xref: /netbsd-src/sys/dev/dtv/dtv_math.c (revision fb95eabd74c965e490597bf91f39a01341be3517)
1*fb95eabdSjmcneill /* $NetBSD: dtv_math.c,v 1.5 2011/08/09 01:42:24 jmcneill Exp $ */
2ee71f9a6Sjmcneill 
3ee71f9a6Sjmcneill /*-
4ee71f9a6Sjmcneill  * Copyright (c) 2011 Alan Barrett <apb@NetBSD.org>
5ee71f9a6Sjmcneill  * All rights reserved.
6ee71f9a6Sjmcneill  *
7ee71f9a6Sjmcneill  * Redistribution and use in source and binary forms, with or without
8ee71f9a6Sjmcneill  * modification, are permitted provided that the following conditions
9ee71f9a6Sjmcneill  * are met:
10ee71f9a6Sjmcneill  * 1. Redistributions of source code must retain the above copyright
11ee71f9a6Sjmcneill  *    notice, this list of conditions and the following disclaimer.
12ee71f9a6Sjmcneill  * 2. Redistributions in binary form must reproduce the above copyright
13ee71f9a6Sjmcneill  *    notice, this list of conditions and the following disclaimer in the
14ee71f9a6Sjmcneill  *    documentation and/or other materials provided with the distribution.
15ee71f9a6Sjmcneill  *
16ee71f9a6Sjmcneill  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17ee71f9a6Sjmcneill  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18ee71f9a6Sjmcneill  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19ee71f9a6Sjmcneill  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20ee71f9a6Sjmcneill  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21ee71f9a6Sjmcneill  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22ee71f9a6Sjmcneill  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23ee71f9a6Sjmcneill  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24ee71f9a6Sjmcneill  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25ee71f9a6Sjmcneill  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26ee71f9a6Sjmcneill  * POSSIBILITY OF SUCH DAMAGE.
27ee71f9a6Sjmcneill  */
28ee71f9a6Sjmcneill 
29ee71f9a6Sjmcneill #include <sys/cdefs.h>
30*fb95eabdSjmcneill __KERNEL_RCSID(0, "$NetBSD: dtv_math.c,v 1.5 2011/08/09 01:42:24 jmcneill Exp $");
31ee71f9a6Sjmcneill 
32f3fc71eeSjmcneill #include <sys/types.h>
33ee71f9a6Sjmcneill #include <sys/bitops.h>
34*fb95eabdSjmcneill #include <sys/module.h>
35ee71f9a6Sjmcneill 
36*fb95eabdSjmcneill #include <dev/dtv/dtv_math.h>
37217d9c2aSapb 
38ee71f9a6Sjmcneill /*
39ee71f9a6Sjmcneill  * dtv_intlog10 -- return an approximation to log10(x) * 1<<24,
40ee71f9a6Sjmcneill  * using integer arithmetic.
41ee71f9a6Sjmcneill  *
4276108b75Sapb  * As a special case, returns 0 when x == 0.  The mathematical
4376108b75Sapb  * result is -infinity.
44ee71f9a6Sjmcneill  *
4576108b75Sapb  * This function uses 0.5 + x/2 - 1/x as an approximation to
4676108b75Sapb  * log2(x) for x in the range [1.0, 2.0], and scales the input value
4776108b75Sapb  * to fit this range.  The resulting error is always better than
4876108b75Sapb  * 0.2%.
49ee71f9a6Sjmcneill  *
5076108b75Sapb  * Here's a table of the desired and actual results, as well
5176108b75Sapb  * as the absolute and relative errors, for several values of x.
