopy((char *)&eh->ether_shost,
1503 		    (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN);
1504 
1505 		tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1506 		tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1507 		tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1508 		tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1509 		tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1510 		tx_frame.wi_type = eh->ether_type;
1511 
1512 		m_copydata(m0, sizeof(struct ether_header),
1513 		    m0->m_pkthdr.len - sizeof(struct ether_header),
1514 		    (caddr_t)&sc->wi_txbuf);
1515 
1516 		wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1517 		    sizeof(struct wi_frame));
1518 		wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1519 		    (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1520 	} else {
1521 		tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1522 
1523 		m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1524 
1525 		wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1526 		    sizeof(struct wi_frame));
1527 		wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1528 		    m0->m_pkthdr.len + 2);
1529 	}
1530 
1531 #if NBPFILTER > 0
1532 	/*
1533 	 * If there's a BPF listener, bounce a copy of
1534 	 * this frame to him.
1535 	 */
1536 	if (ifp->if_bpf)
1537 		bpf_mtap(ifp->if_bpf, m0);
1538 #endif
1539 
1540 	m_freem(m0);
1541 
1542 	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1543 		printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1544 
1545 	ifp->if_flags |= IFF_OACTIVE;
1546 
1547 	/*
1548 	 * Set a timeout in case the chip goes out to lunch.
1549 	 */
1550 	ifp->if_timer = 5;
1551 
1552 	return;
1553 }
1554 
1555 static int
1556 wi_mgmt_xmit(sc, data, len)
1557 	struct wi_softc		*sc;
1558 	caddr_t			data;
1559 	int			len;
1560 {
1561 	struct wi_frame		tx_frame;
1562 	int			id;
1563 	struct wi_80211_hdr	*hdr;
1564 	caddr_t			dptr;
1565 
1566 	hdr = (struct wi_80211_hdr *)data;
1567 	dptr = data + sizeof(struct wi_80211_hdr);
1568 
1569 	bzero((char *)&tx_frame, sizeof(tx_frame));
1570 	id = sc->wi_tx_mgmt_id;
1571 
1572 	bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl,
1573 	   sizeof(struct wi_80211_hdr));
1574 
1575 	tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1576 	tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1577 
1578 	wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1579 	wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1580 	    (len - sizeof(struct wi_80211_hdr)) + 2);
1581 
1582 	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1583 		printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1584 		return(EIO);
1585 	}
1586 
1587 	return(0);
1588 }
1589 
1590 static void
1591 wi_stop(ifp, disable)
1592 	struct ifnet *ifp;
1593 {
1594 	struct wi_softc	*sc = ifp->if_softc;
1595 
1596 	CSR_WRITE_2(sc, WI_INT_EN, 0);
1597 	wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1598 
1599 	callout_stop(&sc->wi_inquire_ch);
1600 
1601 	if (disable) {
1602 		if (sc->sc_enabled) {
1603 			if (sc->sc_disable)
1604 				(*sc->sc_disable)(sc);
1605 			sc->sc_enabled = 0;
1606 		}
1607 	}
1608 
1609 	ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1610 	ifp->if_timer = 0;
1611 }
1612 
1613 static void
1614 wi_watchdog(ifp)
1615 	struct ifnet		*ifp;
1616 {
1617 	struct wi_softc		*sc;
1618 
1619 	sc = ifp->if_softc;
1620 
1621 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1622 
1623 	wi_init(ifp);
1624 
1625 	ifp->if_oerrors++;
1626 
1627 	return;
1628 }
1629 
1630 void
1631 wi_shutdown(sc)
1632 	struct wi_softc *sc;
1633 {
