xref: /netbsd-src/sys/dev/ic/atw.c (revision 2d8e86c2f207da6fbbd50f11b6f33765ebdfa0e9)
1 /*	$NetBSD: atw.c,v 1.168 2019/05/28 07:41:48 msaitoh Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.168 2019/05/28 07:41:48 msaitoh Exp $");
38 
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <lib/libkern/libkern.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 
67 #include <net/bpf.h>
68 
69 #include <sys/bus.h>
70 #include <sys/intr.h>
71 
72 #include <dev/ic/atwreg.h>
73 #include <dev/ic/rf3000reg.h>
74 #include <dev/ic/si4136reg.h>
75 #include <dev/ic/atwvar.h>
76 #include <dev/ic/smc93cx6var.h>
77 
78 /* XXX TBD open questions
79  *
80  *
81  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83  * handle this for me?
84  *
85  */
86 /* device attachment
87  *
88  *    print TOFS[012]
89  *
90  * device initialization
91  *
92  *    clear ATW_FRCTL_MAXPSP to disable max power saving
93  *    set ATW_TXBR_ALCUPDATE to enable ALC
94  *    set TOFS[012]? (hope not)
95  *    disable rx/tx
96  *    set ATW_PAR_SWR (software reset)
97  *    wait for ATW_PAR_SWR clear
98  *    disable interrupts
99  *    ack status register
100  *    enable interrupts
101  *
102  * rx/tx initialization
103  *
104  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105  *    allocate and init descriptor rings
106  *    write ATW_PAR_DSL (descriptor skip length)
107  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108  *    write ATW_NAR_SQ for one/both transmit descriptor rings
109  *    write ATW_NAR_SQ for one/both transmit descriptor rings
110  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111  *
112  * rx/tx end
113  *
114  *    stop DMA
115  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116  *    flush tx w/ ATW_NAR_HF
117  *
118  * scan
119  *
120  *    initialize rx/tx
121  *
122  * BSS join: (re)association response
123  *
124  *    set ATW_FRCTL_AID
125  *
126  * optimizations ???
127  *
128  */
129 
130 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
131 
132 int atw_pseudo_milli = 1;
133 int atw_magic_delay1 = 100 * 1000;
134 int atw_magic_delay2 = 100 * 1000;
135 /* more magic multi-millisecond delays (units: microseconds) */
136 int atw_nar_delay = 20 * 1000;
137 int atw_magic_delay4 = 10 * 1000;
138 int atw_rf_delay1 = 10 * 1000;
139 int atw_rf_delay2 = 5 * 1000;
140 int atw_plcphd_delay = 2 * 1000;
141 int atw_bbp_io_enable_delay = 20 * 1000;
142 int atw_bbp_io_disable_delay = 2 * 1000;
143 int atw_writewep_delay = 1000;
144 int atw_beacon_len_adjust = 4;
145 int atw_dwelltime = 200;
146 int atw_xindiv2 = 0;
147 
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150 
151 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
154 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157 
158 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
159 static void	atw_print_regs(struct atw_softc *, const char *);
160 
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 #	ifdef ATW_BBPDEBUG
163 static void	atw_rf3000_print(struct atw_softc *);
164 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165 #	endif /* ATW_BBPDEBUG */
166 
167 #	ifdef ATW_SYNDEBUG
168 static void	atw_si4126_print(struct atw_softc *);
169 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
170 #	endif /* ATW_SYNDEBUG */
171 #define __atwdebugused	/* empty */
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define	DPRINTF(sc, x)	/* nothing */
177 #define	DPRINTF2(sc, x)	/* nothing */
178 #define	DPRINTF3(sc, x)	/* nothing */
179 #define __atwdebugused	__unused
180 #endif
181 
182 /* ifnet methods */
183 int	atw_init(struct ifnet *);
184 int	atw_ioctl(struct ifnet *, u_long, void *);
185 void	atw_start(struct ifnet *);
186 void	atw_stop(struct ifnet *, int);
187 void	atw_watchdog(struct ifnet *);
188 
189 /* Device attachment */
190 void	atw_attach(struct atw_softc *);
191 int	atw_detach(struct atw_softc *);
192 static void atw_evcnt_attach(struct atw_softc *);
193 static void atw_evcnt_detach(struct atw_softc *);
194 
195 /* Rx/Tx process */
196 int	atw_add_rxbuf(struct atw_softc *, int);
197 void	atw_idle(struct atw_softc *, uint32_t);
198 void	atw_rxdrain(struct atw_softc *);
199 void	atw_txdrain(struct atw_softc *);
200 
201 /* Device (de)activation and power state */
202 void	atw_reset(struct atw_softc *);
203 
204 /* Interrupt handlers */
205 void	atw_softintr(void *);
206 void	atw_linkintr(struct atw_softc *, uint32_t);
207 void	atw_rxintr(struct atw_softc *);
208 void	atw_txintr(struct atw_softc *, uint32_t);
209 
210 /* 802.11 state machine */
211 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 static void	atw_next_scan(void *);
213 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214 			      struct ieee80211_node *, int, int, uint32_t);
215 static int	atw_tune(struct atw_softc *);
216 
217 /* Device initialization */
218 static void	atw_bbp_io_init(struct atw_softc *);
219 static void	atw_cfp_init(struct atw_softc *);
220 static void	atw_cmdr_init(struct atw_softc *);
221 static void	atw_ifs_init(struct atw_softc *);
222 static void	atw_nar_init(struct atw_softc *);
223 static void	atw_response_times_init(struct atw_softc *);
224 static void	atw_rf_reset(struct atw_softc *);
225 static void	atw_test1_init(struct atw_softc *);
226 static void	atw_tofs0_init(struct atw_softc *);
227 static void	atw_tofs2_init(struct atw_softc *);
228 static void	atw_txlmt_init(struct atw_softc *);
229 static void	atw_wcsr_init(struct atw_softc *);
230 
231 /* Key management */
232 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234 	const uint8_t[IEEE80211_ADDR_LEN]);
235 static void atw_key_update_begin(struct ieee80211com *);
236 static void atw_key_update_end(struct ieee80211com *);
237 
238 /* RAM/ROM utilities */
239 static void	atw_clear_sram(struct atw_softc *);
240 static void	atw_write_sram(struct atw_softc *, u_int, uint8_t *, u_int);
241 static int	atw_read_srom(struct atw_softc *);
242 
243 /* BSS setup */
244 static void	atw_predict_beacon(struct atw_softc *);
245 static void	atw_start_beacon(struct atw_softc *, int);
246 static void	atw_write_bssid(struct atw_softc *);
247 static void	atw_write_ssid(struct atw_softc *);
248 static void	atw_write_sup_rates(struct atw_softc *);
249 static void	atw_write_wep(struct atw_softc *);
250 
251 /* Media */
252 static int	atw_media_change(struct ifnet *);
253 
254 static void	atw_filter_setup(struct atw_softc *);
255 
256 /* 802.11 utilities */
257 static uint64_t			atw_get_tsft(struct atw_softc *);
258 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
259 						   uint32_t);
260 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
261 static void			atw_node_free(struct ieee80211_node *);
262 
263 /*
264  * Tuner/transceiver/modem
265  */
266 static void	atw_bbp_io_enable(struct atw_softc *, int);
267 
268 /* RFMD RF3000 Baseband Processor */
269 static int	atw_rf3000_init(struct atw_softc *);
270 static int	atw_rf3000_tune(struct atw_softc *, u_int);
271 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
272 
273 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
274 static void	atw_si4126_tune(struct atw_softc *, u_int);
275 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
276 
277 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279 
280 const char *atw_tx_state[] = {
281 	"STOPPED",
282 	"RUNNING - read descriptor",
283 	"RUNNING - transmitting",
284 	"RUNNING - filling fifo",	/* XXX */
285 	"SUSPENDED",
286 	"RUNNING -- write descriptor",
287 	"RUNNING -- write last descriptor",
288 	"RUNNING - fifo full"
289 };
290 
291 const char *atw_rx_state[] = {
292 	"STOPPED",
293 	"RUNNING - read descriptor",
294 	"RUNNING - check this packet, pre-fetch next",
295 	"RUNNING - wait for reception",
296 	"SUSPENDED",
297 	"RUNNING - write descriptor",
298 	"RUNNING - flush fifo",
299 	"RUNNING - fifo drain"
300 };
301 
302 static inline int
303 is_running(struct ifnet *ifp)
304 {
305 	return (ifp->if_flags & (IFF_RUNNING | IFF_UP))
306 	    == (IFF_RUNNING | IFF_UP);
307 }
308 
309 int
310 atw_activate(device_t self, enum devact act)
311 {
312 	struct atw_softc *sc = device_private(self);
313 
314 	switch (act) {
315 	case DVACT_DEACTIVATE:
316 		if_deactivate(&sc->sc_if);
317 		return 0;
318 	default:
319 		return EOPNOTSUPP;
320 	}
321 }
322 
323 bool
324 atw_suspend(device_t self, const pmf_qual_t *qual)
325 {
326 	struct atw_softc *sc = device_private(self);
327 
328 	atw_rxdrain(sc);
329 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
330 
331 	return true;
332 }
333 
334 /* Returns -1 on failure. */
335 static int
336 atw_read_srom(struct atw_softc *sc)
337 {
338 	struct seeprom_descriptor sd;
339 	uint32_t test0, fail_bits;
340 
341 	(void)memset(&sd, 0, sizeof(sd));
342 
343 	test0 = ATW_READ(sc, ATW_TEST0);
344 
345 	switch (sc->sc_rev) {
346 	case ATW_REVISION_BA:
347 	case ATW_REVISION_CA:
348 		fail_bits = ATW_TEST0_EPNE;
349 		break;
350 	default:
351 		fail_bits = ATW_TEST0_EPNE | ATW_TEST0_EPSNM;
352 		break;
353 	}
354 	if ((test0 & fail_bits) != 0) {
355 		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
356 		return -1;
357 	}
358 
359 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
360 	case ATW_TEST0_EPTYP_93c66:
361 		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
362 		sc->sc_sromsz = 512;
363 		sd.sd_chip = C56_66;
364 		break;
365 	case ATW_TEST0_EPTYP_93c46:
366 		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
367 		sc->sc_sromsz = 128;
368 		sd.sd_chip = C46;
369 		break;
370 	default:
371 		printf("%s: unknown SROM type %" __PRIuBITS "\n",
372 		    device_xname(sc->sc_dev),
373 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
374 		return -1;
375 	}
376 
377 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
378 
379 	if (sc->sc_srom == NULL) {
380 		aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
381 		return -1;
382 	}
383 
384 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
385 
386 	/* ADM8211 has a single 32-bit register for controlling the
387 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
388 	 * "ready" bit. The ADM8211 input/output sense is the reverse
389 	 * of read_seeprom's.
390 	 */
391 	sd.sd_tag = sc->sc_st;
392 	sd.sd_bsh = sc->sc_sh;
393 	sd.sd_regsize = 4;
394 	sd.sd_control_offset = ATW_SPR;
395 	sd.sd_status_offset = ATW_SPR;
396 	sd.sd_dataout_offset = ATW_SPR;
397 	sd.sd_CK = ATW_SPR_SCLK;
398 	sd.sd_CS = ATW_SPR_SCS;
399 	sd.sd_DI = ATW_SPR_SDO;
400 	sd.sd_DO = ATW_SPR_SDI;
401 	sd.sd_MS = ATW_SPR_SRS;
402 	sd.sd_RDY = 0;
403 
404 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
405 		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
406 		free(sc->sc_srom, M_DEVBUF);
407 		return -1;
408 	}
409 #ifdef ATW_DEBUG
410 	{
411 		int i;
412 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
413 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
414 			if (((i % 8) == 0) && (i != 0)) {
415 				ATW_DPRINTF(("\n\t"));
416 			}
417 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
418 		}
419 		ATW_DPRINTF(("\n"));
420 	}
421 #endif /* ATW_DEBUG */
422 	return 0;
423 }
424 
425 #ifdef ATW_DEBUG
426 static void
427 atw_print_regs(struct atw_softc *sc, const char *where)
428 {
429 #define PRINTREG(sc, reg) \
430 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
431 	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
432 
433 	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
434 
435 	PRINTREG(sc, ATW_PAR);
436 	PRINTREG(sc, ATW_FRCTL);
437 	PRINTREG(sc, ATW_TDR);
438 	PRINTREG(sc, ATW_WTDP);
439 	PRINTREG(sc, ATW_RDR);
440 	PRINTREG(sc, ATW_WRDP);
441 	PRINTREG(sc, ATW_RDB);
442 	PRINTREG(sc, ATW_CSR3A);
443 	PRINTREG(sc, ATW_TDBD);
444 	PRINTREG(sc, ATW_TDBP);
445 	PRINTREG(sc, ATW_STSR);
446 	PRINTREG(sc, ATW_CSR5A);
447 	PRINTREG(sc, ATW_NAR);
448 	PRINTREG(sc, ATW_CSR6A);
449 	PRINTREG(sc, ATW_IER);
450 	PRINTREG(sc, ATW_CSR7A);
451 	PRINTREG(sc, ATW_LPC);
452 	PRINTREG(sc, ATW_TEST1);
453 	PRINTREG(sc, ATW_SPR);
454 	PRINTREG(sc, ATW_TEST0);
455 	PRINTREG(sc, ATW_WCSR);
456 	PRINTREG(sc, ATW_WPDR);
457 	PRINTREG(sc, ATW_GPTMR);
458 	PRINTREG(sc, ATW_GPIO);
459 	PRINTREG(sc, ATW_BBPCTL);
460 	PRINTREG(sc, ATW_SYNCTL);
461 	PRINTREG(sc, ATW_PLCPHD);
462 	PRINTREG(sc, ATW_MMIWADDR);
463 	PRINTREG(sc, ATW_MMIRADDR1);
464 	PRINTREG(sc, ATW_MMIRADDR2);
465 	PRINTREG(sc, ATW_TXBR);
466 	PRINTREG(sc, ATW_CSR15A);
467 	PRINTREG(sc, ATW_ALCSTAT);
468 	PRINTREG(sc, ATW_TOFS2);
469 	PRINTREG(sc, ATW_CMDR);
470 	PRINTREG(sc, ATW_PCIC);
471 	PRINTREG(sc, ATW_PMCSR);
472 	PRINTREG(sc, ATW_PAR0);
473 	PRINTREG(sc, ATW_PAR1);
474 	PRINTREG(sc, ATW_MAR0);
475 	PRINTREG(sc, ATW_MAR1);
476 	PRINTREG(sc, ATW_ATIMDA0);
477 	PRINTREG(sc, ATW_ABDA1);
478 	PRINTREG(sc, ATW_BSSID0);
479 	PRINTREG(sc, ATW_TXLMT);
480 	PRINTREG(sc, ATW_MIBCNT);
481 	PRINTREG(sc, ATW_BCNT);
482 	PRINTREG(sc, ATW_TSFTH);
483 	PRINTREG(sc, ATW_TSC);
484 	PRINTREG(sc, ATW_SYNRF);
485 	PRINTREG(sc, ATW_BPLI);
486 	PRINTREG(sc, ATW_CAP0);
487 	PRINTREG(sc, ATW_CAP1);
488 	PRINTREG(sc, ATW_RMD);
489 	PRINTREG(sc, ATW_CFPP);
490 	PRINTREG(sc, ATW_TOFS0);
491 	PRINTREG(sc, ATW_TOFS1);
492 	PRINTREG(sc, ATW_IFST);
493 	PRINTREG(sc, ATW_RSPT);
494 	PRINTREG(sc, ATW_TSFTL);
495 	PRINTREG(sc, ATW_WEPCTL);
496 	PRINTREG(sc, ATW_WESK);
497 	PRINTREG(sc, ATW_WEPCNT);
498 	PRINTREG(sc, ATW_MACTEST);
499 	PRINTREG(sc, ATW_FER);
500 	PRINTREG(sc, ATW_FEMR);
501 	PRINTREG(sc, ATW_FPSR);
502 	PRINTREG(sc, ATW_FFER);
503 #undef PRINTREG
504 }
505 #endif /* ATW_DEBUG */
506 
507 /*
508  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
509  */
510 void
511 atw_attach(struct atw_softc *sc)
512 {
513 	static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
514 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
515 	};
516 	struct ieee80211com *ic = &sc->sc_ic;
517 	struct ifnet *ifp = &sc->sc_if;
518 	int country_code, error, i, srom_major;
519 	uint32_t reg;
520 	static const char *type_strings[] = {"Intersil (not supported)",
521 	    "RFMD", "Marvel (not supported)"};
522 
523 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
524 
525 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
526 	if (sc->sc_soft_ih == NULL) {
527 		aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
528 		goto fail_0;
529 	}
530 
531 	sc->sc_txth = atw_txthresh_tab_lo;
532 
533 	SIMPLEQ_INIT(&sc->sc_txfreeq);
534 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
535 
536 #ifdef ATW_DEBUG
537 	atw_print_regs(sc, "atw_attach");
538 #endif /* ATW_DEBUG */
539 
540 	/*
541 	 * Allocate the control data structures, and create and load the
542 	 * DMA map for it.
