xref: /netbsd-src/sys/compat/linux/common/linux_sched.c (revision ed75d7a867996c84cfa88e3b8906816277e957f7)
1 /*	$NetBSD: linux_sched.c,v 1.73 2019/11/23 19:42:52 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center; by Matthias Scheler.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Linux compatibility module. Try to deal with scheduler related syscalls.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: linux_sched.c,v 1.73 2019/11/23 19:42:52 ad Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/proc.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/syscallargs.h>
46 #include <sys/wait.h>
47 #include <sys/kauth.h>
48 #include <sys/ptrace.h>
49 #include <sys/atomic.h>
50 
51 #include <sys/cpu.h>
52 
53 #include <compat/linux/common/linux_types.h>
54 #include <compat/linux/common/linux_signal.h>
55 #include <compat/linux/common/linux_emuldata.h>
56 #include <compat/linux/common/linux_ipc.h>
57 #include <compat/linux/common/linux_sem.h>
58 #include <compat/linux/common/linux_exec.h>
59 #include <compat/linux/common/linux_machdep.h>
60 
61 #include <compat/linux/linux_syscallargs.h>
62 
63 #include <compat/linux/common/linux_sched.h>
64 
65 static int linux_clone_nptl(struct lwp *, const struct linux_sys_clone_args *,
66     register_t *);
67 
68 /* Unlike Linux, dynamically calculate CPU mask size */
69 #define	LINUX_CPU_MASK_SIZE (sizeof(long) * ((ncpu + LONG_BIT - 1) / LONG_BIT))
70 
71 #if DEBUG_LINUX
72 #define DPRINTF(x) uprintf x
73 #else
74 #define DPRINTF(x)
75 #endif
76 
77 static void
78 linux_child_return(void *arg)
79 {
80 	struct lwp *l = arg;
81 	struct proc *p = l->l_proc;
82 	struct linux_emuldata *led = l->l_emuldata;
83 	void *ctp = led->led_child_tidptr;
84 	int error;
85 
86 	if (ctp) {
87 		if ((error = copyout(&p->p_pid, ctp, sizeof(p->p_pid))) != 0)
88 			printf("%s: LINUX_CLONE_CHILD_SETTID "
89 			    "failed (child_tidptr = %p, tid = %d error =%d)\n",
90 			    __func__, ctp, p->p_pid, error);
91 	}
92 	child_return(arg);
93 }
94 
95 int
96 linux_sys_clone(struct lwp *l, const struct linux_sys_clone_args *uap,
97     register_t *retval)
98 {
99 	/* {
100 		syscallarg(int) flags;
101 		syscallarg(void *) stack;
102 		syscallarg(void *) parent_tidptr;
103 		syscallarg(void *) tls;
104 		syscallarg(void *) child_tidptr;
105 	} */
106 	struct linux_emuldata *led;
107 	int flags, sig, error;
108 
109 	/*
110 	 * We don't support the Linux CLONE_PID or CLONE_PTRACE flags.
111 	 */
112 	if (SCARG(uap, flags) & (LINUX_CLONE_PID|LINUX_CLONE_PTRACE))
113 		return EINVAL;
114 
115 	/*
116 	 * Thread group implies shared signals. Shared signals
117 	 * imply shared VM. This matches what Linux kernel does.
118 	 */
119 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD
120 	    && (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) == 0)
121 		return EINVAL;
122 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND
123 	    && (SCARG(uap, flags) & LINUX_CLONE_VM) == 0)
124 		return EINVAL;
125 
126 	/*
127 	 * The thread group flavor is implemented totally differently.
128 	 */
129 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD)
130 		return linux_clone_nptl(l, uap, retval);
131 
132 	flags = 0;
133 	if (SCARG(uap, flags) & LINUX_CLONE_VM)
134 		flags |= FORK_SHAREVM;
135 	if (SCARG(uap, flags) & LINUX_CLONE_FS)
136 		flags |= FORK_SHARECWD;
137 	if (SCARG(uap, flags) & LINUX_CLONE_FILES)
138 		flags |= FORK_SHAREFILES;
139 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND)
140 		flags |= FORK_SHARESIGS;
141 	if (SCARG(uap, flags) & LINUX_CLONE_VFORK)
142 		flags |= FORK_PPWAIT;
143 
144 	sig = SCARG(uap, flags) & LINUX_CLONE_CSIGNAL;
145 	if (sig < 0 || sig >= LINUX__NSIG)
146 		return EINVAL;
147 	sig = linux_to_native_signo[sig];
148 
149 	if (SCARG(uap, flags) & LINUX_CLONE_CHILD_SETTID) {
150 		led = l->l_emuldata;
151 		led->led_child_tidptr = SCARG(uap, child_tidptr);
152 	}
153 
154 	/*
155 	 * Note that Linux does not provide a portable way of specifying
156 	 * the stack area; the caller must know if the stack grows up
157 	 * or down.  So, we pass a stack size of 0, so that the code
158 	 * that makes this adjustment is a noop.