1634 	int s;
1635 
1636 	s = splnet();
1637 	if (sc->sc_enabled) {
1638 		if (sc->sc_disable)
1639 			(*sc->sc_disable)(sc);
1640 		sc->sc_enabled = 0;
1641 	}
1642 	splx(s);
1643 }
1644 
1645 int
1646 wi_activate(self, act)
1647 	struct device *self;
1648 	enum devact act;
1649 {
1650 	struct wi_softc *sc = (struct wi_softc *)self;
1651 	int rv = 0, s;
1652 
1653 	s = splnet();
1654 	switch (act) {
1655 	case DVACT_ACTIVATE:
1656 		rv = EOPNOTSUPP;
1657 		break;
1658 
1659 	case DVACT_DEACTIVATE:
1660 		if_deactivate(&sc->sc_ethercom.ec_if);
1661 		break;
1662 	}
1663 	splx(s);
1664 	return (rv);
1665 }
1666 
1667 static void
1668 wi_get_id(sc)
1669 	struct wi_softc *sc;
1670 {
1671 	struct wi_ltv_ver       ver;
1672 
1673 	/* getting chip identity */
1674 	memset(&ver, 0, sizeof(ver));
1675 	ver.wi_type = WI_RID_CARDID;
1676 	ver.wi_len = 5;
1677 	wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1678 	printf("%s: using ", sc->sc_dev.dv_xname);
1679 	switch (le16toh(ver.wi_ver[0])) {
1680 		case WI_NIC_EVB2:
1681 			printf("RF:PRISM2 MAC:HFA3841");
1682 			sc->sc_prism2 = 1;
1683 			break;
1684 		case WI_NIC_HWB3763:
1685 			printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1686 			sc->sc_prism2 = 1;
1687 			break;
1688 		case WI_NIC_HWB3163:
1689 			printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1690 			sc->sc_prism2 = 1;
1691 			break;
1692 		case WI_NIC_HWB3163B:
1693 			printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1694 			sc->sc_prism2 = 1;
1695 			break;
1696 		case WI_NIC_EVB3:
1697 			printf("RF:PRISM2 MAC:HFA3842");
1698 			sc->sc_prism2 = 1;
1699 			break;
1700 		case WI_NIC_HWB1153:
1701 			printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1702 			sc->sc_prism2 = 1;
1703 			break;
1704 		case WI_NIC_P2_SST:
1705 			printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1706 			sc->sc_prism2 = 1;
1707 			break;
1708 		case WI_NIC_PRISM2_5:
1709 			printf("RF:PRISM2.5 MAC:ISL3873");
1710 			sc->sc_prism2 = 1;
1711 			break;
1712 		default:
1713 			printf("Lucent chip or unknown chip\n");
1714 			sc->sc_prism2 = 0;
1715 			break;
1716 	}
1717 
1718 	if (sc->sc_prism2) {
1719 		/* try to get prism2 firm version */
1720 		memset(&ver, 0, sizeof(ver));
1721 		ver.wi_type = WI_RID_IDENT;
1722 		ver.wi_len = 5;
1723 		wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1724 		LE16TOH(ver.wi_ver[1]);
1725 		LE16TOH(ver.wi_ver[2]);
1726 		LE16TOH(ver.wi_ver[3]);
1727 		printf(" ,Firmware: %i.%i variant %i\n", ver.wi_ver[2],
1728 		       ver.wi_ver[3], ver.wi_ver[1]);
1729 		sc->sc_prism2_ver = ver.wi_ver[2] * 100 +
1730 				    ver.wi_ver[3] *  10 + ver.wi_ver[1];
1731 	}
1732 
1733 	return;
1734 }
1735 
1736 int
1737 wi_detach(sc)
1738 	struct wi_softc *sc;
1739 {
1740 	struct ifnet *ifp = sc->sc_ifp;
1741 	int s;
1742 
1743 	if (!sc->sc_attached)
1744 		return (0);
1745 
1746 	s = splnet();
1747 	callout_stop(&sc->wi_inquire_ch);
1748 
1749 	/* Delete all remaining media. */
1750 	ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1751 
1752 	ether_ifdetach(ifp);
1753 	if_detach(ifp);
1754 	if (sc->sc_enabled) {
1755 		if (sc->sc_disable)
1756 			(*sc->sc_disable)(sc);
1757 		sc->sc_enabled = 0;
1758 	}
1759 	splx(s);
1760 	return (0);
1761 }
1762 
1763 void
1764 wi_power(sc, why)
1765 	struct wi_softc *sc;
1766 	int why;
1767 {
1768 	int s;
1769 
1770 	if (!sc->sc_enabled)
1771 		return;
1772 
1773 	s = splnet();
1774 	switch (why) {
1775 	case PWR_SUSPEND:
1776 	case PWR_STANDBY:
1777 		wi_stop(sc->sc_ifp, 0);
1778 		if (sc->sc_enabled) {
1779 			if (sc->sc_disable)
1780 				(*sc->sc_disable)(sc);
