1 /* $NetBSD: linux_misc.c,v 1.189 2007/12/08 18:36:08 dsl Exp $ */ 2 3 /*- 4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe 9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Linux compatibility module. Try to deal with various Linux system calls. 42 */ 43 44 /* 45 * These functions have been moved to multiarch to allow 46 * selection of which machines include them to be 47 * determined by the individual files.linux_<arch> files. 48 * 49 * Function in multiarch: 50 * linux_sys_break : linux_break.c 51 * linux_sys_alarm : linux_misc_notalpha.c 52 * linux_sys_getresgid : linux_misc_notalpha.c 53 * linux_sys_nice : linux_misc_notalpha.c 54 * linux_sys_readdir : linux_misc_notalpha.c 55 * linux_sys_setresgid : linux_misc_notalpha.c 56 * linux_sys_time : linux_misc_notalpha.c 57 * linux_sys_utime : linux_misc_notalpha.c 58 * linux_sys_waitpid : linux_misc_notalpha.c 59 * linux_sys_old_mmap : linux_oldmmap.c 60 * linux_sys_oldolduname : linux_oldolduname.c 61 * linux_sys_oldselect : linux_oldselect.c 62 * linux_sys_olduname : linux_olduname.c 63 * linux_sys_pipe : linux_pipe.c 64 */ 65 66 #include <sys/cdefs.h> 67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.189 2007/12/08 18:36:08 dsl Exp $"); 68 69 #if defined(_KERNEL_OPT) 70 #include "opt_ptrace.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/namei.h> 76 #include <sys/proc.h> 77 #include <sys/dirent.h> 78 #include <sys/file.h> 79 #include <sys/stat.h> 80 #include <sys/filedesc.h> 81 #include <sys/ioctl.h> 82 #include <sys/kernel.h> 83 #include <sys/malloc.h> 84 #include <sys/mbuf.h> 85 #include <sys/mman.h> 86 #include <sys/mount.h> 87 #include <sys/prot.h> 88 #include <sys/reboot.h> 89 #include <sys/resource.h> 90 #include <sys/resourcevar.h> 91 #include <sys/select.h> 92 #include <sys/signal.h> 93 #include <sys/signalvar.h> 94 #include <sys/socket.h> 95 #include <sys/time.h> 96 #include <sys/times.h> 97 #include <sys/vnode.h> 98 #include <sys/uio.h> 99 #include <sys/wait.h> 100 #include <sys/utsname.h> 101 #include <sys/unistd.h> 102 #include <sys/vfs_syscalls.h> 103 #include <sys/swap.h> /* for SWAP_ON */ 104 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */ 105 #include <sys/kauth.h> 106 107 #include <sys/ptrace.h> 108 #include <machine/ptrace.h> 109 110 #include <sys/syscall.h> 111 #include <sys/syscallargs.h> 112 113 #include <compat/linux/common/linux_machdep.h> 114 #include <compat/linux/common/linux_types.h> 115 #include <compat/linux/common/linux_signal.h> 116 #include <compat/linux/common/linux_ipc.h> 117 #include <compat/linux/common/linux_sem.h> 118 119 #include <compat/linux/linux_syscallargs.h> 120 121 #include <compat/linux/common/linux_fcntl.h> 122 #include <compat/linux/common/linux_mmap.h> 123 #include <compat/linux/common/linux_dirent.h> 124 #include <compat/linux/common/linux_util.h> 125 #include <compat/linux/common/linux_misc.h> 126 #ifndef COMPAT_LINUX32 127 #include <compat/linux/common/linux_statfs.h> 128 #include <compat/linux/common/linux_limit.h> 129 #endif 130 #include <compat/linux/common/linux_ptrace.h> 131 #include <compat/linux/common/linux_reboot.h> 132 #include <compat/linux/common/linux_emuldata.h> 133 134 #ifndef COMPAT_LINUX32 135 const int linux_ptrace_request_map[] = { 136 LINUX_PTRACE_TRACEME, PT_TRACE_ME, 137 LINUX_PTRACE_PEEKTEXT, PT_READ_I, 138 LINUX_PTRACE_PEEKDATA, PT_READ_D, 139 LINUX_PTRACE_POKETEXT, PT_WRITE_I, 140 LINUX_PTRACE_POKEDATA, PT_WRITE_D, 141 LINUX_PTRACE_CONT, PT_CONTINUE, 142 LINUX_PTRACE_KILL, PT_KILL, 143 LINUX_PTRACE_ATTACH, PT_ATTACH, 144 LINUX_PTRACE_DETACH, PT_DETACH, 145 # ifdef PT_STEP 146 LINUX_PTRACE_SINGLESTEP, PT_STEP, 147 # endif 148 LINUX_PTRACE_SYSCALL, PT_SYSCALL, 149 -1 150 }; 151 152 const struct linux_mnttypes linux_fstypes[] = { 153 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC }, 154 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC }, 155 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC }, 156 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC }, 157 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC }, 158 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC }, 159 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC }, 160 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC }, 161 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC }, 162 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC }, 163 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC }, 164 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC }, 165 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC }, 166 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC }, 167 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC }, 168 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC }, 169 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC }, 170 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC }, 171 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC }, 172 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC }, 173 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC }, 174 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC }, 175 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC }, 176 { MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC } 177 }; 178 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]); 179 180 # ifdef DEBUG_LINUX 181 #define