xref: /netbsd-src/sys/dev/ic/adwlib.c (revision bada23909e740596d0a3785a73bd3583a9807fb8)
1 /* $NetBSD: adwlib.c,v 1.3 1999/02/23 20:18:16 dante Exp $        */
2 
3 /*
4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5  *
6  * Copyright (c) 1998 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * Author: Baldassare Dante Profeta <dante@mclink.it>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 /*
40  * Ported from:
41  */
42 /*
43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44  *
45  * Copyright (c) 1995-1998 Advanced System Products, Inc.
46  * All Rights Reserved.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that redistributions of source
50  * code retain the above copyright notice and this comment without
51  * modification.
52  */
53 
54 #include <sys/types.h>
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/malloc.h>
58 #include <sys/kernel.h>
59 #include <sys/queue.h>
60 #include <sys/device.h>
61 
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 
65 #include <dev/scsipi/scsi_all.h>
66 #include <dev/scsipi/scsipi_all.h>
67 #include <dev/scsipi/scsiconf.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 
73 #include <dev/ic/adwlib.h>
74 #include <dev/ic/adw.h>
75 #include <dev/ic/adwmcode.h>
76 
77 
78 /* Static Functions */
79 
80 static u_int16_t AdvGetEEPConfig __P((bus_space_tag_t, bus_space_handle_t,
81      							ADWEEP_CONFIG *));
82 static u_int16_t AdvReadEEPWord __P((bus_space_tag_t, bus_space_handle_t,
83 							int));
84 static void AdvWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
85 static void AdvSetEEPConfig __P((bus_space_tag_t, bus_space_handle_t,
86 					                 ADWEEP_CONFIG *));
87 static int AdvSendScsiCmd __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
88 static void AdvInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
89 
90 static void DvcSleepMilliSecond __P((ulong));
91 static void DvcDelayMicroSecond __P((ulong));
92 
93 
94 /*
95  * EEPROM Configuration.
96  *
97  * All drivers should use this structure to set the default EEPROM
98  * configuration. The BIOS now uses this structure when it is built.
99  * Additional structure information can be found in advlib.h where
100  * the structure is defined.
101  */
102 static ADWEEP_CONFIG
103 Default_EEPROM_Config = {
104 	ADW_EEPROM_BIOS_ENABLE,	/* cfg_msw */
105 	0x0000,		/* cfg_lsw */
106 	0xFFFF,		/* disc_enable */
107 	0xFFFF,		/* wdtr_able */
108 	0xFFFF,		/* sdtr_able */
109 	0xFFFF,		/* start_motor */
110 	0xFFFF,		/* tagqng_able */
111 	0xFFFF,		/* bios_scan */
112 	0,		/* scam_tolerant */
113 	7,		/* adapter_scsi_id */
114 	0,		/* bios_boot_delay */
115 	3,		/* scsi_reset_delay */
116 	0,		/* bios_id_lun */
117 	0,		/* termination */
118 	0,		/* reserved1 */
119 	0xFFEF,		/* bios_ctrl */
120 	0xFFFF,		/* ultra_able */
121 	0,		/* reserved2 */
122 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
123 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
124 	0,		/* dvc_cntl */
125 	0,		/* bug_fix */
126 	0,		/* serial_number_word1 */
127 	0,		/* serial_number_word2 */
128 	0,		/* serial_number_word3 */
129 	0,		/* check_sum */
130 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* oem_name[16] */
131 	0,		/* dvc_err_code */
132 	0,		/* adv_err_code */
133 	0,		/* adv_err_addr */
134 	0,		/* saved_dvc_err_code */
135 	0,		/* saved_adv_err_code */
136 	0,		/* saved_adv_err_addr */
137 	0		/* num_of_err */
138 };
139 
140 /*
141  * Initialize the ASC3550.
142  *
143  * On failure set the ADW_SOFTC field 'err_code' and return ADW_ERROR.
144  *
145  * For a non-fatal error return a warning code. If there are no warnings
146  * then 0 is returned.
147  */
148 int
149 AdvInitAsc3550Driver(sc)
150 ADW_SOFTC      *sc;
151 {
152 	bus_space_tag_t iot = sc->sc_iot;
153 	bus_space_handle_t ioh = sc->sc_ioh;
154 	u_int16_t       warn_code;
155 	u_int32_t       sum;
156 	int             begin_addr;
157 	int             end_addr;
158 	int             code_sum;
159 	int             word;
160 	int             rql_addr;	/* RISC Queue List address */
161 	int             i;
162 	u_int16_t       scsi_cfg1;
163 	u_int8_t        biosmem[ASC_MC_BIOSLEN];	/* BIOS RISC Memory
164 							 * 0x40-0x8F */
165 
166 
167 	warn_code = 0;
168 
169 	/*
170 	 * Save the RISC memory BIOS region before writing the microcode.
171 	 * The BIOS may already be loaded and using its RISC LRAM region
172 	 * so its region must be saved and restored.
173 	 *
174 	 * Note: This code makes the assumption, which is currently true,
175 	 * that a chip reset does not clear RISC LRAM.
176 	 */
177 	for (i = 0; i < ASC_MC_BIOSLEN; i++) {
178 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + i, biosmem[i]);
179 	}
180 
181 	/*
182 	 * Load the Microcode
183 	 *
184 	 * Write the microcode image to RISC memory starting at address 0.
185 	 */
186 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
187 	for (word = 0; word < adv_mcode_size; word += 2) {
188 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
189 				       *((u_int16_t *) (&adv_mcode[word])));
190 	}
191 
192 	/*
193 	 * Clear the rest of Condor's Internal RAM (8KB).
194 	 */
195 	for (; word < ADW_CONDOR_MEMSIZE; word += 2) {
196 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
197 	}
198 
199 	/*
200 	 * Verify the microcode checksum.
201 	 */
202 	sum = 0;
203 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
204 	for (word = 0; word < adv_mcode_size; word += 2) {
205 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
206 	}
207 
208 	if (sum != adv_mcode_chksum)
209 		return ASC_IERR_MCODE_CHKSUM;
210 
211 	/*
212 	 * Restore the RISC memory BIOS region.