5276108b75Sapb  *
5376108b75Sapb  *           x     desired      actual     err_abs err_rel
5476108b75Sapb  *           0           0           0          +0 +0.00000
5576108b75Sapb  *           1           0           0          +0 +0.00000
5676108b75Sapb  *           2     5050445     5050122        -323 -0.00006
5776108b75Sapb  *           3     8004766     7996348       -8418 -0.00105
5876108b75Sapb  *           4    10100890    10100887          -3 -0.00000
5976108b75Sapb  *           5    11726770    11741823      +15053 +0.00128
6076108b75Sapb  *           6    13055211    13046470       -8741 -0.00067
6176108b75Sapb  *           7    14178392    14158860      -19532 -0.00138
6276108b75Sapb  *           8    15151335    15151009        -326 -0.00002
6376108b75Sapb  *           9    16009532    16028061      +18529 +0.00116
6476108b75Sapb  *          10    16777216    16792588      +15372 +0.00092
6576108b75Sapb  *          11    17471670    17475454       +3784 +0.00022
6676108b75Sapb  *          12    18105656    18097235       -8421 -0.00047
6776108b75Sapb  *          13    18688868    18672077      -16791 -0.00090
6876108b75Sapb  *          14    19228837    19209625      -19212 -0.00100
6976108b75Sapb  *          15    19731537    19717595      -13942 -0.00071
7076108b75Sapb  *          16    20201781    20201774          -7 -0.00000
7176108b75Sapb  *          20    21827661    21842710      +15049 +0.00069
7276108b75Sapb  *          24    23156102    23147357       -8745 -0.00038
7376108b75Sapb  *          30    24781982    24767717      -14265 -0.00058
7476108b75Sapb  *          40    26878106    26893475      +15369 +0.00057
7576108b75Sapb  *          60    29832427    29818482      -13945 -0.00047
7676108b75Sapb  *         100    33554432    33540809      -13623 -0.00041
7776108b75Sapb  *        1000    50331648    50325038       -6610 -0.00013
7876108b75Sapb  *       10000    67108864    67125985      +17121 +0.00026
7976108b75Sapb  *      100000    83886080    83875492      -10588 -0.00013
8076108b75Sapb  *     1000000   100663296   100652005      -11291 -0.00011
8176108b75Sapb  *    10000000   117440512   117458739      +18227 +0.00016
8276108b75Sapb  *   100000000   134217728   134210175       -7553 -0.00006
8376108b75Sapb  *  1000000000   150994944   150980258      -14686 -0.00010
8476108b75Sapb  *  4294967295   161614248   161614192         -56 -0.00000
85ee71f9a6Sjmcneill  */
86ee71f9a6Sjmcneill uint32_t
dtv_intlog10(uint32_t x)87ee71f9a6Sjmcneill dtv_intlog10(uint32_t x)
88ee71f9a6Sjmcneill {
8976108b75Sapb 	uint32_t ilog2x;
9076108b75Sapb 	uint32_t t;
9176108b75Sapb 	uint32_t t1;
9276108b75Sapb 
93ee71f9a6Sjmcneill 	if (__predict_false(x == 0))
94ee71f9a6Sjmcneill 		return 0;
9576108b75Sapb 
96ee71f9a6Sjmcneill 	/*
9776108b75Sapb 	 * find ilog2x = floor(log2(x)), as an integer in the range [0,31].
98ee71f9a6Sjmcneill 	 */
9976108b75Sapb 	ilog2x = ilog2(x);
10076108b75Sapb 
10176108b75Sapb 	/*
10276108b75Sapb 	 * Set "t" to the result of shifting x left or right
10376108b75Sapb 	 * until the most significant bit that was actually set
10476108b75Sapb 	 * moves into the 1<<24 position.
10576108b75Sapb 	 *
10676108b75Sapb 	 * Now we can think of "t" as representing
10776108b75Sapb 	 * x / 2**(floor(log2(x))),
10876108b75Sapb 	 * as a fixed-point value with 8 integer bits and 24 fraction bits.
10976108b75Sapb 	 *
11076108b75Sapb 	 * This value is in the semi-closed interval [1.0, 2.0)
11176108b75Sapb 	 * when interpreting it as a fixed-point number, or in the
11276108b75Sapb 	 * interval [0x01000000, 0x01ffffff] when examining the
11376108b75Sapb 	 * underlying uint32_t representation.
11476108b75Sapb 	 */
11576108b75Sapb 	t = (ilog2x > 24 ? x >> (ilog2x - 24) : x << (24 - ilog2x));
11676108b75Sapb 
11776108b75Sapb 	/*
11876108b75Sapb 	 * Calculate "t1 = 1 / t" in the 8.24 fixed-point format.
11976108b75Sapb 	 * This value is in the interval [0.5, 1.0]
12076108b75Sapb 	 * when interpreting it as a fixed-point number, or in the
12176108b75Sapb 	 * interval [0x00800000, 0x01000000] when examining the
12276108b75Sapb 	 * underlying uint32_t representation.
12376108b75Sapb 	 *
12476108b75Sapb 	 */
12576108b75Sapb 	t1 = ((uint64_t)1 << 48) / t;
12676108b75Sapb 
12776108b75Sapb 	/*
12876108b75Sapb 	 * Calculate "t = ilog2x + t/2 - t1 + 0.5" in the 8.24
12976108b75Sapb 	 * fixed-point format.