543 	 */
544 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
545 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
546 	    1, &sc->sc_cdnseg, 0)) != 0) {
547 		aprint_error_dev(sc->sc_dev,
548 		    "unable to allocate control data, error = %d\n",
549 		    error);
550 		goto fail_0;
551 	}
552 
553 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
554 	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
555 	    BUS_DMA_COHERENT)) != 0) {
556 		aprint_error_dev(sc->sc_dev,
557 		    "unable to map control data, error = %d\n",
558 		    error);
559 		goto fail_1;
560 	}
561 
562 	if ((error = bus_dmamap_create(sc->sc_dmat,
563 	    sizeof(struct atw_control_data), 1,
564 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
565 		aprint_error_dev(sc->sc_dev,
566 		    "unable to create control data DMA map, error = %d\n",
567 		    error);
568 		goto fail_2;
569 	}
570 
571 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
572 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
573 	    0)) != 0) {
574 		aprint_error_dev(sc->sc_dev,
575 		    "unable to load control data DMA map, error = %d\n", error);
576 		goto fail_3;
577 	}
578 
579 	/*
580 	 * Create the transmit buffer DMA maps.
581 	 */
582 	sc->sc_ntxsegs = ATW_NTXSEGS;
583 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
584 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
585 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
586 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
587 			aprint_error_dev(sc->sc_dev,
588 			    "unable to create tx DMA map %d, error = %d\n", i,
589 			    error);
590 			goto fail_4;
591 		}
592 	}
593 
594 	/*
595 	 * Create the receive buffer DMA maps.
596 	 */
597 	for (i = 0; i < ATW_NRXDESC; i++) {
598 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
599 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
600 			aprint_error_dev(sc->sc_dev,
601 			    "unable to create rx DMA map %d, error = %d\n", i,
602 			    error);
603 			goto fail_5;
604 		}
605 	}
606 	for (i = 0; i < ATW_NRXDESC; i++) {
607 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
608 	}
609 
610 	switch (sc->sc_rev) {
611 	case ATW_REVISION_AB:
612 	case ATW_REVISION_AF:
613 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
614 		break;
615 	case ATW_REVISION_BA:
616 	case ATW_REVISION_CA:
617 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
618 		break;
619 	}
620 
621 	/* Reset the chip to a known state. */
622 	atw_reset(sc);
623 
624 	if (atw_read_srom(sc) == -1)
625 		goto fail_5;
626 
627 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
628 	    ATW_SR_RFTYPE_MASK);
629 
630 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
631 	    ATW_SR_BBPTYPE_MASK);
632 
633 	if (sc->sc_rftype >= __arraycount(type_strings)) {
634 		aprint_error_dev(sc->sc_dev, "unknown RF\n");
635 		goto fail_5;
636 	}
637 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
638 		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
639 		goto fail_5;
640 	}
641 
642 	aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
643 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
644 
645 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
646 	 * MARVEL. My bug, or theirs?
647 	 */
648 
649 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
650 
651 	switch (sc->sc_rftype) {
652 	case ATW_RFTYPE_INTERSIL:
653 		reg |= ATW_SYNCTL_CS1;
654 		break;
655 	case ATW_RFTYPE_RFMD:
656 		reg |= ATW_SYNCTL_CS0;
657 		break;
658 	case ATW_RFTYPE_MARVEL:
659 		break;
660 	}
661 
662 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
663 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
664 
665 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
666 
667 	switch (sc->sc_bbptype) {
668 	case ATW_BBPTYPE_INTERSIL:
669 		reg |= ATW_BBPCTL_TWI;
670 		break;
671 	case ATW_BBPTYPE_RFMD:
672 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
673 		    ATW_BBPCTL_CCA_ACTLO;
674 		break;
675 	case ATW_BBPTYPE_MARVEL:
676 		break;
677 	case ATW_C_BBPTYPE_RFMD:
678 		aprint_error_dev(sc->sc_dev,
679 		    "ADM8211C MAC/RFMD BBP not supported yet.\n");
680 		break;
681 	}
682 
683 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
684 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
685 
686 	/*
687 	 * From this point forward, the attachment cannot fail.  A failure
688 	 * before this point releases all resources that may have been
689 	 * allocated.
690 	 */
691 	sc->sc_flags |= ATWF_ATTACHED;
692 
693 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
694 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
695 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
696 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
697 
698 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
699 	    ATW_SR_MAJOR_MASK);
700 
701 	if (srom_major < 2)
702 		sc->sc_rf3000_options1 = 0;
703 	else if (sc->sc_rev == ATW_REVISION_BA) {
704 		sc->sc_rf3000_options1 =
705 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
706 		    ATW_SR_CR28_MASK);
707 	} else
708 		sc->sc_rf3000_options1 = 0;
709 
710 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
711 	    ATW_SR_CR29_MASK);
712 
713 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
714 	    ATW_SR_CTRY_MASK);
715 
716 #define ADD_CHANNEL(_ic, _chan) do {					\
717 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
718 	_ic->ic_channels[_chan].ic_freq =				\
719 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
720 } while (0)
721 
722 	/* Find available channels */
723 	switch (country_code) {
724 	case COUNTRY_MMK2:	/* 1-14 */
725 		ADD_CHANNEL(ic, 14);
726 		/*FALLTHROUGH*/
727 	case COUNTRY_ETSI:	/* 1-13 */
728 		for (i = 1; i <= 13; i++)
729 			ADD_CHANNEL(ic, i);
730 		break;
731 	case COUNTRY_FCC:	/* 1-11 */
732 	case COUNTRY_IC:	/* 1-11 */
733 		for (i = 1; i <= 11; i++)
734 			ADD_CHANNEL(ic, i);
735 		break;
736 	case COUNTRY_MMK:	/* 14 */
737 		ADD_CHANNEL(ic, 14);
738 		break;
739 	case COUNTRY_FRANCE:	/* 10-13 */
740 		for (i = 10; i <= 13; i++)
741 			ADD_CHANNEL(ic, i);
742 		break;
743 	default:	/* assume channels 10-11 */
744 	case COUNTRY_SPAIN:	/* 10-11 */
745 		for (i = 10; i <= 11; i++)
746 			ADD_CHANNEL(ic, i);
747 		break;
748 	}
749 
750 	/* Read the MAC address. */
751 	reg = ATW_READ(sc, ATW_PAR0);
752 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
753 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
754 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
755 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
756 	reg = ATW_READ(sc, ATW_PAR1);
757 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
758 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
759 
760 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
761 		aprint_error_dev(sc->sc_dev,
762 		    "could not get mac address, attach failed\n");
763 		goto fail_5;
764 	}
765 
766 	aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
767 
768 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
769 	ifp->if_softc = sc;
770 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
771 	ifp->if_ioctl = atw_ioctl;
772 	ifp->if_start = atw_start;
773 	ifp->if_watchdog = atw_watchdog;
774 	ifp->if_init = atw_init;
775 	ifp->if_stop = atw_stop;
776 	IFQ_SET_READY(&ifp->if_snd);
777 
778 	ic->ic_ifp = ifp;
779 	ic->ic_phytype = IEEE80211_T_DS;
780 	ic->ic_opmode = IEEE80211_M_STA;
781 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
782 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
783 
784 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
785 
786 	/*
787 	 * Call MI attach routines.
788 	 */
789 
790 	error = if_initialize(ifp);
791 	if (error != 0) {
792 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
793 		    error);
794 		goto fail_5;
795 	}
796 	ieee80211_ifattach(ic);
797 	/* Use common softint-based if_input */
798 	ifp->if_percpuq = if_percpuq_create(ifp);
799 	if_register(ifp);
800 
801 	atw_evcnt_attach(sc);
802 
803 	sc->sc_newstate = ic->ic_newstate;
804 	ic->ic_newstate = atw_newstate;
805 
806 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
807 	ic->ic_recv_mgmt = atw_recv_mgmt;
808 
809 	sc->sc_node_free = ic->ic_node_free;
810 	ic->ic_node_free = atw_node_free;
811 
812 	sc->sc_node_alloc = ic->ic_node_alloc;
813 	ic->ic_node_alloc = atw_node_alloc;
814 
815 	ic->ic_crypto.cs_key_delete = atw_key_delete;
816 	ic->ic_crypto.cs_key_set = atw_key_set;
817 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
818 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
819 
820 	/* possibly we should fill in our own sc_send_prresp, since
821 	 * the ADM8211 is probably sending probe responses in ad hoc
822 	 * mode.
823 	 */
824 
825 	/* complete initialization */
826 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
827 	callout_init(&sc->sc_scan_ch, 0);
828 
829 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
830 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
831 
832 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
833 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
834 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
835 
836 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
837 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
838 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
839 
840 	ieee80211_announce(ic);
841 	return;
842 
843 	/*
844 	 * Free any resources we've allocated during the failed attach
845 	 * attempt.  Do this in reverse order and fall through.
846 	 */
847  fail_5:
848 	for (i = 0; i < ATW_NRXDESC; i++) {
849 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
850 			continue;
851 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
852 	}
853  fail_4:
854 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
855 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
856 			continue;
857 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
858 	}
859 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
860  fail_3:
861 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
862  fail_2:
863 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
864 	    sizeof(struct atw_control_data));
865  fail_1:
866 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
867  fail_0:
868 	if (sc->sc_soft_ih != NULL) {
869 		softint_disestablish(sc->sc_soft_ih);
870 		sc->sc_soft_ih = NULL;
871 	}
872 }
873 
874 static struct ieee80211_node *
875 atw_node_alloc(struct ieee80211_node_table *nt)
876 {
877 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
878 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
879 
880 	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
881 	return ni;
882 }
883 
884 static void
885 atw_node_free(struct ieee80211_node *ni)
886 {
887 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
888 
889 	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
890 	    ether_sprintf(ni->ni_bssid)));
891 	(*sc->sc_node_free)(ni);
892 }
893 
894 
895 static void
896 atw_test1_reset(struct atw_softc *sc)
897 {
898 	switch (sc->sc_rev) {
899 	case ATW_REVISION_BA:
900 		if (1 /* XXX condition on transceiver type */) {
901 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
902 		}
903 		break;
904 	case ATW_REVISION_CA:
905 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
906 		break;
907 	default:
908 		break;
909 	}
910 }
911 
912 /*
913  * atw_reset:
914  *
915  *	Perform a soft reset on the ADM8211.
916  */
917 void
918 atw_reset(struct atw_softc *sc)
919 {
920 	int i;
921 	uint32_t lpc __atwdebugused;
922 
923 	ATW_WRITE(sc, ATW_NAR, 0x0);
924 	DELAY(atw_nar_delay);
925 
926 	/* Reference driver has a cryptic remark indicating that this might
927 	 * power-on the chip.  I know that it turns off power-saving....
928 	 */
929 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
930 
931 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
932 
933 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
934 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
935 			break;
936 		DELAY(atw_pseudo_milli);
937 	}
938 
939 	/* ... and then pause 100ms longer for good measure. */
940 	DELAY(atw_magic_delay1);
941 
942 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
943 
944 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
945 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
946 
947 	/*
948 	 * Initialize the PCI Access Register.
949 	 */
950 	sc->sc_busmode = ATW_PAR_PBL_8DW;
951 
952 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
953 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
954 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
955 
956 	atw_test1_reset(sc);
957 
958 	/* Turn off maximum power saving, etc. */
959 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
960 
961 	DELAY(atw_magic_delay2);
962 
963 	/* Recall EEPROM. */
964 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
965 
966 	DELAY(atw_magic_delay4);
967 
968 	lpc = ATW_READ(sc, ATW_LPC);
969 
970 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
971 
972 	/* A reset seems to affect the SRAM contents, so put them into
973 	 * a known state.
974 	 */
975 	atw_clear_sram(sc);
976 
977 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
978 }
979 
980 static void
981 atw_clear_sram(struct atw_softc *sc)
982 {
983 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
984 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
985 	/* XXX not for revision 0x20. */
986 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
987 }
988 
989 /* TBD atw_init
990  *
991  * set MAC based on ic->ic_bss->myaddr
992  * write WEP keys
993  * set TX rate
994  */
995 
996 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
997  * without receiving a beacon with the preferred BSSID & SSID.
