1 /* $NetBSD: linux_misc.c,v 1.256 2021/12/02 04:29:48 ryo Exp $ */ 2 3 /*- 4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe 9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Linux compatibility module. Try to deal with various Linux system calls. 35 */ 36 37 /* 38 * These functions have been moved to multiarch to allow 39 * selection of which machines include them to be 40 * determined by the individual files.linux_<arch> files. 41 * 42 * Function in multiarch: 43 * linux_sys_break : linux_break.c 44 * linux_sys_alarm : linux_misc_notalpha.c 45 * linux_sys_getresgid : linux_misc_notalpha.c 46 * linux_sys_nice : linux_misc_notalpha.c 47 * linux_sys_readdir : linux_misc_notalpha.c 48 * linux_sys_setresgid : linux_misc_notalpha.c 49 * linux_sys_time : linux_misc_notalpha.c 50 * linux_sys_utime : linux_misc_notalpha.c 51 * linux_sys_waitpid : linux_misc_notalpha.c 52 * linux_sys_old_mmap : linux_oldmmap.c 53 * linux_sys_oldolduname : linux_oldolduname.c 54 * linux_sys_oldselect : linux_oldselect.c 55 * linux_sys_olduname : linux_olduname.c 56 * linux_sys_pipe : linux_pipe.c 57 */ 58 59 #include <sys/cdefs.h> 60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.256 2021/12/02 04:29:48 ryo Exp $"); 61 62 #include <sys/param.h> 63 #include <sys/systm.h> 64 #include <sys/namei.h> 65 #include <sys/proc.h> 66 #include <sys/dirent.h> 67 #include <sys/eventfd.h> 68 #include <sys/file.h> 69 #include <sys/stat.h> 70 #include <sys/filedesc.h> 71 #include <sys/ioctl.h> 72 #include <sys/kernel.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/mman.h> 76 #include <sys/mount.h> 77 #include <sys/poll.h> 78 #include <sys/prot.h> 79 #include <sys/reboot.h> 80 #include <sys/resource.h> 81 #include <sys/resourcevar.h> 82 #include <sys/select.h> 83 #include <sys/signal.h> 84 #include <sys/signalvar.h> 85 #include <sys/socket.h> 86 #include <sys/time.h> 87 #include <sys/times.h> 88 #include <sys/vnode.h> 89 #include <sys/uio.h> 90 #include <sys/wait.h> 91 #include <sys/utsname.h> 92 #include <sys/unistd.h> 93 #include <sys/vfs_syscalls.h> 94 #include <sys/swap.h> /* for SWAP_ON */ 95 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */ 96 #include <sys/kauth.h> 97 #include <sys/futex.h> 98 99 #include <sys/ptrace.h> 100 #include <machine/ptrace.h> 101 102 #include <sys/syscall.h> 103 #include <sys/syscallargs.h> 104 105 #include <compat/sys/resource.h> 106 107 #include <compat/linux/common/linux_machdep.h> 108 #include <compat/linux/common/linux_types.h> 109 #include <compat/linux/common/linux_signal.h> 110 #include <compat/linux/common/linux_ipc.h> 111 #include <compat/linux/common/linux_sem.h> 112 113 #include <compat/linux/common/linux_fcntl.h> 114 #include <compat/linux/common/linux_mmap.h> 115 #include <compat/linux/common/linux_dirent.h> 116 #include <compat/linux/common/linux_util.h> 117 #include <compat/linux/common/linux_misc.h> 118 #include <compat/linux/common/linux_statfs.h> 119 #include <compat/linux/common/linux_limit.h> 120 #include <compat/linux/common/linux_ptrace.h> 121 #include <compat/linux/common/linux_reboot.h> 122 #include <compat/linux/common/linux_emuldata.h> 123 #include <compat/linux/common/linux_sched.h> 124 125 #include <compat/linux/linux_syscallargs.h> 126 127 const int linux_ptrace_request_map[] = { 128 LINUX_PTRACE_TRACEME, PT_TRACE_ME, 129 LINUX_PTRACE_PEEKTEXT, PT_READ_I, 130 LINUX_PTRACE_PEEKDATA, PT_READ_D, 131 LINUX_PTRACE_POKETEXT, PT_WRITE_I, 132 LINUX_PTRACE_POKEDATA, PT_WRITE_D, 133 LINUX_PTRACE_CONT, PT_CONTINUE, 134 LINUX_PTRACE_KILL, PT_KILL, 135 LINUX_PTRACE_ATTACH, PT_ATTACH, 136 LINUX_PTRACE_DETACH, PT_DETACH, 137 # ifdef PT_STEP 138 LINUX_PTRACE_SINGLESTEP, PT_STEP, 139 # endif 140 LINUX_PTRACE_SYSCALL, PT_SYSCALL, 141 -1 142 }; 143 144 const struct linux_mnttypes linux_fstypes[] = { 145 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC }, 146 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC }, 147 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC }, 148 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC }, 149 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC }, 150 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC }, 151 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC }, 152 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC }, 153 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC }, 154 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC }, 155 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC }, 156 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC }, 157 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC }, 158 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC }, 159 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC }, 160 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC }, 161 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC }, 162 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC }, 163 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC }, 164 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC }, 165 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC }, 166 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC }, 167 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC } 168 }; 169 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]); 170 171 # ifdef DEBUG_LINUX 172 #define DPRINTF(a) uprintf a 173 # else 174 #define DPRINTF(a) 175 # endif 176 177 /* Local linux_misc.c functions: */ 178 static void linux_to_bsd_mmap_args(struct sys_mmap_args *, 179 const struct linux_sys_mmap_args *); 180 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *, 181 register_t *, off_t); 182 183 184 /* 185 * The information on a terminated (or stopped) process needs 186 * to be converted in order for Linux binaries to get a valid signal 187 * number out of it. 188 */ 189 int 190 bsd_to_linux_wstat(int st) 191 { 192 193 int sig; 194 195 if (WIFSIGNALED(st)) { 196 sig = WTERMSIG(st); 197 if (sig >= 0 && sig < NSIG) 198 st= (st & ~0177) | native_to_linux_signo[sig]; 199 } else if (WIFSTOPPED(st)) { 200 sig = WSTOPSIG(st); 201 if (sig >= 0 && sig < NSIG) 202 st = (st & ~0xff00) | 203 (native_to_linux_signo[sig] << 8); 204 } 205 return st; 206 } 207 208 /* 209 * wait4(2). Passed on to the NetBSD call, surrounded by code to 210 * reserve some space for a NetBSD-style wait status, and converting 211 * it to what Linux wants. 