DPRINTF(a) uprintf a 182 # else 183 #define DPRINTF(a) 184 # endif 185 186 /* Local linux_misc.c functions: */ 187 static void linux_to_bsd_mmap_args(struct sys_mmap_args *, 188 const struct linux_sys_mmap_args *); 189 static int linux_mmap(struct lwp *, struct linux_sys_mmap_args *, 190 register_t *, off_t); 191 192 193 /* 194 * The information on a terminated (or stopped) process needs 195 * to be converted in order for Linux binaries to get a valid signal 196 * number out of it. 197 */ 198 int 199 bsd_to_linux_wstat(int st) 200 { 201 202 int sig; 203 204 if (WIFSIGNALED(st)) { 205 sig = WTERMSIG(st); 206 if (sig >= 0 && sig < NSIG) 207 st= (st & ~0177) | native_to_linux_signo[sig]; 208 } else if (WIFSTOPPED(st)) { 209 sig = WSTOPSIG(st); 210 if (sig >= 0 && sig < NSIG) 211 st = (st & ~0xff00) | 212 (native_to_linux_signo[sig] << 8); 213 } 214 return st; 215 } 216 217 /* 218 * wait4(2). Passed on to the NetBSD call, surrounded by code to 219 * reserve some space for a NetBSD-style wait status, and converting 220 * it to what Linux wants. 221 */ 222 int 223 linux_sys_wait4(struct lwp *l, void *v, register_t *retval) 224 { 225 struct linux_sys_wait4_args /* { 226 syscallarg(int) pid; 227 syscallarg(int *) status; 228 syscallarg(int) options; 229 syscallarg(struct rusage *) rusage; 230 } */ *uap = v; 231 int error, status, options, linux_options, was_zombie; 232 struct rusage ru; 233 234 linux_options = SCARG(uap, options); 235 options = WOPTSCHECKED; 236 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS)) 237 return (EINVAL); 238 239 if (linux_options & LINUX_WAIT4_WNOHANG) 240 options |= WNOHANG; 241 if (linux_options & LINUX_WAIT4_WUNTRACED) 242 options |= WUNTRACED; 243 if (linux_options & LINUX_WAIT4_WALL) 244 options |= WALLSIG; 245 if (linux_options & LINUX_WAIT4_WCLONE) 246 options |= WALTSIG; 247 # ifdef DIAGNOSTIC 248 if (linux_options & LINUX_WAIT4_WNOTHREAD) 249 printf("WARNING: %s: linux process %d.%d called " 250 "waitpid with __WNOTHREAD set!", 251 __FILE__, l->l_proc->p_pid, l->l_lid); 252 253 # endif 254 255 error = do_sys_wait(l, &SCARG(uap, pid), &status, options, 256 SCARG(uap, rusage) != NULL ? &ru : NULL, &was_zombie); 257 258 retval[0] = SCARG(uap, pid); 259 if (SCARG(uap, pid) == 0) 260 return error; 261 262 sigdelset(&l->l_proc->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */ 263 264 if (SCARG(uap, rusage) != NULL) 265 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 266 267 if (error == 0 && SCARG(uap, status) != NULL) { 268 status = bsd_to_linux_wstat(status); 269 error = copyout(&status, SCARG(uap, status), sizeof status); 270 } 271 272 return error; 273 } 274 275 /* 276 * Linux brk(2). The check if the new address is >= the old one is 277 * done in the kernel in Linux. NetBSD does it in the library. 278 */ 279 int 280 linux_sys_brk(struct lwp *l, void *v, register_t *retval) 281 { 282 struct linux_sys_brk_args /* { 283 syscallarg(char *) nsize; 284 } */ *uap = v; 285 struct proc *p = l->l_proc; 286 char *nbrk = SCARG(uap, nsize); 287 struct sys_obreak_args oba; 288 struct vmspace *vm = p->p_vmspace; 289 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata; 290 291 SCARG(&oba, nsize) = nbrk; 292 293 if ((void *) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0) 294 ed->s->p_break = (char*)nbrk; 295 else 296 nbrk = ed->s->p_break; 297 298 retval[0] = (register_t)nbrk; 299 300 return 0; 301 } 302 303 /* 304 * Implement the fs stat functions. Straightforward. 305 */ 306 int 307 linux_sys_statfs(struct lwp *l, void *v, register_t *retval) 308 { 309 struct linux_sys_statfs_args /* { 310 syscallarg(const char *) path; 311 syscallarg(struct linux_statfs *) sp; 312 } */ *uap = v; 313 struct statvfs *sb; 314 struct linux_statfs ltmp; 315 int error; 316 317 sb = STATVFSBUF_GET(); 318 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb); 319 if (error == 0) { 320 bsd_to_linux_statfs(sb, <mp); 321 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 322 } 323 STATVFSBUF_PUT(sb); 324 325 return error; 326 } 327 328 int 329 linux_sys_fstatfs(struct lwp *l, void *v, register_t *retval) 330 { 331 struct linux_sys_fstatfs_args /* { 332 syscallarg(int) fd; 333 syscallarg(struct linux_statfs *) sp; 334 } */ *uap = v; 335 struct statvfs *sb; 336 struct linux_statfs ltmp; 337 int error; 338 339 sb = STATVFSBUF_GET(); 340 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb); 341 if (error == 0) { 342 bsd_to_linux_statfs(sb, <mp); 343 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 344 } 345 STATVFSBUF_PUT(sb); 346 347 return error; 348 } 349 350 /* 351 * uname(). Just copy the info from the various strings stored in the 352 * kernel, and put it in the Linux utsname structure. That structure 353 * is almost the same as the NetBSD one, only it has fields 65 characters 354 * long, and an extra domainname field. 