13076108b75Sapb 	 *
13176108b75Sapb 	 * If x is a power of 2, then t is now exactly equal to log2(x)
13276108b75Sapb 	 * when interpreting it as a fixed-point number, or exactly
13376108b75Sapb 	 * log2(x) << 24 when examining the underlying uint32_t
13476108b75Sapb 	 * representation.
13576108b75Sapb 	 *
13676108b75Sapb 	 * If x is not a power of 2, then t is the result of
13776108b75Sapb 	 * using the function x/2 - 1/x + 0.5 as an approximation for
13876108b75Sapb 	 * log2(x) for x in the range [1, 2], and scaling both the
13976108b75Sapb 	 * input and the result by the appropriate number of powers of 2.
14076108b75Sapb 	 */
14176108b75Sapb 	t = (ilog2x << 24) + (t >> 1) - t1 + (1 << 23);
14276108b75Sapb 
14376108b75Sapb 	/*
14476108b75Sapb 	 * Multiply t by log10(2) to get the final result.
14576108b75Sapb 	 *
14676108b75Sapb 	 * log10(2) is approximately 643/2136  We divide before
14776108b75Sapb 	 * multiplying to avoid overflow.
14876108b75Sapb 	 */
14976108b75Sapb 	return t / 2136 * 643;
150ee71f9a6Sjmcneill }
15176108b75Sapb 
152*fb95eabdSjmcneill #ifdef _KERNEL
153*fb95eabdSjmcneill MODULE(MODULE_CLASS_MISC, dtv_math, NULL);
154*fb95eabdSjmcneill 
155*fb95eabdSjmcneill static int
dtv_math_modcmd(modcmd_t cmd,void * opaque)156*fb95eabdSjmcneill dtv_math_modcmd(modcmd_t cmd, void *opaque)
157*fb95eabdSjmcneill {
158*fb95eabdSjmcneill 	if (cmd == MODULE_CMD_INIT || cmd == MODULE_CMD_FINI)
159*fb95eabdSjmcneill 		return 0;
160*fb95eabdSjmcneill 	return ENOTTY;
161*fb95eabdSjmcneill }
162*fb95eabdSjmcneill #endif
163*fb95eabdSjmcneill 
16476108b75Sapb #ifdef TEST_DTV_MATH
16576108b75Sapb /*
16676108b75Sapb  * To test:
16776108b75Sapb  *	cc -DTEST_DTV_MATH ./dtv_math.c -lm -o ./a.out && ./a.out
16876108b75Sapb  */
16976108b75Sapb 
17076108b75Sapb #include <stdio.h>
17176108b75Sapb #include <inttypes.h>
17276108b75Sapb #include <math.h>
17376108b75Sapb 
17476108b75Sapb int
main(void)17576108b75Sapb main(void)
17676108b75Sapb {
17776108b75Sapb 	uint32_t xlist[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
17876108b75Sapb 			14, 15, 16, 20, 24, 30, 40, 60, 100, 1000, 10000,
17976108b75Sapb 			100000, 1000000, 10000000, 100000000, 1000000000,
18076108b75Sapb 			0xffffffff};
18176108b75Sapb 	int i;
18276108b75Sapb 
18376108b75Sapb 	printf("%11s %11s %11s %11s %s\n",
18476108b75Sapb 		"x", "desired", "actual", "err_abs", "err_rel");
18576108b75Sapb 	for (i = 0; i < __arraycount(xlist); i++)
18676108b75Sapb 	{
18776108b75Sapb 		uint32_t x = xlist[i];
18876108b75Sapb 		uint32_t desired = (uint32_t)(log10((double)x)
18976108b75Sapb 						* (double)(1<<24));
19076108b75Sapb 		uint32_t actual = dtv_intlog10(x);
19176108b75Sapb 		int32_t err_abs = actual - desired;
19276108b75Sapb 		double err_rel = (err_abs == 0 ? 0.0
19376108b75Sapb 				: err_abs / (double)actual);
19476108b75Sapb 
19576108b75Sapb 		printf("%11"PRIu32" %11"PRIu32" %11"PRIu32
19676108b75Sapb 			" %+11"PRId32" %+.5f\n",
19776108b75Sapb 			x, desired, actual, err_abs, err_rel);
19876108b75Sapb 	}
19976108b75Sapb 	return 0;
20076108b75Sapb }
20176108b75Sapb 
20276108b75Sapb #endif /* TEST_DTV_MATH */
203