998  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
999  */
1000 static void
1001 atw_wcsr_init(struct atw_softc *sc)
1002 {
1003 	uint32_t wcsr;
1004 
1005 	wcsr = ATW_READ(sc, ATW_WCSR);
1006 	wcsr &= ~ATW_WCSR_BLN_MASK;
1007 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1008 	/* We always want to wake up on link loss or TSFT out of range */
1009 	wcsr |= ATW_WCSR_LSOE | ATW_WCSR_TSFTWE;
1010 	ATW_WRITE(sc, ATW_WCSR, wcsr);
1011 
1012 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1013 	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1014 }
1015 
1016 /* Turn off power management.  Set Rx store-and-forward mode. */
1017 static void
1018 atw_cmdr_init(struct atw_softc *sc)
1019 {
1020 	uint32_t cmdr;
1021 	cmdr = ATW_READ(sc, ATW_CMDR);
1022 	cmdr &= ~ATW_CMDR_APM;
1023 	cmdr |= ATW_CMDR_RTE;
1024 	cmdr &= ~ATW_CMDR_DRT_MASK;
1025 	cmdr |= ATW_CMDR_DRT_SF;
1026 
1027 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1028 }
1029 
1030 static void
1031 atw_tofs2_init(struct atw_softc *sc)
1032 {
1033 	uint32_t tofs2;
1034 	/* XXX this magic can probably be figured out from the RFMD docs */
1035 #ifndef ATW_REFSLAVE
1036 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1037 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1038 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1039 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1040 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1041 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1042 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1043 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1044 #else
1045 	/* XXX new magic from reference driver source */
1046 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1047 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1048 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1049 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1050 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1051 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1052 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1053 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1054 #endif
1055 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1056 }
1057 
1058 static void
1059 atw_nar_init(struct atw_softc *sc)
1060 {
1061 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF | ATW_NAR_PB);
1062 }
1063 
1064 static void
1065 atw_txlmt_init(struct atw_softc *sc)
1066 {
1067 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1068 				 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1069 }
1070 
1071 static void
1072 atw_test1_init(struct atw_softc *sc)
1073 {
1074 	uint32_t test1;
1075 
1076 	test1 = ATW_READ(sc, ATW_TEST1);
1077 	test1 &= ~(ATW_TEST1_DBGREAD_MASK | ATW_TEST1_CONTROL);
1078 	/* XXX magic 0x1 */
1079 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1080 	ATW_WRITE(sc, ATW_TEST1, test1);
1081 }
1082 
1083 static void
1084 atw_rf_reset(struct atw_softc *sc)
1085 {
1086 	/* XXX this resets an Intersil RF front-end? */
1087 	/* TBD condition on Intersil RFType? */
1088 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1089 	DELAY(atw_rf_delay1);
1090 	ATW_WRITE(sc, ATW_SYNRF, 0);
1091 	DELAY(atw_rf_delay2);
1092 }
1093 
1094 /* Set 16 TU max duration for the contention-free period (CFP). */
1095 static void
1096 atw_cfp_init(struct atw_softc *sc)
1097 {
1098 	uint32_t cfpp;
1099 
1100 	cfpp = ATW_READ(sc, ATW_CFPP);
1101 	cfpp &= ~ATW_CFPP_CFPMD;
1102 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1103 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1104 }
1105 
1106 static void
1107 atw_tofs0_init(struct atw_softc *sc)
1108 {
1109 	/* XXX I guess that the Cardbus clock is 22 MHz?
1110 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1111 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1112 	 * very clear on this point. It says in the datasheet that it is
1113 	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1114 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1115 	 * these values. These values are also the power-on default.
1116 	 */
1117 	ATW_WRITE(sc, ATW_TOFS0,
1118 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1119 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1120 }
1121 
1122 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1123 static void
1124 atw_ifs_init(struct atw_softc *sc)
1125 {
1126 	uint32_t ifst;
1127 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1128 	 * Go figure.
1129 	 */
1130 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1131 	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1132 		     ATW_IFST_SIFS_MASK) |
1133 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1134 	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1135 
1136 	ATW_WRITE(sc, ATW_IFST, ifst);
1137 }
1138 
1139 static void
1140 atw_response_times_init(struct atw_softc *sc)
1141 {
1142 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1143 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1144 	 * to pass after it transmits a frame that requires a response;
1145 	 * it waits at most SIFS + MART microseconds for the response.
1146 	 * Surely this is not the ACK timeout?
1147 	 */
1148 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1149 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1150 }
1151 
1152 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1153  * engines read and write baseband registers after Rx and before
1154  * Tx, respectively.
1155  */
1156 static void
1157 atw_bbp_io_init(struct atw_softc *sc)
1158 {
1159 	uint32_t mmiraddr2;
1160 
1161 	/* XXX The reference driver does this, but is it *really*
1162 	 * necessary?
1163 	 */
1164 	switch (sc->sc_rev) {
1165 	case ATW_REVISION_AB:
1166 	case ATW_REVISION_AF:
1167 		mmiraddr2 = 0x0;
1168 		break;
1169 	default:
1170 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1171 		mmiraddr2 &=
1172 		    ~(ATW_MMIRADDR2_PROREXT | ATW_MMIRADDR2_PRORLEN_MASK);
1173 		break;
1174 	}
1175 
1176 	switch (sc->sc_bbptype) {
1177 	case ATW_BBPTYPE_INTERSIL:
1178 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1179 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1180 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1181 		break;
1182 	case ATW_BBPTYPE_MARVEL:
1183 		/* TBD find out the Marvel settings. */
1184 		break;
1185 	case ATW_BBPTYPE_RFMD:
1186 	default:
1187 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1188 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1189 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1190 		break;
1191 	}
1192 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1193 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1194 }
1195 
1196 /*
1197  * atw_init:		[ ifnet interface function ]
1198  *
1199  *	Initialize the interface.  Must be called at splnet().
1200  */
1201 int
1202 atw_init(struct ifnet *ifp)
1203 {
1204 	struct atw_softc *sc = ifp->if_softc;
1205 	struct ieee80211com *ic = &sc->sc_ic;
1206 	struct atw_txsoft *txs;
1207 	struct atw_rxsoft *rxs;
1208 	int i, error = 0;
1209 
1210 	if (device_is_active(sc->sc_dev)) {
1211 		/*
1212 		 * Cancel any pending I/O.
1213 		 */
1214 		atw_stop(ifp, 0);
1215 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1216 		   !device_is_active(sc->sc_dev))
1217 		return 0;
1218 
1219 	/*
1220 	 * Reset the chip to a known state.
1221 	 */
1222 	atw_reset(sc);
1223 
1224 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1225 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1226 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1227 
1228 	atw_wcsr_init(sc);
1229 
1230 	atw_cmdr_init(sc);
1231 
1232 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1233 	 *
1234 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1235 	 */
1236 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1237 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1238 
1239 	atw_tofs2_init(sc);
1240 
1241 	atw_nar_init(sc);
1242 
1243 	atw_txlmt_init(sc);
1244 
1245 	atw_test1_init(sc);
1246 
1247 	atw_rf_reset(sc);
1248 
1249 	atw_cfp_init(sc);
1250 
1251 	atw_tofs0_init(sc);
1252 
1253 	atw_ifs_init(sc);
1254 
1255 	/* XXX Fall asleep after one second of inactivity.
1256 	 * XXX A frame may only dribble in for 65536us.
1257 	 */
1258 	ATW_WRITE(sc, ATW_RMD,
1259 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1260 
1261 	atw_response_times_init(sc);
1262 
1263 	atw_bbp_io_init(sc);
1264 
1265 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1266 
1267 	if ((error = atw_rf3000_init(sc)) != 0)
1268 		goto out;
1269 
1270 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1271 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1272 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1273 
1274 	/*
1275 	 * Initialize the transmit descriptor ring.
1276 	 */
1277 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1278 	for (i = 0; i < ATW_NTXDESC; i++) {
1279 		sc->sc_txdescs[i].at_ctl = 0;
1280 		/* no transmit chaining */
1281 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1282 		sc->sc_txdescs[i].at_buf2 =
1283 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1284 	}
1285 	/* use ring mode */
1286 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1287 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1288 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1289 	sc->sc_txfree = ATW_NTXDESC;
1290 	sc->sc_txnext = 0;
1291 
1292 	/*
1293 	 * Initialize the transmit job descriptors.
1294 	 */
1295 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1296 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1297 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1298 		txs = &sc->sc_txsoft[i];
1299 		txs->txs_mbuf = NULL;
1300 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1301 	}
1302 
1303 	/*
1304 	 * Initialize the receive descriptor and receive job
1305 	 * descriptor rings.
1306 	 */
1307 	for (i = 0; i < ATW_NRXDESC; i++) {
1308 		rxs = &sc->sc_rxsoft[i];
1309 		if (rxs->rxs_mbuf == NULL) {
1310 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1311 				aprint_error_dev(sc->sc_dev,
1312 				    "unable to allocate or map rx buffer %d, "
1313 				    "error = %d\n", i, error);
1314 				/*
1315 				 * XXX Should attempt to run with fewer receive
1316 				 * XXX buffers instead of just failing.
1317 				 */
1318 				atw_rxdrain(sc);
1319 				goto out;
1320 			}
1321 		} else
1322 			atw_init_rxdesc(sc, i);
1323 	}
1324 	sc->sc_rxptr = 0;
1325 
1326 	/*
1327 	 * Initialize the interrupt mask and enable interrupts.
1328 	 */
1329 	/* normal interrupts */
1330 	sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1331 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1332 
1333 	/* abnormal interrupts */
1334 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1335 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1336 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1337 
1338 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1339 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1340 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1341 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1342 	    ATW_INTR_TRT;
1343 
1344 	sc->sc_linkint_mask &= sc->sc_inten;
1345 	sc->sc_rxint_mask &= sc->sc_inten;
1346 	sc->sc_txint_mask &= sc->sc_inten;
1347 
1348 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1349 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1350 
1351 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1352 	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1353 
1354 	/*
1355 	 * Give the transmit and receive rings to the ADM8211.
1356 	 */
1357 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1358 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1359 
1360 	sc->sc_txthresh = 0;
1361 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1362 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1363 
1364 	/* common 802.11 configuration */
1365 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1366 	switch (ic->ic_opmode) {
1367 	case IEEE80211_M_STA:
1368 		break;
1369 	case IEEE80211_M_AHDEMO: /* XXX */
1370 	case IEEE80211_M_IBSS:
1371 		ic->ic_flags |= IEEE80211_F_IBSSON;
1372 		/*FALLTHROUGH*/
1373 	case IEEE80211_M_HOSTAP: /* XXX */
1374 		break;
1375 	case IEEE80211_M_MONITOR: /* XXX */
1376 		break;
1377 	}
1378 
1379 	switch (ic->ic_opmode) {
1380 	case IEEE80211_M_AHDEMO:
1381 	case IEEE80211_M_HOSTAP:
1382 #ifndef IEEE80211_NO_HOSTAP
1383 		ic->ic_bss->ni_intval = ic->ic_lintval;
1384 		ic->ic_bss->ni_rssi = 0;
1385 		ic->ic_bss->ni_rstamp = 0;
1386 #endif /* !IEEE80211_NO_HOSTAP */
1387 		break;
1388 	default:					/* XXX */
1389 		break;
1390 	}
1391 
1392 	sc->sc_wepctl = 0;
1393 
1394 	atw_write_ssid(sc);
1395 	atw_write_sup_rates(sc);
1396 	atw_write_wep(sc);
1397 
1398 	ic->ic_state = IEEE80211_S_INIT;
1399 
1400 	/*
1401 	 * Set the receive filter.  This will start the transmit and
1402 	 * receive processes.
1403 	 */
1404 	atw_filter_setup(sc);
1405 
1406 	/*
1407 	 * Start the receive process.
1408 	 */
1409 	ATW_WRITE(sc, ATW_RDR, 0x1);
1410 
1411 	/*
1412 	 * Note that the interface is now running.
1413 	 */
1414 	ifp->if_flags |= IFF_RUNNING;
1415 
1416 	/* send no beacons, yet. */
1417 	atw_start_beacon(sc, 0);
1418 
1419 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1420 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1421 	else
1422 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1423  out:
1424 	if (error) {
1425 		ifp->if_flags &= ~IFF_RUNNING;
1426 		sc->sc_tx_timer = 0;
1427 		ifp->if_timer = 0;
1428 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1429 	}
1430 #ifdef ATW_DEBUG
1431 	atw_print_regs(sc, "end of init");
1432 #endif /* ATW_DEBUG */
1433 
1434 	return (error);
1435 }
1436 
1437 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1438  *           0: MAC control of RF3000/Si4126.
1439  *
1440  * Applies power, or selects RF front-end? Sets reset condition.
1441  *
1442  * TBD support non-RFMD BBP, non-SiLabs synth.
1443  */
1444 static void
1445 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1446 {
1447 	if (enable) {
1448 		ATW_WRITE(sc, ATW_SYNRF,
1449 		    ATW_SYNRF_SELRF | ATW_SYNRF_PE1 | ATW_SYNRF_PHYRST);
1450 		DELAY(atw_bbp_io_enable_delay);
1451 	} else {
1452 		ATW_WRITE(sc, ATW_SYNRF, 0);
1453 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1454 	}
1455 }
1456 
1457 static int
1458 atw_tune(struct atw_softc *sc)
1459 {
1460 	int rc;
1461 	u_int chan;
1462 	struct ieee80211com *ic = &sc->sc_ic;
1463 
1464 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1465 	if (chan == IEEE80211_CHAN_ANY)
1466 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1467 
1468 	if (chan == sc->sc_cur_chan)
1469 		return 0;
1470 
1471 	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1472 	    sc->sc_cur_chan, chan));
1473 
1474 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
1475 
1476 	atw_si4126_tune(sc, chan);
1477 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1478 		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1479 		    chan);
1480 
1481 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1482 	DELAY(atw_nar_delay);
1483 	ATW_WRITE(sc, ATW_RDR, 0x1);
1484 
1485 	if (rc == 0) {
1486 		sc->sc_cur_chan = chan;
1487 		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1488 		    htole16(ic->ic_curchan->ic_freq);
1489 		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1490 		    htole16(ic->ic_curchan->ic_flags);
1491 	}
1492 
1493 	return rc;
1494 }
1495 
1496 #ifdef ATW_SYNDEBUG
1497 static void
1498 atw_si4126_print(struct atw_softc *sc)
1499 {
1500 	struct ifnet *ifp = &sc->sc_if;
1501 	u_int addr, val;
1502 
1503 	val = 0;
1504 
1505 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1506 		return;
1507 
1508 	for (addr = 0; addr <= 8; addr++) {
1509 		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1510 		if (atw_si4126_read(sc, addr, &val) == 0) {
1511 			printf("<unknown> (quitting print-out)\n");
1512 			break;
1513 		}
1514 		printf("%05x\n", val);
1515 	}
1516 }
1517 #endif /* ATW_SYNDEBUG */
1518 
1519 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1520  *
1521  * The RF/IF synthesizer produces two reference frequencies for
1522  * the RF2948B transceiver.  The first frequency the RF2948B requires
1523  * is two times the so-called "intermediate frequency" (IF). Since
1524  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1525  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1526  * frequency required by the transceiver is the radio frequency
1527  * (RF). This is a superheterodyne transceiver; for f(chan) the
1528  * center frequency of the channel we are tuning, RF = f(chan) -
1529  * IF.
