xref: /netbsd-src/sys/compat/linux/common/linux_sched.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: linux_sched.c,v 1.78 2020/05/23 23:42:41 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center; by Matthias Scheler.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Linux compatibility module. Try to deal with scheduler related syscalls.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: linux_sched.c,v 1.78 2020/05/23 23:42:41 ad Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/proc.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/syscallargs.h>
46 #include <sys/wait.h>
47 #include <sys/kauth.h>
48 #include <sys/ptrace.h>
49 #include <sys/atomic.h>
50 
51 #include <sys/cpu.h>
52 
53 #include <compat/linux/common/linux_types.h>
54 #include <compat/linux/common/linux_signal.h>
55 #include <compat/linux/common/linux_emuldata.h>
56 #include <compat/linux/common/linux_ipc.h>
57 #include <compat/linux/common/linux_sem.h>
58 #include <compat/linux/common/linux_exec.h>
59 #include <compat/linux/common/linux_machdep.h>
60 
61 #include <compat/linux/linux_syscallargs.h>
62 
63 #include <compat/linux/common/linux_sched.h>
64 
65 static int linux_clone_nptl(struct lwp *, const struct linux_sys_clone_args *,
66     register_t *);
67 
68 /* Unlike Linux, dynamically calculate CPU mask size */
69 #define	LINUX_CPU_MASK_SIZE (sizeof(long) * ((ncpu + LONG_BIT - 1) / LONG_BIT))
70 
71 #if DEBUG_LINUX
72 #define DPRINTF(x) uprintf x
73 #else
74 #define DPRINTF(x)
75 #endif
76 
77 static void
78 linux_child_return(void *arg)
79 {
80 	struct lwp *l = arg;
81 	struct proc *p = l->l_proc;
82 	struct linux_emuldata *led = l->l_emuldata;
83 	void *ctp = led->led_child_tidptr;
84 	int error;
85 
86 	if (ctp) {
87 		if ((error = copyout(&p->p_pid, ctp, sizeof(p->p_pid))) != 0)
88 			printf("%s: LINUX_CLONE_CHILD_SETTID "
89 			    "failed (child_tidptr = %p, tid = %d error =%d)\n",
90 			    __func__, ctp, p->p_pid, error);
91 	}
92 	child_return(arg);
93 }
94 
95 int
96 linux_sys_clone(struct lwp *l, const struct linux_sys_clone_args *uap,
97     register_t *retval)
98 {
99 	/* {
100 		syscallarg(int) flags;
101 		syscallarg(void *) stack;
102 		syscallarg(void *) parent_tidptr;
103 		syscallarg(void *) tls;
104 		syscallarg(void *) child_tidptr;
105 	} */
106 	struct linux_emuldata *led;
107 	int flags, sig, error;
108 
109 	/*
110 	 * We don't support the Linux CLONE_PID or CLONE_PTRACE flags.
111 	 */
112 	if (SCARG(uap, flags) & (LINUX_CLONE_PID|LINUX_CLONE_PTRACE))
113 		return EINVAL;
114 
115 	/*
116 	 * Thread group implies shared signals. Shared signals
117 	 * imply shared VM. This matches what Linux kernel does.
118 	 */
119 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD
120 	    && (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) == 0)
121 		return EINVAL;
122 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND
123 	    && (SCARG(uap, flags) & LINUX_CLONE_VM) == 0)
124 		return EINVAL;
125 
126 	/*
127 	 * The thread group flavor is implemented totally differently.
128 	 */
129 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD)
130 		return linux_clone_nptl(l, uap, retval);
131 
132 	flags = 0;
133 	if (SCARG(uap, flags) & LINUX_CLONE_VM)
134 		flags |= FORK_SHAREVM;
135 	if (SCARG(uap, flags) & LINUX_CLONE_FS)
136 		flags |= FORK_SHARECWD;
137 	if (SCARG(uap, flags) & LINUX_CLONE_FILES)
138 		flags |= FORK_SHAREFILES;
139 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND)
140 		flags |= FORK_SHARESIGS;
141 	if (SCARG(uap, flags) & LINUX_CLONE_VFORK)
142 		flags |= FORK_PPWAIT;
143 
144 	sig = SCARG(uap, flags) & LINUX_CLONE_CSIGNAL;
145 	if (sig < 0 || sig >= LINUX__NSIG)
146 		return EINVAL;
147 	sig = linux_to_native_signo[sig];
148 
149 	if (SCARG(uap, flags) & LINUX_CLONE_CHILD_SETTID) {
150 		led = l->l_emuldata;
151 		led->led_child_tidptr = SCARG(uap, child_tidptr);
152 	}
153 
154 	/*
155 	 * Note that Linux does not provide a portable way of specifying
156 	 * the stack area; the caller must know if the stack grows up
157 	 * or down.  So, we pass a stack size of 0, so that the code
158 	 * that makes this adjustment is a noop.