212 */ 213 int 214 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval) 215 { 216 /* { 217 syscallarg(int) pid; 218 syscallarg(int *) status; 219 syscallarg(int) options; 220 syscallarg(struct rusage50 *) rusage; 221 } */ 222 int error, status, options, linux_options, pid = SCARG(uap, pid); 223 struct rusage50 ru50; 224 struct rusage ru; 225 proc_t *p; 226 227 linux_options = SCARG(uap, options); 228 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS)) 229 return (EINVAL); 230 231 options = 0; 232 if (linux_options & LINUX_WAIT4_WNOHANG) 233 options |= WNOHANG; 234 if (linux_options & LINUX_WAIT4_WUNTRACED) 235 options |= WUNTRACED; 236 if (linux_options & LINUX_WAIT4_WCONTINUED) 237 options |= WCONTINUED; 238 if (linux_options & LINUX_WAIT4_WALL) 239 options |= WALLSIG; 240 if (linux_options & LINUX_WAIT4_WCLONE) 241 options |= WALTSIG; 242 # ifdef DIAGNOSTIC 243 if (linux_options & LINUX_WAIT4_WNOTHREAD) 244 printf("WARNING: %s: linux process %d.%d called " 245 "waitpid with __WNOTHREAD set!\n", 246 __FILE__, l->l_proc->p_pid, l->l_lid); 247 248 # endif 249 250 error = do_sys_wait(&pid, &status, options, 251 SCARG(uap, rusage) != NULL ? &ru : NULL); 252 253 retval[0] = pid; 254 if (pid == 0) 255 return error; 256 257 p = curproc; 258 mutex_enter(p->p_lock); 259 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */ 260 mutex_exit(p->p_lock); 261 262 if (SCARG(uap, rusage) != NULL) { 263 rusage_to_rusage50(&ru, &ru50); 264 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 265 } 266 267 if (error == 0 && SCARG(uap, status) != NULL) { 268 status = bsd_to_linux_wstat(status); 269 error = copyout(&status, SCARG(uap, status), sizeof status); 270 } 271 272 return error; 273 } 274 275 /* 276 * Linux brk(2). Like native, but always return the new break value. 277 */ 278 int 279 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval) 280 { 281 /* { 282 syscallarg(char *) nsize; 283 } */ 284 struct proc *p = l->l_proc; 285 struct vmspace *vm = p->p_vmspace; 286 struct sys_obreak_args oba; 287 288 SCARG(&oba, nsize) = SCARG(uap, nsize); 289 290 (void) sys_obreak(l, &oba, retval); 291 retval[0] = (register_t)((char *)vm->vm_daddr + ptoa(vm->vm_dsize)); 292 return 0; 293 } 294 295 /* 296 * Implement the fs stat functions. Straightforward. 297 */ 298 int 299 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval) 300 { 301 /* { 302 syscallarg(const char *) path; 303 syscallarg(struct linux_statfs *) sp; 304 } */ 305 struct statvfs *sb; 306 struct linux_statfs ltmp; 307 int error; 308 309 sb = STATVFSBUF_GET(); 310 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb); 311 if (error == 0) { 312 bsd_to_linux_statfs(sb, <mp); 313 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 314 } 315 STATVFSBUF_PUT(sb); 316 317 return error; 318 } 319 320 int 321 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval) 322 { 323 /* { 324 syscallarg(int) fd; 325 syscallarg(struct linux_statfs *) sp; 326 } */ 327 struct statvfs *sb; 328 struct linux_statfs ltmp; 329 int error; 330 331 sb = STATVFSBUF_GET(); 332 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb); 333 if (error == 0) { 334 bsd_to_linux_statfs(sb, <mp); 335 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 336 } 337 STATVFSBUF_PUT(sb); 338 339 return error; 340 } 341 342 /* 343 * uname(). Just copy the info from the various strings stored in the 344 * kernel, and put it in the Linux utsname structure. That structure 345 * is almost the same as the NetBSD one, only it has fields 65 characters 346 * long, and an extra domainname field. 347 */ 348 int 349 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval) 350 { 351 /* { 352 syscallarg(struct linux_utsname *) up; 353 } */ 354 struct linux_utsname luts; 355 356 memset(&luts, 0, sizeof(luts)); 357 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname)); 358 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); 359 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release)); 360 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version)); 361 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine)); 362 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname)); 363 364 return copyout(&luts, SCARG(uap, up), sizeof(luts)); 365 } 366 367 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */ 368 /* Used indirectly on: arm, i386, m68k */ 369 370 /* 371 * New type Linux mmap call. 372 * Only called directly on machines with >= 6 free regs. 373 */ 374 int 375 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval) 376 { 377 /* { 378 syscallarg(unsigned long) addr; 379 syscallarg(size_t) len; 380 syscallarg(int) prot; 381 syscallarg(int) flags; 382 syscallarg(int) fd; 383 syscallarg(linux_off_t) offset; 384 } */ 385 386 if (SCARG(uap, offset) & PAGE_MASK) 387 return EINVAL; 388 389 return linux_mmap(l, uap, retval, SCARG(uap, offset)); 390 } 391 392 /* 393 * Guts of most architectures' mmap64() implementations. This shares 394 * its list of arguments with linux_sys_mmap(). 395 * 396 * The difference in linux_sys_mmap2() is that "offset" is actually 397 * (offset / pagesize), not an absolute byte count. This translation 398 * to pagesize offsets is done inside glibc between the mmap64() call 399 * point, and the actual syscall. 