1530  *
1531  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1532  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1533  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1534  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1535  */
1536 static void
1537 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1538 {
1539 	u_int mhz;
1540 	u_int R;
1541 	uint32_t gpio;
1542 	uint16_t gain;
1543 
1544 #ifdef ATW_SYNDEBUG
1545 	atw_si4126_print(sc);
1546 #endif /* ATW_SYNDEBUG */
1547 
1548 	if (chan == 14)
1549 		mhz = 2484;
1550 	else
1551 		mhz = 2412 + 5 * (chan - 1);
1552 
1553 	/* Tune IF to 748 MHz to suit the IF LO input of the
1554 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1555 	 * because an IF in 526 MHz - 952 MHz is allowed.
1556 	 *
1557 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1558 	 * range of 2-25 MHz. SiLabs tells me that this is not
1559 	 * strictly necessary.
1560 	 */
1561 
1562 	if (atw_xindiv2)
1563 		R = 44;
1564 	else
1565 		R = 88;
1566 
1567 	/* Power-up RF, IF synthesizers. */
1568 	atw_si4126_write(sc, SI4126_POWER,
1569 	    SI4126_POWER_PDIB | SI4126_POWER_PDRB);
1570 
1571 	/* set LPWR, too? */
1572 	atw_si4126_write(sc, SI4126_MAIN,
1573 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1574 
1575 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1576 	 * set KP2 to 1.
1577 	 *
1578 	 * REFDIF This is different from the reference driver, which
1579 	 * always sets SI4126_GAIN to 0.
1580 	 */
1581 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1582 
1583 	atw_si4126_write(sc, SI4126_GAIN, gain);
1584 
1585 	/* XIN = 44 MHz.
1586 	 *
1587 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1588 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1589 	 *
1590 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1591 	 * so that 1496/88 * 44 MHz = 748 MHz.
1592 	 */
1593 	atw_si4126_write(sc, SI4126_IFN, 1496);
1594 
1595 	atw_si4126_write(sc, SI4126_IFR, R);
1596 
1597 #ifndef ATW_REFSLAVE
1598 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1599 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1600 	 * which has no RF1!
1601 	 */
1602 	atw_si4126_write(sc, SI4126_RF1R, R);
1603 
1604 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1605 #endif
1606 
1607 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1608 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1609 	 * Now let's multiply it to mhz. So mhz - IF = N.
1610 	 */
1611 	atw_si4126_write(sc, SI4126_RF2R, R);
1612 
1613 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1614 
1615 	/* wait 100us from power-up for RF, IF to settle */
1616 	DELAY(100);
1617 
1618 	gpio = ATW_READ(sc, ATW_GPIO);
1619 	gpio &= ~(ATW_GPIO_EN_MASK | ATW_GPIO_O_MASK | ATW_GPIO_I_MASK);
1620 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1621 
1622 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1623 		/* Set a Prism RF front-end to a special mode for channel 14?
1624 		 *
1625 		 * Apparently the SMC2635W needs this, although I don't think
1626 		 * it has a Prism RF.
1627 		 */
1628 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1629 	}
1630 	ATW_WRITE(sc, ATW_GPIO, gpio);
1631 
1632 #ifdef ATW_SYNDEBUG
1633 	atw_si4126_print(sc);
1634 #endif /* ATW_SYNDEBUG */
1635 }
1636 
1637 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1638  * diversity.
1639  *
1640  * !!!
1641  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1642  * !!!
1643  */
1644 static int
1645 atw_rf3000_init(struct atw_softc *sc)
1646 {
1647 	int rc = 0;
1648 
1649 	atw_bbp_io_enable(sc, 1);
1650 
1651 	/* CCA is acquisition sensitive */
1652 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1653 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1654 
1655 	if (rc != 0)
1656 		goto out;
1657 
1658 	/* enable diversity */
1659 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1660 
1661 	if (rc != 0)
1662 		goto out;
1663 
1664 	/* sensible setting from a binary-only driver */
1665 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1666 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1667 
1668 	if (rc != 0)
1669 		goto out;
1670 
1671 	/* magic from a binary-only driver */
1672 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1673 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1674 
1675 	if (rc != 0)
1676 		goto out;
1677 
1678 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1679 
1680 	if (rc != 0)
1681 		goto out;
1682 
1683 	/* XXX Reference driver remarks that Abocom sets this to 50.
1684 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1685 	 * in the "reserved" area of register RF3000_OPTIONS1.
1686 	 */
1687 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1688 
1689 	if (rc != 0)
1690 		goto out;
1691 
1692 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1693 
1694 	if (rc != 0)
1695 		goto out;
1696 
1697 out:
1698 	atw_bbp_io_enable(sc, 0);
1699 	return rc;
1700 }
1701 
1702 #ifdef ATW_BBPDEBUG
1703 static void
1704 atw_rf3000_print(struct atw_softc *sc)
1705 {
1706 	struct ifnet *ifp = &sc->sc_if;
1707 	u_int addr, val;
1708 
1709 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1710 		return;
1711 
1712 	for (addr = 0x01; addr <= 0x15; addr++) {
1713 		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1714 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1715 			printf("<unknown> (quitting print-out)\n");
1716 			break;
1717 		}
1718 		printf("%08x\n", val);
1719 	}
1720 }
1721 #endif /* ATW_BBPDEBUG */
1722 
1723 /* Set the power settings on the BBP for channel `chan'. */
1724 static int
1725 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1726 {
1727 	int rc = 0;
1728 	uint32_t reg;
1729 	uint16_t txpower, lpf_cutoff, lna_gs_thresh;
1730 
1731 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1732 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1733 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1734 
1735 	/* odd channels: LSB, even channels: MSB */
1736 	if (chan % 2 == 1) {
1737 		txpower &= 0xFF;
1738 		lpf_cutoff &= 0xFF;
1739 		lna_gs_thresh &= 0xFF;
1740 	} else {
1741 		txpower >>= 8;
1742 		lpf_cutoff >>= 8;
1743 		lna_gs_thresh >>= 8;
1744 	}
1745 
1746 #ifdef ATW_BBPDEBUG
1747 	atw_rf3000_print(sc);
1748 #endif /* ATW_BBPDEBUG */
1749 
1750 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1751 	    "lna_gs_thresh %02x\n",
1752 	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1753 
1754 	atw_bbp_io_enable(sc, 1);
1755 
1756 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1757 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1758 		goto out;
1759 
1760 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1761 		goto out;
1762 
1763 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1764 		goto out;
1765 
1766 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1767 
1768 	if (rc != 0)
1769 		goto out;
1770 
1771 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1772 
1773 	if (rc != 0)
1774 		goto out;
1775 
1776 #ifdef ATW_BBPDEBUG
1777 	atw_rf3000_print(sc);
1778 #endif /* ATW_BBPDEBUG */
1779 
1780 out:
1781 	atw_bbp_io_enable(sc, 0);
1782 
1783 	/* set beacon, rts, atim transmit power */
1784 	reg = ATW_READ(sc, ATW_PLCPHD);
1785 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1786 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1787 	    ATW_PLCPHD_SERVICE_MASK);
1788 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1789 	DELAY(atw_plcphd_delay);
1790 
1791 	return rc;
1792 }
1793 
1794 /* Write a register on the RF3000 baseband processor using the
1795  * registers provided by the ADM8211 for this purpose.
1796  *
1797  * Return 0 on success.
1798  */
1799 static int
1800 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1801 {
1802 	uint32_t reg;
1803 	int i;
1804 
1805 	reg = sc->sc_bbpctl_wr |
1806 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1807 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1808 
1809 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1810 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1811 		DELAY(2 * atw_pseudo_milli);
1812 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1813 			break;
1814 	}
1815 
1816 	if (i < 0) {
1817 		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1818 		return ETIMEDOUT;
1819 	}
1820 	return 0;
1821 }
1822 
1823 /* Read a register on the RF3000 baseband processor using the registers
1824  * the ADM8211 provides for this purpose.
1825  *
1826  * The 7-bit register address is addr.  Record the 8-bit data in the register
1827  * in *val.
1828  *
1829  * Return 0 on success.
1830  *
1831  * XXX This does not seem to work. The ADM8211 must require more or
1832  * different magic to read the chip than to write it. Possibly some
1833  * of the magic I have derived from a binary-only driver concerns
1834  * the "chip address" (see the RF3000 manual).
1835  */
1836 #ifdef ATW_BBPDEBUG
1837 static int
1838 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1839 {
1840 	uint32_t reg;
1841 	int i;
1842 
1843 	for (i = 1000; --i >= 0; ) {
1844 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD | ATW_BBPCTL_WR)
1845 		    == 0)
1846 			break;
1847 		DELAY(100);
1848 	}
1849 
1850 	if (i < 0) {
1851 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1852 		    device_xname(sc->sc_dev));
1853 		return ETIMEDOUT;
1854 	}
1855 
1856 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1857 
1858 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1859 
1860 	for (i = 1000; --i >= 0; ) {
1861 		DELAY(100);
1862 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1863 			break;
1864 	}
1865 
1866 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1867 
1868 	if (i < 0) {
1869 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1870 		    device_xname(sc->sc_dev), reg);
1871 		return ETIMEDOUT;
1872 	}
1873 	if (val != NULL)
1874 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1875 	return 0;
1876 }
1877 #endif /* ATW_BBPDEBUG */
1878 
1879 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1880  * provided by the ADM8211 for that purpose.
1881  *
1882  * val is 18 bits of data, and val is the 4-bit address of the register.
1883  *
1884  * Return 0 on success.
1885  */
1886 static void
1887 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1888 {
1889 	uint32_t bits, mask, reg;
1890 	const int nbits = 22;
1891 
1892 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1893 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1894 
1895 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1896 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1897 
1898 	reg = ATW_SYNRF_SELSYN;
1899 	/* reference driver: reset Si4126 serial bus to initial
1900 	 * conditions?
1901 	 */
1902 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1903 	ATW_WRITE(sc, ATW_SYNRF, reg);
1904 
1905 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1906 		if ((bits & mask) != 0)
1907 			reg |= ATW_SYNRF_SYNDATA;
1908 		else
1909 			reg &= ~ATW_SYNRF_SYNDATA;
1910 		ATW_WRITE(sc, ATW_SYNRF, reg);
1911 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1912 		ATW_WRITE(sc, ATW_SYNRF, reg);
1913 	}
1914 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1915 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1916 }
1917 
1918 /* Read 18-bit data from the 4-bit address addr in Si4126
1919  * RF synthesizer and write the data to *val. Return 0 on success.
1920  *
1921  * XXX This does not seem to work. The ADM8211 must require more or
1922  * different magic to read the chip than to write it.
1923  */
1924 #ifdef ATW_SYNDEBUG
1925 static int
1926 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1927 {
1928 	uint32_t reg;
1929 	int i;
1930 
1931 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1932 
1933 	for (i = 1000; --i >= 0; ) {
1934 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD | ATW_SYNCTL_WR)
1935 		    == 0)
1936 			break;
1937 		DELAY(100);
1938 	}
1939 
1940 	if (i < 0) {
1941 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1942 		    device_xname(sc->sc_dev));
1943 		return ETIMEDOUT;
1944 	}
1945 
1946 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1947 
1948 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1949 
1950 	for (i = 1000; --i >= 0; ) {
1951 		DELAY(100);
1952 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1953 			break;
1954 	}
1955 
1956 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1957 
1958 	if (i < 0) {
1959 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1960 		    device_xname(sc->sc_dev), reg);
1961 		return ETIMEDOUT;
1962 	}
1963 	if (val != NULL)
1964 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1965 				       ATW_SYNCTL_DATA_MASK);
1966 	return 0;
1967 }
1968 #endif /* ATW_SYNDEBUG */
1969 
1970 /* XXX is the endianness correct? test. */
1971 #define	atw_calchash(addr) \
1972 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1973 
1974 /*
1975  * atw_filter_setup:
1976  *
1977  *	Set the ADM8211's receive filter.
1978  */
1979 static void
1980 atw_filter_setup(struct atw_softc *sc)
1981 {
1982 	struct ieee80211com *ic = &sc->sc_ic;
1983 	struct ethercom *ec = &sc->sc_ec;
1984 	struct ifnet *ifp = &sc->sc_if;
1985 	int hash;
1986 	uint32_t hashes[2];
1987 	struct ether_multi *enm;
1988 	struct ether_multistep step;
1989 
1990 	/* According to comments in tlp_al981_filter_setup
1991 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1992 	 * multicast filter to be set while it is running.  Hopefully
1993 	 * the ADM8211 is not the same!
1994 	 */
1995 	if ((ifp->if_flags & IFF_RUNNING) != 0)
1996 		atw_idle(sc, ATW_NAR_SR);
1997 
1998 	sc->sc_opmode &= ~(ATW_NAR_PB | ATW_NAR_PR | ATW_NAR_MM);
1999 	ifp->if_flags &= ~IFF_ALLMULTI;
2000 
2001 	/* XXX in scan mode, do not filter packets.  Maybe this is
2002 	 * unnecessary.
2003 	 */
2004 	if (ic->ic_state == IEEE80211_S_SCAN ||
2005 	    (ifp->if_flags & IFF_PROMISC) != 0) {
2006 		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2007 		goto allmulti;
2008 	}
2009 
2010 	hashes[0] = hashes[1] = 0x0;
2011 
2012 	/*
2013 	 * Program the 64-bit multicast hash filter.