159 	 */
160 	if ((error = fork1(l, flags, sig, SCARG(uap, stack), 0,
161 	    linux_child_return, NULL, retval)) != 0) {
162 		DPRINTF(("%s: fork1: error %d\n", __func__, error));
163 		return error;
164 	}
165 
166 	return 0;
167 }
168 
169 static int
170 linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
171 {
172 	/* {
173 		syscallarg(int) flags;
174 		syscallarg(void *) stack;
175 		syscallarg(void *) parent_tidptr;
176 		syscallarg(void *) tls;
177 		syscallarg(void *) child_tidptr;
178 	} */
179 	struct proc *p;
180 	struct lwp *l2;
181 	struct linux_emuldata *led;
182 	void *parent_tidptr, *tls, *child_tidptr;
183 	vaddr_t uaddr;
184 	lwpid_t lid;
185 	int flags, error;
186 
187 	p = l->l_proc;
188 	flags = SCARG(uap, flags);
189 	parent_tidptr = SCARG(uap, parent_tidptr);
190 	tls = SCARG(uap, tls);
191 	child_tidptr = SCARG(uap, child_tidptr);
192 
193 	uaddr = uvm_uarea_alloc();
194 	if (__predict_false(uaddr == 0)) {
195 		return ENOMEM;
196 	}
197 
198 	error = lwp_create(l, p, uaddr, LWP_DETACHED,
199 	    SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class,
200 	    &l->l_sigmask, &l->l_sigstk);
201 	if (__predict_false(error)) {
202 		DPRINTF(("%s: lwp_create error=%d\n", __func__, error));
203 		uvm_uarea_free(uaddr);
204 		return error;
205 	}
206 	lid = l2->l_lid;
207 
208 	/* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */
209 	if (flags & LINUX_CLONE_CHILD_CLEARTID) {
210 		led = l2->l_emuldata;
211 		led->led_clear_tid = child_tidptr;
212 	}
213 
214 	/* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */
215 	if (flags & LINUX_CLONE_PARENT_SETTID) {
216 		if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0)
217 			printf("%s: LINUX_CLONE_PARENT_SETTID "
218 			    "failed (parent_tidptr = %p tid = %d error=%d)\n",
219 			    __func__, parent_tidptr, lid, error);
220 	}
221 
222 	/* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory  */
223 	if (flags & LINUX_CLONE_CHILD_SETTID) {
224 		if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0)
225 			printf("%s: LINUX_CLONE_CHILD_SETTID "
226 			    "failed (child_tidptr = %p, tid = %d error=%d)\n",
227 			    __func__, child_tidptr, lid, error);
228 	}
229 
230 	if (flags & LINUX_CLONE_SETTLS) {
231 		error = LINUX_LWP_SETPRIVATE(l2, tls);
232 		if (error) {
233 			DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n", __func__,
234 			    error));
235 			lwp_exit(l2);
236 			return error;
237 		}
238 	}
239 
240 	/* Set the new LWP running. */
241 	lwp_start(l2, 0);
242 
243 	retval[0] = lid;
244 	retval[1] = 0;
245 	return 0;
246 }
247 
248 /*
249  * linux realtime priority
250  *
251  * - SCHED_RR and SCHED_FIFO tasks have priorities [1,99].
252  *
253  * - SCHED_OTHER tasks don't have realtime priorities.
254  *   in particular, sched_param::sched_priority is always 0.