213 	 */
214 	for (i = 0; i < ASC_MC_BIOSLEN; i++) {
215 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + i, biosmem[i]);
216 	}
217 
218 	/*
219 	 * Calculate and write the microcode code checksum to the microcode
220 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
221 	 */
222 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
223 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
224 	code_sum = 0;
225 	for (word = begin_addr; word < end_addr; word += 2) {
226 		code_sum += *((u_int16_t *) (&adv_mcode[word]));
227 	}
228 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
229 
230 	/*
231 	 * Read microcode version and date.
232 	 */
233 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE, sc->cfg.mcode_date);
234 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM, sc->cfg.mcode_version);
235 
236 	/*
237 	 * Initialize microcode operating variables
238 	 */
239 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_ADAPTER_SCSI_ID,
240 			    sc->chip_scsi_id);
241 
242 	/*
243 	 * If the PCI Configuration Command Register "Parity Error Response
244 	 * Control" Bit was clear (0), then set the microcode variable
245 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
246 	 * to ignore DMA parity errors.
247 	 */
248 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
249 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
250 		word |= CONTROL_FLAG_IGNORE_PERR;
251 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
252 	}
253 	/*
254 	 * Set default microcode operating variables for WDTR, SDTR, and
255 	 * command tag queuing based on the EEPROM configuration values.
256 	 *
257 	 * These ADW_DVC_VAR fields and the microcode variables will be
258 	 * changed in AdvInquiryHandling() if it is found a device is
259 	 * incapable of a particular feature.
260 	 */
261 
262 	/*
263 	 * Set the microcode ULTRA target mask from EEPROM value. The
264 	 * SDTR target mask overrides the ULTRA target mask in the
265 	 * microcode so it is safe to set this value without determining
266 	 * whether the device supports SDTR.
267 	 *
268 	 * Note: There is no way to know whether a device supports ULTRA
269 	 * speed without attempting a SDTR ULTRA speed negotiation with
270 	 * the device. The device will reject the speed if it does not
271 	 * support it by responding with an SDTR message containing a
272 	 * slower speed.
273 	 */
274 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_ULTRA_ABLE, sc->ultra_able);
275 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
276 
277 
278 	/*
279 	 * Set SCSI_CFG0 Microcode Default Value.
280 	 *
281 	 * The microcode will set the SCSI_CFG0 register using this value
282 	 * after it is started below.
283 	 */
284 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
285 	ADW_PARITY_EN | ADW_SEL_TMO_LONG | ADW_OUR_ID_EN | sc->chip_scsi_id);
286 
287 	/*
288 	 * Determine SCSI_CFG1 Microcode Default Value.
289 	 *
290 	 * The microcode will set the SCSI_CFG1 register using this value
291 	 * after it is started below.
292 	 */
293 
294 	/* Read current SCSI_CFG1 Register value. */
295 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
296 
297 	/*
298 	 * If all three connectors are in use, return an error.
299 	 */
300 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
301 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
302 		return ASC_IERR_ILLEGAL_CONNECTION;
303 	}
304 	/*
305 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
306 	 * register signals will be set. Check for and return an error if
307 	 * this condition is found.
308 	 */
309 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
310 			0x3F07) {
311 
312 		return ASC_IERR_REVERSED_CABLE;
313 	}
314 
315 	/*
316 	 * If this is a differential board and a single-ended device
317 	 * is attached to one of the connectors, return an error.
318 	 */
319 	if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0)
320 		return ASC_IERR_SINGLE_END_DEVICE;
321 
322 	/*
323 	 * If automatic termination control is enabled, then set the
324 	 * termination value based on a table listed in advlib.h.
325 	 *
326 	 * If manual termination was specified with an EEPROM setting
327 	 * then 'termination' was set-up in AdvInitFromEEP() and
328 	 * is ready to be 'ored' into SCSI_CFG1.
329 	 */
330 	if (sc->cfg.termination == 0) {
331 		/*
332 		 * The software always controls termination by setting
333 		 * ADW_TERM_CTL_SEL.
334 		 * If ADW_TERM_CTL_SEL were set to 0, the hardware would
335 		 * set termination.
336 		 */
337 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
338 
339 		switch (scsi_cfg1 & ADW_CABLE_DETECT) {
340 			/* ADW_TERM_CTL_H: on, ADW_TERM_CTL_L: on */
341 		case 0x3:
342 		case 0x7:
343 		case 0xB:
344 		case 0xD:
345 		case 0xE:
346 		case 0xF:
347 			sc->cfg.termination |= (ADW_TERM_CTL_H |
348 					ADW_TERM_CTL_L);
349 			break;
350 
351 			/* ADW_TERM_CTL_H: on, ADW_TERM_CTL_L: off */
352 		case 0x1:
353 		case 0x5:
354 		case 0x9:
355 		case 0xA:
356 		case 0xC:
357 			sc->cfg.termination |= ADW_TERM_CTL_H;
358 			break;
359 
360 			/* ADW_TERM_CTL_H: off, ADW_TERM_CTL_L: off */
361 		case 0x2:
362 		case 0x6:
363 			break;
364 		}
365 	}
366 	/*
367 	 * Clear any set ADW_TERM_CTL_H and ADW_TERM_CTL_L bits.
368 	 */
369 	scsi_cfg1 &= ~ADW_TERM_CTL;
370 
371 	/*
372 	 * Invert the ADW_TERM_CTL_H and ADW_TERM_CTL_L bits and then
373 	 * set 'scsi_cfg1'. The ADW_TERM_POL bit does not need to be
374 	 * referenced, because the hardware internally inverts
375 	 * the Termination High and Low bits if ADW_TERM_POL is set.
376 	 */
377 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~sc->cfg.termination & ADW_TERM_CTL));
378 
379 	/*
380 	 * Set SCSI_CFG1 Microcode Default Value
381 	 *
382 	 * Set filter value and possibly modified termination control
383 	 * bits in the Microcode SCSI_CFG1 Register Value.