400 */ 401 int 402 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval) 403 { 404 /* { 405 syscallarg(unsigned long) addr; 406 syscallarg(size_t) len; 407 syscallarg(int) prot; 408 syscallarg(int) flags; 409 syscallarg(int) fd; 410 syscallarg(linux_off_t) offset; 411 } */ 412 413 return linux_mmap(l, uap, retval, 414 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT); 415 } 416 417 /* 418 * Massage arguments and call system mmap(2). 419 */ 420 static int 421 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset) 422 { 423 struct sys_mmap_args cma; 424 int error; 425 size_t mmoff=0; 426 427 linux_to_bsd_mmap_args(&cma, uap); 428 SCARG(&cma, pos) = offset; 429 430 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) { 431 /* 432 * Request for stack-like memory segment. On linux, this 433 * works by mmap()ping (small) segment, which is automatically 434 * extended when page fault happens below the currently 435 * allocated area. We emulate this by allocating (typically 436 * bigger) segment sized at current stack size limit, and 437 * offsetting the requested and returned address accordingly. 438 * Since physical pages are only allocated on-demand, this 439 * is effectively identical. 440 */ 441 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur; 442 443 if (SCARG(&cma, len) < ssl) { 444 /* Compute the address offset */ 445 mmoff = round_page(ssl) - SCARG(uap, len); 446 447 if (SCARG(&cma, addr)) 448 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff; 449 450 SCARG(&cma, len) = (size_t) ssl; 451 } 452 } 453 454 error = sys_mmap(l, &cma, retval); 455 if (error) 456 return (error); 457 458 /* Shift the returned address for stack-like segment if necessary */ 459 retval[0] += mmoff; 460 461 return (0); 462 } 463 464 static void 465 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap) 466 { 467 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags); 468 469 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); 470 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); 471 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); 472 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); 473 flags |= cvtto_bsd_mask(fl, LINUX_MAP_LOCKED, MAP_WIRED); 474 /* XXX XAX ERH: Any other flags here? There are more defined... */ 475 476 SCARG(cma, addr) = (void *)SCARG(uap, addr); 477 SCARG(cma, len) = SCARG(uap, len); 478 SCARG(cma, prot) = SCARG(uap, prot); 479 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */ 480 SCARG(cma, prot) |= VM_PROT_READ; 481 SCARG(cma, flags) = flags; 482 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); 483 SCARG(cma, PAD) = 0; 484 } 485 486 #define LINUX_MREMAP_MAYMOVE 1 487 #define LINUX_MREMAP_FIXED 2 488 489 int 490 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval) 491 { 492 /* { 493 syscallarg(void *) old_address; 494 syscallarg(size_t) old_size; 495 syscallarg(size_t) new_size; 496 syscallarg(u_long) flags; 497 } */ 498 499 struct proc *p; 500 struct vm_map *map; 501 vaddr_t oldva; 502 vaddr_t newva; 503 size_t oldsize; 504 size_t newsize; 505 int flags; 506 int uvmflags; 507 int error; 508 509 flags = SCARG(uap, flags); 510 oldva = (vaddr_t)SCARG(uap, old_address); 511 oldsize = round_page(SCARG(uap, old_size)); 512 newsize = round_page(SCARG(uap, new_size)); 513 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) { 514 error = EINVAL; 515 goto done; 516 } 517 if ((flags & LINUX_MREMAP_FIXED) != 0) { 518 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) { 519 error = EINVAL; 520 goto done; 521 } 522 #if 0 /* notyet */ 523 newva = SCARG(uap, new_address); 524 uvmflags = MAP_FIXED; 525 #else /* notyet */ 526 error = EOPNOTSUPP; 527 goto done; 528 #endif /* notyet */ 529 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) { 530 uvmflags = 0; 531 } else { 532 newva = oldva; 533 uvmflags = MAP_FIXED; 534 } 535 p = l->l_proc; 536 map = &p->p_vmspace->vm_map; 537 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p, 538 uvmflags); 539 540 done: 541 *retval = (error != 0) ? 0 : (register_t)newva; 542 return error; 543 } 544 545 #ifdef USRSTACK 546 int 547 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval) 548 { 549 /* { 550 syscallarg(const void *) start; 551 syscallarg(unsigned long) len; 552 syscallarg(int) prot; 553 } */ 554 struct vm_map_entry *entry; 555 struct vm_map *map; 556 struct proc *p; 557 vaddr_t end, start, len, stacklim; 558 int prot, grows; 559 560 start = (vaddr_t)SCARG(uap, start); 561 len = round_page(SCARG(uap, len)); 562 prot = SCARG(uap, prot); 563 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP); 564 prot &= ~grows; 565 end = start + len; 566 567 if (start & PAGE_MASK) 568 return EINVAL; 569 if (end < start) 570 return EINVAL; 571 if (end == start) 572 return 0; 573 574 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) 575 return EINVAL; 576 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP)) 577 return EINVAL; 578 579 p = l->l_proc; 580 map = &p->p_vmspace->vm_map; 581 vm_map_lock(map); 582 # ifdef notdef 583 VM_MAP_RANGE_CHECK(map, start, end); 584 # endif 585 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) { 586 vm_map_unlock(map); 587 return ENOMEM; 588 } 589 590 /* 591 * Approximate the behaviour of PROT_GROWS{DOWN,UP}. 