1 /* $NetBSD: linux_misc.c,v 1.117 2003/03/05 18:44:46 dsl Exp $ */ 2 3 /*- 4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe 9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Linux compatibility module. Try to deal with various Linux system calls. 42 */ 43 44 /* 45 * These functions have been moved to multiarch to allow 46 * selection of which machines include them to be 47 * determined by the individual files.linux_<arch> files. 48 * 49 * Function in multiarch: 50 * linux_sys_break : linux_break.c 51 * linux_sys_alarm : linux_misc_notalpha.c 52 * linux_sys_getresgid : linux_misc_notalpha.c 53 * linux_sys_nice : linux_misc_notalpha.c 54 * linux_sys_readdir : linux_misc_notalpha.c 55 * linux_sys_setresgid : linux_misc_notalpha.c 56 * linux_sys_time : linux_misc_notalpha.c 57 * linux_sys_utime : linux_misc_notalpha.c 58 * linux_sys_waitpid : linux_misc_notalpha.c 59 * linux_sys_old_mmap : linux_oldmmap.c 60 * linux_sys_oldolduname : linux_oldolduname.c 61 * linux_sys_oldselect : linux_oldselect.c 62 * linux_sys_olduname : linux_olduname.c 63 * linux_sys_pipe : linux_pipe.c 64 */ 65 66 #include <sys/cdefs.h> 67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.117 2003/03/05 18:44:46 dsl Exp $"); 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/namei.h> 72 #include <sys/proc.h> 73 #include <sys/dirent.h> 74 #include <sys/file.h> 75 #include <sys/stat.h> 76 #include <sys/filedesc.h> 77 #include <sys/ioctl.h> 78 #include <sys/kernel.h> 79 #include <sys/malloc.h> 80 #include <sys/mbuf.h> 81 #include <sys/mman.h> 82 #include <sys/mount.h> 83 #include <sys/reboot.h> 84 #include <sys/resource.h> 85 #include <sys/resourcevar.h> 86 #include <sys/signal.h> 87 #include <sys/signalvar.h> 88 #include <sys/socket.h> 89 #include <sys/time.h> 90 #include <sys/times.h> 91 #include <sys/vnode.h> 92 #include <sys/uio.h> 93 #include <sys/wait.h> 94 #include <sys/utsname.h> 95 #include <sys/unistd.h> 96 #include <sys/swap.h> /* for SWAP_ON */ 97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */ 98 99 #include <sys/ptrace.h> 100 #include <machine/ptrace.h> 101 102 #include <sys/sa.h> 103 #include <sys/syscallargs.h> 104 105 #include <compat/linux/common/linux_types.h> 106 #include <compat/linux/common/linux_signal.h> 107 108 #include <compat/linux/linux_syscallargs.h> 109 110 #include <compat/linux/common/linux_fcntl.h> 111 #include <compat/linux/common/linux_mmap.h> 112 #include <compat/linux/common/linux_dirent.h> 113 #include <compat/linux/common/linux_util.h> 114 #include <compat/linux/common/linux_misc.h> 115 #include <compat/linux/common/linux_ptrace.h> 116 #include <compat/linux/common/linux_reboot.h> 117 #include <compat/linux/common/linux_emuldata.h> 118 119 const int linux_ptrace_request_map[] = { 120 LINUX_PTRACE_TRACEME, PT_TRACE_ME, 121 LINUX_PTRACE_PEEKTEXT, PT_READ_I, 122 LINUX_PTRACE_PEEKDATA, PT_READ_D, 123 LINUX_PTRACE_POKETEXT, PT_WRITE_I, 124 LINUX_PTRACE_POKEDATA, PT_WRITE_D, 125 LINUX_PTRACE_CONT, PT_CONTINUE, 126 LINUX_PTRACE_KILL, PT_KILL, 127 LINUX_PTRACE_ATTACH, PT_ATTACH, 128 LINUX_PTRACE_DETACH, PT_DETACH, 129 #ifdef PT_STEP 130 LINUX_PTRACE_SINGLESTEP, PT_STEP, 131 #endif 132 -1 133 }; 134 135 static const struct mnttypes { 136 char *bsd; 137 int linux; 138 } fstypes[] = { 139 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC }, 140 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC }, 141 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC }, 142 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC }, 143 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC }, 144 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC }, 145 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC }, 146 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC }, 147 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC }, 148 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC }, 149 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC }, 150 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC }, 151 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC }, 152 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC }, 153 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC }, 154 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC }, 155 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC }, 156 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC }, 157 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC }, 158 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC }, 159 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC }, 160 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC } 161 }; 162 #define FSTYPESSIZE (sizeof(fstypes) / sizeof(fstypes[0])) 163 164 #ifdef DEBUG_LINUX 165 #define DPRINTF(a) uprintf a 166 #else 167 #define DPRINTF(a) 168 #endif 169 170 /* Local linux_misc.c functions: */ 171 static void bsd_to_linux_statfs __P((struct statfs *, struct linux_statfs *)); 172 static int linux_to_bsd_limit __P((int)); 173 174 /* 175 * The information on a terminated (or stopped) process needs 176 * to be converted in order for Linux binaries to get a valid signal 177 * number out of it. 178 */ 179 void 180 bsd_to_linux_wstat(st) 181 int *st; 182 { 183 184 int sig; 185 186 if (WIFSIGNALED(*st)) { 187 sig = WTERMSIG(*st); 188 if (sig >= 0 && sig < NSIG) 189 *st= (*st& ~0177) | native_to_linux_signo[sig]; 190 } else if (WIFSTOPPED(*st)) { 191 sig = WSTOPSIG(*st); 192 if (sig >= 0 && sig < NSIG) 193 *st = (*st & ~0xff00) | 194 (native_to_linux_signo[sig] << 8); 195 } 196 } 197 198 /* 199 * This is very much the same as waitpid() 200 */ 201 int 202 linux_sys_wait4(l, v, retval) 203 struct lwp *l; 204 void *v; 205 register_t *retval; 206 { 207 struct linux_sys_wait4_args /* { 208 syscallarg(int) pid; 209 syscallarg(int *) status; 210 syscallarg(int) options; 211 syscallarg(struct rusage *) rusage; 212 } */ *uap = v; 213 struct proc *p = l->l_proc; 214 struct sys_wait4_args w4a; 215 int error, *status, tstat, options, linux_options; 216 caddr_t sg; 217 218 if (SCARG(uap, status) != NULL) { 219 sg = stackgap_init(p, 0); 220 status = (int *) stackgap_alloc(p, &sg, sizeof *status); 221 } else 222 status = NULL; 223 224 linux_options = SCARG(uap, options); 225 options = 0; 226 if (linux_options & 227 ~(LINUX_WAIT4_WNOHANG|LINUX_WAIT4_WUNTRACED|LINUX_WAIT4_WALL| 228 LINUX_WAIT4_WCLONE)) 229 return (EINVAL); 230 231 if (linux_options & LINUX_WAIT4_WNOHANG) 232 options |= WNOHANG; 233 if (linux_options & LINUX_WAIT4_WUNTRACED) 234 options |= WUNTRACED; 235 if (linux_options & LINUX_WAIT4_WALL) 236 options |= WALLSIG; 237 if (linux_options & LINUX_WAIT4_WCLONE) 238 options |= WALTSIG; 239 240 SCARG(&w4a, pid) = SCARG(uap, pid); 241 SCARG(&w4a, status) = status; 242 SCARG(&w4a, options) = options; 243 SCARG(&w4a, rusage) = SCARG(uap, rusage); 244 245 if ((error = sys_wait4(l, &w4a, retval))) 246 return error; 247 248 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD); 249 250 if (status != NULL) { 251 if ((error = copyin(status, &tstat, sizeof tstat))) 252 return error; 253 254 bsd_to_linux_wstat(&tstat); 255 return copyout(&tstat, SCARG(uap, status), sizeof tstat); 256 } 257 258 return 0; 259 } 260 261 /* 262 * Linux brk(2). The check if the new address is >= the old one is 263 * done in the kernel in Linux. NetBSD does it in the library. 264 */ 265 int 266 linux_sys_brk(l, v, retval) 267 struct lwp *l; 268 void *v; 269 register_t *retval; 270 { 271 struct linux_sys_brk_args /* { 272 syscallarg(char *) nsize; 273 } */ *uap = v; 274 struct proc *p = l->l_proc; 275 char *nbrk = SCARG(uap, nsize); 276 struct sys_obreak_args oba; 277 struct vmspace *vm = p->p_vmspace; 278 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata; 279 280 SCARG(&oba, nsize) = nbrk; 281 282 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0) 283 ed->p_break = (char*)nbrk; 284 else 285 nbrk = ed->p_break; 286 287 retval[0] = (register_t)nbrk; 288 289 return 0; 290 } 291 292 /* 293 * Convert BSD statfs structure to Linux statfs structure. 