384 	 *
385 	 * The microcode will set the SCSI_CFG1 register using this value
386 	 * after it is started below.
387 	 */
388 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1,
389 			    ADW_FLTR_11_TO_20NS | scsi_cfg1);
390 
391 	/*
392 	 * Set SEL_MASK Microcode Default Value
393 	 *
394 	 * The microcode will set the SEL_MASK register using this value
395 	 * after it is started below.
396 	 */
397 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
398 			    ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
399 
400 	/*
401 	 * Link all the RISC Queue Lists together in a doubly-linked
402 	 * NULL terminated list.
403 	 *
404 	 * Skip the NULL (0) queue which is not used.
405 	 */
406 	for (i = 1, rql_addr = ASC_MC_RISC_Q_LIST_BASE+ASC_MC_RISC_Q_LIST_SIZE;
407 	     i < ASC_MC_RISC_Q_TOTAL_CNT;
408 	     i++, rql_addr += ASC_MC_RISC_Q_LIST_SIZE) {
409 		/*
410 		 * Set the current RISC Queue List's RQL_FWD and
411 		 * RQL_BWD pointers in a one word write and set
412 		 * the state (RQL_STATE) to free.
413 		 */
414 		ADW_WRITE_WORD_LRAM(iot, ioh, rql_addr,
415 				((i + 1) + ((i - 1) << 8)));
416 		ADW_WRITE_BYTE_LRAM(iot, ioh, rql_addr + RQL_STATE,
417 				ASC_MC_QS_FREE);
418 	}
419 
420 	/*
421 	 * Set the Host and RISC Queue List pointers.
422 	 *
423 	 * Both sets of pointers are initialized with the same values:
424 	 * ASC_MC_RISC_Q_FIRST(0x01) and ASC_MC_RISC_Q_LAST (0xFF).
425 	 */
426 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_READY,
427 			ASC_MC_RISC_Q_FIRST);
428 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_DONE,
429 			ASC_MC_RISC_Q_LAST);
430 
431 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_RISC_NEXT_READY,
432 			ASC_MC_RISC_Q_FIRST);
433 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_RISC_NEXT_DONE,
434 			ASC_MC_RISC_Q_LAST);
435 
436 	/*
437 	 * Finally, set up the last RISC Queue List (255) with
438 	 * a NULL forward pointer.
439 	 */
440 	ADW_WRITE_WORD_LRAM(iot, ioh, rql_addr,
441 			(ASC_MC_NULL_Q + ((i - 1) << 8)));
442 	ADW_WRITE_BYTE_LRAM(iot, ioh, rql_addr + RQL_STATE, ASC_MC_QS_FREE);
443 
444 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
445 		 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
446 
447 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
448 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
449 
450 	/* finally, finally, gentlemen, start your engine */
451 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
452 
453 	return warn_code;
454 }
455 
456 /*
457  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
458  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
459  * all of this is done.
460  *
461  * On failure set the ADW_DVC_VAR field 'err_code' and return ADW_ERROR.
462  *
463  * For a non-fatal error return a warning code. If there are no warnings
464  * then 0 is returned.
465  *
466  * Note: Chip is stopped on entry.
467  */
468 int
469 AdvInitFromEEP(sc)
470 	ADW_SOFTC      *sc;
471 {
472 	bus_space_tag_t iot = sc->sc_iot;
473 	bus_space_handle_t ioh = sc->sc_ioh;
474 	u_int16_t       warn_code;
475 	ADWEEP_CONFIG   eep_config;
476 	int             eep_chksum, i;
477 
478 
479 	warn_code = 0;
480 
481 	/*
482 	 * Read the board's EEPROM configuration.
483 	 *
484 	 * Set default values if a bad checksum is found.
485 	 */
486 	eep_chksum = AdvGetEEPConfig(iot, ioh, &eep_config);
487 
488 	if (eep_chksum != eep_config.check_sum) {
489 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
490 
491 		/*
492 		 * Set EEPROM default values.
493 		 */
494 		for (i = 0; i < sizeof(ADWEEP_CONFIG); i++) {
495 			*((u_int8_t *) & eep_config + i) =
496 				*((u_int8_t *) & Default_EEPROM_Config + i);
497 		}
498 
499 		/*
500 		 * Assume the 6 byte board serial number that was read
501 		 * from EEPROM is correct even if the EEPROM checksum
502 		 * failed.
503 		 */
504 		eep_config.serial_number_word3 =
505 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
506 		eep_config.serial_number_word2 =
507 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
508 		eep_config.serial_number_word1 =
509 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
510 		AdvSetEEPConfig(iot, ioh, &eep_config);
511 	}
512 	/*
513 	 * Set ADW_DVC_VAR and ADW_DVC_CFG variables from the
514 	 * EEPROM configuration that was read.
515 	 *
516 	 * This is the mapping of EEPROM fields to Adv Library fields.
517 	 */
518 	sc->wdtr_able = eep_config.wdtr_able;
519 	sc->sdtr_able = eep_config.sdtr_able;
520 	sc->ultra_able = eep_config.ultra_able;
521 	sc->tagqng_able = eep_config.tagqng_able;
522 	sc->cfg.disc_enable = eep_config.disc_enable;
523 	sc->max_host_qng = eep_config.max_host_qng;
524 	sc->max_dvc_qng = eep_config.max_dvc_qng;
525 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
526 	sc->start_motor = eep_config.start_motor;
527 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
528 	sc->cfg.bios_boot_wait = eep_config.bios_boot_delay;
529 	sc->bios_ctrl = eep_config.bios_ctrl;
530 	sc->no_scam = eep_config.scam_tolerant;
531 	sc->cfg.serial1 = eep_config.serial_number_word1;
532 	sc->cfg.serial2 = eep_config.serial_number_word2;
533 	sc->cfg.serial3 = eep_config.serial_number_word3;
534 
535 	/*
536 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
537 	 * maximum queuing (max. 63, min. 4).