159 	 */
160 	if ((error = fork1(l, flags, sig, SCARG(uap, stack), 0,
161 	    linux_child_return, NULL, retval)) != 0) {
162 		DPRINTF(("%s: fork1: error %d\n", __func__, error));
163 		return error;
164 	}
165 
166 	return 0;
167 }
168 
169 static int
170 linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
171 {
172 	/* {
173 		syscallarg(int) flags;
174 		syscallarg(void *) stack;
175 		syscallarg(void *) parent_tidptr;
176 		syscallarg(void *) tls;
177 		syscallarg(void *) child_tidptr;
178 	} */
179 	struct proc *p;
180 	struct lwp *l2;
181 	struct linux_emuldata *led;
182 	void *parent_tidptr, *tls, *child_tidptr;
183 	vaddr_t uaddr;
184 	lwpid_t lid;
185 	int flags, tnprocs, error;
186 
187 	p = l->l_proc;
188 	flags = SCARG(uap, flags);
189 	parent_tidptr = SCARG(uap, parent_tidptr);
190 	tls = SCARG(uap, tls);
191 	child_tidptr = SCARG(uap, child_tidptr);
192 
193 	tnprocs = atomic_inc_uint_nv(&nprocs);
194 	if (__predict_false(tnprocs >= maxproc) ||
195 	    kauth_authorize_process(l->l_cred, KAUTH_PROCESS_FORK, p,
196 	    KAUTH_ARG(tnprocs), NULL, NULL) != 0) {
197 		atomic_dec_uint(&nprocs);
198 		return EAGAIN;
199 	}
200 
201 	uaddr = uvm_uarea_alloc();
202 	if (__predict_false(uaddr == 0)) {
203 		atomic_dec_uint(&nprocs);
204 		return ENOMEM;
205 	}
206 
207 	error = lwp_create(l, p, uaddr, LWP_DETACHED | LWP_PIDLID,
208 	    SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class,
209 	    &l->l_sigmask, &l->l_sigstk);
210 	if (__predict_false(error)) {
211 		DPRINTF(("%s: lwp_create error=%d\n", __func__, error));
212 		atomic_dec_uint(&nprocs);
213 		uvm_uarea_free(uaddr);
214 		return error;
215 	}
216 	lid = l2->l_lid;
217 
218 	/* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */
219 	if (flags & LINUX_CLONE_CHILD_CLEARTID) {
220 		led = l2->l_emuldata;
221 		led->led_clear_tid = child_tidptr;
222 	}
223 
224 	/* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */
225 	if (flags & LINUX_CLONE_PARENT_SETTID) {
226 		if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0)
227 			printf("%s: LINUX_CLONE_PARENT_SETTID "
228 			    "failed (parent_tidptr = %p tid = %d error=%d)\n",
229 			    __func__, parent_tidptr, lid, error);
230 	}
231 
232 	/* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory  */
233 	if (flags & LINUX_CLONE_CHILD_SETTID) {
234 		if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0)
235 			printf("%s: LINUX_CLONE_CHILD_SETTID "
236 			    "failed (child_tidptr = %p, tid = %d error=%d)\n",
237 			    __func__, child_tidptr, lid, error);
238 	}
239 
240 	if (flags & LINUX_CLONE_SETTLS) {
241 		error = LINUX_LWP_SETPRIVATE(l2, tls);
242 		if (error) {
243 			DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n", __func__,
244 			    error));
245 			lwp_exit(l2);
246 			return error;
247 		}
248 	}
249 
250 	/* Set the new LWP running. */
251 	lwp_start(l2, 0);
252 
253 	retval[0] = lid;
254 	retval[1] = 0;
255 	return 0;
256 }
257 
258 /*
259  * linux realtime priority
260  *
261  * - SCHED_RR and SCHED_FIFO tasks have priorities [1,99].