355 */ 356 int 357 linux_sys_uname(struct lwp *l, void *v, register_t *retval) 358 { 359 struct linux_sys_uname_args /* { 360 syscallarg(struct linux_utsname *) up; 361 } */ *uap = v; 362 struct linux_utsname luts; 363 364 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname)); 365 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); 366 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release)); 367 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version)); 368 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine)); 369 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname)); 370 371 return copyout(&luts, SCARG(uap, up), sizeof(luts)); 372 } 373 374 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */ 375 /* Used indirectly on: arm, i386, m68k */ 376 377 /* 378 * New type Linux mmap call. 379 * Only called directly on machines with >= 6 free regs. 380 */ 381 int 382 linux_sys_mmap(struct lwp *l, void *v, register_t *retval) 383 { 384 struct linux_sys_mmap_args /* { 385 syscallarg(unsigned long) addr; 386 syscallarg(size_t) len; 387 syscallarg(int) prot; 388 syscallarg(int) flags; 389 syscallarg(int) fd; 390 syscallarg(linux_off_t) offset; 391 } */ *uap = v; 392 393 if (SCARG(uap, offset) & PAGE_MASK) 394 return EINVAL; 395 396 return linux_mmap(l, uap, retval, SCARG(uap, offset)); 397 } 398 399 /* 400 * Guts of most architectures' mmap64() implementations. This shares 401 * its list of arguments with linux_sys_mmap(). 402 * 403 * The difference in linux_sys_mmap2() is that "offset" is actually 404 * (offset / pagesize), not an absolute byte count. This translation 405 * to pagesize offsets is done inside glibc between the mmap64() call 406 * point, and the actual syscall. 407 */ 408 int 409 linux_sys_mmap2(struct lwp *l, void *v, register_t *retval) 410 { 411 struct linux_sys_mmap2_args /* { 412 syscallarg(unsigned long) addr; 413 syscallarg(size_t) len; 414 syscallarg(int) prot; 415 syscallarg(int) flags; 416 syscallarg(int) fd; 417 syscallarg(linux_off_t) offset; 418 } */ *uap = v; 419 420 return linux_mmap(l, uap, retval, 421 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT); 422 } 423 424 /* 425 * Massage arguments and call system mmap(2). 426 */ 427 static int 428 linux_mmap(struct lwp *l, struct linux_sys_mmap_args *uap, register_t *retval, off_t offset) 429 { 430 struct sys_mmap_args cma; 431 int error; 432 size_t mmoff=0; 433 434 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) { 435 /* 436 * Request for stack-like memory segment. On linux, this 437 * works by mmap()ping (small) segment, which is automatically 438 * extended when page fault happens below the currently 439 * allocated area. We emulate this by allocating (typically 440 * bigger) segment sized at current stack size limit, and 441 * offsetting the requested and returned address accordingly. 442 * Since physical pages are only allocated on-demand, this 443 * is effectively identical. 444 */ 445 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur; 446 447 if (SCARG(uap, len) < ssl) { 448 /* Compute the address offset */ 449 mmoff = round_page(ssl) - SCARG(uap, len); 450 451 if (SCARG(uap, addr)) 452 SCARG(uap, addr) -= mmoff; 453 454 SCARG(uap, len) = (size_t) ssl; 455 } 456 } 457 458 linux_to_bsd_mmap_args(&cma, uap); 459 SCARG(&cma, pos) = offset; 460 461 error = sys_mmap(l, &cma, retval); 462 if (error) 463 return (error); 464 465 /* Shift the returned address for stack-like segment if necessary */ 466 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff) 467 retval[0] += mmoff; 468 469 return (0); 470 } 471 472 static void 473 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap) 474 { 475 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags); 476 477 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); 478 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); 479 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); 480 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); 481 /* XXX XAX ERH: Any other flags here? There are more defined... */ 482 483 SCARG(cma, addr) = (void *)SCARG(uap, addr); 484 SCARG(cma, len) = SCARG(uap, len); 485 SCARG(cma, prot) = SCARG(uap, prot); 486 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */ 487 SCARG(cma, prot) |= VM_PROT_READ; 488 SCARG(cma, flags) = flags; 489 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); 490 SCARG(cma, pad) = 0; 491 } 492 493 #define LINUX_MREMAP_MAYMOVE 1 494 #define LINUX_MREMAP_FIXED 2 495 496 int 497 linux_sys_mremap(struct lwp *l, void *v, register_t *retval) 498 { 499 struct linux_sys_mremap_args /* { 500 syscallarg(void *) old_address; 501 syscallarg(size_t) old_size; 502 syscallarg(size_t) new_size; 503 syscallarg(u_long) flags; 504 } */ *uap = v; 505 506 struct proc *p; 507 struct vm_map *map; 508 vaddr_t oldva; 509 vaddr_t newva; 510 size_t oldsize; 511 size_t newsize; 512 int flags; 513 int uvmflags; 514 int error; 515 516 flags = SCARG(uap, flags); 517 oldva = (vaddr_t)SCARG(uap, old_address); 518 oldsize = round_page(SCARG(uap, old_size)); 519 newsize = round_page(SCARG(uap, new_size)); 520 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) { 521 error = EINVAL; 522 goto done; 523 } 524 if ((flags & LINUX_MREMAP_FIXED) != 0) { 525 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) { 526 error = EINVAL; 527 goto done; 528 } 529 #if 0 /* notyet */ 530 newva = SCARG(uap, new_address); 531 uvmflags = MAP_FIXED; 532 #else /* notyet */ 533 error = EOPNOTSUPP; 534 goto done; 535 #endif /* notyet */ 536 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) { 537 uvmflags = 0; 538 } else { 539 newva = oldva; 540 uvmflags = MAP_FIXED; 541 } 542 p = l->l_proc; 543 map = &p->p_vmspace->vm_map; 544 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p, 545 uvmflags); 546 547 done: 548 *retval = (error != 0) ? 