538 	 */
539 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
540 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
541 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
542 		/* If the value is zero, assume it is uninitialized. */
543 		if (eep_config.max_host_qng == 0) {
544 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
545 		} else {
546 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
547 		}
548 	}
549 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
550 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
551 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
552 		/* If the value is zero, assume it is uninitialized. */
553 		if (eep_config.max_dvc_qng == 0) {
554 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
555 		} else {
556 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
557 		}
558 	}
559 	/*
560 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
561 	 * set 'max_dvc_qng' to 'max_host_qng'.
562 	 */
563 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
564 		eep_config.max_dvc_qng = eep_config.max_host_qng;
565 	}
566 	/*
567 	 * Set ADW_DVC_VAR 'max_host_qng' and ADW_DVC_CFG 'max_dvc_qng'
568 	 * values based on possibly adjusted EEPROM values.
569 	 */
570 	sc->max_host_qng = eep_config.max_host_qng;
571 	sc->max_dvc_qng = eep_config.max_dvc_qng;
572 
573 
574 	/*
575 	 * If the EEPROM 'termination' field is set to automatic (0), then set
576 	 * the ADW_DVC_CFG 'termination' field to automatic also.
577 	 *
578 	 * If the termination is specified with a non-zero 'termination'
579 	 * value check that a legal value is set and set the ADW_DVC_CFG
580 	 * 'termination' field appropriately.
581 	 */
582 	if (eep_config.termination == 0) {
583 		sc->cfg.termination = 0;	/* auto termination */
584 	} else {
585 		/* Enable manual control with low off / high off. */
586 		if (eep_config.termination == 1) {
587 			sc->cfg.termination = ADW_TERM_CTL_SEL;
588 
589 			/* Enable manual control with low off / high on. */
590 		} else if (eep_config.termination == 2) {
591 			sc->cfg.termination = ADW_TERM_CTL_SEL | ADW_TERM_CTL_H;
592 
593 			/* Enable manual control with low on / high on. */
594 		} else if (eep_config.termination == 3) {
595 			sc->cfg.termination = ADW_TERM_CTL_SEL |
596 					ADW_TERM_CTL_H | ADW_TERM_CTL_L;
597 		} else {
598 			/*
599 			 * The EEPROM 'termination' field contains a bad value.
600 			 * Use automatic termination instead.
601 			 */
602 			sc->cfg.termination = 0;
603 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
604 		}
605 	}
606 
607 	return warn_code;
608 }
609 
610 /*
611  * Read EEPROM configuration into the specified buffer.
612  *
613  * Return a checksum based on the EEPROM configuration read.
614  */
615 static          u_int16_t
616 AdvGetEEPConfig(iot, ioh, cfg_buf)
617 	bus_space_tag_t iot;
618 	bus_space_handle_t ioh;
619 	ADWEEP_CONFIG  *cfg_buf;
620 {
621 	u_int16_t       wval, chksum;
622 	u_int16_t      *wbuf;
623 	int             eep_addr;
624 
625 	wbuf = (u_int16_t *) cfg_buf;
626 	chksum = 0;
627 
628 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
629 	     eep_addr < ASC_EEP_DVC_CFG_END;
630 	     eep_addr++, wbuf++) {
631 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
632 		chksum += wval;
633 		*wbuf = wval;
634 	}
635 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
636 	wbuf++;
637 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
638 	     eep_addr < ASC_EEP_MAX_WORD_ADDR;
639 	     eep_addr++, wbuf++) {
640 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
641 	}
642 	return chksum;
643 }
644 
645 /*
646  * Read the EEPROM from specified location
647  */
648 static          u_int16_t
649 AdvReadEEPWord(iot, ioh, eep_word_addr)
650 	bus_space_tag_t iot;
651 	bus_space_handle_t ioh;
652 	int             eep_word_addr;
653 {
654 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
655 				ASC_EEP_CMD_READ | eep_word_addr);
656 	AdvWaitEEPCmd(iot, iot);
657 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
658 }
659 
660 /*
661  * Wait for EEPROM command to complete
662  */
663 static void
664 AdvWaitEEPCmd(iot, ioh)
665 	bus_space_tag_t iot;
666 	bus_space_handle_t ioh;
667 {
668 	DvcSleepMilliSecond(1);
669 
670 	for (;;) {
671 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
672 		    ASC_EEP_CMD_DONE) {
673 			break;
674 		}
675 		DvcSleepMilliSecond(1);
676 	}
677 
678 	return;
679 }
680 
681 /*
682  * Write the EEPROM from 'cfg_buf'.
683  */
684 static void
685 AdvSetEEPConfig(iot, ioh, cfg_buf)
686 	bus_space_tag_t iot;
687 	bus_space_handle_t ioh;
688 	ADWEEP_CONFIG  *cfg_buf;
689 {
690 	u_int16_t      *wbuf;
691 	u_int16_t       addr, chksum;
692 
693 	wbuf = (u_int16_t *) cfg_buf;
694 	chksum = 0;
695 
696 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
697 	AdvWaitEEPCmd(iot, ioh);
698 
699 	/*
700 	 * Write EEPROM from word 0 to word 15
701 	 */
702 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
703 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
704 		chksum += *wbuf;
705 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
706 		ADW_WRITE_WORD_REGISTER(iot, ioh,
707 				     IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
708 		AdvWaitEEPCmd(iot, ioh);
709 		DvcSleepMilliSecond(ASC_EEP_DELAY_MS);
710 	}
711 
712 	/*
713 	 * Write EEPROM checksum at word 18
714 	 */
715 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
716 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
717 				ASC_EEP_CMD_WRITE | addr);
718 	AdvWaitEEPCmd(iot, ioh);
719 	wbuf++;			/* skip over check_sum */
720 
721 	/*
722 	 * Write EEPROM OEM name at words 19 to 26
723 	 */
724 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
725 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
726 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
727 		ADW_WRITE_WORD_REGISTER(iot, ioh,
728 				     IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
729 		AdvWaitEEPCmd(iot, ioh);
730 	}
731 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
732 				ASC_EEP_CMD_WRITE_DISABLE);
733 	AdvWaitEEPCmd(iot, ioh);
734 	return;
735 }
736 
737 /*
738  * This function resets the chip and SCSI bus
739  *
740  * It is up to the caller to add a delay to let the bus settle after
741  * calling this function.