262  *
263  * - SCHED_OTHER tasks don't have realtime priorities.
264  *   in particular, sched_param::sched_priority is always 0.
265  */
266 
267 #define	LINUX_SCHED_RTPRIO_MIN	1
268 #define	LINUX_SCHED_RTPRIO_MAX	99
269 
270 static int
271 sched_linux2native(int linux_policy, struct linux_sched_param *linux_params,
272     int *native_policy, struct sched_param *native_params)
273 {
274 
275 	switch (linux_policy) {
276 	case LINUX_SCHED_OTHER:
277 		if (native_policy != NULL) {
278 			*native_policy = SCHED_OTHER;
279 		}
280 		break;
281 
282 	case LINUX_SCHED_FIFO:
283 		if (native_policy != NULL) {
284 			*native_policy = SCHED_FIFO;
285 		}
286 		break;
287 
288 	case LINUX_SCHED_RR:
289 		if (native_policy != NULL) {
290 			*native_policy = SCHED_RR;
291 		}
292 		break;
293 
294 	default:
295 		return EINVAL;
296 	}
297 
298 	if (linux_params != NULL) {
299 		int prio = linux_params->sched_priority;
300 
301 		KASSERT(native_params != NULL);
302 
303 		if (linux_policy == LINUX_SCHED_OTHER) {
304 			if (prio != 0) {
305 				return EINVAL;
306 			}
307 			native_params->sched_priority = PRI_NONE; /* XXX */
308 		} else {
309 			if (prio < LINUX_SCHED_RTPRIO_MIN ||
310 			    prio > LINUX_SCHED_RTPRIO_MAX) {
311 				return EINVAL;
312 			}
313 			native_params->sched_priority =
314 			    (prio - LINUX_SCHED_RTPRIO_MIN)
315 			    * (SCHED_PRI_MAX - SCHED_PRI_MIN)
316 			    / (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
317 			    + SCHED_PRI_MIN;
318 		}
319 	}
320 
321 	return 0;
322 }
323 
324 static int
325 sched_native2linux(int native_policy, struct sched_param *native_params,
326     int *linux_policy, struct linux_sched_param *linux_params)
327 {
328 
329 	switch (native_policy) {
330 	case SCHED_OTHER:
331 		if (linux_policy != NULL) {
332 			*linux_policy = LINUX_SCHED_OTHER;
333 		}
334 		break;
335 
336 	case SCHED_FIFO:
337 		if (linux_policy != NULL) {
338 			*linux_policy = LINUX_SCHED_FIFO;
339 		}
340 		break;
341 
342 	case SCHED_RR:
343 		if (linux_policy != NULL) {
344 			*linux_policy = LINUX_SCHED_RR;
345 		}
346 		break;
347 
348 	default:
349 		panic("%s: unknown policy %d\n", __func__, native_policy);
350 	}
351 
352 	if (native_params != NULL) {
353 		int prio = native_params->sched_priority;
354 
355 		KASSERT(prio >= SCHED_PRI_MIN);
356 		KASSERT(prio <= SCHED_PRI_MAX);
357 		KASSERT(linux_params != NULL);
358 
359 		DPRINTF(("%s: native: policy %d, priority %d\n",
360 		    __func__, native_policy, prio));
361 
362 		if (native_policy == SCHED_OTHER) {
363 			linux_params->sched_priority = 0;
364 		} else {
365 			linux_params->sched_priority =
366 			    (prio - SCHED_PRI_MIN)
367 			    * (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
368 			    / (SCHED_PRI_MAX - SCHED_PRI_MIN)
369 			    + LINUX_SCHED_RTPRIO_MIN;
370 		}
371 		DPRINTF(("%s: linux: policy %d, priority %d\n",
372 		    __func__, -1, linux_params->sched_priority));
373 	}
374 
375 	return 0;
376 }
377 
378 int
379 linux_sys_sched_setparam(struct lwp *l, const struct linux_sys_sched_setparam_args *uap, register_t *retval)
380 {
381 	/* {
382 		syscallarg(linux_pid_t) pid;
383 		syscallarg(const struct linux_sched_param *) sp;
384 	} */
385 	int error, policy;
386 	struct linux_sched_param lp;
387 	struct sched_param sp;
388 
389 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
390 		error = EINVAL;
391 		goto out;
392 	}
393 
394 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
395 	if (error)
396 		goto out;
397 
398 	/* We need the current policy in Linux terms. */