2014 	 */
2015 	ETHER_LOCK(ec);
2016 	ETHER_FIRST_MULTI(step, ec, enm);
2017 	while (enm != NULL) {
2018 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2019 		    ETHER_ADDR_LEN) != 0) {
2020 			ETHER_UNLOCK(ec);
2021 			goto allmulti;
2022 		}
2023 
2024 		hash = atw_calchash(enm->enm_addrlo);
2025 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2026 		ETHER_NEXT_MULTI(step, enm);
2027 		sc->sc_opmode |= ATW_NAR_MM;
2028 	}
2029 	ETHER_UNLOCK(ec);
2030 	ifp->if_flags &= ~IFF_ALLMULTI;
2031 	goto setit;
2032 
2033 allmulti:
2034 	sc->sc_opmode |= ATW_NAR_MM;
2035 	ifp->if_flags |= IFF_ALLMULTI;
2036 	hashes[0] = hashes[1] = 0xffffffff;
2037 
2038 setit:
2039 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2040 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2041 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2042 	DELAY(atw_nar_delay);
2043 	ATW_WRITE(sc, ATW_RDR, 0x1);
2044 
2045 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2046 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2047 }
2048 
2049 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2050  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2051  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2052  * no beacon with the preferred BSSID and SSID in the number of
2053  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2054  */
2055 static void
2056 atw_write_bssid(struct atw_softc *sc)
2057 {
2058 	struct ieee80211com *ic = &sc->sc_ic;
2059 	uint8_t *bssid;
2060 
2061 	bssid = ic->ic_bss->ni_bssid;
2062 
2063 	ATW_WRITE(sc, ATW_BSSID0,
2064 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2065 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2066 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2067 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2068 
2069 	ATW_WRITE(sc, ATW_ABDA1,
2070 	    (ATW_READ(sc, ATW_ABDA1) &
2071 	    ~(ATW_ABDA1_BSSIDB4_MASK | ATW_ABDA1_BSSIDB5_MASK)) |
2072 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2073 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2074 
2075 	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2076 	    ether_sprintf(sc->sc_bssid)));
2077 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2078 
2079 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2080 }
2081 
2082 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2083  * 16-bit word.
2084  */
2085 static void
2086 atw_write_sram(struct atw_softc *sc, u_int ofs, uint8_t *buf, u_int buflen)
2087 {
2088 	u_int i;
2089 	uint8_t *ptr;
2090 
2091 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2092 
2093 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2094 
2095 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2096 
2097 	ptr = &sc->sc_sram[ofs];
2098 
2099 	for (i = 0; i < buflen; i += 2) {
2100 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2101 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2102 		DELAY(atw_writewep_delay);
2103 
2104 		ATW_WRITE(sc, ATW_WESK,
2105 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2106 		DELAY(atw_writewep_delay);
2107 	}
2108 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2109 
2110 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2111 		int n_octets = 0;
2112 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2113 		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2114 		for (i = 0; i < buflen; i++) {
2115 			printf(" %02x", ptr[i]);
2116 			if (++n_octets % 24 == 0)
2117 				printf("\n");
2118 		}
2119 		if (n_octets % 24 != 0)
2120 			printf("\n");
2121 	}
2122 }
2123 
2124 static int
2125 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2126 {
2127 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2128 	u_int keyix = k->wk_keyix;
2129 
2130 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2131 
2132 	if (keyix >= IEEE80211_WEP_NKID)
2133 		return 0;
2134 	if (k->wk_keylen != 0)
2135 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2136 
2137 	return 1;
2138 }
2139 
2140 static int
2141 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2142 	const uint8_t mac[IEEE80211_ADDR_LEN])
2143 {
2144 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2145 
2146 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2147 
2148 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2149 		return 0;
2150 
2151 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2152 
2153 	return 1;
2154 }
2155 
2156 static void
2157 atw_key_update_begin(struct ieee80211com *ic)
2158 {
2159 #ifdef ATW_DEBUG
2160 	struct ifnet *ifp = ic->ic_ifp;
2161 	struct atw_softc *sc = ifp->if_softc;
2162 #endif
2163 
2164 	DPRINTF(sc, ("%s:\n", __func__));
2165 }
2166 
2167 static void
2168 atw_key_update_end(struct ieee80211com *ic)
2169 {
2170 	struct ifnet *ifp = ic->ic_ifp;
2171 	struct atw_softc *sc = ifp->if_softc;
2172 
2173 	DPRINTF(sc, ("%s:\n", __func__));
2174 
2175 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2176 		return;
2177 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2178 		return;
2179 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2180 	atw_write_wep(sc);
2181 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2182 	DELAY(atw_nar_delay);
2183 	ATW_WRITE(sc, ATW_RDR, 0x1);
2184 }
2185 
2186 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2187 static void
2188 atw_write_wep(struct atw_softc *sc)
2189 {
2190 #if 0
2191 	struct ieee80211com *ic = &sc->sc_ic;
2192 	uint32_t reg;
2193 	int i;
2194 #endif
2195 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2196 	uint8_t buf[IEEE80211_WEP_NKID]
2197 		    [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2198 
2199 	sc->sc_wepctl = 0;
2200 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2201 
2202 	memset(&buf[0][0], 0, sizeof(buf));
2203 
2204 #if 0
2205 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2206 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2207 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2208 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2209 			buf[i][1] = ATW_WEP_ENABLED;
2210 		} else {
2211 			buf[i][1] = 0;
2212 			continue;
2213 		}
2214 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2215 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2216 		    ic->ic_nw_keys[i].wk_keylen - 1);
2217 	}
2218 
2219 	reg = ATW_READ(sc, ATW_MACTEST);
2220 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2221 	reg &= ~ATW_MACTEST_KEYID_MASK;
2222 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2223 	ATW_WRITE(sc, ATW_MACTEST, reg);
2224 
2225 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2226 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2227 
2228 	switch (sc->sc_rev) {
2229 	case ATW_REVISION_AB:
2230 	case ATW_REVISION_AF:
2231 		/* Bypass WEP on Rx. */
2232 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2233 		break;
2234 	default:
2235 		break;
2236 	}
2237 #endif
2238 
2239 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (uint8_t*)&buf[0][0],
2240 	    sizeof(buf));
2241 
2242 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2243 }
2244 
2245 static void
2246 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2247     struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
2248 {
2249 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2250 
2251 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2252 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2253 		return;
2254 
2255 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2256 
2257 	switch (subtype) {
2258 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2259 	case IEEE80211_FC0_SUBTYPE_BEACON:
2260 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2261 		    ic->ic_state == IEEE80211_S_RUN) {
2262 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2263 				(void)ieee80211_ibss_merge(ni);
2264 		}
2265 		break;
2266 	default:
2267 		break;
2268 	}
2269 	return;
2270 }
2271 
2272 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2273  * In ad hoc mode, the SSID is written to the beacons sent by the
2274  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2275  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2276  * indications.
2277  */
2278 static void
2279 atw_write_ssid(struct atw_softc *sc)
2280 {
2281 	struct ieee80211com *ic = &sc->sc_ic;
2282 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2283 	 * it only expects the element length, not its ID.
2284 	 */
2285 	uint8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2286 
2287 	memset(buf, 0, sizeof(buf));
2288 	buf[0] = ic->ic_bss->ni_esslen;
2289 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2290 
2291 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2292 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2293 }
2294 
2295 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2296  * In ad hoc mode, the supported rates are written to beacons sent by the
2297  * ADM8211.
2298  */
2299 static void
2300 atw_write_sup_rates(struct atw_softc *sc)
2301 {
2302 	struct ieee80211com *ic = &sc->sc_ic;
2303 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2304 	 * supported rates
2305 	 */
2306 	uint8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2307 
2308 	memset(buf, 0, sizeof(buf));
2309 
2310 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2311 
2312 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2313 	    ic->ic_bss->ni_rates.rs_nrates);
2314 
2315 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2316 }
2317 
2318 /* Start/stop sending beacons. */
2319 void
2320 atw_start_beacon(struct atw_softc *sc, int start)
2321 {
2322 	struct ieee80211com *ic = &sc->sc_ic;
2323 	uint16_t chan;
2324 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2325 	size_t len;
2326 
2327 	if (!device_is_active(sc->sc_dev))
2328 		return;
2329 
2330 	/* start beacons */
2331 	len = sizeof(struct ieee80211_frame) +
2332 	    8 /* timestamp */ + 2 /* beacon interval */ +
2333 	    2 /* capability info */ +
2334 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2335 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2336 	    3 /* DS parameters */ +
2337 	    IEEE80211_CRC_LEN;
2338 
2339 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2340 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2341 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2342 
2343 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2344 	ATW_WRITE(sc, ATW_CAP1, cap1);
2345 
2346 	if (!start)
2347 		return;
2348 
2349 	/* TBD use ni_capinfo */
2350 
2351 	capinfo = 0;
2352 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2353 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2354 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2355 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2356 
2357 	switch (ic->ic_opmode) {
2358 	case IEEE80211_M_IBSS:
2359 		len += 4; /* IBSS parameters */
2360 		capinfo |= IEEE80211_CAPINFO_IBSS;
2361 		break;
2362 	case IEEE80211_M_HOSTAP:
2363 		/* XXX 6-byte minimum TIM */
2364 		len += atw_beacon_len_adjust;
2365 		capinfo |= IEEE80211_CAPINFO_ESS;
2366 		break;
2367 	default:
2368 		return;
2369 	}
2370 
2371 	/* set listen interval
2372 	 * XXX do software units agree w/ hardware?
2373 	 */
2374 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2375 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2376 
2377 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2378 
2379 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2380 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2381 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2382 
2383 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2384 	ATW_WRITE(sc, ATW_BPLI, bpli);
2385 	ATW_WRITE(sc, ATW_CAP0, cap0);
2386 	ATW_WRITE(sc, ATW_CAP1, cap1);
2387 
2388 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2389 	    device_xname(sc->sc_dev), bcnt));
2390 
2391 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2392 	    device_xname(sc->sc_dev), cap1));
2393 }
2394 
2395 /* Return the 32 lsb of the last TSFT divisible by ival. */
2396 static inline uint32_t
2397 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2398 {
2399 	/* Following the reference driver's lead, I compute
2400 	 *
2401 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2402 	 *
2403 	 * without using 64-bit arithmetic, using the following
2404 	 * relationship:
2405 	 *
2406 	 *     (0x100000000 * H + L) % m
2407 	 *   = ((0x100000000 % m) * H + L) % m
2408 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2409 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2410 	 *   = ((0xffffffff % m + 1) * H + L) % m
2411 	 */
2412 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2413 }
2414 
2415 static uint64_t
2416 atw_get_tsft(struct atw_softc *sc)
2417 {
2418 	int i;
2419 	uint32_t tsfth, tsftl;
2420 	for (i = 0; i < 2; i++) {
2421 		tsfth = ATW_READ(sc, ATW_TSFTH);
2422 		tsftl = ATW_READ(sc, ATW_TSFTL);
2423 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2424 			break;
2425 	}
2426 	return ((uint64_t)tsfth << 32) | tsftl;
2427 }
2428 
2429 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2430  * the ieee80211com.
2431  *
2432  * Predict the next target beacon transmission time (TBTT) and
2433  * write it to the ADM8211.
2434  */
2435 static void
2436 atw_predict_beacon(struct atw_softc *sc)
2437 {
2438 #define TBTTOFS 20 /* TU */
2439 
2440 	struct ieee80211com *ic = &sc->sc_ic;
2441 	uint64_t tsft;
2442 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2443 	union {
2444 		uint64_t	word;
2445 		uint8_t		tstamp[8];
2446 	} u;
2447 
2448 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2449 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2450 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2451 		tsft = atw_get_tsft(sc);
2452 		u.word = htole64(tsft);
2453 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2454 		    sizeof(ic->ic_bss->ni_tstamp));
2455 	} else
2456 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2457 
2458 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2459 
2460 	tsftl = tsft & 0xFFFFFFFF;
2461 	tsfth = tsft >> 32;
2462 
2463 	/* We sent/received the last beacon `past' microseconds
2464 	 * after the interval divided the TSF timer.
2465 	 */
2466 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2467 
2468 	/* Skip ten beacons so that the TBTT cannot pass before
2469 	 * we've programmed it.  Ten is an arbitrary number.
2470 	 */
2471 	tbtt = past_even + ival * 10;
2472 
2473 	ATW_WRITE(sc, ATW_TOFS1,
2474 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2475 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2476 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2477 		ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2478 #undef TBTTOFS
2479 }
2480 
2481 static void
2482 atw_next_scan(void *arg)
2483 {
2484 	struct atw_softc *sc = arg;
2485 	struct ieee80211com *ic = &sc->sc_ic;
2486 	int s;
2487 
2488 	/* don't call atw_start w/o network interrupts blocked */
2489 	s = splnet();
2490 	if (ic->ic_state == IEEE80211_S_SCAN)
2491 		ieee80211_next_scan(ic);
2492 	splx(s);
2493 }
2494 
2495 /* Synchronize the hardware state with the software state. */
2496 static int
2497 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2498 {
2499 	struct ifnet *ifp = ic->ic_ifp;
2500 	struct atw_softc *sc = ifp->if_softc;
2501 	int error = 0;
2502 
2503 	callout_stop(&sc->sc_scan_ch);
2504 
2505 	switch (nstate) {
2506 	case IEEE80211_S_AUTH:
2507 	case IEEE80211_S_ASSOC:
2508 		atw_write_bssid(sc);
2509 		error = atw_tune(sc);
2510 		break;
2511 	case IEEE80211_S_INIT:
2512 		callout_stop(&sc->sc_scan_ch);
2513 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2514 		atw_start_beacon(sc, 0);
2515 		break;
2516 	case IEEE80211_S_SCAN:
2517 		error = atw_tune(sc);
2518 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2519 		    atw_next_scan, sc);
2520 		break;
2521 	case IEEE80211_S_RUN:
2522 		error = atw_tune(sc);
2523 		atw_write_bssid(sc);
2524 		atw_write_ssid(sc);
2525 		atw_write_sup_rates(sc);
2526 
2527 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2528 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2529 			break;
2530 
2531 		/* set listen interval
2532 		 * XXX do software units agree w/ hardware?
2533 		 */
2534 		ATW_WRITE(sc, ATW_BPLI,
2535 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2536 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2537 			   ATW_BPLI_LI_MASK));
2538 
2539 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2540 		    ATW_READ(sc, ATW_BPLI)));
2541 
2542 		atw_predict_beacon(sc);
2543 
2544 		switch (ic->ic_opmode) {
2545 		case IEEE80211_M_AHDEMO:
2546 		case IEEE80211_M_HOSTAP:
2547 		case IEEE80211_M_IBSS:
2548 			atw_start_beacon(sc, 1);
2549 			break;
2550 		case IEEE80211_M_MONITOR:
2551 		case IEEE80211_M_STA:
2552 			break;
2553 		}
2554 
2555 		break;
2556 	}
2557 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2558 }
2559 
2560 /*
2561  * atw_add_rxbuf:
2562  *
2563  *	Add a receive buffer to the indicated descriptor.