742  *
743  * The SCSI_CFG0, SCSI_CFG1, and MEM_CFG registers are set-up in
744  * AdvInitAsc3550Driver(). Here when doing a write to one of these
745  * registers read first and then write.
746  *
747  * Note: A SCSI Bus Reset can not be done until after the EEPROM
748  * configuration is read to determine whether SCSI Bus Resets
749  * should be performed.
750  */
751 void
752 AdvResetChip(iot, ioh)
753 	bus_space_tag_t iot;
754 	bus_space_handle_t ioh;
755 {
756 	u_int16_t       word;
757 	u_int8_t        byte;
758 
759 
760 	/*
761 	 * Reset Chip.
762 	 */
763 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
764 			ADW_CTRL_REG_CMD_RESET);
765 	DvcSleepMilliSecond(100);
766 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
767 			ADW_CTRL_REG_CMD_WR_IO_REG);
768 
769 	/*
770 	 * Initialize Chip registers.
771 	 *
772 	 * Note: Don't remove the use of a temporary variable in the following
773 	 * code, otherwise the Microsoft C compiler will turn the following
774 	 * lines into a no-op.
775 	 */
776 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_MEM_CFG);
777 	byte |= RAM_SZ_8KB;
778 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_MEM_CFG, byte);
779 
780 	word = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
781 	word &= ~BIG_ENDIAN;
782 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1, word);
783 
784 	/*
785 	 * Setting the START_CTL_EMFU 3:2 bits sets a FIFO threshold
786 	 * of 128 bytes. This register is only accessible to the host.
787 	 */
788 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
789 				START_CTL_EMFU | READ_CMD_MRM);
790 }
791 
792 /*
793  * Description:
794  *      Send a SCSI request to the ASC3550 chip
795  *
796  * If there is no SG list for the request, set 'sg_entry_cnt' to 0.
797  *
798  * If 'sg_real_addr' is non-zero on entry, AscGetSGList() will not be
799  * called. It is assumed the caller has already initialized 'sg_real_addr'.
800  *
801  * Return:
802  *      ADW_SUCCESS(1) - the request is in the mailbox
803  *      ADW_BUSY(0) - total request count > 253, try later
804  *      ADW_ERROR(-1) - invalid scsi request Q
805  */
806 int
807 AdvExeScsiQueue(sc, scsiq)
808 	ADW_SOFTC      *sc;
809 	ADW_SCSI_REQ_Q *scsiq;
810 {
811 	return AdvSendScsiCmd(sc, scsiq);
812 }
813 
814 /*
815  * Reset SCSI Bus and purge all outstanding requests.
816  *
817  * Return Value:
818  *      ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
819  *
820  * Note: Should always return ADW_TRUE.
821  */
822 int
823 AdvResetCCB(sc)
824 	ADW_SOFTC      *sc;
825 {
826 	int             status;
827 
828 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET, 0L, 0);
829 
830 	AdvResetSCSIBus(sc);
831 
832 	return status;
833 }
834 
835 /*
836  * Reset SCSI Bus and delay.
837  */
838 void
839 AdvResetSCSIBus(sc)
840 	ADW_SOFTC      *sc;
841 {
842 	bus_space_tag_t iot = sc->sc_iot;
843 	bus_space_handle_t ioh = sc->sc_ioh;
844 	u_int16_t       scsi_ctrl;
845 
846 
847 
848 	/*
849 	 * The microcode currently sets the SCSI Bus Reset signal while
850 	 * handling the AdvSendIdleCmd() IDLE_CMD_SCSI_RESET command above.
851 	 * But the SCSI Bus Reset Hold Time in the uCode is not deterministic
852 	 * (it may in fact be for less than the SCSI Spec. minimum of 25 us).
853 	 * Therefore on return the Adv Library sets the SCSI Bus Reset signal
854 	 * for ASC_SCSI_RESET_HOLD_TIME_US, which is defined to be greater
855 	 * than 25 us.
856 	 */
857 	scsi_ctrl = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL);
858 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL,
859 				scsi_ctrl | ADW_SCSI_CTRL_RSTOUT);
860 	DvcDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
861 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL,
862 				scsi_ctrl & ~ADW_SCSI_CTRL_RSTOUT);
863 
864 	DvcSleepMilliSecond((ulong) sc->scsi_reset_wait * 1000);
865 }
866 
867 
868 /*
869  * Adv Library Interrupt Service Routine
870  *
871  *  This function is called by a driver's interrupt service routine.
872  *  The function disables and re-enables interrupts.
873  *
874  *  When a microcode idle command is completed, the ADW_DVC_VAR
875  *  'idle_cmd_done' field is set to ADW_TRUE.
876  *
877  *  Note: AdvISR() can be called when interrupts are disabled or even
878  *  when there is no hardware interrupt condition present. It will
879  *  always check for completed idle commands and microcode requests.
880  *  This is an important feature that shouldn't be changed because it
881  *  allows commands to be completed from polling mode loops.
882  *
883  * Return:
884  *   ADW_TRUE(1) - interrupt was pending
885  *   ADW_FALSE(0) - no interrupt was pending
886  */
887 int
888 AdvISR(sc)
889 	ADW_SOFTC      *sc;
890 {
891 	bus_space_tag_t iot = sc->sc_iot;
892 	bus_space_handle_t ioh = sc->sc_ioh;
893 	u_int8_t        int_stat;
894 	u_int16_t       next_done_loc, target_bit;
895 	int             completed_q;
896 	ADW_SCSI_REQ_Q *scsiq;
897 	ASC_REQ_SENSE  *sense_data;
898 	int             ret;
899 
900 
901 	ret = (ADW_IS_INT_PENDING(iot, ioh)) ? ADW_TRUE : ADW_FALSE;
902 
903 	/* Reading the register clears the interrupt. */
904 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
905 
906 	if (int_stat & ADW_INTR_STATUS_INTRB) {
907 		sc->idle_cmd_done = ADW_TRUE;
908 	}
909 	/*
910 	 * Notify the driver of a hardware detected SCSI Bus Reset.