399 	error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
400 	if (error)
401 		goto out;
402 	error = sched_native2linux(policy, NULL, &policy, NULL);
403 	if (error)
404 		goto out;
405 
406 	error = sched_linux2native(policy, &lp, &policy, &sp);
407 	if (error)
408 		goto out;
409 
410 	error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
411 	if (error)
412 		goto out;
413 
414  out:
415 	return error;
416 }
417 
418 int
419 linux_sys_sched_getparam(struct lwp *l, const struct linux_sys_sched_getparam_args *uap, register_t *retval)
420 {
421 	/* {
422 		syscallarg(linux_pid_t) pid;
423 		syscallarg(struct linux_sched_param *) sp;
424 	} */
425 	struct linux_sched_param lp;
426 	struct sched_param sp;
427 	int error, policy;
428 
429 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
430 		error = EINVAL;
431 		goto out;
432 	}
433 
434 	error = do_sched_getparam(SCARG(uap, pid), 0, &policy, &sp);
435 	if (error)
436 		goto out;
437 	DPRINTF(("%s: native: policy %d, priority %d\n",
438 	    __func__, policy, sp.sched_priority));
439 
440 	error = sched_native2linux(policy, &sp, NULL, &lp);
441 	if (error)
442 		goto out;
443 	DPRINTF(("%s: linux: policy %d, priority %d\n",
444 	    __func__, policy, lp.sched_priority));
445 
446 	error = copyout(&lp, SCARG(uap, sp), sizeof(lp));
447 	if (error)
448 		goto out;
449 
450  out:
451 	return error;
452 }
453 
454 int
455 linux_sys_sched_setscheduler(struct lwp *l, const struct linux_sys_sched_setscheduler_args *uap, register_t *retval)
456 {
457 	/* {
458 		syscallarg(linux_pid_t) pid;
459 		syscallarg(int) policy;
460 		syscallarg(cont struct linux_sched_param *) sp;
461 	} */
462 	int error, policy;
463 	struct linux_sched_param lp;
464 	struct sched_param sp;
465 
466 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
467 		error = EINVAL;
468 		goto out;
469 	}
470 
471 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
472 	if (error)
473 		goto out;
474 	DPRINTF(("%s: linux: policy %d, priority %d\n",
475 	    __func__, SCARG(uap, policy), lp.sched_priority));
476 
477 	error = sched_linux2native(SCARG(uap, policy), &lp, &policy, &sp);
478 	if (error)
479 		goto out;
480 	DPRINTF(("%s: native: policy %d, priority %d\n",
481 	    __func__, policy, sp.sched_priority));
482 
483 	error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
484 	if (error)
485 		goto out;
486 
487  out:
488 	return error;
489 }
490 
491 int
492 linux_sys_sched_getscheduler(struct lwp *l, const struct linux_sys_sched_getscheduler_args *uap, register_t *retval)
493 {
494 	/* {
495 		syscallarg(linux_pid_t) pid;
496 	} */
497 	int error, policy;
498 
499 	*retval = -1;
500 
501 	error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
502 	if (error)
503 		goto out;
504 
505 	error = sched_native2linux(policy, NULL, &policy, NULL);
506 	if (error)
507 		goto out;
508 
509 	*retval = policy;
510 
511  out:
512 	return error;
513 }
514 
515 int
516 linux_sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
517 {
518 
519 	yield();
520 	return 0;
521 }
522 
523 int
524 linux_sys_sched_get_priority_max(struct lwp *l, const struct linux_sys_sched_get_priority_max_args *uap, register_t *retval)
525 {
526 	/* {
527 		syscallarg(int) policy;
528 	} */
529 
530 	switch (SCARG(uap, policy)) {
531 	case LINUX_SCHED_OTHER:
532 		*retval = 0;
533 		break;
534 	case LINUX_SCHED_FIFO:
535 	case LINUX_SCHED_RR:
536 		*retval = LINUX_SCHED_RTPRIO_MAX;
537 		break;
538 	default:
539 		return EINVAL;
540 	}
541 
542 	return 0;
543 }
544 
545 int
