xref: /netbsd-src/sys/compat/linux/common/linux_sched.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /*	$NetBSD: linux_sched.c,v 1.79 2021/09/07 11:43:04 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center; by Matthias Scheler.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Linux compatibility module. Try to deal with scheduler related syscalls.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: linux_sched.c,v 1.79 2021/09/07 11:43:04 riastradh Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/proc.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/syscallargs.h>
46 #include <sys/wait.h>
47 #include <sys/kauth.h>
48 #include <sys/ptrace.h>
49 #include <sys/atomic.h>
50 
51 #include <sys/cpu.h>
52 
53 #include <compat/linux/common/linux_types.h>
54 #include <compat/linux/common/linux_signal.h>
55 #include <compat/linux/common/linux_emuldata.h>
56 #include <compat/linux/common/linux_ipc.h>
57 #include <compat/linux/common/linux_sem.h>
58 #include <compat/linux/common/linux_exec.h>
59 #include <compat/linux/common/linux_machdep.h>
60 
61 #include <compat/linux/linux_syscallargs.h>
62 
63 #include <compat/linux/common/linux_sched.h>
64 
65 static int linux_clone_nptl(struct lwp *, const struct linux_sys_clone_args *,
66     register_t *);
67 
68 /* Unlike Linux, dynamically calculate CPU mask size */
69 #define	LINUX_CPU_MASK_SIZE (sizeof(long) * ((ncpu + LONG_BIT - 1) / LONG_BIT))
70 
71 #if DEBUG_LINUX
72 #define DPRINTF(x) uprintf x
73 #else
74 #define DPRINTF(x)
75 #endif
76 
77 static void
78 linux_child_return(void *arg)
79 {
80 	struct lwp *l = arg;
81 	struct proc *p = l->l_proc;
82 	struct linux_emuldata *led = l->l_emuldata;
83 	void *ctp = led->led_child_tidptr;
84 	int error;
85 
86 	if (ctp) {
87 		if ((error = copyout(&p->p_pid, ctp, sizeof(p->p_pid))) != 0)
88 			printf("%s: LINUX_CLONE_CHILD_SETTID "
89 			    "failed (child_tidptr = %p, tid = %d error =%d)\n",
90 			    __func__, ctp, p->p_pid, error);
91 	}
92 	child_return(arg);
93 }
94 
95 int
96 linux_sys_clone(struct lwp *l, const struct linux_sys_clone_args *uap,
97     register_t *retval)
98 {
99 	/* {
100 		syscallarg(int) flags;
101 		syscallarg(void *) stack;
102 		syscallarg(void *) parent_tidptr;
103 		syscallarg(void *) tls;
104 		syscallarg(void *) child_tidptr;
105 	} */
106 	struct linux_emuldata *led;
107 	int flags, sig, error;
108 
109 	/*
110 	 * We don't support the Linux CLONE_PID or CLONE_PTRACE flags.
111 	 */
112 	if (SCARG(uap, flags) & (LINUX_CLONE_PID|LINUX_CLONE_PTRACE))
113 		return EINVAL;
114 
115 	/*
116 	 * Thread group implies shared signals. Shared signals
117 	 * imply shared VM. This matches what Linux kernel does.
118 	 */
119 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD
120 	    && (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) == 0)
121 		return EINVAL;
122 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND
123 	    && (SCARG(uap, flags) & LINUX_CLONE_VM) == 0)
124 		return EINVAL;
125 
126 	/*
127 	 * The thread group flavor is implemented totally differently.
128 	 */
129 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD)
130 		return linux_clone_nptl(l, uap, retval);
131 
132 	flags = 0;
133 	if (SCARG(uap, flags) & LINUX_CLONE_VM)
134 		flags |= FORK_SHAREVM;
135 	if (SCARG(uap, flags) & LINUX_CLONE_FS)
136 		flags |= FORK_SHARECWD;
137 	if (SCARG(uap, flags) & LINUX_CLONE_FILES)
138 		flags |= FORK_SHAREFILES;
139 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND)
140 		flags |= FORK_SHARESIGS;
141 	if (SCARG(uap, flags) & LINUX_CLONE_VFORK)
142 		flags |= FORK_PPWAIT;
143 
144 	sig = SCARG(uap, flags) & LINUX_CLONE_CSIGNAL;
145 	if (sig < 0 || sig >= LINUX__NSIG)
146 		return EINVAL;
147 	sig = linux_to_native_signo[sig];
148 
149 	if (SCARG(uap, flags) & LINUX_CLONE_CHILD_SETTID) {
150 		led = l->l_emuldata;
151 		led->led_child_tidptr = SCARG(uap, child_tidptr);
152 	}
153 
154 	/*
155 	 * Note that Linux does not provide a portable way of specifying
156 	 * the stack area; the caller must know if the stack grows up
157 	 * or down.  So, we pass a stack size of 0, so that the code
158 	 * that makes this adjustment is a noop.