911 	 */
912 	if (int_stat & ADW_INTR_STATUS_INTRC) {
913 		if (sc->sbreset_callback) {
914 			(*(ADW_SBRESET_CALLBACK) sc->sbreset_callback) (sc);
915 		}
916 	}
917 	/*
918 	 * ASC_MC_HOST_NEXT_DONE (0x129) is actually the last completed RISC
919 	 * Queue List request. Its forward pointer (RQL_FWD) points to the
920 	 * current completed RISC Queue List request.
921 	 */
922 	ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_DONE, next_done_loc);
923 	next_done_loc = ASC_MC_RISC_Q_LIST_BASE +
924 		(next_done_loc * ASC_MC_RISC_Q_LIST_SIZE) + RQL_FWD;
925 
926 	ADW_READ_BYTE_LRAM(iot, ioh, next_done_loc, completed_q);
927 
928 	/* Loop until all completed Q's are processed. */
929 	while (completed_q != ASC_MC_NULL_Q) {
930 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_DONE,
931 				    completed_q);
932 
933 		next_done_loc = ASC_MC_RISC_Q_LIST_BASE +
934 			(completed_q * ASC_MC_RISC_Q_LIST_SIZE);
935 
936 		/*
937 		 * Read the ADW_SCSI_REQ_Q virtual address pointer from
938 		 * the RISC list entry. The microcode has changed the
939 		 * ADW_SCSI_REQ_Q physical address to its virtual address.
940 		 *
941 		 * Refer to comments at the end of AdvSendScsiCmd() for
942 		 * more information on the RISC list structure.
943 		 */
944 		{
945 			ushort          lsw, msw;
946 			ADW_READ_WORD_LRAM(iot, ioh,
947 					   next_done_loc + RQL_PHYADDR, lsw);
948 			ADW_READ_WORD_LRAM(iot, ioh,
949 				      next_done_loc + RQL_PHYADDR + 2, msw);
950 
951 			/*
952 			 * Here we retrive the virtual address of the
953 			 * ADW_SCSI_REQ_Q structure. This is accomplished
954 			 * retriving first the ccb physical address (which
955 			 * we passed to the board in AdvSendScsiCmd),
956 			 * translating then to a virtual address, and
957 			 * retrivieng the the ADW_SCSI_REQ_Q pointer stored
958 			 * into the ccb structure.
959 			 */
960 			scsiq = &adw_ccb_phys_kv(sc,
961 				(((u_int32_t) msw << 16) | lsw))->scsiq;
962 		}
963 
964 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
965 
966 		/*
967 		 * Clear request microcode control flag.
968 		 */
969 		scsiq->cntl = 0;
970 
971 		/*
972 		 * Check Condition handling
973 		 */
974 		if ((scsiq->done_status == QD_WITH_ERROR) &&
975 		    (scsiq->scsi_status == SS_CHK_CONDITION) &&
976 		 (sense_data = (ASC_REQ_SENSE *) scsiq->vsense_addr) != 0 &&
977 		    (scsiq->orig_sense_len - scsiq->sense_len) >=
978 			ASC_MIN_SENSE_LEN) {
979 			/*
980 			 * Command returned with a check condition and valid
981 			 * sense data.
982 			 */
983 		}
984 		/*
985 		 * If the command that completed was a SCSI INQUIRY and
986 		 * LUN 0 was sent the command, then process the INQUIRY
987 		 * command information for the device.
988 		 */
989 		else if (scsiq->done_status == QD_NO_ERROR &&
990 			 scsiq->cdb[0] == INQUIRY &&
991 			 scsiq->target_lun == 0) {
992 			AdvInquiryHandling(sc, scsiq);
993 		}
994 		/* Change the RISC Queue List state to free. */
995 		ADW_WRITE_BYTE_LRAM(iot, ioh,
996 				 next_done_loc + RQL_STATE, ASC_MC_QS_FREE);
997 
998 		/* Get the RISC Queue List forward pointer. */
999 		ADW_READ_BYTE_LRAM(iot, ioh,
1000 				   next_done_loc + RQL_FWD, completed_q);
1001 
1002 		/*
1003 		 * Notify the driver of the completed request by passing
1004 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
1005 		 */
1006 		sc->cur_host_qng--;
1007 		scsiq->a_flag |= ADW_SCSIQ_DONE;
1008 		(*(ADW_ISR_CALLBACK) sc->isr_callback) (sc, scsiq);
1009 		/*
1010 		 * Note: After the driver callback function is called, 'scsiq'
1011 		 * can no longer be referenced.
1012 		 *
1013 		 * Fall through and continue processing other completed
1014 		 * requests...
1015 		 */
1016 	}
1017 	return ret;
1018 }
1019 
1020 /*
1021  * Send an idle command to the chip and wait for completion.
1022  *
1023  * Interrupts do not have to be enabled on entry.
1024  *
1025  * Return Values:
1026  *   ADW_TRUE - command completed successfully
1027  *   ADW_FALSE - command failed
1028  */
1029 int
1030 AdvSendIdleCmd(sc, idle_cmd, idle_cmd_parameter, flags)
1031 	ADW_SOFTC      *sc;
1032 	u_int16_t       idle_cmd;
1033 	u_int32_t       idle_cmd_parameter;
1034 	int             flags;
1035 {
1036 	bus_space_tag_t iot = sc->sc_iot;
1037 	bus_space_handle_t ioh = sc->sc_ioh;
1038 	u_int32_t       i;
1039 	int             ret;
1040 
1041 	sc->idle_cmd_done = 0;
1042 
1043 	/*
1044 	 * Write the idle command value after the idle command parameter
1045 	 * has been written to avoid a race condition. If the order is not
1046 	 * followed, the microcode may process the idle command before the
1047 	 * parameters have been written to LRAM.
1048 	 */
1049 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IDLE_PARA_STAT,
1050 			     idle_cmd_parameter);
1051 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD, idle_cmd);
1052 
1053 	/*
1054 	 * If the 'flags' argument contains the ADW_NOWAIT flag, then
1055 	 * return with success.