0 : (register_t)newva; 549 return error; 550 } 551 552 int 553 linux_sys_msync(struct lwp *l, void *v, register_t *retval) 554 { 555 struct linux_sys_msync_args /* { 556 syscallarg(void *) addr; 557 syscallarg(int) len; 558 syscallarg(int) fl; 559 } */ *uap = v; 560 561 struct sys___msync13_args bma; 562 563 /* flags are ignored */ 564 SCARG(&bma, addr) = SCARG(uap, addr); 565 SCARG(&bma, len) = SCARG(uap, len); 566 SCARG(&bma, flags) = SCARG(uap, fl); 567 568 return sys___msync13(l, &bma, retval); 569 } 570 571 int 572 linux_sys_mprotect(struct lwp *l, void *v, register_t *retval) 573 { 574 struct linux_sys_mprotect_args /* { 575 syscallarg(const void *) start; 576 syscallarg(unsigned long) len; 577 syscallarg(int) prot; 578 } */ *uap = v; 579 struct vm_map_entry *entry; 580 struct vm_map *map; 581 struct proc *p; 582 vaddr_t end, start, len, stacklim; 583 int prot, grows; 584 585 start = (vaddr_t)SCARG(uap, start); 586 len = round_page(SCARG(uap, len)); 587 prot = SCARG(uap, prot); 588 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP); 589 prot &= ~grows; 590 end = start + len; 591 592 if (start & PAGE_MASK) 593 return EINVAL; 594 if (end < start) 595 return EINVAL; 596 if (end == start) 597 return 0; 598 599 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) 600 return EINVAL; 601 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP)) 602 return EINVAL; 603 604 p = l->l_proc; 605 map = &p->p_vmspace->vm_map; 606 vm_map_lock(map); 607 # ifdef notdef 608 VM_MAP_RANGE_CHECK(map, start, end); 609 # endif 610 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) { 611 vm_map_unlock(map); 612 return ENOMEM; 613 } 614 615 /* 616 * Approximate the behaviour of PROT_GROWS{DOWN,UP}. 617 */ 618 619 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 620 if (grows & LINUX_PROT_GROWSDOWN) { 621 if (USRSTACK - stacklim <= start && start < USRSTACK) { 622 start = USRSTACK - stacklim; 623 } else { 624 start = entry->start; 625 } 626 } else if (grows & LINUX_PROT_GROWSUP) { 627 if (USRSTACK <= end && end < USRSTACK + stacklim) { 628 end = USRSTACK + stacklim; 629 } else { 630 end = entry->end; 631 } 632 } 633 vm_map_unlock(map); 634 return uvm_map_protect(map, start, end, prot, FALSE); 635 } 636 637 /* 638 * This code is partly stolen from src/lib/libc/compat-43/times.c 639 */ 640 641 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) 642 643 int 644 linux_sys_times(struct lwp *l, void *v, register_t *retval) 645 { 646 struct linux_sys_times_args /* { 647 syscallarg(struct times *) tms; 648 } */ *uap = v; 649 struct proc *p = l->l_proc; 650 struct timeval t; 651 int error; 652 653 if (SCARG(uap, tms)) { 654 struct linux_tms ltms; 655 struct rusage ru; 656 657 mutex_enter(&p->p_smutex); 658 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL); 659 ltms.ltms_utime = CONVTCK(ru.ru_utime); 660 ltms.ltms_stime = CONVTCK(ru.ru_stime); 661 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); 662 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); 663 mutex_exit(&p->p_smutex); 664 665 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) 666 return error; 667 } 668 669 getmicrouptime(&t); 670 671 retval[0] = ((linux_clock_t)(CONVTCK(t))); 672 return 0; 673 } 674 675 #undef CONVTCK 676 677 /* 678 * Linux 'readdir' call. This code is mostly taken from the 679 * SunOS getdents call (see compat/sunos/sunos_misc.c), though 680 * an attempt has been made to keep it a little cleaner (failing 681 * miserably, because of the cruft needed if count 1 is passed). 682 * 683 * The d_off field should contain the offset of the next valid entry, 684 * but in Linux it has the offset of the entry itself. We emulate 685 * that bug here. 686 * 687 * Read in BSD-style entries, convert them, and copy them out. 688 * 689 * Note that this doesn't handle union-mounted filesystems. 690 */ 691 int 692 linux_sys_getdents(struct lwp *l, void *v, register_t *retval) 693 { 694 struct linux_sys_getdents_args /* { 695 syscallarg(int) fd; 696 syscallarg(struct linux_dirent *) dent; 697 syscallarg(unsigned int) count; 698 } */ *uap = v; 699 struct dirent *bdp; 700 struct vnode *vp; 701 char *inp, *tbuf; /* BSD-format */ 702 int len, reclen; /* BSD-format */ 703 char *outp; /* Linux-format */ 704 int resid, linux_reclen = 0; /* Linux-format */ 705 struct file *fp; 706 struct uio auio; 707 struct iovec aiov; 708 struct linux_dirent idb; 709 off_t off; /* true file offset */ 710 int buflen, error, eofflag, nbytes, oldcall; 711 struct vattr va; 712 off_t *cookiebuf = NULL, *cookie; 713 int ncookies; 714 715 /* getvnode() will use the descriptor for us */ 716 if ((error = getvnode(l->l_proc->p_fd, SCARG(uap, fd), &fp)) != 0) 717 return (error); 718 719 if ((fp->f_flag & FREAD) == 0) { 720 error = EBADF; 721 goto out1; 722 } 723 724 vp = (struct vnode *)fp->f_data; 725 if (vp->v_type != VDIR) { 726 error = EINVAL; 727 goto out1; 728 } 729 730 if ((error = VOP_GETATTR(vp, &va, l->l_cred))) 731 goto out1; 732 733 nbytes = SCARG(uap, count); 734 if (nbytes == 1) { /* emulating old, broken behaviour */ 735 nbytes = sizeof (idb); 736 buflen = max(va.va_blocksize, nbytes); 737 oldcall = 1; 738 } else { 739 buflen = min(MAXBSIZE, nbytes); 740 if (buflen < va.va_blocksize) 741 buflen = va.va_blocksize; 742 oldcall = 0; 743 } 744 tbuf = malloc(buflen, M_TEMP, M_WAITOK); 745 746 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 