159 	 */
160 	if ((error = fork1(l, flags, sig, SCARG(uap, stack), 0,
161 	    linux_child_return, NULL, retval)) != 0) {
162 		DPRINTF(("%s: fork1: error %d\n", __func__, error));
163 		return error;
164 	}
165 
166 	return 0;
167 }
168 
169 static int
170 linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
171 {
172 	/* {
173 		syscallarg(int) flags;
174 		syscallarg(void *) stack;
175 		syscallarg(void *) parent_tidptr;
176 		syscallarg(void *) tls;
177 		syscallarg(void *) child_tidptr;
178 	} */
179 	struct proc *p;
180 	struct lwp *l2;
181 	struct linux_emuldata *led;
182 	void *parent_tidptr, *tls, *child_tidptr;
183 	vaddr_t uaddr;
184 	lwpid_t lid;
185 	int flags, error;
186 
187 	p = l->l_proc;
188 	flags = SCARG(uap, flags);
189 	parent_tidptr = SCARG(uap, parent_tidptr);
190 	tls = SCARG(uap, tls);
191 	child_tidptr = SCARG(uap, child_tidptr);
192 
193 	uaddr = uvm_uarea_alloc();
194 	if (__predict_false(uaddr == 0)) {
195 		return ENOMEM;
196 	}
197 
198 	error = lwp_create(l, p, uaddr, LWP_DETACHED,
199 	    SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class,
200 	    &l->l_sigmask, &l->l_sigstk);
201 	if (__predict_false(error)) {
202 		DPRINTF(("%s: lwp_create error=%d\n", __func__, error));
203 		uvm_uarea_free(uaddr);
204 		return error;
205 	}
206 	lid = l2->l_lid;
207 
208 	/* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */
209 	if (flags & LINUX_CLONE_CHILD_CLEARTID) {
210 		led = l2->l_emuldata;
211 		led->led_clear_tid = child_tidptr;
212 	}
213 
214 	/* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */
215 	if (flags & LINUX_CLONE_PARENT_SETTID) {
216 		if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0)
217 			printf("%s: LINUX_CLONE_PARENT_SETTID "
218 			    "failed (parent_tidptr = %p tid = %d error=%d)\n",
219 			    __func__, parent_tidptr, lid, error);
220 	}
221 
222 	/* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory  */
223 	if (flags & LINUX_CLONE_CHILD_SETTID) {
224 		if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0)
225 			printf("%s: LINUX_CLONE_CHILD_SETTID "
226 			    "failed (child_tidptr = %p, tid = %d error=%d)\n",
227 			    __func__, child_tidptr, lid, error);
228 	}
229 
230 	if (flags & LINUX_CLONE_SETTLS) {
231 		error = LINUX_LWP_SETPRIVATE(l2, tls);
232 		if (error) {
233 			DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n", __func__,
234 			    error));
235 			lwp_exit(l2);
236 			return error;
237 		}
238 	}
239 
240 	/* Set the new LWP running. */
241 	lwp_start(l2, 0);
242 
243 	retval[0] = lid;
244 	retval[1] = 0;
245 	return 0;
246 }
247 
248 /*
249  * linux realtime priority
250  *
251  * - SCHED_RR and SCHED_FIFO tasks have priorities [1,99].
252  *
253  * - SCHED_OTHER tasks don't have realtime priorities.
254  *   in particular, sched_param::sched_priority is always 0.