1056 	 */
1057 	if (flags & ADW_NOWAIT)
1058 		return ADW_TRUE;
1059 
1060 	for (i = 0; i < SCSI_WAIT_10_SEC * SCSI_MS_PER_SEC; i++) {
1061 		/*
1062 		 * 'idle_cmd_done' is set by AdvISR().
1063 		 */
1064 		if (sc->idle_cmd_done)
1065 			break;
1066 
1067 		DvcSleepMilliSecond(1);
1068 
1069 		/*
1070 		 * If interrupts were disabled on entry to AdvSendIdleCmd(),
1071 		 * then they will still be disabled here. Call AdvISR() to
1072 		 * check for the idle command completion.
1073 		 */
1074 		(void) AdvISR(sc);
1075 	}
1076 
1077 	if (sc->idle_cmd_done == ADW_FALSE) {
1078 		return ADW_FALSE;
1079 	} else {
1080 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_IDLE_PARA_STAT, ret);
1081 		return ret;
1082 	}
1083 }
1084 
1085 /*
1086  * Send the SCSI request block to the adapter
1087  *
1088  * Each of the 255 Adv Library/Microcode RISC Lists or mailboxes has the
1089  * following structure:
1090  *
1091  * 0: RQL_FWD - RISC list forward pointer (1 byte)
1092  * 1: RQL_BWD - RISC list backward pointer (1 byte)
1093  * 2: RQL_STATE - RISC list state byte - free, ready, done, aborted (1 byte)
1094  * 3: RQL_TID - request target id (1 byte)
1095  * 4: RQL_PHYADDR - ADW_SCSI_REQ_Q physical pointer (4 bytes)
1096  *
1097  * Return:
1098  *      ADW_SUCCESS(1) - the request is in the mailbox
1099  *      ADW_BUSY(0) - total request count > 253, try later
1100  */
1101 static int
1102 AdvSendScsiCmd(sc, scsiq)
1103 	ADW_SOFTC      *sc;
1104 	ADW_SCSI_REQ_Q *scsiq;
1105 {
1106 	bus_space_tag_t iot = sc->sc_iot;
1107 	bus_space_handle_t ioh = sc->sc_ioh;
1108 	ADW_CCB        *ccb;
1109 	u_int16_t       next_ready_loc;
1110 	u_int8_t        next_ready_loc_fwd;
1111 	long            req_size;
1112 	u_int32_t       q_phy_addr;
1113 
1114 
1115 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1116 
1117 	if (sc->cur_host_qng >= sc->max_host_qng) {
1118 		return ADW_BUSY;
1119 	} else {
1120 		sc->cur_host_qng++;
1121 	}
1122 
1123 	/*
1124 	 * Clear the ADW_SCSI_REQ_Q done flag.
1125 	 */
1126 	scsiq->a_flag &= ~ADW_SCSIQ_DONE;
1127 
1128 	/*
1129 	 * Save the original sense buffer length.
1130 	 *
1131 	 * After the request completes 'sense_len' will be set to the residual
1132 	 * byte count of the Auto-Request Sense if a command returns CHECK
1133 	 * CONDITION and the Sense Data is valid indicated by 'host_status' not
1134 	 * being set to QHSTA_M_AUTO_REQ_SENSE_FAIL. To determine the valid
1135 	 * Sense Data Length subtract 'sense_len' from 'orig_sense_len'.
1136 	 */
1137 	scsiq->orig_sense_len = scsiq->sense_len;
1138 
1139 	ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_READY, next_ready_loc);
1140 	next_ready_loc = ASC_MC_RISC_Q_LIST_BASE +
1141 		(next_ready_loc * ASC_MC_RISC_Q_LIST_SIZE);
1142 
1143 	/*
1144 	 * Write the physical address of the Q to the mailbox.
1145 	 * We need to skip the first four bytes, because the microcode
1146 	 * uses them internally for linking Q's together.
1147 	 */
1148 	req_size = sizeof(ADW_SCSI_REQ_Q);
1149 	q_phy_addr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1150 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1151 
1152 	/*
1153 	 * The "scsiq" pointer must be passed to the board so we can retrive it
1154 	 * during the interrupt condition: inside the Adv_ISR() function.
1155 	 * It should contain the virtual address of ADW_SCSI_REQ_Q structure,
1156 	 * but actually, to make it works under 64bits architecure it contains
1157 	 * the physical address of ccb (ADW_CCB).
1158 	 */
1159 	scsiq->ccb_scsiq_ptr = scsiq->ccb_ptr;
1160 
1161 	/*
1162 	 * The RISC list structure, which 'next_ready_loc' is a pointer
1163 	 * to in microcode LRAM, has the format detailed in the comment
1164 	 * header for this function.
1165 	 *
1166 	 * Write the ADW_SCSI_REQ_Q physical pointer to
1167 	 * 'next_ready_loc' request.
1168 	 */
1169 	ADW_WRITE_DWORD_LRAM(iot, ioh, next_ready_loc + RQL_PHYADDR,
1170 			q_phy_addr);
1171 
1172 	/* Write target_id to 'next_ready_loc' request. */
1173 	ADW_WRITE_BYTE_LRAM(iot, ioh, next_ready_loc + RQL_TID,
1174 			scsiq->target_id);
1175 
1176 	/*
1177 	 * Set the ASC_MC_HOST_NEXT_READY (0x128) microcode variable to
1178 	 * the 'next_ready_loc' request forward pointer.
1179 	 *
1180 	 * Do this *before* changing the 'next_ready_loc' queue to QS_READY.
1181 	 * After the state is changed to QS_READY 'RQL_FWD' will be changed
1182 	 * by the microcode.
1183 	 *
1184 	 * NOTE: The temporary variable 'next_ready_loc_fwd' is required to
1185 	 * prevent some compilers from optimizing out 'AdvReadByteLram()' if
1186 	 * it were used as the 3rd argument to 'AdvWriteByteLram()'.