255  */
256 
257 #define	LINUX_SCHED_RTPRIO_MIN	1
258 #define	LINUX_SCHED_RTPRIO_MAX	99
259 
260 static int
261 sched_linux2native(int linux_policy, struct linux_sched_param *linux_params,
262     int *native_policy, struct sched_param *native_params)
263 {
264 
265 	switch (linux_policy) {
266 	case LINUX_SCHED_OTHER:
267 		if (native_policy != NULL) {
268 			*native_policy = SCHED_OTHER;
269 		}
270 		break;
271 
272 	case LINUX_SCHED_FIFO:
273 		if (native_policy != NULL) {
274 			*native_policy = SCHED_FIFO;
275 		}
276 		break;
277 
278 	case LINUX_SCHED_RR:
279 		if (native_policy != NULL) {
280 			*native_policy = SCHED_RR;
281 		}
282 		break;
283 
284 	default:
285 		return EINVAL;
286 	}
287 
288 	if (linux_params != NULL) {
289 		int prio = linux_params->sched_priority;
290 
291 		KASSERT(native_params != NULL);
292 
293 		if (linux_policy == LINUX_SCHED_OTHER) {
294 			if (prio != 0) {
295 				return EINVAL;
296 			}
297 			native_params->sched_priority = PRI_NONE; /* XXX */
298 		} else {
299 			if (prio < LINUX_SCHED_RTPRIO_MIN ||
300 			    prio > LINUX_SCHED_RTPRIO_MAX) {
301 				return EINVAL;
302 			}
303 			native_params->sched_priority =
304 			    (prio - LINUX_SCHED_RTPRIO_MIN)
305 			    * (SCHED_PRI_MAX - SCHED_PRI_MIN)
306 			    / (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
307 			    + SCHED_PRI_MIN;
308 		}
309 	}
310 
311 	return 0;
312 }
313 
314 static int
315 sched_native2linux(int native_policy, struct sched_param *native_params,
316     int *linux_policy, struct linux_sched_param *linux_params)
317 {
318 
319 	switch (native_policy) {
320 	case SCHED_OTHER:
321 		if (linux_policy != NULL) {
322 			*linux_policy = LINUX_SCHED_OTHER;
323 		}
324 		break;
325 
326 	case SCHED_FIFO:
327 		if (linux_policy != NULL) {
328 			*linux_policy = LINUX_SCHED_FIFO;
329 		}
330 		break;
331 
332 	case SCHED_RR:
333 		if (linux_policy != NULL) {
334 			*linux_policy = LINUX_SCHED_RR;
335 		}
336 		break;
337 
338 	default:
339 		panic("%s: unknown policy %d\n", __func__, native_policy);
340 	}
341 
342 	if (native_params != NULL) {
343 		int prio = native_params->sched_priority;
344 
345 		KASSERT(prio >= SCHED_PRI_MIN);
346 		KASSERT(prio <= SCHED_PRI_MAX);
347 		KASSERT(linux_params != NULL);
348 
349 		DPRINTF(("%s: native: policy %d, priority %d\n",
350 		    __func__, native_policy, prio));
351 
352 		if (native_policy == SCHED_OTHER) {
353 			linux_params->sched_priority = 0;
354 		} else {
355 			linux_params->sched_priority =
356 			    (prio - SCHED_PRI_MIN)
357 			    * (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
358 			    / (SCHED_PRI_MAX - SCHED_PRI_MIN)
359 			    + LINUX_SCHED_RTPRIO_MIN;
360 		}
361 		DPRINTF(("%s: linux: policy %d, priority %d\n",
362 		    __func__, -1, linux_params->sched_priority));
363 	}
364 
365 	return 0;
366 }
367 
368 int
369 linux_sys_sched_setparam(struct lwp *l, const struct linux_sys_sched_setparam_args *uap, register_t *retval)
370 {
371 	/* {
372 		syscallarg(linux_pid_t) pid;
373 		syscallarg(const struct linux_sched_param *) sp;
374 	} */
375 	int error, policy;
376 	struct linux_sched_param lp;
377 	struct sched_param sp;
378 
379 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
380 		error = EINVAL;
381 		goto out;
382 	}
383 
384 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
385 	if (error)
386 		goto out;
387 
388 	/* We need the current policy in Linux terms. */
389 	error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
390 	if (error)
391 		goto out;
392 	error = sched_native2linux(policy, NULL, &policy, NULL);
393 	if (error)
394 		goto out;
395 
396 	error = sched_linux2native(policy, &lp, &policy, &sp);
397 	if (error)
398 		goto out;
399 
400 	error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
401 	if (error)
402 		goto out;
403 
404  out:
405 	return error;
406 }
407 
408 int
409 linux_sys_sched_getparam(struct lwp *l, const struct linux_sys_sched_getparam_args *uap, register_t *retval)
410 {
411 	/* {
412 		syscallarg(linux_pid_t) pid;
413 		syscallarg(struct linux_sched_param *) sp;
414 	} */
415 	struct linux_sched_param lp;
416 	struct sched_param sp;
417 	int error, policy;
418 
419 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
420 		error = EINVAL;