2564  */
2565 int
2566 atw_add_rxbuf(struct atw_softc *sc, int idx)
2567 {
2568 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2569 	struct mbuf *m;
2570 	int error;
2571 
2572 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2573 	if (m == NULL)
2574 		return (ENOBUFS);
2575 
2576 	MCLGET(m, M_DONTWAIT);
2577 	if ((m->m_flags & M_EXT) == 0) {
2578 		m_freem(m);
2579 		return (ENOBUFS);
2580 	}
2581 
2582 	if (rxs->rxs_mbuf != NULL)
2583 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2584 
2585 	rxs->rxs_mbuf = m;
2586 
2587 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2588 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2589 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2590 	if (error) {
2591 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2592 		    idx, error);
2593 		panic("atw_add_rxbuf");	/* XXX */
2594 	}
2595 
2596 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2597 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2598 
2599 	atw_init_rxdesc(sc, idx);
2600 
2601 	return (0);
2602 }
2603 
2604 /*
2605  * Release any queued transmit buffers.
2606  */
2607 void
2608 atw_txdrain(struct atw_softc *sc)
2609 {
2610 	struct atw_txsoft *txs;
2611 
2612 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2613 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2614 		if (txs->txs_mbuf != NULL) {
2615 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2616 			m_freem(txs->txs_mbuf);
2617 			txs->txs_mbuf = NULL;
2618 		}
2619 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2620 		sc->sc_txfree += txs->txs_ndescs;
2621 	}
2622 
2623 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2624 		!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2625 		  sc->sc_txfree != ATW_NTXDESC));
2626 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2627 	sc->sc_tx_timer = 0;
2628 }
2629 
2630 /*
2631  * atw_stop:		[ ifnet interface function ]
2632  *
2633  *	Stop transmission on the interface.
2634  */
2635 void
2636 atw_stop(struct ifnet *ifp, int disable)
2637 {
2638 	struct atw_softc *sc = ifp->if_softc;
2639 	struct ieee80211com *ic = &sc->sc_ic;
2640 
2641 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2642 
2643 	if (device_is_active(sc->sc_dev)) {
2644 		/* Disable interrupts. */
2645 		ATW_WRITE(sc, ATW_IER, 0);
2646 
2647 		/* Stop the transmit and receive processes. */
2648 		ATW_WRITE(sc, ATW_NAR, 0);
2649 		DELAY(atw_nar_delay);
2650 		ATW_WRITE(sc, ATW_TDBD, 0);
2651 		ATW_WRITE(sc, ATW_TDBP, 0);
2652 		ATW_WRITE(sc, ATW_RDB, 0);
2653 	}
2654 
2655 	sc->sc_opmode = 0;
2656 
2657 	atw_txdrain(sc);
2658 
2659 	/*
2660 	 * Mark the interface down and cancel the watchdog timer.
2661 	 */
2662 	ifp->if_flags &= ~IFF_RUNNING;
2663 	ifp->if_timer = 0;
2664 
2665 	if (disable)
2666 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2667 }
2668 
2669 /*
2670  * atw_rxdrain:
2671  *
2672  *	Drain the receive queue.
2673  */
2674 void
2675 atw_rxdrain(struct atw_softc *sc)
2676 {
2677 	struct atw_rxsoft *rxs;
2678 	int i;
2679 
2680 	for (i = 0; i < ATW_NRXDESC; i++) {
2681 		rxs = &sc->sc_rxsoft[i];
2682 		if (rxs->rxs_mbuf == NULL)
2683 			continue;
2684 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2685 		m_freem(rxs->rxs_mbuf);
2686 		rxs->rxs_mbuf = NULL;
2687 	}
2688 }
2689 
2690 /*
2691  * atw_detach:
2692  *
2693  *	Detach an ADM8211 interface.
2694  */
2695 int
2696 atw_detach(struct atw_softc *sc)
2697 {
2698 	struct ifnet *ifp = &sc->sc_if;
2699 	struct atw_rxsoft *rxs;
2700 	struct atw_txsoft *txs;
2701 	int i;
2702 
2703 	/*
2704 	 * Succeed now if there isn't any work to do.
2705 	 */
2706 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2707 		return (0);
2708 
2709 	pmf_device_deregister(sc->sc_dev);
2710 
2711 	callout_stop(&sc->sc_scan_ch);
2712 
2713 	ieee80211_ifdetach(&sc->sc_ic);
2714 	if_detach(ifp);
2715 
2716 	for (i = 0; i < ATW_NRXDESC; i++) {
2717 		rxs = &sc->sc_rxsoft[i];
2718 		if (rxs->rxs_mbuf != NULL) {
2719 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2720 			m_freem(rxs->rxs_mbuf);
2721 			rxs->rxs_mbuf = NULL;
2722 		}
2723 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2724 	}
2725 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2726 		txs = &sc->sc_txsoft[i];
2727 		if (txs->txs_mbuf != NULL) {
2728 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2729 			m_freem(txs->txs_mbuf);
2730 			txs->txs_mbuf = NULL;
2731 		}
2732 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2733 	}
2734 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2735 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2736 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2737 	    sizeof(struct atw_control_data));
2738 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2739 
2740 	if (sc->sc_srom)
2741 		free(sc->sc_srom, M_DEVBUF);
2742 
2743 	atw_evcnt_detach(sc);
2744 
2745 	if (sc->sc_soft_ih != NULL) {
2746 		softint_disestablish(sc->sc_soft_ih);
2747 		sc->sc_soft_ih = NULL;
2748 	}
2749 
2750 	return (0);
2751 }
2752 
2753 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2754 bool
2755 atw_shutdown(device_t self, int flags)
2756 {
2757 	struct atw_softc *sc = device_private(self);
2758 
2759 	atw_stop(&sc->sc_if, 1);
2760 	return true;
2761 }
2762 
2763 #if 0
2764 static void
2765 atw_workaround1(struct atw_softc *sc)
2766 {
2767 	uint32_t test1;
2768 
2769 	test1 = ATW_READ(sc, ATW_TEST1);
2770 
2771 	sc->sc_misc_ev.ev_count++;
2772 
2773 	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2774 		sc->sc_rxpkt1in_ev.ev_count++;
2775 		return;
2776 	}
2777 	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2778 	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2779 		sc->sc_rxamatch_ev.ev_count++;
2780 		return;
2781 	}
2782 	sc->sc_workaround1_ev.ev_count++;
2783 	(void)atw_init(&sc->sc_if);
2784 }
2785 #endif
2786 
2787 int
2788 atw_intr(void *arg)
2789 {
2790 	struct atw_softc *sc = arg;
2791 	struct ifnet *ifp = &sc->sc_if;
2792 	uint32_t status;
2793 
2794 #ifdef DEBUG
2795 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2796 		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2797 #endif
2798 
2799 	/*
2800 	 * If the interface isn't running, the interrupt couldn't
2801 	 * possibly have come from us.
2802 	 */
2803 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2804 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2805 		return (0);
2806 
2807 	status = ATW_READ(sc, ATW_STSR);
2808 	if (status == 0)
2809 		return 0;
2810 
2811 	if ((status & sc->sc_inten) == 0) {
2812 		ATW_WRITE(sc, ATW_STSR, status);
2813 		return 0;
2814 	}
2815 
2816 	/* Disable interrupts */
2817 	ATW_WRITE(sc, ATW_IER, 0);
2818 
2819 	softint_schedule(sc->sc_soft_ih);
2820 	return 1;
2821 }
2822 
2823 void
2824 atw_softintr(void *arg)
2825 {
2826 	struct atw_softc *sc = arg;
2827 	struct ifnet *ifp = &sc->sc_if;
2828 	uint32_t status, rxstatus, txstatus, linkstatus;
2829 	int txthresh, s;
2830 
2831 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2832 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2833 		return;
2834 
2835 	for (;;) {
2836 		status = ATW_READ(sc, ATW_STSR);
2837 
2838 		if (status)
2839 			ATW_WRITE(sc, ATW_STSR, status);
2840 
2841 #ifdef ATW_DEBUG
2842 #define PRINTINTR(flag) do { \
2843 	if ((status & flag) != 0) { \
2844 		printf("%s" #flag, delim); \
2845 		delim = ","; \
2846 	} \
2847 } while (0)
2848 
2849 		if (atw_debug > 1 && status) {
2850 			const char *delim = "<";
2851 
2852 			printf("%s: reg[STSR] = %x",
2853 			    device_xname(sc->sc_dev), status);
2854 
2855 			PRINTINTR(ATW_INTR_FBE);
2856 			PRINTINTR(ATW_INTR_LINKOFF);
2857 			PRINTINTR(ATW_INTR_LINKON);
2858 			PRINTINTR(ATW_INTR_RCI);
2859 			PRINTINTR(ATW_INTR_RDU);
2860 			PRINTINTR(ATW_INTR_REIS);
2861 			PRINTINTR(ATW_INTR_RPS);
2862 			PRINTINTR(ATW_INTR_TCI);
2863 			PRINTINTR(ATW_INTR_TDU);
2864 			PRINTINTR(ATW_INTR_TLT);
2865 			PRINTINTR(ATW_INTR_TPS);
2866 			PRINTINTR(ATW_INTR_TRT);
2867 			PRINTINTR(ATW_INTR_TUF);
2868 			PRINTINTR(ATW_INTR_BCNTC);
2869 			PRINTINTR(ATW_INTR_ATIME);
2870 			PRINTINTR(ATW_INTR_TBTT);
2871 			PRINTINTR(ATW_INTR_TSCZ);
2872 			PRINTINTR(ATW_INTR_TSFTF);
2873 			printf(">\n");
2874 		}
2875 #undef PRINTINTR
2876 #endif /* ATW_DEBUG */
2877 
2878 		if ((status & sc->sc_inten) == 0)
2879 			break;
2880 
2881 		rxstatus = status & sc->sc_rxint_mask;
2882 		txstatus = status & sc->sc_txint_mask;
2883 		linkstatus = status & sc->sc_linkint_mask;
2884 
2885 		if (linkstatus) {
2886 			atw_linkintr(sc, linkstatus);
2887 		}
2888 
2889 		if (rxstatus) {
2890 			/* Grab any new packets. */
2891 			atw_rxintr(sc);
2892 
2893 			if (rxstatus & ATW_INTR_RDU) {
2894 				printf("%s: receive ring overrun\n",
2895 				    device_xname(sc->sc_dev));
2896 				/* Get the receive process going again. */
2897 				ATW_WRITE(sc, ATW_RDR, 0x1);
2898 			}
2899 		}
2900 
2901 		if (txstatus) {
2902 			/* Sweep up transmit descriptors. */
2903 			atw_txintr(sc, txstatus);
2904 
2905 			if (txstatus & ATW_INTR_TLT) {
2906 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2907 				    device_xname(sc->sc_dev)));
2908 				(void)atw_init(&sc->sc_if);
2909 			}
2910 
2911 			if (txstatus & ATW_INTR_TRT) {
2912 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2913 				    device_xname(sc->sc_dev)));
2914 			}
2915 
2916 			/* If Tx under-run, increase our transmit threshold
2917 			 * if another is available.
2918 			 */
2919 			txthresh = sc->sc_txthresh + 1;
2920 			if ((txstatus & ATW_INTR_TUF) &&
2921 			    sc->sc_txth[txthresh].txth_name != NULL) {
2922 				/* Idle the transmit process. */
2923 				atw_idle(sc, ATW_NAR_ST);
2924 
2925 				sc->sc_txthresh = txthresh;
2926 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2927 				sc->sc_opmode |=
2928 				    sc->sc_txth[txthresh].txth_opmode;
2929 				printf("%s: transmit underrun; new "
2930 				    "threshold: %s\n", device_xname(sc->sc_dev),
2931 				    sc->sc_txth[txthresh].txth_name);
2932 
2933 				/* Set the new threshold and restart
2934 				 * the transmit process.
2935 				 */
2936 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2937 				DELAY(atw_nar_delay);
2938 				ATW_WRITE(sc, ATW_TDR, 0x1);
2939 				/* XXX Log every Nth underrun from
2940 				 * XXX now on?
2941 				 */
2942 			}
2943 		}
2944 
2945 		if (status & (ATW_INTR_TPS | ATW_INTR_RPS)) {
2946 			if (status & ATW_INTR_TPS)
2947 				printf("%s: transmit process stopped\n",
2948 				    device_xname(sc->sc_dev));
2949 			if (status & ATW_INTR_RPS)
2950 				printf("%s: receive process stopped\n",
2951 				    device_xname(sc->sc_dev));
2952 			s = splnet();
2953 			(void)atw_init(ifp);
2954 			splx(s);
2955 			break;
2956 		}
2957 
2958 		if (status & ATW_INTR_FBE) {
2959 			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2960 			s = splnet();
2961 			(void)atw_init(ifp);
2962 			splx(s);
2963 			break;
2964 		}
2965 
2966 		/*
2967 		 * Not handled:
2968 		 *
2969 		 *	Transmit buffer unavailable -- normal
2970 		 *	condition, nothing to do, really.
2971 		 *
2972 		 *	Early receive interrupt -- not available on
2973 		 *	all chips, we just use RI.  We also only
2974 		 *	use single-segment receive DMA, so this
2975 		 *	is mostly useless.
2976 		 *
2977 		 *	TBD others
2978 		 */
2979 	}
2980 
2981 	/* Try to get more packets going. */
2982 	s = splnet();
2983 	atw_start(ifp);
2984 	splx(s);
2985 
2986 	/* Enable interrupts */
2987 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2988 }
2989 
2990 /*
2991  * atw_idle:
2992  *
2993  *	Cause the transmit and/or receive processes to go idle.
2994  *
2995  *	XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2996  *	process in STSR if I clear SR or ST after the process has already
2997  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2998  *	do not seem to be too reliable. Perhaps I have the sense of the
2999  *	Rx bits switched with the Tx bits?
3000  */
3001 void
3002 atw_idle(struct atw_softc *sc, uint32_t bits)
3003 {
3004 	uint32_t ackmask = 0, opmode, stsr, test0;
3005 	int i, s;
3006 
3007 	s = splnet();
3008 
3009 	opmode = sc->sc_opmode & ~bits;
3010 
3011 	if (bits & ATW_NAR_SR)
3012 		ackmask |= ATW_INTR_RPS;
3013 
3014 	if (bits & ATW_NAR_ST) {
3015 		ackmask |= ATW_INTR_TPS;
3016 		/* set ATW_NAR_HF to flush TX FIFO. */
3017 		opmode |= ATW_NAR_HF;
3018 	}
3019 
3020 	ATW_WRITE(sc, ATW_NAR, opmode);
3021 	DELAY(atw_nar_delay);
3022 
3023 	for (i = 0; i < 1000; i++) {
3024 		stsr = ATW_READ(sc, ATW_STSR);
3025 		if ((stsr & ackmask) == ackmask)
3026 			break;
3027 		DELAY(10);
3028 	}
3029 
3030 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3031 
3032 	if ((stsr & ackmask) == ackmask)
3033 		goto out;
3034 
3035 	test0 = ATW_READ(sc, ATW_TEST0);
3036 
3037 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3038 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3039 		printf("%s: transmit process not idle [%s]\n",
3040 		    device_xname(sc->sc_dev),
3041 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3042 		printf("%s: bits %08x test0 %08x stsr %08x\n",
3043 		    device_xname(sc->sc_dev), bits, test0, stsr);
3044 	}
3045 
3046 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3047 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3048 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3049 		    device_xname(sc->sc_dev),
3050 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3051 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3052 		    device_xname(sc->sc_dev), bits, test0, stsr));
3053 	}
3054 out:
3055 	if ((bits & ATW_NAR_ST) != 0)
3056 		atw_txdrain(sc);
3057 	splx(s);
3058 	return;
3059 }
3060 
3061 /*
3062  * atw_linkintr:
3063  *
3064  *	Helper; handle link-status interrupts.