592 */ 593 594 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 595 if (grows & LINUX_PROT_GROWSDOWN) { 596 if (USRSTACK - stacklim <= start && start < USRSTACK) { 597 start = USRSTACK - stacklim; 598 } else { 599 start = entry->start; 600 } 601 } else if (grows & LINUX_PROT_GROWSUP) { 602 if (USRSTACK <= end && end < USRSTACK + stacklim) { 603 end = USRSTACK + stacklim; 604 } else { 605 end = entry->end; 606 } 607 } 608 vm_map_unlock(map); 609 return uvm_map_protect_user(l, start, end, prot); 610 } 611 #endif /* USRSTACK */ 612 613 /* 614 * This code is partly stolen from src/lib/libc/compat-43/times.c 615 */ 616 617 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) 618 619 int 620 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval) 621 { 622 /* { 623 syscallarg(struct times *) tms; 624 } */ 625 struct proc *p = l->l_proc; 626 struct timeval t; 627 int error; 628 629 if (SCARG(uap, tms)) { 630 struct linux_tms ltms; 631 struct rusage ru; 632 633 memset(<ms, 0, sizeof(ltms)); 634 635 mutex_enter(p->p_lock); 636 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL); 637 ltms.ltms_utime = CONVTCK(ru.ru_utime); 638 ltms.ltms_stime = CONVTCK(ru.ru_stime); 639 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); 640 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); 641 mutex_exit(p->p_lock); 642 643 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) 644 return error; 645 } 646 647 getmicrouptime(&t); 648 649 retval[0] = ((linux_clock_t)(CONVTCK(t))); 650 return 0; 651 } 652 653 #undef CONVTCK 654 655 #if !defined(__aarch64__) 656 /* 657 * Linux 'readdir' call. This code is mostly taken from the 658 * SunOS getdents call (see compat/sunos/sunos_misc.c), though 659 * an attempt has been made to keep it a little cleaner (failing 660 * miserably, because of the cruft needed if count 1 is passed). 661 * 662 * The d_off field should contain the offset of the next valid entry, 663 * but in Linux it has the offset of the entry itself. We emulate 664 * that bug here. 665 * 666 * Read in BSD-style entries, convert them, and copy them out. 667 * 668 * Note that this doesn't handle union-mounted filesystems. 669 */ 670 int 671 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval) 672 { 673 /* { 674 syscallarg(int) fd; 675 syscallarg(struct linux_dirent *) dent; 676 syscallarg(unsigned int) count; 677 } */ 678 struct dirent *bdp; 679 struct vnode *vp; 680 char *inp, *tbuf; /* BSD-format */ 681 int len, reclen; /* BSD-format */ 682 char *outp; /* Linux-format */ 683 int resid, linux_reclen = 0; /* Linux-format */ 684 struct file *fp; 685 struct uio auio; 686 struct iovec aiov; 687 struct linux_dirent idb; 688 off_t off; /* true file offset */ 689 int buflen, error, eofflag, nbytes, oldcall; 690 struct vattr va; 691 off_t *cookiebuf = NULL, *cookie; 692 int ncookies; 693 694 /* fd_getvnode() will use the descriptor for us */ 695 if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0) 696 return (error); 697 698 if ((fp->f_flag & FREAD) == 0) { 699 error = EBADF; 700 goto out1; 701 } 702 703 vp = (struct vnode *)fp->f_data; 704 if (vp->v_type != VDIR) { 705 error = ENOTDIR; 706 goto out1; 707 } 708 709 vn_lock(vp, LK_SHARED | LK_RETRY); 710 error = VOP_GETATTR(vp, &va, l->l_cred); 711 VOP_UNLOCK(vp); 712 if (error) 713 goto out1; 714 715 nbytes = SCARG(uap, count); 716 if (nbytes == 1) { /* emulating old, broken behaviour */ 717 nbytes = sizeof (idb); 718 buflen = uimax(va.va_blocksize, nbytes); 719 oldcall = 1; 720 } else { 721 buflen = uimin(MAXBSIZE, nbytes); 722 if (buflen < va.va_blocksize) 723 buflen = va.va_blocksize; 724 oldcall = 0; 725 } 726 tbuf = malloc(buflen, M_TEMP, M_WAITOK); 727 728 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 729 off = fp->f_offset; 730 again: 731 aiov.iov_base = tbuf; 732 aiov.iov_len = buflen; 733 auio.uio_iov = &aiov; 734 auio.uio_iovcnt = 1; 735 auio.uio_rw = UIO_READ; 736 auio.uio_resid = buflen; 737 auio.uio_offset = off; 738 UIO_SETUP_SYSSPACE(&auio); 739 /* 740 * First we read into the malloc'ed buffer, then 741 * we massage it into user space, one record at a time. 742 */ 743 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, 744 &ncookies); 745 if (error) 746 goto out; 747 748 inp = tbuf; 749 outp = (void *)SCARG(uap, dent); 750 resid = nbytes; 751 if ((len = buflen - auio.uio_resid) == 0) 752 goto eof; 753 754 for (cookie = cookiebuf; len > 0; len -= reclen) { 755 bdp = (struct dirent *)inp; 756 reclen = bdp->d_reclen; 757 if (reclen & 3) { 758 error = EIO; 759 goto out; 760 } 761 if (bdp->d_fileno == 0) { 762 inp += reclen; /* it is a hole; squish it out */ 763 if (cookie) 764 off = *cookie++; 765 else 766 off += reclen; 767 continue; 768 } 769 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen); 770 if (reclen > len || resid < linux_reclen) { 771 /* entry too big for buffer, so just stop */ 772 outp++; 773 break; 774 } 775 /* 776 * Massage in place to make a Linux-shaped dirent (otherwise 777 * we have to worry about touching user memory outside of 778 * the copyout() call). 779 */ 780 memset(&idb, 0, sizeof(idb)); 781 idb.d_ino = bdp->d_fileno; 782 /* 783 * The old readdir() call misuses the offset and reclen fields. 784 */ 785 if (oldcall) { 786 idb.d_off = (linux_off_t)linux_reclen; 787 idb.d_reclen = (u_short)bdp->d_namlen; 788 } else { 789 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) { 790 compat_offseterr(vp, "linux_getdents"); 791 error = EINVAL; 792 goto out; 793 } 794 idb.d_off = (linux_off_t)off; 795 idb.d_reclen = (u_short)linux_reclen; 796 /* Linux puts d_type at the end of each record */ 797 *((char *)&idb + idb.d_reclen - 1) = bdp->d_type; 798 } 799 memcpy(idb.d_name, bdp->d_name, 800 MIN(sizeof(idb.d_name), bdp->d_namlen + 1)); 801 if ((error = copyout((void *)&idb, outp, linux_reclen))) 802 goto out; 803 /* advance past this real entry */ 804 inp += reclen; 805 if (cookie) 806 off = *cookie++; /* each entry points to itself */ 807 else 808 off += reclen; 809 /* advance output past Linux-shaped entry */ 810 outp += linux_reclen; 811 resid -= linux_reclen; 812 if (oldcall) 813 break; 814 } 815 816 /* if we squished out the whole