421 		goto out;
422 	}
423 
424 	error = do_sched_getparam(SCARG(uap, pid), 0, &policy, &sp);
425 	if (error)
426 		goto out;
427 	DPRINTF(("%s: native: policy %d, priority %d\n",
428 	    __func__, policy, sp.sched_priority));
429 
430 	error = sched_native2linux(policy, &sp, NULL, &lp);
431 	if (error)
432 		goto out;
433 	DPRINTF(("%s: linux: policy %d, priority %d\n",
434 	    __func__, policy, lp.sched_priority));
435 
436 	error = copyout(&lp, SCARG(uap, sp), sizeof(lp));
437 	if (error)
438 		goto out;
439 
440  out:
441 	return error;
442 }
443 
444 int
445 linux_sys_sched_setscheduler(struct lwp *l, const struct linux_sys_sched_setscheduler_args *uap, register_t *retval)
446 {
447 	/* {
448 		syscallarg(linux_pid_t) pid;
449 		syscallarg(int) policy;
450 		syscallarg(cont struct linux_sched_param *) sp;
451 	} */
452 	int error, policy;
453 	struct linux_sched_param lp;
454 	struct sched_param sp;
455 
456 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
457 		error = EINVAL;
458 		goto out;
459 	}
460 
461 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
462 	if (error)
463 		goto out;
464 	DPRINTF(("%s: linux: policy %d, priority %d\n",
465 	    __func__, SCARG(uap, policy), lp.sched_priority));
466 
467 	error = sched_linux2native(SCARG(uap, policy), &lp, &policy, &sp);
468 	if (error)
469 		goto out;
470 	DPRINTF(("%s: native: policy %d, priority %d\n",
471 	    __func__, policy, sp.sched_priority));
472 
473 	error = do_sched_setparam(SCARG(uap, pid), 0, policy, &sp);
474 	if (error)
475 		goto out;
476 
477  out:
478 	return error;
479 }
480 
481 int
482 linux_sys_sched_getscheduler(struct lwp *l, const struct linux_sys_sched_getscheduler_args *uap, register_t *retval)
483 {
484 	/* {
485 		syscallarg(linux_pid_t) pid;
486 	} */
487 	int error, policy;
488 
489 	*retval = -1;
490 
491 	error = do_sched_getparam(SCARG(uap, pid), 0, &policy, NULL);
492 	if (error)
493 		goto out;
494 
495 	error = sched_native2linux(policy, NULL, &policy, NULL);
496 	if (error)
497 		goto out;
498 
499 	*retval = policy;
500 
501  out:
502 	return error;
503 }
504 
505 int
506 linux_sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
507 {
508 
509 	yield();
510 	return 0;
511 }
512 
513 int
514 linux_sys_sched_get_priority_max(struct lwp *l, const struct linux_sys_sched_get_priority_max_args *uap, register_t *retval)
515 {
516 	/* {
517 		syscallarg(int) policy;
518 	} */
519 
520 	switch (SCARG(uap, policy)) {
521 	case LINUX_SCHED_OTHER:
522 		*retval = 0;
523 		break;
524 	case LINUX_SCHED_FIFO:
525 	case LINUX_SCHED_RR:
526 		*retval = LINUX_SCHED_RTPRIO_MAX;
527 		break;
528 	default:
529 		return EINVAL;
530 	}
531 
532 	return 0;
533 }
534 
535 int
536 linux_sys_sched_get_priority_min(struct lwp *l, const struct linux_sys_sched_get_priority_min_args *uap, register_t *retval)
537 {
538 	/* {
539 		syscallarg(int) policy;
540 	} */
541 
542 	switch (SCARG(uap, policy)) {
543 	case LINUX_SCHED_OTHER:
544 		*retval = 0;
545 		break;
546 	case LINUX_SCHED_FIFO:
547 	case LINUX_SCHED_RR:
548 		*retval = LINUX_SCHED_RTPRIO_MIN;
549 		break;
550 	default:
551 		return EINVAL;
552 	}
553 
554 	return 0;
555 }
556 
557 int
558 linux_sys_exit(struct lwp *l, const struct linux_sys_exit_args *uap, register_t *retval)
559 {
560 
561 	lwp_exit(l);
562 	return 0;
563 }
564 
565 #ifndef __m68k__
566 /* Present on everything but m68k */
567 int
568 linux_sys_exit_group(struct lwp *l, const struct linux_sys_exit_group_args *uap, register_t *retval)
569 {
570 
571 	return sys_exit(l, (const void *)uap, retval);
572 }
573 #endif /* !__m68k__ */
574 
575 int
576 linux_sys_set_tid_address(struct lwp *l, const struct linux_sys_set_tid_address_args *uap, register_t *retval)
577 {
578 	/* {
579 		syscallarg(int *) tidptr;
580 	} */
581 	struct linux_emuldata *led;
582 
583 	led = (struct linux_emuldata *)l->l_emuldata;
584 	led->led_clear_tid = SCARG(uap, tid);
585 	*retval = l->l_lid;
586 
587 	return 0;
588 }
589 
590 /* ARGUSED1 */
591 int
592 linux_sys_gettid(struct lwp *l, const void *v, register_t *retval)
593 {
594 
595 	*retval = l->l_lid;
596 	return 0;
597 }
598 
599 /*
600  * The affinity syscalls assume that the layout of our cpu kcpuset is
601  * the same as linux's: a linear bitmask.