747 off = fp->f_offset; 748 again: 749 aiov.iov_base = tbuf; 750 aiov.iov_len = buflen; 751 auio.uio_iov = &aiov; 752 auio.uio_iovcnt = 1; 753 auio.uio_rw = UIO_READ; 754 auio.uio_resid = buflen; 755 auio.uio_offset = off; 756 UIO_SETUP_SYSSPACE(&auio); 757 /* 758 * First we read into the malloc'ed buffer, then 759 * we massage it into user space, one record at a time. 760 */ 761 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, 762 &ncookies); 763 if (error) 764 goto out; 765 766 inp = tbuf; 767 outp = (void *)SCARG(uap, dent); 768 resid = nbytes; 769 if ((len = buflen - auio.uio_resid) == 0) 770 goto eof; 771 772 for (cookie = cookiebuf; len > 0; len -= reclen) { 773 bdp = (struct dirent *)inp; 774 reclen = bdp->d_reclen; 775 if (reclen & 3) 776 panic("linux_readdir"); 777 if (bdp->d_fileno == 0) { 778 inp += reclen; /* it is a hole; squish it out */ 779 if (cookie) 780 off = *cookie++; 781 else 782 off += reclen; 783 continue; 784 } 785 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen); 786 if (reclen > len || resid < linux_reclen) { 787 /* entry too big for buffer, so just stop */ 788 outp++; 789 break; 790 } 791 /* 792 * Massage in place to make a Linux-shaped dirent (otherwise 793 * we have to worry about touching user memory outside of 794 * the copyout() call). 795 */ 796 idb.d_ino = bdp->d_fileno; 797 /* 798 * The old readdir() call misuses the offset and reclen fields. 799 */ 800 if (oldcall) { 801 idb.d_off = (linux_off_t)linux_reclen; 802 idb.d_reclen = (u_short)bdp->d_namlen; 803 } else { 804 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) { 805 compat_offseterr(vp, "linux_getdents"); 806 error = EINVAL; 807 goto out; 808 } 809 idb.d_off = (linux_off_t)off; 810 idb.d_reclen = (u_short)linux_reclen; 811 } 812 strcpy(idb.d_name, bdp->d_name); 813 if ((error = copyout((void *)&idb, outp, linux_reclen))) 814 goto out; 815 /* advance past this real entry */ 816 inp += reclen; 817 if (cookie) 818 off = *cookie++; /* each entry points to itself */ 819 else 820 off += reclen; 821 /* advance output past Linux-shaped entry */ 822 outp += linux_reclen; 823 resid -= linux_reclen; 824 if (oldcall) 825 break; 826 } 827 828 /* if we squished out the whole block, try again */ 829 if (outp == (void *)SCARG(uap, dent)) 830 goto again; 831 fp->f_offset = off; /* update the vnode offset */ 832 833 if (oldcall) 834 nbytes = resid + linux_reclen; 835 836 eof: 837 *retval = nbytes - resid; 838 out: 839 VOP_UNLOCK(vp, 0); 840 if (cookiebuf) 841 free(cookiebuf, M_TEMP); 842 free(tbuf, M_TEMP); 843 out1: 844 FILE_UNUSE(fp, l); 845 return error; 846 } 847 848 /* 849 * Even when just using registers to pass arguments to syscalls you can 850 * have 5 of them on the i386. So this newer version of select() does 851 * this. 852 */ 853 int 854 linux_sys_select(struct lwp *l, void *v, register_t *retval) 855 { 856 struct linux_sys_select_args /* { 857 syscallarg(int) nfds; 858 syscallarg(fd_set *) readfds; 859 syscallarg(fd_set *) writefds; 860 syscallarg(fd_set *) exceptfds; 861 syscallarg(struct timeval *) timeout; 862 } */ *uap = v; 863 864 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds), 865 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout)); 866 } 867 868 /* 869 * Common code for the old and new versions of select(). A couple of 870 * things are important: 871 * 1) return the amount of time left in the 'timeout' parameter 872 * 2) select never returns ERESTART on Linux, always return EINTR 873 */ 874 int 875 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout) 876 struct lwp *l; 877 register_t *retval; 878 int nfds; 879 fd_set *readfds, *writefds, *exceptfds; 880 struct timeval *timeout; 881 { 882 struct timeval tv0, tv1, utv, *tv = NULL; 883 int error; 884 885 /* 886 * Store current time for computation of the amount of 887 * time left. 888 */ 889 if (timeout) { 890 if ((error = copyin(timeout, &utv, sizeof(utv)))) 891 return error; 892 if (itimerfix(&utv)) { 893 /* 894 * The timeval was invalid. Convert it to something 895 * valid that will act as it does under Linux. 896 */ 897 utv.tv_sec += utv.tv_usec / 1000000; 898 utv.tv_usec %= 1000000; 899 if (utv.tv_usec < 0) { 900 utv.tv_sec -= 1; 901 utv.tv_usec += 1000000; 902 } 903 if (utv.tv_sec < 0) 904 timerclear(&utv); 905 } 906 tv = &utv; 907 microtime(&tv0); 908 } 909 910 error = selcommon(l, retval, nfds, readfds, writefds, exceptfds, 911 tv, NULL); 912 913 if (error) { 914 /* 915 * See fs/select.c in the Linux kernel. Without this, 916 * Maelstrom doesn't work. 917 */ 918 if (error == ERESTART) 919 error = EINTR; 920 return error; 921 } 922 923 if (timeout) { 924 if (*retval) { 925 /* 926 * Compute how much time was left of the timeout, 927 * by subtracting the current time and the time 928 * before we started the call, and subtracting 929 * that result from the user-supplied value. 930 */ 931 microtime(&tv1); 932 timersub(&tv1, &tv0, &tv1); 933 timersub(&utv, &tv1, &utv); 934 if (utv.tv_sec < 0) 935 timerclear(&utv); 936 } else 937 timerclear(&utv); 938 if ((error = copyout(&utv, timeout, sizeof(utv)))) 939 return error; 940 } 941 942 return 0; 943 } 944 945 /* 946 * Get the process group of a certain process. Look it up 947 * and return the value. 