1781 		}
1782 		break;
1783 	case PWR_RESUME:
1784 		sc->sc_enabled = 0;
1785 		wi_init(sc->sc_ifp);
1786 		(void)wi_intr(sc);
1787 		break;
1788 	case PWR_SOFTSUSPEND:
1789 	case PWR_SOFTSTANDBY:
1790 	case PWR_SOFTRESUME:
1791 		break;
1792 	}
1793 	splx(s);
1794 }
1795 
1796 static int
1797 wi_set_ssid(ws, id, len)
1798 	struct ieee80211_nwid *ws;
1799 	u_int8_t *id;
1800 	int len;
1801 {
1802 
1803 	if (len > IEEE80211_NWID_LEN)
1804 		return (EINVAL);
1805 	ws->i_len = len;
1806 	memcpy(ws->i_nwid, id, len);
1807 	return (0);
1808 }
1809 
1810 static void
1811 wi_request_fill_ssid(wreq, ws)
1812 	struct wi_req *wreq;
1813 	struct ieee80211_nwid *ws;
1814 {
1815 	int len = ws->i_len;
1816 
1817 	memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
1818 	wreq->wi_val[0] = htole16(len);
1819 	wreq->wi_len = roundup(len, 2) / 2 + 2;
1820 	memcpy(&wreq->wi_val[1], ws->i_nwid, len);
1821 }
1822 
1823 static int
1824 wi_write_ssid(sc, type, wreq, ws)
1825 	struct wi_softc *sc;
1826 	int type;
1827 	struct wi_req *wreq;
1828 	struct ieee80211_nwid *ws;
1829 {
1830 
1831 	wreq->wi_type = type;
1832 	wi_request_fill_ssid(wreq, ws);
1833 	return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
1834 }
1835 
1836 static int
1837 wi_sync_media(sc, ptype, txrate)
1838 	struct wi_softc *sc;
1839 	int ptype;
1840 	int txrate;
1841 {
1842 	int media = sc->sc_media.ifm_cur->ifm_media;
1843 	int options = IFM_OPTIONS(media);
1844 	int subtype;
1845 
1846 	switch (txrate) {
1847 	case 1:
1848 		subtype = IFM_IEEE80211_DS1;
1849 		break;
1850 	case 2:
1851 		subtype = IFM_IEEE80211_DS2;
1852 		break;
1853 	case 3:
1854 		subtype = IFM_AUTO;
1855 		break;
1856 	case 11:
1857 		subtype = IFM_IEEE80211_DS11;
1858 		break;
1859 	default:
1860 		subtype = IFM_MANUAL;		/* Unable to represent */
1861 		break;
1862 	}
1863 	switch (ptype) {
1864 	case WI_PORTTYPE_ADHOC:
1865 		options |= IFM_IEEE80211_ADHOC;
1866 		break;
1867 	case WI_PORTTYPE_BSS:
1868 		options &= ~IFM_IEEE80211_ADHOC;
1869 		break;
1870 	default:
1871 		subtype = IFM_MANUAL;		/* Unable to represent */
1872 		break;
1873 	}
1874 	media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
1875 	    IFM_INST(media));
1876 	if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
1877 		return (EINVAL);
1878 	ifmedia_set(&sc->sc_media, media);
1879 	sc->wi_ptype = ptype;
1880 	sc->wi_tx_rate = txrate;
1881 	return (0);
1882 }
1883 
1884 static int
1885 wi_media_change(ifp)
1886 	struct ifnet *ifp;
1887 {
1888 	struct wi_softc *sc = ifp->if_softc;
1889 	int otype = sc->wi_ptype;
1890 	int orate = sc->wi_tx_rate;
1891 
1892 	if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
1893 		sc->wi_ptype = WI_PORTTYPE_ADHOC;
1894 	else
1895 		sc->wi_ptype = WI_PORTTYPE_BSS;
1896 
1897 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
1898 	case IFM_IEEE80211_DS1:
1899 		sc->wi_tx_rate = 1;
1900 		break;
1901 	case IFM_IEEE80211_DS2:
1902 		sc->wi_tx_rate = 2;
1903 		break;
1904 	case IFM_AUTO:
1905 		sc->wi_tx_rate = 3;
1906 		break;
1907 	case IFM_IEEE80211_DS11:
1908 		sc->wi_tx_rate = 11;
1909 		break;
1910 	}
1911 
1912 	if (sc->sc_enabled != 0) {
1913 		if (otype != sc->wi_ptype ||
1914 		    orate != sc->wi_tx_rate)
1915 			wi_init(ifp);
1916 	}
1917 
1918 	ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
1919 
1920 	return (0);
1921 }
1922 
1923 static void
1924 wi_media_status(ifp, imr)
1925 	struct ifnet *ifp;
1926 	struct ifmediareq *imr;
1927 {
1928 	struct wi_softc *sc = ifp->if_softc;
1929 
1930 	if (sc->sc_enabled == 0) {
1931 		imr->ifm_active = IFM_IEEE80211|IFM_NONE;
1932 		imr->ifm_status = 0;