602  */
603 int
604 linux_sys_sched_getaffinity(struct lwp *l, const struct linux_sys_sched_getaffinity_args *uap, register_t *retval)
605 {
606 	/* {
607 		syscallarg(linux_pid_t) pid;
608 		syscallarg(unsigned int) len;
609 		syscallarg(unsigned long *) mask;
610 	} */
611 	struct proc *p;
612 	struct lwp *t;
613 	kcpuset_t *kcset;
614 	size_t size;
615 	cpuid_t i;
616 	int error;
617 
618 	size = LINUX_CPU_MASK_SIZE;
619 	if (SCARG(uap, len) < size)
620 		return EINVAL;
621 
622 	if (SCARG(uap, pid) == 0) {
623 		p = curproc;
624 		mutex_enter(p->p_lock);
625 		t = curlwp;
626 	} else {
627 		t = lwp_find2(-1, SCARG(uap, pid));
628 		if (__predict_false(t == NULL)) {
629 			return ESRCH;
630 		}
631 		p = t->l_proc;
632 		KASSERT(mutex_owned(p->p_lock));
633 	}
634 
635 	/* Check the permission */
636 	if (kauth_authorize_process(l->l_cred,
637 	    KAUTH_PROCESS_SCHEDULER_GETAFFINITY, p, NULL, NULL, NULL)) {
638 		mutex_exit(p->p_lock);
639 		return EPERM;
640 	}
641 
642 	kcpuset_create(&kcset, true);
643 	lwp_lock(t);
644 	if (t->l_affinity != NULL)
645 		kcpuset_copy(kcset, t->l_affinity);
646 	else {
647 		/*
648 		 * All available CPUs should be masked when affinity has not
649 		 * been set.
650 		 */
651 		kcpuset_zero(kcset);
652 		for (i = 0; i < ncpu; i++)
653 			kcpuset_set(kcset, i);
654 	}
655 	lwp_unlock(t);
656 	mutex_exit(p->p_lock);
657 	error = kcpuset_copyout(kcset, (cpuset_t *)SCARG(uap, mask), size);
658 	kcpuset_unuse(kcset, NULL);
659 	*retval = size;
660 	return error;
661 }
662 
663 int
664 linux_sys_sched_setaffinity(struct lwp *l, const struct linux_sys_sched_setaffinity_args *uap, register_t *retval)
665 {
666 	/* {
667 		syscallarg(linux_pid_t) pid;
668 		syscallarg(unsigned int) len;
669 		syscallarg(unsigned long *) mask;
670 	} */
671 	struct sys__sched_setaffinity_args ssa;
672 	size_t size;
673 	pid_t pid;
674 	lwpid_t lid;
675 
676 	size = LINUX_CPU_MASK_SIZE;
677 	if (SCARG(uap, len) < size)
678 		return EINVAL;
679 
680 	lid = SCARG(uap, pid);
681 	if (lid != 0) {
682 		/* Get the canonical PID for the process. */
683 		mutex_enter(&proc_lock);
684 		struct proc *p = proc_find_lwpid(SCARG(uap, pid));
685 		if (p == NULL) {
686 			mutex_exit(&proc_lock);
687 			return ESRCH;
688 		}
689 		pid = p->p_pid;
690 		mutex_exit(&proc_lock);
691 	} else {
692 		pid = curproc->p_pid;
693 		lid = curlwp->l_lid;
694 	}
695 
696 	SCARG(&ssa, pid) = pid;
697 	SCARG(&ssa, lid) = lid;
698 	SCARG(&ssa, size) = size;
699 	SCARG(&ssa, cpuset) = (cpuset_t *)SCARG(uap, mask);
700 
701 	return sys__sched_setaffinity(l, &ssa, retval);
702 }
703