948 */ 949 int 950 linux_sys_getpgid(struct lwp *l, void *v, register_t *retval) 951 { 952 struct linux_sys_getpgid_args /* { 953 syscallarg(int) pid; 954 } */ *uap = v; 955 struct proc *p = l->l_proc; 956 struct proc *targp; 957 958 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) { 959 if ((targp = pfind(SCARG(uap, pid))) == 0) 960 return ESRCH; 961 } 962 else 963 targp = p; 964 965 retval[0] = targp->p_pgid; 966 return 0; 967 } 968 969 /* 970 * Set the 'personality' (emulation mode) for the current process. Only 971 * accept the Linux personality here (0). This call is needed because 972 * the Linux ELF crt0 issues it in an ugly kludge to make sure that 973 * ELF binaries run in Linux mode, not SVR4 mode. 974 */ 975 int 976 linux_sys_personality(struct lwp *l, void *v, register_t *retval) 977 { 978 struct linux_sys_personality_args /* { 979 syscallarg(int) per; 980 } */ *uap = v; 981 982 if (SCARG(uap, per) != 0) 983 return EINVAL; 984 retval[0] = 0; 985 return 0; 986 } 987 #endif /* !COMPAT_LINUX32 */ 988 989 #if defined(__i386__) || defined(__m68k__) || defined(COMPAT_LINUX32) 990 /* 991 * The calls are here because of type conversions. 992 */ 993 #ifndef COMPAT_LINUX32 994 int 995 linux_sys_setreuid16(struct lwp *l, void *v, register_t *retval) 996 { 997 struct linux_sys_setreuid16_args /* { 998 syscallarg(int) ruid; 999 syscallarg(int) euid; 1000 } */ *uap = v; 1001 struct sys_setreuid_args bsa; 1002 1003 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? 1004 (uid_t)-1 : SCARG(uap, ruid); 1005 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? 1006 (uid_t)-1 : SCARG(uap, euid); 1007 1008 return sys_setreuid(l, &bsa, retval); 1009 } 1010 1011 int 1012 linux_sys_setregid16(struct lwp *l, void *v, register_t *retval) 1013 { 1014 struct linux_sys_setregid16_args /* { 1015 syscallarg(int) rgid; 1016 syscallarg(int) egid; 1017 } */ *uap = v; 1018 struct sys_setregid_args bsa; 1019 1020 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? 1021 (uid_t)-1 : SCARG(uap, rgid); 1022 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? 1023 (uid_t)-1 : SCARG(uap, egid); 1024 1025 return sys_setregid(l, &bsa, retval); 1026 } 1027 1028 int 1029 linux_sys_setresuid16(struct lwp *l, void *v, register_t *retval) 1030 { 1031 struct linux_sys_setresuid16_args /* { 1032 syscallarg(uid_t) ruid; 1033 syscallarg(uid_t) euid; 1034 syscallarg(uid_t) suid; 1035 } */ *uap = v; 1036 struct linux_sys_setresuid16_args lsa; 1037 1038 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? 1039 (uid_t)-1 : SCARG(uap, ruid); 1040 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? 1041 (uid_t)-1 : SCARG(uap, euid); 1042 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ? 1043 (uid_t)-1 : SCARG(uap, suid); 1044 1045 return linux_sys_setresuid(l, &lsa, retval); 1046 } 1047 1048 int 1049 linux_sys_setresgid16(struct lwp *l, void *v, register_t *retval) 1050 { 1051 struct linux_sys_setresgid16_args /* { 1052 syscallarg(gid_t) rgid; 1053 syscallarg(gid_t) egid; 1054 syscallarg(gid_t) sgid; 1055 } */ *uap = v; 1056 struct linux_sys_setresgid16_args lsa; 1057 1058 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? 1059 (gid_t)-1 : SCARG(uap, rgid); 1060 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? 1061 (gid_t)-1 : SCARG(uap, egid); 1062 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ? 1063 (gid_t)-1 : SCARG(uap, sgid); 1064 1065 return linux_sys_setresgid(l, &lsa, retval); 1066 } 1067 #endif /* COMPAT_LINUX32 */ 1068 1069 int 1070 linux_sys_getgroups16(struct lwp *l, void *v, register_t *retval) 1071 { 1072 struct linux_sys_getgroups16_args /* { 1073 syscallarg(int) gidsetsize; 1074 syscallarg(linux_gid_t *) gidset; 1075 } */ *uap = v; 1076 linux_gid_t lset[16]; 1077 linux_gid_t *gidset; 1078 unsigned int ngrps; 1079 int i, n, j; 1080 int error; 1081 1082 ngrps = kauth_cred_ngroups(l->l_cred); 1083 *retval = ngrps; 1084 if (SCARG(uap, gidsetsize) == 0) 1085 return 0; 1086 if (SCARG(uap, gidsetsize) < ngrps) 1087 return EINVAL; 1088 1089 gidset = SCARG(uap, gidset); 1090 for (i = 0; i < (n = ngrps); i += n, gidset += n) { 1091 n -= i; 1092 if (n > __arraycount(lset)) 1093 n = __arraycount(lset); 1094 for (j = 0; j < n; j++) 1095 lset[j] = kauth_cred_group(l->l_cred, i + j); 1096 error = copyout(lset, gidset, n * sizeof(lset[0])); 1097 if (error != 0) 1098 return error; 1099 } 1100 1101 return 0; 1102 } 1103 1104 /* 1105 * It is very unlikly that any problem using 16bit groups is written 1106 * to allow for more than 16 of them, so don't bother trying to 1107 * support that. 1108 */ 1109 #define COMPAT_NGROUPS16 16 1110 1111 int 1112 linux_sys_setgroups16(struct lwp *l, void *v, register_t *retval) 1113 { 1114 struct linux_sys_setgroups16_args /* { 1115 syscallarg(int) gidsetsize; 1116 syscallarg(linux_gid_t *) gidset; 1117 } */ *uap = v; 1118 linux_gid_t lset[COMPAT_NGROUPS16]; 1119 kauth_cred_t ncred; 1120 int error; 1121 gid_t grbuf[COMPAT_NGROUPS16]; 1122 unsigned int i, ngroups = SCARG(uap, gidsetsize); 1123 1124 if (ngroups > COMPAT_NGROUPS16) 1125 return EINVAL; 1126 error = copyin(SCARG(uap, gidset), lset, ngroups); 1127 if (error != 0) 1128 return error; 1129 1130 for (i = 0; i < ngroups; i++) 1131 grbuf[i] = lset[i]; 1132 1133 ncred = kauth_cred_alloc(); 1134 error = kauth_cred_setgroups(ncred, grbuf, SCARG(uap, gidsetsize), 1135 -1, UIO_SYSSPACE); 1136 if (error != 0) { 1137 kauth_cred_free(ncred); 1138 return error; 1139 } 1140 1141 return kauth_proc_setgroups(l, ncred); 1142 } 1143 1144 #endif /* __i386__ || __m68k__ || COMPAT_LINUX32 */ 1145 1146 #ifndef COMPAT_LINUX32 1147 /* 1148 * We have nonexistent fsuid equal to uid. 1149 * If modification is requested, refuse. 