block, try again */ 817 if (outp == (void *)SCARG(uap, dent)) { 818 if (cookiebuf) 819 free(cookiebuf, M_TEMP); 820 cookiebuf = NULL; 821 goto again; 822 } 823 fp->f_offset = off; /* update the vnode offset */ 824 825 if (oldcall) 826 nbytes = resid + linux_reclen; 827 828 eof: 829 *retval = nbytes - resid; 830 out: 831 VOP_UNLOCK(vp); 832 if (cookiebuf) 833 free(cookiebuf, M_TEMP); 834 free(tbuf, M_TEMP); 835 out1: 836 fd_putfile(SCARG(uap, fd)); 837 return error; 838 } 839 #endif 840 841 #if !defined(__aarch64__) 842 /* 843 * Even when just using registers to pass arguments to syscalls you can 844 * have 5 of them on the i386. So this newer version of select() does 845 * this. 846 */ 847 int 848 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval) 849 { 850 /* { 851 syscallarg(int) nfds; 852 syscallarg(fd_set *) readfds; 853 syscallarg(fd_set *) writefds; 854 syscallarg(fd_set *) exceptfds; 855 syscallarg(struct timeval50 *) timeout; 856 } */ 857 858 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds), 859 SCARG(uap, writefds), SCARG(uap, exceptfds), 860 (struct linux_timeval *)SCARG(uap, timeout)); 861 } 862 863 /* 864 * Common code for the old and new versions of select(). A couple of 865 * things are important: 866 * 1) return the amount of time left in the 'timeout' parameter 867 * 2) select never returns ERESTART on Linux, always return EINTR 868 */ 869 int 870 linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds, 871 fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout) 872 { 873 struct timespec ts0, ts1, uts, *ts = NULL; 874 struct linux_timeval ltv; 875 int error; 876 877 /* 878 * Store current time for computation of the amount of 879 * time left. 880 */ 881 if (timeout) { 882 if ((error = copyin(timeout, <v, sizeof(ltv)))) 883 return error; 884 uts.tv_sec = ltv.tv_sec; 885 uts.tv_nsec = (long)((unsigned long)ltv.tv_usec * 1000); 886 if (itimespecfix(&uts)) { 887 /* 888 * The timeval was invalid. Convert it to something 889 * valid that will act as it does under Linux. 890 */ 891 uts.tv_sec += uts.tv_nsec / 1000000000; 892 uts.tv_nsec %= 1000000000; 893 if (uts.tv_nsec < 0) { 894 uts.tv_sec -= 1; 895 uts.tv_nsec += 1000000000; 896 } 897 if (uts.tv_sec < 0) 898 timespecclear(&uts); 899 } 900 ts = &uts; 901 nanotime(&ts0); 902 } 903 904 error = selcommon(retval, nfds, readfds, writefds, exceptfds, ts, NULL); 905 906 if (error) { 907 /* 908 * See fs/select.c in the Linux kernel. Without this, 909 * Maelstrom doesn't work. 910 */ 911 if (error == ERESTART) 912 error = EINTR; 913 return error; 914 } 915 916 if (timeout) { 917 if (*retval) { 918 /* 919 * Compute how much time was left of the timeout, 920 * by subtracting the current time and the time 921 * before we started the call, and subtracting 922 * that result from the user-supplied value. 923 */ 924 nanotime(&ts1); 925 timespecsub(&ts1, &ts0, &ts1); 926 timespecsub(&uts, &ts1, &uts); 927 if (uts.tv_sec < 0) 928 timespecclear(&uts); 929 } else 930 timespecclear(&uts); 931 ltv.tv_sec = uts.tv_sec; 932 ltv.tv_usec = uts.tv_nsec / 1000; 933 if ((error = copyout(<v, timeout, sizeof(ltv)))) 934 return error; 935 } 936 937 return 0; 938 } 939 #endif 940 941 /* 942 * Derived from FreeBSD's sys/compat/linux/linux_misc.c:linux_pselect6() 943 * which was contributed by Dmitry Chagin 944 * https://svnweb.freebsd.org/base?view=revision&revision=283403 945 */ 946 int 947 linux_sys_pselect6(struct lwp *l, 948 const struct linux_sys_pselect6_args *uap, register_t *retval) 949 { 950 /* { 951 syscallarg(int) nfds; 952 syscallarg(fd_set *) readfds; 953 syscallarg(fd_set *) writefds; 954 syscallarg(fd_set *) exceptfds; 955 syscallarg(struct timespec *) timeout; 956 syscallarg(linux_sized_sigset_t *) ss; 957 } */ 958 struct timespec uts, ts0, ts1, *tsp; 959 linux_sized_sigset_t lsss; 960 struct linux_timespec lts; 961 linux_sigset_t lss; 962 sigset_t *ssp; 963 sigset_t ss; 964 int error; 965 966 ssp = NULL; 967 if (SCARG(uap, ss) != NULL) { 968 if ((error = copyin(SCARG(uap, ss), &lsss, sizeof(lsss))) != 0) 969 return (error); 970 if (lsss.ss_len != sizeof(lss)) 971 return (EINVAL); 972 if (lsss.ss != NULL) { 973 if ((error = copyin(lsss.ss, &lss, sizeof(lss))) != 0) 974 return (error); 975 linux_to_native_sigset(&ss, &lss); 976 ssp = &ss; 977 } 978 } 979 980 if (SCARG(uap, timeout) != NULL) { 981 error = copyin(SCARG(uap, timeout), <s, sizeof(lts)); 982 if (error != 0) 983 return (error); 984 linux_to_native_timespec(&uts, <s); 985 986 if (itimespecfix(&uts)) 987 return (EINVAL); 988 989 nanotime(&ts0); 990 tsp = &uts; 991 } else { 992 tsp = NULL; 993 } 994 995 error = selcommon(retval, SCARG(uap, nfds), SCARG(uap, readfds), 996 SCARG(uap, writefds), SCARG(uap, exceptfds), tsp, ssp); 997 998 if (error == 0 && tsp != NULL) { 999 if (retval != 0) { 1000 /* 1001 * Compute how much time was left of the timeout, 1002 * by subtracting the current time and the time 1003 * before we started the call, and subtracting 1004 * that result from the user-supplied value. 