1933 		return;
1934 	}
1935 
1936 	imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1937 	imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
1938 }
1939 
1940 static int
1941 wi_set_nwkey(sc, nwkey)
1942 	struct wi_softc *sc;
1943 	struct ieee80211_nwkey *nwkey;
1944 {
1945 	int i, len, error;
1946 	struct wi_req wreq;
1947 	struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
1948 
1949 	if (!sc->wi_has_wep)
1950 		return ENODEV;
1951 	if (nwkey->i_defkid <= 0 ||
1952 	    nwkey->i_defkid > IEEE80211_WEP_NKID)
1953 		return EINVAL;
1954 	memcpy(wk, &sc->wi_keys, sizeof(*wk));
1955 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1956 		if (nwkey->i_key[i].i_keydat == NULL)
1957 			continue;
1958 		len = nwkey->i_key[i].i_keylen;
1959 		if (len > sizeof(wk->wi_keys[i].wi_keydat))
1960 			return EINVAL;
1961 		error = copyin(nwkey->i_key[i].i_keydat,
1962 		    wk->wi_keys[i].wi_keydat, len);
1963 		if (error)
1964 			return error;
1965 		wk->wi_keys[i].wi_keylen = htole16(len);
1966 	}
1967 
1968 	wk->wi_len = (sizeof(*wk) / 2) + 1;
1969 	wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1970 	if (sc->sc_enabled != 0) {
1971 		error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
1972 		if (error)
1973 			return error;
1974 	}
1975 	error = wi_setdef(sc, &wreq);
1976 	if (error)
1977 		return error;
1978 
1979 	wreq.wi_len = 2;
1980 	wreq.wi_type = WI_RID_TX_CRYPT_KEY;
1981 	wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
1982 	if (sc->sc_enabled != 0) {
1983 		error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
1984 		if (error)
1985 			return error;
1986 	}
1987 	error = wi_setdef(sc, &wreq);
1988 	if (error)
1989 		return error;
1990 
1991 	wreq.wi_type = WI_RID_ENCRYPTION;
1992 	wreq.wi_val[0] = htole16(nwkey->i_wepon);
1993 	if (sc->sc_enabled != 0) {
1994 		error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
1995 		if (error)
1996 			return error;
1997 	}
1998 	error = wi_setdef(sc, &wreq);
1999 	if (error)
2000 		return error;
2001 
2002 	if (sc->sc_enabled != 0)
2003 		wi_init(&sc->sc_ethercom.ec_if);
2004 	return 0;
2005 }
2006 
2007 static int
2008 wi_get_nwkey(sc, nwkey)
2009 	struct wi_softc *sc;
2010 	struct ieee80211_nwkey *nwkey;
2011 {
2012 	int i, len, error;
2013 	struct wi_ltv_keys *wk = &sc->wi_keys;
2014 
2015 	if (!sc->wi_has_wep)
2016 		return ENODEV;
2017 	nwkey->i_wepon = sc->wi_use_wep;
2018 	nwkey->i_defkid = sc->wi_tx_key + 1;
2019 
2020 	/* do not show any keys to non-root user */
2021 	error = suser(curproc->p_ucred, &curproc->p_acflag);
2022 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2023 		if (nwkey->i_key[i].i_keydat == NULL)
2024 			continue;
2025 		/* error holds results of suser() for the first time */
2026 		if (error)
2027 			return error;
2028 		len = le16toh(wk->wi_keys[i].wi_keylen);
2029 		if (nwkey->i_key[i].i_keylen < len)
2030 			return ENOSPC;
2031 		nwkey->i_key[i].i_keylen = len;
2032 		error = copyout(wk->wi_keys[i].wi_keydat,
2033 		    nwkey->i_key[i].i_keydat, len);
2034 		if (error)
2035 			return error;
2036 	}
2037 	return 0;
2038 }
2039 
2040 static int
2041 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2042 {
2043 
2044 	sc->wi_pm_enabled = power->i_enabled;
2045 	sc->wi_max_sleep = power->i_maxsleep;
2046 
2047 	if (sc->sc_enabled)
2048 		return (wi_init(&sc->sc_ethercom.ec_if));
2049 
2050 	return (0);
2051 }
2052 
2053 static int
2054 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2055 {
2056 
2057 	power->i_enabled = sc->wi_pm_enabled;
2058 	power->i_maxsleep = sc->wi_max_sleep;
2059 
2060 	return (0);
2061 }
2062