3065  */
3066 void
3067 atw_linkintr(struct atw_softc *sc, uint32_t linkstatus)
3068 {
3069 	struct ieee80211com *ic = &sc->sc_ic;
3070 
3071 	if (ic->ic_state != IEEE80211_S_RUN)
3072 		return;
3073 
3074 	if (linkstatus & ATW_INTR_LINKON) {
3075 		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3076 		sc->sc_rescan_timer = 0;
3077 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3078 		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3079 		if (ic->ic_opmode != IEEE80211_M_STA)
3080 			return;
3081 		sc->sc_rescan_timer = 3;
3082 		sc->sc_if.if_timer = 1;
3083 	}
3084 }
3085 
3086 #if 0
3087 static inline int
3088 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3089 {
3090 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3091 		return 0;
3092 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3093 		return 0;
3094 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3095 }
3096 #endif
3097 
3098 /*
3099  * atw_rxintr:
3100  *
3101  *	Helper; handle receive interrupts.
3102  */
3103 void
3104 atw_rxintr(struct atw_softc *sc)
3105 {
3106 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3107 	struct ieee80211com *ic = &sc->sc_ic;
3108 	struct ieee80211_node *ni;
3109 	struct ieee80211_frame_min *wh;
3110 	struct ifnet *ifp = &sc->sc_if;
3111 	struct atw_rxsoft *rxs;
3112 	struct mbuf *m;
3113 	uint32_t rxstat;
3114 	int i, s, len, rate, rate0;
3115 	uint32_t rssi, ctlrssi;
3116 
3117 	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3118 		rxs = &sc->sc_rxsoft[i];
3119 
3120 		ATW_CDRXSYNC(sc, i,
3121 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3122 
3123 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3124 		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3125 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3126 
3127 		if (rxstat & ATW_RXSTAT_OWN) {
3128 			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3129 			break;
3130 		}
3131 
3132 		sc->sc_rxptr = ATW_NEXTRX(i);
3133 
3134 		DPRINTF3(sc,
3135 		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3136 		    device_xname(sc->sc_dev),
3137 		    rxstat, ctlrssi,
3138 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3139 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3140 
3141 		/*
3142 		 * Make sure the packet fits in one buffer.  This should
3143 		 * always be the case.
3144 		 */
3145 		if ((rxstat & (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) !=
3146 		    (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) {
3147 			printf("%s: incoming packet spilled, resetting\n",
3148 			    device_xname(sc->sc_dev));
3149 			(void)atw_init(ifp);
3150 			return;
3151 		}
3152 
3153 		/*
3154 		 * If an error occurred, update stats, clear the status
3155 		 * word, and leave the packet buffer in place.  It will
3156 		 * simply be reused the next time the ring comes around.
3157 		 */
3158 		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3159 #define	PRINTERR(bit, str)						\
3160 			if (rxstat & (bit))				\
3161 				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3162 				    str)
3163 			ifp->if_ierrors++;
3164 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3165 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3166 #if 0
3167 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3168 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3169 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3170 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3171 #endif
3172 #undef PRINTERR
3173 			atw_init_rxdesc(sc, i);
3174 			continue;
3175 		}
3176 
3177 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3178 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3179 
3180 		/*
3181 		 * No errors; receive the packet.  Note the ADM8211
3182 		 * includes the CRC in promiscuous mode.
3183 		 */
3184 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3185 
3186 		/*
3187 		 * Allocate a new mbuf cluster.  If that fails, we are
3188 		 * out of memory, and must drop the packet and recycle
3189 		 * the buffer that's already attached to this descriptor.
3190 		 */
3191 		m = rxs->rxs_mbuf;
3192 		if (atw_add_rxbuf(sc, i) != 0) {
3193 			ifp->if_ierrors++;
3194 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3195 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3196 			atw_init_rxdesc(sc, i);
3197 			continue;
3198 		}
3199 
3200 		ifp->if_ipackets++;
3201 		m_set_rcvif(m, ifp);
3202 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3203 
3204 		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3205 
3206 		/* The RSSI comes straight from a register in the
3207 		 * baseband processor.  I know that for the RF3000,
3208 		 * the RSSI register also contains the antenna-selection
3209 		 * bits.  Mask those off.
3210 		 *
3211 		 * TBD Treat other basebands.
3212 		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3213 		 */
3214 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3215 			rssi = ctlrssi & RF3000_RSSI_MASK;
3216 		else
3217 			rssi = ctlrssi;
3218 
3219 		s = splnet();
3220 
3221 		/* Pass this up to any BPF listeners. */
3222 		if (sc->sc_radiobpf != NULL) {
3223 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3224 
3225 			tap->ar_rate = rate;
3226 
3227 			/* TBD verify units are dB */
3228 			tap->ar_antsignal = (int)rssi;
3229 			if (sc->sc_opmode & ATW_NAR_PR)
3230 				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3231 			else
3232 				tap->ar_flags = 0;
3233 
3234 			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3235 				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3236 
3237 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3238 			    m, BPF_D_IN);
3239 		}
3240 
3241 		sc->sc_recv_ev.ev_count++;
3242 
3243 		if ((rxstat & (ATW_RXSTAT_CRC16E | ATW_RXSTAT_CRC32E |
3244 		    ATW_RXSTAT_ICVE | ATW_RXSTAT_SFDE | ATW_RXSTAT_SIGE))
3245 		    != 0) {
3246 			if (rxstat & ATW_RXSTAT_CRC16E)
3247 				sc->sc_crc16e_ev.ev_count++;
3248 			if (rxstat & ATW_RXSTAT_CRC32E)
3249 				sc->sc_crc32e_ev.ev_count++;
3250 			if (rxstat & ATW_RXSTAT_ICVE)
3251 				sc->sc_icve_ev.ev_count++;
3252 			if (rxstat & ATW_RXSTAT_SFDE)
3253 				sc->sc_sfde_ev.ev_count++;
3254 			if (rxstat & ATW_RXSTAT_SIGE)
3255 				sc->sc_sige_ev.ev_count++;
3256 			ifp->if_ierrors++;
3257 			m_freem(m);
3258 			splx(s);
3259 			continue;
3260 		}
3261 
3262 		if (sc->sc_opmode & ATW_NAR_PR)
3263 			m_adj(m, -IEEE80211_CRC_LEN);
3264 
3265 		wh = mtod(m, struct ieee80211_frame_min *);
3266 		ni = ieee80211_find_rxnode(ic, wh);
3267 #if 0
3268 		if (atw_hw_decrypted(sc, wh)) {
3269 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3270 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3271 		}
3272 #endif
3273 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3274 		ieee80211_free_node(ni);
3275 		splx(s);
3276 	}
3277 }
3278 
3279 /*
3280  * atw_txintr:
3281  *
3282  *	Helper; handle transmit interrupts.
3283  */
3284 void
3285 atw_txintr(struct atw_softc *sc, uint32_t status)
3286 {
3287 	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3288 	struct ifnet *ifp = &sc->sc_if;
3289 	struct atw_txsoft *txs;
3290 	uint32_t txstat;
3291 	int s;
3292 
3293 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3294 	    device_xname(sc->sc_dev), sc->sc_flags));
3295 
3296 	s = splnet();
3297 
3298 	/*
3299 	 * Go through our Tx list and free mbufs for those
3300 	 * frames that have been transmitted.
3301 	 */
3302 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3303 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3304 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3305 
3306 #ifdef ATW_DEBUG
3307 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3308 			int i;
3309 			printf("    txsoft %p transmit chain:\n", txs);
3310 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3311 			    txs->txs_ndescs - 1,
3312 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3313 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3314 				printf("     descriptor %d:\n", i);
3315 				printf("       at_status:   0x%08x\n",
3316 				    le32toh(sc->sc_txdescs[i].at_stat));
3317 				printf("       at_flags:      0x%08x\n",
3318 				    le32toh(sc->sc_txdescs[i].at_flags));
3319 				printf("       at_buf1: 0x%08x\n",
3320 				    le32toh(sc->sc_txdescs[i].at_buf1));
3321 				printf("       at_buf2: 0x%08x\n",
3322 				    le32toh(sc->sc_txdescs[i].at_buf2));
3323 				if (i == txs->txs_lastdesc)
3324 					break;
3325 			}
3326 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3327 			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3328 		}
3329 #endif
3330 
3331 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3332 		if (txstat & ATW_TXSTAT_OWN) {
3333 			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3334 			    BUS_DMASYNC_PREREAD);
3335 			break;
3336 		}
3337 
3338 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3339 
3340 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3341 		    0, txs->txs_dmamap->dm_mapsize,
3342 		    BUS_DMASYNC_POSTWRITE);
3343 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3344 		m_freem(txs->txs_mbuf);
3345 		txs->txs_mbuf = NULL;
3346 
3347 		sc->sc_txfree += txs->txs_ndescs;
3348 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3349 
3350 		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3351 		sc->sc_tx_timer = 0;
3352 		ifp->if_flags &= ~IFF_OACTIVE;
3353 
3354 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3355 		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3356 			snprintb(txstat_buf, sizeof(txstat_buf),
3357 			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3358 			printf("%s: txstat %s %" __PRIuBITS "\n",
3359 			    device_xname(sc->sc_dev), txstat_buf,
3360 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3361 		}
3362 
3363 		sc->sc_xmit_ev.ev_count++;
3364 
3365 		/*
3366 		 * Check for errors and collisions.
3367 		 */
3368 		if (txstat & ATW_TXSTAT_TUF)
3369 			sc->sc_tuf_ev.ev_count++;
3370 		if (txstat & ATW_TXSTAT_TLT)
3371 			sc->sc_tlt_ev.ev_count++;
3372 		if (txstat & ATW_TXSTAT_TRT)
3373 			sc->sc_trt_ev.ev_count++;
3374 		if (txstat & ATW_TXSTAT_TRO)
3375 			sc->sc_tro_ev.ev_count++;
3376 		if (txstat & ATW_TXSTAT_SOFBR)
3377 			sc->sc_sofbr_ev.ev_count++;
3378 
3379 		if ((txstat & ATW_TXSTAT_ES) == 0)
3380 			ifp->if_collisions +=
3381 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3382 		else
3383 			ifp->if_oerrors++;
3384 
3385 		ifp->if_opackets++;
3386 	}
3387 
3388 	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3389 
3390 	splx(s);
3391 }
3392 
3393 /*
3394  * atw_watchdog:	[ifnet interface function]
3395  *
3396  *	Watchdog timer handler.
3397  */
3398 void
3399 atw_watchdog(struct ifnet *ifp)
3400 {
3401 	struct atw_softc *sc = ifp->if_softc;
3402 	struct ieee80211com *ic = &sc->sc_ic;
3403 
3404 	ifp->if_timer = 0;
3405 	if (!device_is_active(sc->sc_dev))
3406 		return;
3407 
3408 	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3409 		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3410 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3411 	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3412 		printf("%s: transmit timeout\n", ifp->if_xname);
3413 		ifp->if_oerrors++;
3414 		(void)atw_init(ifp);
3415 		atw_start(ifp);
3416 	}
3417 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3418 		ifp->if_timer = 1;
3419 	ieee80211_watchdog(ic);
3420 }
3421 
3422 static void
3423 atw_evcnt_detach(struct atw_softc *sc)
3424 {
3425 	evcnt_detach(&sc->sc_sige_ev);
3426 	evcnt_detach(&sc->sc_sfde_ev);
3427 	evcnt_detach(&sc->sc_icve_ev);
3428 	evcnt_detach(&sc->sc_crc32e_ev);
3429 	evcnt_detach(&sc->sc_crc16e_ev);
3430 	evcnt_detach(&sc->sc_recv_ev);
3431 
3432 	evcnt_detach(&sc->sc_tuf_ev);
3433 	evcnt_detach(&sc->sc_tro_ev);
3434 	evcnt_detach(&sc->sc_trt_ev);
3435 	evcnt_detach(&sc->sc_tlt_ev);
3436 	evcnt_detach(&sc->sc_sofbr_ev);
3437 	evcnt_detach(&sc->sc_xmit_ev);
3438 
3439 	evcnt_detach(&sc->sc_rxpkt1in_ev);
3440 	evcnt_detach(&sc->sc_rxamatch_ev);
3441 	evcnt_detach(&sc->sc_workaround1_ev);
3442 	evcnt_detach(&sc->sc_misc_ev);
3443 }
3444 
3445 static void
3446 atw_evcnt_attach(struct atw_softc *sc)
3447 {
3448 	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3449 	    NULL, sc->sc_if.if_xname, "recv");
3450 	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3451 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3452 	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3453 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3454 	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3455 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3456 	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3457 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3458 	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3459 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3460 
3461 	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3462 	    NULL, sc->sc_if.if_xname, "xmit");
3463 	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3464 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3465 	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3466 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3467 	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3468 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3469 	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3470 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3471 	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3472 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3473 
3474 	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3475 	    NULL, sc->sc_if.if_xname, "misc");
3476 	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3477 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3478 	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3479 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3480 	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3481 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3482 }
3483 
3484 #ifdef ATW_DEBUG
3485 static void
3486 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3487 {
3488 	struct atw_softc *sc = ifp->if_softc;
3489 	struct mbuf *m;
3490 	int i, noctets = 0;
3491 
3492 	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3493 	    m0->m_pkthdr.len);
3494 
3495 	for (m = m0; m; m = m->m_next) {
3496 		if (m->m_len == 0)
3497 			continue;
3498 		for (i = 0; i < m->m_len; i++) {
3499 			printf(" %02x", ((uint8_t*)m->m_data)[i]);
3500 			if (++noctets % 24 == 0)
3501 				printf("\n");
3502 		}
3503 	}
3504 	printf("%s%s: %d bytes emitted\n",
3505 	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3506 }
3507 #endif /* ATW_DEBUG */
3508 
3509 /*
3510  * atw_start:		[ifnet interface function]
3511  *
3512  *	Start packet transmission on the interface.