1005 */ 1006 nanotime(&ts1); 1007 timespecsub(&ts1, &ts0, &ts1); 1008 timespecsub(&uts, &ts1, &uts); 1009 if (uts.tv_sec < 0) 1010 timespecclear(&uts); 1011 } else { 1012 timespecclear(&uts); 1013 } 1014 1015 native_to_linux_timespec(<s, &uts); 1016 error = copyout(<s, SCARG(uap, timeout), sizeof(lts)); 1017 } 1018 1019 return (error); 1020 } 1021 1022 int 1023 linux_sys_ppoll(struct lwp *l, 1024 const struct linux_sys_ppoll_args *uap, register_t *retval) 1025 { 1026 /* { 1027 syscallarg(struct pollfd *) fds; 1028 syscallarg(u_int) nfds; 1029 syscallarg(struct linux_timespec *) timeout; 1030 syscallarg(linux_sigset_t *) sigset; 1031 } */ 1032 struct linux_timespec lts0, *lts; 1033 struct timespec ts0, *ts = NULL; 1034 linux_sigset_t lsigmask0, *lsigmask; 1035 sigset_t sigmask0, *sigmask = NULL; 1036 int error; 1037 1038 lts = SCARG(uap, timeout); 1039 if (lts) { 1040 if ((error = copyin(lts, <s0, sizeof(lts0))) != 0) 1041 return error; 1042 linux_to_native_timespec(&ts0, <s0); 1043 ts = &ts0; 1044 } 1045 1046 lsigmask = SCARG(uap, sigset); 1047 if (lsigmask) { 1048 if ((error = copyin(lsigmask, &lsigmask0, sizeof(lsigmask0)))) 1049 return error; 1050 linux_to_native_sigset(&sigmask0, &lsigmask0); 1051 sigmask = &sigmask0; 1052 } 1053 1054 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), 1055 ts, sigmask); 1056 } 1057 1058 /* 1059 * Set the 'personality' (emulation mode) for the current process. Only 1060 * accept the Linux personality here (0). This call is needed because 1061 * the Linux ELF crt0 issues it in an ugly kludge to make sure that 1062 * ELF binaries run in Linux mode, not SVR4 mode. 1063 */ 1064 int 1065 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval) 1066 { 1067 /* { 1068 syscallarg(unsigned long) per; 1069 } */ 1070 struct linux_emuldata *led; 1071 int per; 1072 1073 per = SCARG(uap, per); 1074 led = l->l_emuldata; 1075 if (per == LINUX_PER_QUERY) { 1076 retval[0] = led->led_personality; 1077 return 0; 1078 } 1079 1080 switch (per & LINUX_PER_MASK) { 1081 case LINUX_PER_LINUX: 1082 case LINUX_PER_LINUX32: 1083 led->led_personality = per; 1084 break; 1085 1086 default: 1087 return EINVAL; 1088 } 1089 1090 retval[0] = per; 1091 return 0; 1092 } 1093 1094 /* 1095 * We have nonexistent fsuid equal to uid. 1096 * If modification is requested, refuse. 1097 */ 1098 int 1099 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval) 1100 { 1101 /* { 1102 syscallarg(uid_t) uid; 1103 } */ 1104 uid_t uid; 1105 1106 uid = SCARG(uap, uid); 1107 if (kauth_cred_getuid(l->l_cred) != uid) 1108 return sys_nosys(l, uap, retval); 1109 1110 *retval = uid; 1111 return 0; 1112 } 1113 1114 int 1115 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval) 1116 { 1117 /* { 1118 syscallarg(gid_t) gid; 1119 } */ 1120 gid_t gid; 1121 1122 gid = SCARG(uap, gid); 1123 if (kauth_cred_getgid(l->l_cred) != gid) 1124 return sys_nosys(l, uap, retval); 1125 1126 *retval = gid; 1127 return 0; 1128 } 1129 1130 int 1131 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval) 1132 { 1133 /* { 1134 syscallarg(uid_t) ruid; 1135 syscallarg(uid_t) euid; 1136 syscallarg(uid_t) suid; 1137 } */ 1138 1139 /* 1140 * Note: These checks are a little different than the NetBSD 1141 * setreuid(2) call performs. This precisely follows the 1142 * behavior of the Linux kernel. 1143 */ 1144 1145 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid), 1146 SCARG(uap, suid), 1147 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | 1148 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | 1149 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); 1150 } 1151 1152 int 1153 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval) 1154 { 1155 /* { 1156 syscallarg(uid_t *) ruid; 1157 syscallarg(uid_t *) euid; 1158 syscallarg(uid_t *) suid; 1159 } */ 1160 kauth_cred_t pc = l->l_cred; 1161 int error; 1162 uid_t uid; 1163 1164 /* 1165 * Linux copies these values out to userspace like so: 1166 * 1167 * 1. Copy out ruid. 1168 * 2. If that succeeds, copy out euid. 1169 * 3. If both of those succeed, copy out suid. 1170 */ 1171 uid = kauth_cred_getuid(pc); 1172 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0) 1173 return (error); 1174 1175 uid = kauth_cred_geteuid(pc); 1176 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0) 1177 return (error); 1178 1179 uid = kauth_cred_getsvuid(pc); 1180 1181 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t))); 1182 } 1183 1184 int 1185 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval) 1186 { 1187 /* { 1188 i386, m68k, powerpc: T=int 1189 alpha, amd64: T=long 1190 syscallarg(T) request; 1191 syscallarg(T) pid; 1192 syscallarg(T) addr; 1193 syscallarg(T) data; 1194 } */ 1195 const int *ptr; 1196 int request; 1197 int error; 1198 1199 ptr = linux_ptrace_request_map; 1200 request = SCARG(uap, request); 1201 while (*ptr != -1) 1202 if (*ptr++ == request) { 1203 struct sys_ptrace_args pta; 1204 1205 SCARG(&pta, req) = *ptr; 1206 SCARG(&pta, pid) = SCARG(uap, pid); 1207 SCARG(&pta, addr) = (void *)SCARG(uap, addr); 1208 SCARG(&pta, data) = SCARG(uap, data); 1209 1210 /* 1211 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually 1212 * to continue where the process left off previously. 1213 * The same thing is achieved by addr == (void *) 1 1214 * on NetBSD, so rewrite 'addr' appropriately. 1215 */ 1216 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0) 1217 SCARG(&pta, addr) = (void *) 1; 1218 1219 error = sysent[SYS_ptrace].sy_call(l, &pta, retval); 1220 if (error) 1221 return error; 1222 switch (request) { 1223 case LINUX_PTRACE_PEEKTEXT: 1224 case LINUX_PTRACE_PEEKDATA: 1225 error = copyout (retval, 1226 (void *)SCARG(uap, data), 1227 sizeof *retval); 1228 *retval = SCARG(uap, data); 1229 break; 1230 default: 1231 break; 1232 } 1233 return error; 1234 } 1235 else 1236 ptr++; 1237 1238 return LINUX_SYS_PTRACE_ARCH(l, uap, retval); 1239 } 1240 1241 int 1242 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval) 1243 { 1244 /* { 1245 syscallarg(int) magic1; 1246 syscallarg(int) magic2; 1247 syscallarg(int) cmd; 1248 syscallarg(void *) arg; 1249 } */ 1250 struct sys_reboot_args /* { 1251 syscallarg(int) opt; 1252 syscallarg(char *) bootstr; 1253 } */ sra; 1254 int error; 1255 1256 if ((error = kauth_authorize_system(l->l_cred, 1257 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0) 1258 return(error); 1259 1260 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1) 1261 return(EINVAL); 1262 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 && 1263 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A && 1264 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B) 1265 return(EINVAL); 1266 1267 switch ((unsigned long)SCARG(uap, cmd)) { 1268 case LINUX_REBOOT_CMD_RESTART: 1269 SCARG(&sra, opt) = RB_AUTOBOOT; 1270 break; 1271 case LINUX_REBOOT_CMD_HALT: 1272 SCARG(&sra, opt) = RB_HALT; 1273 break; 1274 case LINUX_REBOOT_CMD_POWER_OFF: 1275 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN; 1276 break; 1277 case LINUX_REBOOT_CMD_RESTART2: 1278 /* Reboot with an argument. */ 1279 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING; 1280 SCARG(&sra, bootstr) = SCARG(uap, arg); 1281 break; 1282 case LINUX_REBOOT_CMD_CAD_ON: 1283 return(EINVAL); /* We don't implement ctrl-alt-delete */ 1284 case LINUX_REBOOT_CMD_CAD_OFF: 1285 return(0); 1286 default: 1287 return(EINVAL); 1288 } 1289 1290 return(sys_reboot(l, &sra, retval)); 1291 } 1292 1293 /* 1294 * Copy of compat_12_sys_swapon(). 1295 */ 1296 int 1297 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval) 1298 { 1299 /* { 1300 syscallarg(const char *) name; 1301 } */ 1302 struct sys_swapctl_args ua; 1303 1304 SCARG(&ua, cmd) = SWAP_ON; 1305 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name)); 1306 SCARG(&ua, misc) = 0; /* priority */ 1307 return (sys_swapctl(l, &ua, retval)); 1308 } 1309 1310 /* 1311 * Stop swapping to the file or block device specified by path. 1312 */ 1313 int 1314 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval) 1315 { 1316 /* { 1317 syscallarg(const char *) path; 1318 } */ 1319 struct sys_swapctl_args ua; 1320 1321 SCARG(&ua, cmd) = SWAP_OFF; 1322 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/ 1323 return (sys_swapctl(l, &ua, retval)); 1324 } 1325 1326 /* 1327 * Copy of compat_09_sys_setdomainname() 1328 */ 1329 /* ARGSUSED */ 1330 int 1331 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval) 1332 { 1333 /* { 1334 syscallarg(char *) domainname; 1335 syscallarg(int) len; 1336 } */ 1337 int name[2]; 1338 1339 name[0] = CTL_KERN; 1340 name[1] = KERN_DOMAINNAME; 1341 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname), 1342 SCARG(uap, len), l)); 1343 } 1344 1345 /* 1346 * sysinfo() 1347 */ 1348 /* ARGSUSED */ 1349 int 1350 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval) 1351 { 1352 /* { 1353 syscallarg(struct linux_sysinfo *) arg; 1354 } */ 1355 struct linux_sysinfo si; 1356 struct loadavg *la; 1357 int64_t filepg; 1358 1359 memset(&si, 0, sizeof(si)); 1360 si.uptime = time_uptime; 1361 la = &averunnable; 1362 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1363 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1364 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1365 si.totalram = ctob((u_long)physmem); 1366 /* uvm_availmem() may sync the counters. */ 1367 si.freeram = (u_long)uvm_availmem(true) * uvmexp.pagesize; 1368 filepg = cpu_count_get(CPU_COUNT_FILECLEAN) + 1369 cpu_count_get(CPU_COUNT_FILEDIRTY) + 1370 cpu_count_get(CPU_COUNT_FILEUNKNOWN) - 1371 cpu_count_get(CPU_COUNT_EXECPAGES); 1372 si.sharedram = 0; /* XXX */ 1373 si.bufferram = (u_long)(filepg * uvmexp.pagesize); 1374 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize; 1375 si.freeswap = 1376 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize; 1377 si.procs = atomic_load_relaxed(&nprocs); 1378 1379 /* The following are only present in newer Linux kernels. */ 1380 si.totalbig = 0; 1381 si.freebig = 0; 1382 si.mem_unit = 1; 1383 1384 return (copyout(&si, SCARG(uap, arg), sizeof si)); 1385 } 1386 1387 int 1388 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval) 1389 { 1390 /* { 1391 syscallarg(int) which; 1392 # ifdef LINUX_LARGEFILE64 1393 syscallarg(struct rlimit *) rlp; 1394 # else 1395 syscallarg(struct orlimit *) rlp; 1396 # endif 1397 } */ 1398 # ifdef LINUX_LARGEFILE64 1399 struct rlimit orl; 1400 # else 1401 struct orlimit orl; 1402 # endif 1403 int which; 1404 1405 which = linux_to_bsd_limit(SCARG(uap, which)); 1406 if (which < 0) 1407 return -which; 1408 1409 memset(&orl, 0, sizeof(orl)); 1410 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]); 1411 1412 return copyout(&orl, SCARG(uap, rlp), sizeof(orl)); 1413 } 1414 1415 int 1416 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval) 1417 { 1418 /* { 1419 syscallarg(int) which; 1420 # ifdef LINUX_LARGEFILE64 1421 syscallarg(struct rlimit *) rlp; 1422 # else 1423 syscallarg(struct orlimit *) rlp; 1424 # endif 1425 } */ 1426 struct rlimit rl; 1427 # ifdef LINUX_LARGEFILE64 1428 struct rlimit orl; 1429 # else 1430 struct orlimit orl; 1431 # endif 1432 int error; 1433 int which; 1434 1435 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0) 1436 return error; 1437 1438 which = linux_to_bsd_limit(SCARG(uap, which)); 1439 if (which < 0) 1440 return -which; 1441 1442 linux_to_bsd_rlimit(&rl, &orl); 1443 return dosetrlimit(l, l->l_proc, which, &rl); 1444 } 1445 1446 # if !defined(__aarch64__) && !defined(__mips__) && !defined(__amd64__) 1447 /* XXX: this doesn't look 100% common, at least mips doesn't have it */ 1448 int 1449 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval) 1450 { 1451 return linux_sys_getrlimit(l, (const void *)uap, retval); 1452 } 1453 # endif 1454 1455 int 1456 linux_sys_prlimit64(struct lwp *l, const struct linux_sys_prlimit64_args *uap, register_t *retval) 1457 { 1458 /* { 1459 syscallarg(pid_t) pid; 1460 syscallarg(int) witch; 1461 syscallarg(struct rlimit *) new_rlp; 1462 syscallarg(struct rlimit *) old_rlp; 1463 }; */ 1464 struct rlimit rl, nrl, orl; 1465 struct rlimit *p; 1466 int which; 1467 int error; 1468 1469 /* XXX: Cannot operate any process other than its own */ 1470 if (SCARG(uap, pid) != 0) 1471 return EPERM; 1472 1473 which = linux_to_bsd_limit(SCARG(uap, which)); 1474 if (which < 0) 1475 return -which; 1476 1477 p = SCARG(uap, old_rlp); 1478 if (p != NULL) { 1479 memset(&orl, 0, sizeof(orl)); 1480 bsd_to_linux_rlimit64(&orl, &l->l_proc->p_rlimit[which]); 1481 if ((error = copyout(&orl, p, sizeof(orl))) != 0) 1482 return error; 1483 } 1484 1485 p = SCARG(uap, new_rlp); 1486 if (p != NULL) { 1487 if ((error = copyin(p, &nrl, sizeof(nrl))) != 0) 1488 return error; 1489 1490 linux_to_bsd_rlimit(&rl, &nrl); 1491 return dosetrlimit(l, l->l_proc, which, &rl); 1492 } 1493 1494 return 0; 1495 } 1496 1497 /* 1498 * This gets called for unsupported syscalls. The difference to sys_nosys() 1499 * is that process does not get SIGSYS, the call just returns with ENOSYS. 