546 linux_sys_sched_get_priority_min(struct lwp *l, const struct linux_sys_sched_get_priority_min_args *uap, register_t *retval)
547 {
548 	/* {
549 		syscallarg(int) policy;
550 	} */
551 
552 	switch (SCARG(uap, policy)) {
553 	case LINUX_SCHED_OTHER:
554 		*retval = 0;
555 		break;
556 	case LINUX_SCHED_FIFO:
557 	case LINUX_SCHED_RR:
558 		*retval = LINUX_SCHED_RTPRIO_MIN;
559 		break;
560 	default:
561 		return EINVAL;
562 	}
563 
564 	return 0;
565 }
566 
567 int
568 linux_sys_exit(struct lwp *l, const struct linux_sys_exit_args *uap, register_t *retval)
569 {
570 
571 	lwp_exit(l);
572 	return 0;
573 }
574 
575 #ifndef __m68k__
576 /* Present on everything but m68k */
577 int
578 linux_sys_exit_group(struct lwp *l, const struct linux_sys_exit_group_args *uap, register_t *retval)
579 {
580 
581 	return sys_exit(l, (const void *)uap, retval);
582 }
583 #endif /* !__m68k__ */
584 
585 int
586 linux_sys_set_tid_address(struct lwp *l, const struct linux_sys_set_tid_address_args *uap, register_t *retval)
587 {
588 	/* {
589 		syscallarg(int *) tidptr;
590 	} */
591 	struct linux_emuldata *led;
592 
593 	led = (struct linux_emuldata *)l->l_emuldata;
594 	led->led_clear_tid = SCARG(uap, tid);
595 	*retval = l->l_lid;
596 
597 	return 0;
598 }
599 
600 /* ARGUSED1 */
601 int
602 linux_sys_gettid(struct lwp *l, const void *v, register_t *retval)
603 {
604 
605 	*retval = l->l_lid;
606 	return 0;
607 }
608 
609 /*
610  * The affinity syscalls assume that the layout of our cpu kcpuset is
611  * the same as linux's: a linear bitmask.
612  */
613 int
614 linux_sys_sched_getaffinity(struct lwp *l, const struct linux_sys_sched_getaffinity_args *uap, register_t *retval)
615 {
616 	/* {
617 		syscallarg(linux_pid_t) pid;
618 		syscallarg(unsigned int) len;
619 		syscallarg(unsigned long *) mask;
620 	} */
621 	struct lwp *t;
622 	kcpuset_t *kcset;
623 	size_t size;
624 	cpuid_t i;
625 	int error;
626 
627 	size = LINUX_CPU_MASK_SIZE;
628 	if (SCARG(uap, len) < size)
629 		return EINVAL;
630 
631 	/* Lock the LWP */
632 	t = lwp_find2(SCARG(uap, pid), l->l_lid);
633 	if (t == NULL)
634 		return ESRCH;
635 
636 	/* Check the permission */
637 	if (kauth_authorize_process(l->l_cred,
638 	    KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
639 		mutex_exit(t->l_proc->p_lock);
640 		return EPERM;
641 	}
642 
643 	kcpuset_create(&kcset, true);
644 	lwp_lock(t);
645 	if (t->l_affinity != NULL)
646 		kcpuset_copy(kcset, t->l_affinity);
647 	else {
648 		/*
649 		 * All available CPUs should be masked when affinity has not
650 		 * been set.
651 		 */
652 		kcpuset_zero(kcset);
653 		for (i = 0; i < ncpu; i++)
654 			kcpuset_set(kcset, i);
655 	}
656 	lwp_unlock(t);
657 	mutex_exit(t->l_proc->p_lock);
658 	error = kcpuset_copyout(kcset, (cpuset_t *)SCARG(uap, mask), size);
659 	kcpuset_unuse(kcset, NULL);
660 	*retval = size;
661 	return error;
662 }
663 
664 int
665 linux_sys_sched_setaffinity(struct lwp *l, const struct linux_sys_sched_setaffinity_args *uap, register_t *retval)
666 {
667 	/* {
668 		syscallarg(linux_pid_t) pid;
669 		syscallarg(unsigned int) len;
670 		syscallarg(unsigned long *) mask;
671 	} */
672 	struct sys__sched_setaffinity_args ssa;
673 	size_t size;
674 
675 	size = LINUX_CPU_MASK_SIZE;
676 	if (SCARG(uap, len) < size)
677 		return EINVAL;
678 
679 	SCARG(&ssa, pid) = SCARG(uap, pid);
680 	SCARG(&ssa, lid) = l->l_lid;
681 	SCARG(&ssa, size) = size;
682 	SCARG(&ssa, cpuset) = (cpuset_t *)SCARG(uap, mask);
683 
684 	return sys__sched_setaffinity(l, &ssa, retval);
685 }
686