255  */
256 
257 #define	LINUX_SCHED_RTPRIO_MIN	1
258 #define	LINUX_SCHED_RTPRIO_MAX	99
259 
260 static int
261 sched_linux2native(int linux_policy, struct linux_sched_param *linux_params,
262     int *native_policy, struct sched_param *native_params)
263 {
264 
265 	switch (linux_policy) {
266 	case LINUX_SCHED_OTHER:
267 		if (native_policy != NULL) {
268 			*native_policy = SCHED_OTHER;
269 		}
270 		break;
271 
272 	case LINUX_SCHED_FIFO:
273 		if (native_policy != NULL) {
274 			*native_policy = SCHED_FIFO;
275 		}
276 		break;
277 
278 	case LINUX_SCHED_RR:
279 		if (native_policy != NULL) {
280 			*native_policy = SCHED_RR;
281 		}
282 		break;
283 
284 	default:
285 		return EINVAL;
286 	}
287 
288 	if (linux_params != NULL) {
289 		int prio = linux_params->sched_priority;
290 
291 		KASSERT(native_params != NULL);
292 
293 		if (linux_policy == LINUX_SCHED_OTHER) {
294 			if (prio != 0) {
295 				return EINVAL;
296 			}
297 			native_params->sched_priority = PRI_NONE; /* XXX */
298 		} else {
299 			if (prio < LINUX_SCHED_RTPRIO_MIN ||
300 			    prio > LINUX_SCHED_RTPRIO_MAX) {
301 				return EINVAL;
302 			}
303 			native_params->sched_priority =
304 			    (prio - LINUX_SCHED_RTPRIO_MIN)
305 			    * (SCHED_PRI_MAX - SCHED_PRI_MIN)
306 			    / (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
307 			    + SCHED_PRI_MIN;
308 		}
309 	}
310 
311 	return 0;
312 }
313 
314 static int
315 sched_native2linux(int native_policy, struct sched_param *native_params,
316     int *linux_policy, struct linux_sched_param *linux_params)
317 {
318 
319 	switch (native_policy) {
320 	case SCHED_OTHER:
321 		if (linux_policy != NULL) {
322 			*linux_policy = LINUX_SCHED_OTHER;
323 		}
324 		break;
325 
326 	case SCHED_FIFO:
327 		if (linux_policy != NULL) {
328 			*linux_policy = LINUX_SCHED_FIFO;
329 		}
330 		break;
331 
332 	case SCHED_RR:
333 		if (linux_policy != NULL) {
334 			*linux_policy = LINUX_SCHED_RR;
335 		}
336 		break;
337 
338 	default:
339 		panic("%s: unknown policy %d\n", __func__, native_policy);
340 	}
341 
342 	if (native_params != NULL) {
343 		int prio = native_params->sched_priority;
344 
345 		KASSERT(prio >= SCHED_PRI_MIN);
346 		KASSERT(prio <= SCHED_PRI_MAX);
347 		KASSERT(linux_params != NULL);
348 
349 		memset(linux_params, 0, sizeof(*linux_params));
350 
351 		DPRINTF(("%s: native: policy %d, priority %d\n",
352 		    __func__, native_policy, prio));
353 
354 		if (native_policy == SCHED_OTHER) {
355 			linux_params->sched_priority = 0;
356 		} else {
357 			linux_params->sched_priority =
358 			    (prio - SCHED_PRI_MIN)
359 			    * (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
360 			    / (SCHED_PRI_MAX - SCHED_PRI_MIN)
361 			    + LINUX_SCHED_RTPRIO_MIN;
362 		}
363 		DPRINTF(("%s: linux: policy %d, priority %d\n",
364 		    __func__, -1, linux_params->sched_priority));
365 	}
366 
367 	return 0;
368 }
369 
370 int
371 linux_sys_sched_setparam(struct lwp *l, const struct linux_sys_sched_setparam_args *uap, register_t *retval)
372 {
373 	/* {
374 		syscallarg(linux_pid_t) pid;
375 		syscallarg(const struct linux_sched_param *) sp;
376 	} */
377 	int error, policy;
378 	struct linux_sched_param lp;
379 	struct sched_param sp;
380 
381 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
382 		error = EINVAL;
383 		goto out;
384 	}
385 
386 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
387 	if (error)
388 		goto out;
389 
390 	/* We need the current policy in Linux terms. */
391 	error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
392 	if (error)
393 		goto out;
394 	error = sched_native2linux(policy, NULL, &policy, NULL);
395 	if (error)
396 		goto out;
397 
398 	error = sched_linux2native(policy, &lp, &policy, &sp);
399 	if (error)
400 		goto out;
401 
402 	error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
403 	if (error)
404 		goto out;
405 
406  out:
407 	return error;
408 }
409 
410 int
411 linux_sys_sched_getparam(struct lwp *l, const struct linux_sys_sched_getparam_args *uap, register_t *retval)
412 {
413 	/* {
414 		syscallarg(linux_pid_t) pid;
415 		syscallarg(struct linux_sched_param *) sp;
416 	} */
417 	struct linux_sched_param lp;
418 	struct sched_param sp;
419 	int error, policy;
420 
421 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