1500 * This is the way Linux does it and glibc depends on this behaviour. 1501 */ 1502 int 1503 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval) 1504 { 1505 return (ENOSYS); 1506 } 1507 1508 int 1509 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval) 1510 { 1511 /* { 1512 syscallarg(int) which; 1513 syscallarg(int) who; 1514 } */ 1515 struct sys_getpriority_args bsa; 1516 int error; 1517 1518 SCARG(&bsa, which) = SCARG(uap, which); 1519 SCARG(&bsa, who) = SCARG(uap, who); 1520 1521 if ((error = sys_getpriority(l, &bsa, retval))) 1522 return error; 1523 1524 *retval = NZERO - *retval; 1525 1526 return 0; 1527 } 1528 1529 int 1530 linux_do_sys_utimensat(struct lwp *l, int fd, const char *path, struct timespec *tsp, int flags, register_t *retval) 1531 { 1532 int follow, error; 1533 1534 follow = (flags & LINUX_AT_SYMLINK_NOFOLLOW) ? NOFOLLOW : FOLLOW; 1535 1536 if (path == NULL && fd != AT_FDCWD) { 1537 file_t *fp; 1538 1539 /* fd_getvnode() will use the descriptor for us */ 1540 if ((error = fd_getvnode(fd, &fp)) != 0) 1541 return error; 1542 error = do_sys_utimensat(l, AT_FDCWD, fp->f_data, NULL, 0, 1543 tsp, UIO_SYSSPACE); 1544 fd_putfile(fd); 1545 return error; 1546 } 1547 1548 return do_sys_utimensat(l, fd, NULL, path, follow, tsp, UIO_SYSSPACE); 1549 } 1550 1551 int 1552 linux_sys_utimensat(struct lwp *l, const struct linux_sys_utimensat_args *uap, 1553 register_t *retval) 1554 { 1555 /* { 1556 syscallarg(int) fd; 1557 syscallarg(const char *) path; 1558 syscallarg(const struct linux_timespec *) times; 1559 syscallarg(int) flag; 1560 } */ 1561 int error; 1562 struct linux_timespec lts[2]; 1563 struct timespec *tsp = NULL, ts[2]; 1564 1565 if (SCARG(uap, times)) { 1566 error = copyin(SCARG(uap, times), <s, sizeof(lts)); 1567 if (error != 0) 1568 return error; 1569 linux_to_native_timespec(&ts[0], <s[0]); 1570 linux_to_native_timespec(&ts[1], <s[1]); 1571 tsp = ts; 1572 } 1573 1574 return linux_do_sys_utimensat(l, SCARG(uap, fd), SCARG(uap, path), 1575 tsp, SCARG(uap, flag), retval); 1576 } 1577 1578 int 1579 linux_sys_futex(struct lwp *l, const struct linux_sys_futex_args *uap, 1580 register_t *retval) 1581 { 1582 /* { 1583 syscallarg(int *) uaddr; 1584 syscallarg(int) op; 1585 syscallarg(int) val; 1586 syscallarg(const struct linux_timespec *) timeout; 1587 syscallarg(int *) uaddr2; 1588 syscallarg(int) val3; 1589 } */ 1590 struct linux_timespec lts; 1591 struct timespec ts, *tsp = NULL; 1592 int val2 = 0; 1593 int error; 1594 1595 /* 1596 * Linux overlays the "timeout" field and the "val2" field. 1597 * "timeout" is only valid for FUTEX_WAIT and FUTEX_WAIT_BITSET 1598 * on Linux. 1599 */ 1600 const int op = (SCARG(uap, op) & FUTEX_CMD_MASK); 1601 if ((op == FUTEX_WAIT || op == FUTEX_WAIT_BITSET) && 1602 SCARG(uap, timeout) != NULL) { 1603 if ((error = copyin(SCARG(uap, timeout), 1604 <s, sizeof(lts))) != 0) { 1605 return error; 1606 } 1607 linux_to_native_timespec(&ts, <s); 1608 tsp = &ts; 1609 } else { 1610 val2 = (int)(uintptr_t)SCARG(uap, timeout); 1611 } 1612 1613 return linux_do_futex(SCARG(uap, uaddr), SCARG(uap, op), 1614 SCARG(uap, val), tsp, SCARG(uap, uaddr2), val2, 1615 SCARG(uap, val3), retval); 1616 } 1617 1618 int 1619 linux_do_futex(int *uaddr, int op, int val, struct timespec *timeout, 1620 int *uaddr2, int val2, int val3, register_t *retval) 1621 { 1622 /* 1623 * Always clear FUTEX_PRIVATE_FLAG for Linux processes. 1624 * NetBSD-native futexes exist in different namespace 1625 * depending on FUTEX_PRIVATE_FLAG. This appears not 1626 * to be the case in Linux, and some futex users will 1627 * mix private and non-private ops on the same futex 1628 * object. 1629 */ 1630 return do_futex(uaddr, op & ~FUTEX_PRIVATE_FLAG, 1631 val, timeout, uaddr2, val2, val3, retval); 1632 } 1633 1634 #define LINUX_EFD_SEMAPHORE 0x0001 1635 #define LINUX_EFD_CLOEXEC LINUX_O_CLOEXEC 1636 #define LINUX_EFD_NONBLOCK LINUX_O_NONBLOCK 1637 1638 static int 1639 linux_do_eventfd2(struct lwp *l, unsigned int initval, int flags, 1640 register_t *retval) 1641 { 1642 int nflags = 0; 1643 1644 if (flags & ~(LINUX_EFD_SEMAPHORE | LINUX_EFD_CLOEXEC | 1645 LINUX_EFD_NONBLOCK)) { 1646 return EINVAL; 1647 } 1648 if (flags & LINUX_EFD_SEMAPHORE) { 1649 nflags |= EFD_SEMAPHORE; 1650 } 1651 if (flags & LINUX_EFD_CLOEXEC) { 1652 nflags |= EFD_CLOEXEC; 1653 } 1654 if (flags & LINUX_EFD_NONBLOCK) { 1655 nflags |= EFD_NONBLOCK; 1656 } 1657 1658 return do_eventfd(l, initval, nflags, retval); 1659 } 1660 1661 int 1662 linux_sys_eventfd(struct lwp *l, const struct linux_sys_eventfd_args *uap, 1663 register_t *retval) 1664 { 1665 /* { 1666 syscallarg(unsigned int) initval; 1667 } */ 1668 1669 return linux_do_eventfd2(l, SCARG(uap, initval), 0, retval); 1670 } 1671 1672 int 1673 linux_sys_eventfd2(struct lwp *l, const struct linux_sys_eventfd2_args *uap, 1674 register_t *retval) 1675 { 1676 /* { 1677 syscallarg(unsigned int) initval; 1678 syscallarg(int) flags; 1679 } */ 1680 1681 return linux_do_eventfd2(l, SCARG(uap, initval), SCARG(uap, flags), 1682 retval); 1683 } 1684