1150 */ 1151 int 1152 linux_sys_setfsuid(struct lwp *l, void *v, register_t *retval) 1153 { 1154 struct linux_sys_setfsuid_args /* { 1155 syscallarg(uid_t) uid; 1156 } */ *uap = v; 1157 uid_t uid; 1158 1159 uid = SCARG(uap, uid); 1160 if (kauth_cred_getuid(l->l_cred) != uid) 1161 return sys_nosys(l, v, retval); 1162 else 1163 return (0); 1164 } 1165 1166 /* XXX XXX XXX */ 1167 # ifndef alpha 1168 int 1169 linux_sys_getfsuid(struct lwp *l, void *v, register_t *retval) 1170 { 1171 return sys_getuid(l, v, retval); 1172 } 1173 # endif 1174 1175 int 1176 linux_sys_setresuid(struct lwp *l, void *v, register_t *retval) 1177 { 1178 struct linux_sys_setresuid_args /* { 1179 syscallarg(uid_t) ruid; 1180 syscallarg(uid_t) euid; 1181 syscallarg(uid_t) suid; 1182 } */ *uap = v; 1183 1184 /* 1185 * Note: These checks are a little different than the NetBSD 1186 * setreuid(2) call performs. This precisely follows the 1187 * behavior of the Linux kernel. 1188 */ 1189 1190 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid), 1191 SCARG(uap, suid), 1192 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | 1193 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | 1194 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); 1195 } 1196 1197 int 1198 linux_sys_getresuid(struct lwp *l, void *v, register_t *retval) 1199 { 1200 struct linux_sys_getresuid_args /* { 1201 syscallarg(uid_t *) ruid; 1202 syscallarg(uid_t *) euid; 1203 syscallarg(uid_t *) suid; 1204 } */ *uap = v; 1205 kauth_cred_t pc = l->l_cred; 1206 int error; 1207 uid_t uid; 1208 1209 /* 1210 * Linux copies these values out to userspace like so: 1211 * 1212 * 1. Copy out ruid. 1213 * 2. If that succeeds, copy out euid. 1214 * 3. If both of those succeed, copy out suid. 1215 */ 1216 uid = kauth_cred_getuid(pc); 1217 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0) 1218 return (error); 1219 1220 uid = kauth_cred_geteuid(pc); 1221 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0) 1222 return (error); 1223 1224 uid = kauth_cred_getsvuid(pc); 1225 1226 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t))); 1227 } 1228 1229 int 1230 linux_sys_ptrace(struct lwp *l, void *v, register_t *retval) 1231 { 1232 #if defined(PTRACE) || defined(_LKM) 1233 struct linux_sys_ptrace_args /* { 1234 i386, m68k, powerpc: T=int 1235 alpha, amd64: T=long 1236 syscallarg(T) request; 1237 syscallarg(T) pid; 1238 syscallarg(T) addr; 1239 syscallarg(T) data; 1240 } */ *uap = v; 1241 const int *ptr; 1242 int request; 1243 int error; 1244 #ifdef _LKM 1245 #define sys_ptrace (*sysent[SYS_ptrace].sy_call) 1246 #endif 1247 1248 ptr = linux_ptrace_request_map; 1249 request = SCARG(uap, request); 1250 while (*ptr != -1) 1251 if (*ptr++ == request) { 1252 struct sys_ptrace_args pta; 1253 1254 SCARG(&pta, req) = *ptr; 1255 SCARG(&pta, pid) = SCARG(uap, pid); 1256 SCARG(&pta, addr) = (void *)SCARG(uap, addr); 1257 SCARG(&pta, data) = SCARG(uap, data); 1258 1259 /* 1260 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually 1261 * to continue where the process left off previously. 1262 * The same thing is achieved by addr == (void *) 1 1263 * on NetBSD, so rewrite 'addr' appropriately. 1264 */ 1265 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0) 1266 SCARG(&pta, addr) = (void *) 1; 1267 1268 error = sys_ptrace(l, &pta, retval); 1269 if (error) 1270 return error; 1271 switch (request) { 1272 case LINUX_PTRACE_PEEKTEXT: 1273 case LINUX_PTRACE_PEEKDATA: 1274 error = copyout (retval, 1275 (void *)SCARG(uap, data), 1276 sizeof *retval); 1277 *retval = SCARG(uap, data); 1278 break; 1279 default: 1280 break; 1281 } 1282 return error; 1283 } 1284 else 1285 ptr++; 1286 1287 return LINUX_SYS_PTRACE_ARCH(l, uap, retval); 1288 #else 1289 return ENOSYS; 1290 #endif /* PTRACE || _LKM */ 1291 } 1292 1293 int 1294 linux_sys_reboot(struct lwp *l, void *v, register_t *retval) 1295 { 1296 struct linux_sys_reboot_args /* { 1297 syscallarg(int) magic1; 1298 syscallarg(int) magic2; 1299 syscallarg(int) cmd; 1300 syscallarg(void *) arg; 1301 } */ *uap = v; 1302 struct sys_reboot_args /* { 1303 syscallarg(int) opt; 1304 syscallarg(char *) bootstr; 1305 } */ sra; 1306 int error; 1307 1308 if ((error = kauth_authorize_system(l->l_cred, 1309 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0) 1310 return(error); 1311 1312 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1) 1313 return(EINVAL); 1314 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 && 1315 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A && 1316 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B) 1317 return(EINVAL); 1318 1319 switch (SCARG(uap, cmd)) { 1320 case LINUX_REBOOT_CMD_RESTART: 1321 SCARG(&sra, opt) = RB_AUTOBOOT; 1322 break; 1323 case LINUX_REBOOT_CMD_HALT: 1324 SCARG(&sra, opt) = RB_HALT; 1325 break; 1326 case LINUX_REBOOT_CMD_POWER_OFF: 1327 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN; 1328 break; 1329 case LINUX_REBOOT_CMD_RESTART2: 1330 /* Reboot with an argument. */ 1331 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING; 1332 SCARG(&sra, bootstr) = SCARG(uap, arg); 1333 break; 1334 case LINUX_REBOOT_CMD_CAD_ON: 1335 return(EINVAL); /* We don't implement ctrl-alt-delete */ 1336 case LINUX_REBOOT_CMD_CAD_OFF: 1337 return(0); 1338 default: 1339 return(EINVAL); 1340 } 1341 1342 return(sys_reboot(l, &sra, retval)); 1343 } 1344 1345 /* 1346 * Copy of compat_12_sys_swapon(). 