422 		error = EINVAL;
423 		goto out;
424 	}
425 
426 	error = do_sched_getparam(SCARG(uap, pid), 0, &policy, &sp);
427 	if (error)
428 		goto out;
429 	DPRINTF(("%s: native: policy %d, priority %d\n",
430 	    __func__, policy, sp.sched_priority));
431 
432 	error = sched_native2linux(policy, &sp, NULL, &lp);
433 	if (error)
434 		goto out;
435 	DPRINTF(("%s: linux: policy %d, priority %d\n",
436 	    __func__, policy, lp.sched_priority));
437 
438 	error = copyout(&lp, SCARG(uap, sp), sizeof(lp));
439 	if (error)
440 		goto out;
441 
442  out:
443 	return error;
444 }
445 
446 int
447 linux_sys_sched_setscheduler(struct lwp *l, const struct linux_sys_sched_setscheduler_args *uap, register_t *retval)
448 {
449 	/* {
450 		syscallarg(linux_pid_t) pid;
451 		syscallarg(int) policy;
452 		syscallarg(cont struct linux_sched_param *) sp;
453 	} */
454 	int error, policy;
455 	struct linux_sched_param lp;
456 	struct sched_param sp;
457 
458 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
459 		error = EINVAL;
460 		goto out;
461 	}
462 
463 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
464 	if (error)
465 		goto out;
466 	DPRINTF(("%s: linux: policy %d, priority %d\n",
467 	    __func__, SCARG(uap, policy), lp.sched_priority));
468 
469 	error = sched_linux2native(SCARG(uap, policy), &lp, &policy, &sp);
470 	if (error)
471 		goto out;
472 	DPRINTF(("%s: native: policy %d, priority %d\n",
473 	    __func__, policy, sp.sched_priority));
474 
475 	error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
476 	if (error)
477 		goto out;
478 
479  out:
480 	return error;
481 }
482 
483 int
484 linux_sys_sched_getscheduler(struct lwp *l, const struct linux_sys_sched_getscheduler_args *uap, register_t *retval)
485 {
486 	/* {
487 		syscallarg(linux_pid_t) pid;
488 	} */
489 	int error, policy;
490 
491 	*retval = -1;
492 
493 	error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
494 	if (error)
495 		goto out;
496 
497 	error = sched_native2linux(policy, NULL, &policy, NULL);
498 	if (error)
499 		goto out;
500 
501 	*retval = policy;
502 
503  out:
504 	return error;
505 }
506 
507 int
508 linux_sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
509 {
510 
511 	yield();
512 	return 0;
513 }
514 
515 int
516 linux_sys_sched_get_priority_max(struct lwp *l, const struct linux_sys_sched_get_priority_max_args *uap, register_t *retval)
517 {
518 	/* {
519 		syscallarg(int) policy;
520 	} */
521 
522 	switch (SCARG(uap, policy)) {
523 	case LINUX_SCHED_OTHER:
524 		*retval = 0;
525 		break;
526 	case LINUX_SCHED_FIFO:
527 	case LINUX_SCHED_RR:
528 		*retval = LINUX_SCHED_RTPRIO_MAX;
529 		break;
530 	default:
531 		return EINVAL;
532 	}
533 
534 	return 0;
535 }
536 
537 int
538 linux_sys_sched_get_priority_min(struct lwp *l, const struct linux_sys_sched_get_priority_min_args *uap, register_t *retval)
539 {
540 	/* {
541 		syscallarg(int) policy;
542 	} */
543 
544 	switch (SCARG(uap, policy)) {
545 	case LINUX_SCHED_OTHER:
546 		*retval = 0;
547 		break;
548 	case LINUX_SCHED_FIFO:
549 	case LINUX_SCHED_RR:
550 		*retval = LINUX_SCHED_RTPRIO_MIN;
551 		break;
552 	default:
553 		return EINVAL;
554 	}
555 
556 	return 0;
557 }
558 
559 int
560 linux_sys_exit(struct lwp *l, const struct linux_sys_exit_args *uap, register_t *retval)
561 {
562 
563 	lwp_exit(l);
564 	return 0;
565 }
566 
567 #ifndef __m68k__
568 /* Present on everything but m68k */
569 int
570 linux_sys_exit_group(struct lwp *l, const struct linux_sys_exit_group_args *uap, register_t *retval)
571 {
572 
573 	return sys_exit(l, (const void *)uap, retval);
574 }
575 #endif /* !__m68k__ */
576 
577 int
578 linux_sys_set_tid_address(struct lwp *l, const struct linux_sys_set_tid_address_args *uap, register_t *retval)
579 {
580 	/* {
581 		syscallarg(int *) tidptr;
582 	} */
583 	struct linux_emuldata *led;
584 
585 	led = (struct linux_emuldata *)l->l_emuldata;
586 	led->led_clear_tid = SCARG(uap, tid);
587 	*retval = l->l_lid;
588 
589 	return 0;
590 }
591 
592 /* ARGUSED1 */
593 int
594 linux_sys_gettid(struct lwp *l, const void *v, register_t *retval)
595 {
596 
597 	*retval = l->l_lid;
598 	return 0;
599 }
600 
601 /*
602  * The affinity syscalls assume that the layout of our cpu kcpuset is
603  * the same as linux's: a linear bitmask.