3513  */
3514 void
3515 atw_start(struct ifnet *ifp)
3516 {
3517 	struct atw_softc *sc = ifp->if_softc;
3518 	struct ieee80211_key *k;
3519 	struct ieee80211com *ic = &sc->sc_ic;
3520 	struct ieee80211_node *ni;
3521 	struct ieee80211_frame_min *whm;
3522 	struct ieee80211_frame *wh;
3523 	struct atw_frame *hh;
3524 	uint16_t hdrctl;
3525 	struct mbuf *m0, *m;
3526 	struct atw_txsoft *txs;
3527 	struct atw_txdesc *txd;
3528 	int npkt, rate;
3529 	bus_dmamap_t dmamap;
3530 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3531 
3532 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3533 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3534 
3535 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3536 		return;
3537 
3538 	/*
3539 	 * Remember the previous number of free descriptors and
3540 	 * the first descriptor we'll use.
3541 	 */
3542 	ofree = sc->sc_txfree;
3543 	firsttx = lasttx = sc->sc_txnext;
3544 
3545 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3546 	    device_xname(sc->sc_dev), ofree, firsttx));
3547 
3548 	/*
3549 	 * Loop through the send queue, setting up transmit descriptors
3550 	 * until we drain the queue, or use up all available transmit
3551 	 * descriptors.
3552 	 */
3553 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3554 	       sc->sc_txfree != 0) {
3555 
3556 		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3557 
3558 		/*
3559 		 * Grab a packet off the management queue, if it
3560 		 * is not empty. Otherwise, from the data queue.
3561 		 */
3562 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3563 		if (m0 != NULL) {
3564 			ni = M_GETCTX(m0, struct ieee80211_node *);
3565 			M_CLEARCTX(m0);
3566 		} else if (ic->ic_state != IEEE80211_S_RUN)
3567 			break; /* send no data until associated */
3568 		else {
3569 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3570 			if (m0 == NULL)
3571 				break;
3572 			bpf_mtap(ifp, m0, BPF_D_OUT);
3573 			ni = ieee80211_find_txnode(ic,
3574 			    mtod(m0, struct ether_header *)->ether_dhost);
3575 			if (ni == NULL) {
3576 				ifp->if_oerrors++;
3577 				break;
3578 			}
3579 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3580 				ieee80211_free_node(ni);
3581 				ifp->if_oerrors++;
3582 				break;
3583 			}
3584 		}
3585 
3586 		rate = MAX(ieee80211_get_rate(ni), 2);
3587 
3588 		whm = mtod(m0, struct ieee80211_frame_min *);
3589 
3590 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3591 			k = NULL;
3592 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3593 			m_freem(m0);
3594 			ieee80211_free_node(ni);
3595 			ifp->if_oerrors++;
3596 			break;
3597 		}
3598 #if 0
3599 		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3600 		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3601 			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3602 #endif
3603 
3604 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3605 			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3606 
3607 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3608 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3609 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3610 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3611 			m_freem(m0);
3612 			break;
3613 		}
3614 
3615 		/* XXX Misleading if fragmentation is enabled.  Better
3616 		 * to fragment in software?
3617 		 */
3618 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3619 
3620 		/*
3621 		 * Pass the packet to any BPF listeners.
3622 		 */
3623 		bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3624 
3625 		if (sc->sc_radiobpf != NULL) {
3626 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3627 
3628 			tap->at_rate = rate;
3629 
3630 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3631 			    m0, BPF_D_OUT);
3632 		}
3633 
3634 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3635 
3636 		if (ni != NULL)
3637 			ieee80211_free_node(ni);
3638 
3639 		if (m0 == NULL) {
3640 			ifp->if_oerrors++;
3641 			break;
3642 		}
3643 
3644 		/* just to make sure. */
3645 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3646 
3647 		if (m0 == NULL) {
3648 			ifp->if_oerrors++;
3649 			break;
3650 		}
3651 
3652 		hh = mtod(m0, struct atw_frame *);
3653 		wh = &hh->atw_ihdr;
3654 
3655 		/* Copy everything we need from the 802.11 header:
3656 		 * Frame Control; address 1, address 3, or addresses
3657 		 * 3 and 4. NIC fills in BSSID, SA.
3658 		 */
3659 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3660 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3661 				panic("%s: illegal WDS frame",
3662 				    device_xname(sc->sc_dev));
3663 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3664 		} else
3665 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3666 
3667 		*(uint16_t*)hh->atw_fc = *(uint16_t*)wh->i_fc;
3668 
3669 		/* initialize remaining Tx parameters */
3670 		memset(&hh->u, 0, sizeof(hh->u));
3671 
3672 		hh->atw_rate = rate * 5;
3673 		/* XXX this could be incorrect if M_FCS. _encap should
3674 		 * probably strip FCS just in case it sticks around in
3675 		 * bridged packets.
3676 		 */
3677 		hh->atw_service = 0x00; /* XXX guess */
3678 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3679 		    sizeof(struct atw_frame));
3680 
3681 		/* never fragment multicast frames */
3682 		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3683 			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3684 		else {
3685 			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3686 			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3687 				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3688 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3689 		}
3690 
3691 		hh->atw_rtylmt = 3;
3692 #if 0
3693 		if (do_encrypt) {
3694 			hdrctl |= htole16(ATW_HDRCTL_WEP);
3695 			hh->atw_keyid = ic->ic_def_txkey;
3696 		}
3697 #endif
3698 
3699 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3700 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3701 		if (txs->txs_d0.d_residue)
3702 			hh->atw_head_plcplen |= htole16(0x8000);
3703 		if (txs->txs_dn.d_residue)
3704 			hh->atw_tail_plcplen |= htole16(0x8000);
3705 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3706 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3707 
3708 		hh->atw_hdrctl = hdrctl;
3709 		hh->atw_fragnum = npkt << 4;
3710 #ifdef ATW_DEBUG
3711 
3712 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3713 			printf("%s: dst = %s, rate = 0x%02x, "
3714 			    "service = 0x%02x, paylen = 0x%04x\n",
3715 			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3716 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3717 
3718 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3719 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3720 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3721 			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3722 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3723 			    hh->atw_tail_dur, hh->atw_head_dur);
3724 
3725 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3726 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3727 			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3728 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3729 
3730 			printf("%s: keyid = %d\n",
3731 			    device_xname(sc->sc_dev), hh->atw_keyid);
3732 
3733 			atw_dump_pkt(ifp, m0);
3734 		}
3735 #endif /* ATW_DEBUG */
3736 
3737 		dmamap = txs->txs_dmamap;
3738 
3739 		/*
3740 		 * Load the DMA map.  Copy and try (once) again if the packet
3741 		 * didn't fit in the alloted number of segments.
3742 		 */
3743 		for (first = 1;
3744 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3745 			 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 && first;
3746 		     first = 0) {
3747 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3748 			if (m == NULL) {
3749 				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3750 				break;
3751 			}
3752 			if (m0->m_pkthdr.len > MHLEN) {
3753 				MCLGET(m, M_DONTWAIT);
3754 				if ((m->m_flags & M_EXT) == 0) {
3755 					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3756 					    "cluster\n");
3757 					m_freem(m);
3758 					break;
3759 				}
3760 			}
3761 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3762 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3763 			m_freem(m0);
3764 			m0 = m;
3765 			m = NULL;
3766 		}
3767 		if (error != 0) {
3768 			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3769 			    "error = %d\n", error);
3770 			m_freem(m0);
3771 			break;
3772 		}
3773 
3774 		/*
3775 		 * Ensure we have enough descriptors free to describe
3776 		 * the packet.
3777 		 */
3778 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3779 			/*
3780 			 * Not enough free descriptors to transmit
3781 			 * this packet.  Unload the DMA map and
3782 			 * drop the packet.  Notify the upper layer
3783 			 * that there are no more slots left.
3784 			 *
3785 			 * XXX We could allocate an mbuf and copy, but
3786 			 * XXX it is worth it?
3787 			 */
3788 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3789 			m_freem(m0);
3790 			break;
3791 		}
3792 
3793 		/*
3794 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3795 		 */
3796 
3797 		/* Sync the DMA map. */
3798 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3799 		    BUS_DMASYNC_PREWRITE);
3800 
3801 		/* XXX arbitrary retry limit; 8 because I have seen it in
3802 		 * use already and maybe 0 means "no tries" !
3803 		 */
3804 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3805 
3806 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3807 		    device_xname(sc->sc_dev), rate * 5));
3808 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3809 
3810 		/*
3811 		 * Initialize the transmit descriptors.
3812 		 */
3813 		for (nexttx = sc->sc_txnext, seg = 0;
3814 		     seg < dmamap->dm_nsegs;
3815 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3816 			/*
3817 			 * If this is the first descriptor we're
3818 			 * enqueueing, don't set the OWN bit just
3819 			 * yet.  That could cause a race condition.
3820 			 * We'll do it below.
3821 			 */
3822 			txd = &sc->sc_txdescs[nexttx];
3823 			txd->at_ctl = ctl |
3824 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3825 
3826 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3827 			txd->at_flags =
3828 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3829 					   ATW_TXFLAG_TBS1_MASK)) |
3830 			    ((nexttx == (ATW_NTXDESC - 1))
3831 			        ? htole32(ATW_TXFLAG_TER) : 0);
3832 			lasttx = nexttx;
3833 		}
3834 
3835 		/* Set `first segment' and `last segment' appropriately. */
3836 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3837 		    htole32(ATW_TXFLAG_FS);
3838 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3839 
3840 #ifdef ATW_DEBUG
3841 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3842 			printf("     txsoft %p transmit chain:\n", txs);
3843 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3844 				printf("     descriptor %d:\n", seg);
3845 				printf("       at_ctl:   0x%08x\n",
3846 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3847 				printf("       at_flags:      0x%08x\n",
3848 				    le32toh(sc->sc_txdescs[seg].at_flags));
3849 				printf("       at_buf1: 0x%08x\n",
3850 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3851 				printf("       at_buf2: 0x%08x\n",
3852 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3853 				if (seg == lasttx)
3854 					break;
3855 			}
3856 		}
3857 #endif
3858 
3859 		/* Sync the descriptors we're using. */
3860 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3861 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3862 
3863 		/*
3864 		 * Store a pointer to the packet so we can free it later,
3865 		 * and remember what txdirty will be once the packet is
3866 		 * done.
3867 		 */
3868 		txs->txs_mbuf = m0;
3869 		txs->txs_firstdesc = sc->sc_txnext;
3870 		txs->txs_lastdesc = lasttx;
3871 		txs->txs_ndescs = dmamap->dm_nsegs;
3872 
3873 		/* Advance the tx pointer. */
3874 		sc->sc_txfree -= dmamap->dm_nsegs;
3875 		sc->sc_txnext = nexttx;
3876 
3877 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3878 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3879 	}
3880 
3881 	if (sc->sc_txfree != ofree) {
3882 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3883 		    device_xname(sc->sc_dev), lasttx, firsttx));
3884 		/*
3885 		 * Cause a transmit interrupt to happen on the
3886 		 * last packet we enqueued.
3887 		 */
3888 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3889 		ATW_CDTXSYNC(sc, lasttx, 1,
3890 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3891 
3892 		/*
3893 		 * The entire packet chain is set up.  Give the
3894 		 * first descriptor to the chip now.
3895 		 */
3896 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3897 		ATW_CDTXSYNC(sc, firsttx, 1,
3898 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3899 
3900 		/* Wake up the transmitter. */
3901 		ATW_WRITE(sc, ATW_TDR, 0x1);
3902 
3903 		if (txs == NULL || sc->sc_txfree == 0)
3904 			ifp->if_flags |= IFF_OACTIVE;
3905 
3906 		/* Set a watchdog timer in case the chip flakes out. */
3907 		sc->sc_tx_timer = 5;
3908 		ifp->if_timer = 1;
3909 	}
3910 }
3911 
3912 /*
3913  * atw_ioctl:		[ifnet interface function]
3914  *
3915  *	Handle control requests from the operator.
3916  */
3917 int
3918 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3919 {
3920 	struct atw_softc *sc = ifp->if_softc;
3921 	struct ieee80211req *ireq;
3922 	int s, error = 0;
3923 
3924 	s = splnet();
3925 
3926 	switch (cmd) {
3927 	case SIOCSIFFLAGS:
3928 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3929 			break;
3930 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
3931 		case IFF_UP | IFF_RUNNING:
3932 			/*
3933 			 * To avoid rescanning another access point,
3934 			 * do not call atw_init() here.  Instead,
3935 			 * only reflect media settings.
3936 			 */
3937 			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3938 				atw_filter_setup(sc);
3939 			break;
3940 		case IFF_UP:
3941 			error = atw_init(ifp);
3942 			break;
3943 		case IFF_RUNNING:
3944 			atw_stop(ifp, 1);
3945 			break;
3946 		case 0:
3947 			break;
3948 		}
3949 		break;
3950 	case SIOCADDMULTI:
3951 	case SIOCDELMULTI:
3952 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3953 			if (ifp->if_flags & IFF_RUNNING)
3954 				atw_filter_setup(sc); /* do not rescan */
3955 			error = 0;
3956 		}
3957 		break;
3958 	case SIOCS80211:
3959 		ireq = data;
3960 		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3961 			if ((error = kauth_authorize_network(curlwp->l_cred,
3962 			    KAUTH_NETWORK_INTERFACE,
3963 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3964 			    (void *)cmd, NULL)) != 0)
3965 				break;
3966 			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3967 			      ireq->i_val <= IEEE80211_FRAG_MAX))
3968 				error = EINVAL;
3969 			else
3970 				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3971 			break;
3972 		}
3973 		/*FALLTHROUGH*/
3974 	default:
3975 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3976 		if (error == ENETRESET || error == ERESTART) {
3977 			if (is_running(ifp))
3978 				error = atw_init(ifp);
3979 			else
3980 				error = 0;
3981 		}
3982 		break;
3983 	}
3984 
3985 	/* Try to get more packets going. */
3986 	if (device_is_active(sc->sc_dev))
3987 		atw_start(ifp);
3988 
3989 	splx(s);
3990 	return (error);
3991 }
3992 
3993 static int
3994 atw_media_change(struct ifnet *ifp)
3995 {
3996 	int error;
3997 
3998 	error = ieee80211_media_change(ifp);
3999 	if (error == ENETRESET) {
4000 		if (is_running(ifp))
4001 			error = atw_init(ifp);
4002 		else
4003 			error = 0;
4004 	}
4005 	return error;
4006 }
4007