1347 */ 1348 int 1349 linux_sys_swapon(struct lwp *l, void *v, register_t *retval) 1350 { 1351 struct sys_swapctl_args ua; 1352 struct linux_sys_swapon_args /* { 1353 syscallarg(const char *) name; 1354 } */ *uap = v; 1355 1356 SCARG(&ua, cmd) = SWAP_ON; 1357 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name)); 1358 SCARG(&ua, misc) = 0; /* priority */ 1359 return (sys_swapctl(l, &ua, retval)); 1360 } 1361 1362 /* 1363 * Stop swapping to the file or block device specified by path. 1364 */ 1365 int 1366 linux_sys_swapoff(struct lwp *l, void *v, register_t *retval) 1367 { 1368 struct sys_swapctl_args ua; 1369 struct linux_sys_swapoff_args /* { 1370 syscallarg(const char *) path; 1371 } */ *uap = v; 1372 1373 SCARG(&ua, cmd) = SWAP_OFF; 1374 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/ 1375 return (sys_swapctl(l, &ua, retval)); 1376 } 1377 1378 /* 1379 * Copy of compat_09_sys_setdomainname() 1380 */ 1381 /* ARGSUSED */ 1382 int 1383 linux_sys_setdomainname(struct lwp *l, void *v, register_t *retval) 1384 { 1385 struct linux_sys_setdomainname_args /* { 1386 syscallarg(char *) domainname; 1387 syscallarg(int) len; 1388 } */ *uap = v; 1389 int name[2]; 1390 1391 name[0] = CTL_KERN; 1392 name[1] = KERN_DOMAINNAME; 1393 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname), 1394 SCARG(uap, len), l)); 1395 } 1396 1397 /* 1398 * sysinfo() 1399 */ 1400 /* ARGSUSED */ 1401 int 1402 linux_sys_sysinfo(struct lwp *l, void *v, register_t *retval) 1403 { 1404 struct linux_sys_sysinfo_args /* { 1405 syscallarg(struct linux_sysinfo *) arg; 1406 } */ *uap = v; 1407 struct linux_sysinfo si; 1408 struct loadavg *la; 1409 1410 si.uptime = time_uptime; 1411 la = &averunnable; 1412 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1413 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1414 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1415 si.totalram = ctob((u_long)physmem); 1416 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize; 1417 si.sharedram = 0; /* XXX */ 1418 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize; 1419 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize; 1420 si.freeswap = 1421 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize; 1422 si.procs = nprocs; 1423 1424 /* The following are only present in newer Linux kernels. */ 1425 si.totalbig = 0; 1426 si.freebig = 0; 1427 si.mem_unit = 1; 1428 1429 return (copyout(&si, SCARG(uap, arg), sizeof si)); 1430 } 1431 1432 int 1433 linux_sys_getrlimit(struct lwp *l, void *v, register_t *retval) 1434 { 1435 struct linux_sys_getrlimit_args /* { 1436 syscallarg(int) which; 1437 # ifdef LINUX_LARGEFILE64 1438 syscallarg(struct rlimit *) rlp; 1439 # else 1440 syscallarg(struct orlimit *) rlp; 1441 # endif 1442 } */ *uap = v; 1443 # ifdef LINUX_LARGEFILE64 1444 struct rlimit orl; 1445 # else 1446 struct orlimit orl; 1447 # endif 1448 int which; 1449 1450 which = linux_to_bsd_limit(SCARG(uap, which)); 1451 if (which < 0) 1452 return -which; 1453 1454 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]); 1455 1456 return copyout(&orl, SCARG(uap, rlp), sizeof(orl)); 1457 } 1458 1459 int 1460 linux_sys_setrlimit(struct lwp *l, void *v, register_t *retval) 1461 { 1462 struct linux_sys_setrlimit_args /* { 1463 syscallarg(int) which; 1464 # ifdef LINUX_LARGEFILE64 1465 syscallarg(struct rlimit *) rlp; 1466 # else 1467 syscallarg(struct orlimit *) rlp; 1468 # endif 1469 } */ *uap = v; 1470 struct rlimit rl; 1471 # ifdef LINUX_LARGEFILE64 1472 struct rlimit orl; 1473 # else 1474 struct orlimit orl; 1475 # endif 1476 int error; 1477 int which; 1478 1479 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0) 1480 return error; 1481 1482 which = linux_to_bsd_limit(SCARG(uap, which)); 1483 if (which < 0) 1484 return -which; 1485 1486 linux_to_bsd_rlimit(&rl, &orl); 1487 return dosetrlimit(l, l->l_proc, which, &rl); 1488 } 1489 1490 # if !defined(__mips__) && !defined(__amd64__) 1491 /* XXX: this doesn't look 100% common, at least mips doesn't have it */ 1492 int 1493 linux_sys_ugetrlimit(struct lwp *l, void *v, register_t *retval) 1494 { 1495 return linux_sys_getrlimit(l, v, retval); 1496 } 1497 # endif 1498 1499 /* 1500 * This gets called for unsupported syscalls. The difference to sys_nosys() 1501 * is that process does not get SIGSYS, the call just returns with ENOSYS. 1502 * This is the way Linux does it and glibc depends on this behaviour. 1503 */ 1504 int 1505 linux_sys_nosys(struct lwp *l, void *v, 1506 register_t *retval) 1507 { 1508 return (ENOSYS); 1509 } 1510 1511 int 1512 linux_sys_getpriority(struct lwp *l, void *v, register_t *retval) 1513 { 1514 struct linux_sys_getpriority_args /* { 1515 syscallarg(int) which; 1516 syscallarg(int) who; 1517 } */ *uap = v; 1518 struct sys_getpriority_args bsa; 1519 int error; 1520 1521 SCARG(&bsa, which) = SCARG(uap, which); 1522 SCARG(&bsa, who) = SCARG(uap, who); 1523 1524 if ((error = sys_getpriority(l, &bsa, retval))) 1525 return error; 1526 1527 *retval = NZERO - *retval; 1528 1529 return 0; 1530 } 1531 1532 #endif /* !COMPAT_LINUX32 */ 1533