604  */
605 int
606 linux_sys_sched_getaffinity(struct lwp *l, const struct linux_sys_sched_getaffinity_args *uap, register_t *retval)
607 {
608 	/* {
609 		syscallarg(linux_pid_t) pid;
610 		syscallarg(unsigned int) len;
611 		syscallarg(unsigned long *) mask;
612 	} */
613 	struct proc *p;
614 	struct lwp *t;
615 	kcpuset_t *kcset;
616 	size_t size;
617 	cpuid_t i;
618 	int error;
619 
620 	size = LINUX_CPU_MASK_SIZE;
621 	if (SCARG(uap, len) < size)
622 		return EINVAL;
623 
624 	if (SCARG(uap, pid) == 0) {
625 		p = curproc;
626 		mutex_enter(p->p_lock);
627 		t = curlwp;
628 	} else {
629 		t = lwp_find2(-1, SCARG(uap, pid));
630 		if (__predict_false(t == NULL)) {
631 			return ESRCH;
632 		}
633 		p = t->l_proc;
634 		KASSERT(mutex_owned(p->p_lock));
635 	}
636 
637 	/* Check the permission */
638 	if (kauth_authorize_process(l->l_cred,
639 	    KAUTH_PROCESS_SCHEDULER_GETAFFINITY, p, NULL, NULL, NULL)) {
640 		mutex_exit(p->p_lock);
641 		return EPERM;
642 	}
643 
644 	kcpuset_create(&kcset, true);
645 	lwp_lock(t);
646 	if (t->l_affinity != NULL)
647 		kcpuset_copy(kcset, t->l_affinity);
648 	else {
649 		/*
650 		 * All available CPUs should be masked when affinity has not
651 		 * been set.
652 		 */
653 		kcpuset_zero(kcset);
654 		for (i = 0; i < ncpu; i++)
655 			kcpuset_set(kcset, i);
656 	}
657 	lwp_unlock(t);
658 	mutex_exit(p->p_lock);
659 	error = kcpuset_copyout(kcset, (cpuset_t *)SCARG(uap, mask), size);
660 	kcpuset_unuse(kcset, NULL);
661 	*retval = size;
662 	return error;
663 }
664 
665 int
666 linux_sys_sched_setaffinity(struct lwp *l, const struct linux_sys_sched_setaffinity_args *uap, register_t *retval)
667 {
668 	/* {
669 		syscallarg(linux_pid_t) pid;
670 		syscallarg(unsigned int) len;
671 		syscallarg(unsigned long *) mask;
672 	} */
673 	struct sys__sched_setaffinity_args ssa;
674 	size_t size;
675 	pid_t pid;
676 	lwpid_t lid;
677 
678 	size = LINUX_CPU_MASK_SIZE;
679 	if (SCARG(uap, len) < size)
680 		return EINVAL;
681 
682 	lid = SCARG(uap, pid);
683 	if (lid != 0) {
684 		/* Get the canonical PID for the process. */
685 		mutex_enter(&proc_lock);
686 		struct proc *p = proc_find_lwpid(SCARG(uap, pid));
687 		if (p == NULL) {
688 			mutex_exit(&proc_lock);
689 			return ESRCH;
690 		}
691 		pid = p->p_pid;
692 		mutex_exit(&proc_lock);
693 	} else {
694 		pid = curproc->p_pid;
695 		lid = curlwp->l_lid;
696 	}
697 
698 	SCARG(&ssa, pid) = pid;
699 	SCARG(&ssa, lid) = lid;
700 	SCARG(&ssa, size) = size;
701 	SCARG(&ssa, cpuset) = (cpuset_t *)SCARG(uap, mask);
702 
703 	return sys__sched_setaffinity(l, &ssa, retval);
704 }
705