1187 	 */
1188 	ADW_READ_BYTE_LRAM(iot, ioh, next_ready_loc + RQL_FWD,
1189 			   next_ready_loc_fwd);
1190 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_READY,
1191 			    next_ready_loc_fwd);
1192 
1193 	/*
1194 	 * Change the state of 'next_ready_loc' request from QS_FREE to
1195 	 * QS_READY which will cause the microcode to pick it up and
1196 	 * execute it.
1197 	 *
1198 	 * Can't reference 'next_ready_loc' after changing the request
1199 	 * state to QS_READY. The microcode now owns the request.
1200 	 */
1201 	ADW_WRITE_BYTE_LRAM(iot, ioh, next_ready_loc + RQL_STATE,
1202 			    ASC_MC_QS_READY);
1203 
1204 	return ADW_SUCCESS;
1205 }
1206 
1207 /*
1208  * Inquiry Information Byte 7 Handling
1209  *
1210  * Handle SCSI Inquiry Command information for a device by setting
1211  * microcode operating variables that affect WDTR, SDTR, and Tag
1212  * Queuing.
1213  */
1214 static void
1215 AdvInquiryHandling(sc, scsiq)
1216 	ADW_SOFTC      *sc;
1217 	ADW_SCSI_REQ_Q *scsiq;
1218 {
1219 	bus_space_tag_t iot = sc->sc_iot;
1220 	bus_space_handle_t ioh = sc->sc_ioh;
1221 	ASC_SCSI_INQUIRY *inq;
1222 	u_int16_t       cfg_word;
1223 	u_int16_t       tidmask;
1224 	u_int8_t        tid;
1225 
1226 	/*
1227 	 * AdvInquiryHandling() requires up to INQUIRY information Byte 7
1228 	 * to be available.
1229 	 *
1230 	 * If less than 8 bytes of INQUIRY information were requested or less
1231 	 * than 8 bytes were transferred, then return. cdb[4] is the request
1232 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
1233 	 * microcode to the transfer residual count.
1234 	 */
1235 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
1236 		return;
1237 	}
1238 	tid = scsiq->target_id;
1239 	inq = (ASC_SCSI_INQUIRY *) scsiq->vdata_addr;
1240 
1241 	/*
1242 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
1243 	 */
1244 	if (inq->byte3.rsp_data_fmt < 2 && inq->byte2.ansi_apr_ver < 2) {
1245 		return;
1246 	} else {
1247 		/*
1248 		 * INQUIRY Byte 7 Handling
1249 		 *
1250 		 * Use a device's INQUIRY byte 7 to determine whether it
1251 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
1252 		 * is enabled in the EEPROM and the device supports the
1253 		 * feature, then enable it in the microcode.
1254 		 */
1255 
1256 		tidmask = ADW_TID_TO_TIDMASK(tid);
1257 		/*
1258 		 * Wide Transfers
1259 		 *
1260 		 * If the EEPROM enabled WDTR for the device and the device
1261 		 * supports wide bus (16 bit) transfers, then turn on the
1262 		 * device's 'wdtr_able' bit and write the new value to the
1263 		 * microcode.
1264 		 */
1265 		if ((sc->wdtr_able & tidmask) && inq->byte7.WBus16) {
1266 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
1267 					   cfg_word);
1268 			if ((cfg_word & tidmask) == 0) {
1269 				cfg_word |= tidmask;
1270 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
1271 						    cfg_word);
1272 
1273 				/*
1274 				 * Clear the microcode "WDTR negotiation" done
1275 				 * indicator for the target to cause it
1276 				 * to negotiate with the new setting set above.
1277 				 */
1278 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
1279 						   cfg_word);
1280 				cfg_word &= ~tidmask;
1281 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
1282 						    cfg_word);
1283 			}
1284 		}
1285 		/*
1286 		 * Synchronous Transfers
1287 		 *
1288 		 * If the EEPROM enabled SDTR for the device and the device
1289 		 * supports synchronous transfers, then turn on the device's
1290 		 * 'sdtr_able' bit. Write the new value to the microcode.
1291 		 */
1292 		if ((sc->sdtr_able & tidmask) && inq->byte7.Sync) {
1293 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
1294 					   cfg_word);
1295 			if ((cfg_word & tidmask) == 0) {
1296 				cfg_word |= tidmask;
1297 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
1298 						    cfg_word);
1299 
1300 				/*
1301 				 * Clear the microcode "SDTR negotiation" done
1302 				 * indicator for the target to cause it
1303 				 * to negotiate with the new setting set above.
1304 				 */
1305 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
1306 						   cfg_word);
1307 				cfg_word &= ~tidmask;
1308 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
1309 						    cfg_word);
1310 			}
1311 		}
1312 		/*
1313 		 * If the EEPROM enabled Tag Queuing for device and the
1314 		 * device supports Tag Queuing, then turn on the device's
1315 		 * 'tagqng_enable' bit in the microcode and set the microcode
1316 		 * maximum command count to the ADW_DVC_VAR 'max_dvc_qng'
1317 		 * value.
1318 		 *
1319 		 * Tag Queuing is disabled for the BIOS which runs in polled
1320 		 * mode and would see no benefit from Tag Queuing. Also by
1321 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
1322 		 * bugs will at least work with the BIOS.
1323 		 */
1324 		if ((sc->tagqng_able & tidmask) && inq->byte7.CmdQue) {
1325 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
1326 					   cfg_word);
1327 			cfg_word |= tidmask;
1328 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
1329 					    cfg_word);
1330 			ADW_WRITE_BYTE_LRAM(iot, ioh,
1331 					    ASC_MC_NUMBER_OF_MAX_CMD + tid,
1332 					    sc->max_dvc_qng);
1333 		}
1334 	}
1335 }
1336 
1337 static void
1338 DvcSleepMilliSecond(n)
1339 	ulong           n;
1340 {
1341 
1342 	DELAY(n * 1000);
1343 }
1344 
1345 static void
1346 DvcDelayMicroSecond(n)
1347 	ulong           n;
1348 {
1349 
1350 	DELAY(n);
1351 }
1352