294 * The Linux structure has less fields, and it also wants 295 * the length of a name in a dir entry in a field, which 296 * we fake (probably the wrong way). 297 */ 298 static void 299 bsd_to_linux_statfs(bsp, lsp) 300 struct statfs *bsp; 301 struct linux_statfs *lsp; 302 { 303 int i; 304 305 for (i = 0; i < FSTYPESSIZE; i++) 306 if (strcmp(bsp->f_fstypename, fstypes[i].bsd) == 0) 307 break; 308 309 if (i == FSTYPESSIZE) { 310 DPRINTF(("unhandled fstype in linux emulation: %s\n", 311 bsp->f_fstypename)); 312 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC; 313 } else { 314 lsp->l_ftype = fstypes[i].linux; 315 } 316 317 lsp->l_fbsize = bsp->f_bsize; 318 lsp->l_fblocks = bsp->f_blocks; 319 lsp->l_fbfree = bsp->f_bfree; 320 lsp->l_fbavail = bsp->f_bavail; 321 lsp->l_ffiles = bsp->f_files; 322 lsp->l_fffree = bsp->f_ffree; 323 /* Linux sets the fsid to 0..., we don't */ 324 lsp->l_ffsid.val[0] = bsp->f_fsid.val[0]; 325 lsp->l_ffsid.val[1] = bsp->f_fsid.val[1]; 326 lsp->l_fnamelen = MAXNAMLEN; /* XXX */ 327 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare)); 328 } 329 330 /* 331 * Implement the fs stat functions. Straightforward. 332 */ 333 int 334 linux_sys_statfs(l, v, retval) 335 struct lwp *l; 336 void *v; 337 register_t *retval; 338 { 339 struct linux_sys_statfs_args /* { 340 syscallarg(const char *) path; 341 syscallarg(struct linux_statfs *) sp; 342 } */ *uap = v; 343 struct proc *p = l->l_proc; 344 struct statfs btmp, *bsp; 345 struct linux_statfs ltmp; 346 struct sys_statfs_args bsa; 347 caddr_t sg; 348 int error; 349 350 sg = stackgap_init(p, 0); 351 bsp = (struct statfs *) stackgap_alloc(p, &sg, sizeof (struct statfs)); 352 353 CHECK_ALT_EXIST(p, &sg, SCARG(uap, path)); 354 355 SCARG(&bsa, path) = SCARG(uap, path); 356 SCARG(&bsa, buf) = bsp; 357 358 if ((error = sys_statfs(l, &bsa, retval))) 359 return error; 360 361 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp))) 362 return error; 363 364 bsd_to_linux_statfs(&btmp, <mp); 365 366 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp); 367 } 368 369 int 370 linux_sys_fstatfs(l, v, retval) 371 struct lwp *l; 372 void *v; 373 register_t *retval; 374 { 375 struct linux_sys_fstatfs_args /* { 376 syscallarg(int) fd; 377 syscallarg(struct linux_statfs *) sp; 378 } */ *uap = v; 379 struct proc *p = l->l_proc; 380 struct statfs btmp, *bsp; 381 struct linux_statfs ltmp; 382 struct sys_fstatfs_args bsa; 383 caddr_t sg; 384 int error; 385 386 sg = stackgap_init(p, 0); 387 bsp = (struct statfs *) stackgap_alloc(p, &sg, sizeof (struct statfs)); 388 389 SCARG(&bsa, fd) = SCARG(uap, fd); 390 SCARG(&bsa, buf) = bsp; 391 392 if ((error = sys_fstatfs(l, &bsa, retval))) 393 return error; 394 395 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp))) 396 return error; 397 398 bsd_to_linux_statfs(&btmp, <mp); 399 400 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp); 401 } 402 403 /* 404 * uname(). Just copy the info from the various strings stored in the 405 * kernel, and put it in the Linux utsname structure. That structure 406 * is almost the same as the NetBSD one, only it has fields 65 characters 407 * long, and an extra domainname field. 408 */ 409 int 410 linux_sys_uname(l, v, retval) 411 struct lwp *l; 412 void *v; 413 register_t *retval; 414 { 415 struct linux_sys_uname_args /* { 416 syscallarg(struct linux_utsname *) up; 417 } */ *uap = v; 418 struct linux_utsname luts; 419 420 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname)); 421 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); 422 strncpy(luts.l_release, linux_release, sizeof(luts.l_release)); 423 strncpy(luts.l_version, linux_version, sizeof(luts.l_version)); 424 strncpy(luts.l_machine, machine, sizeof(luts.l_machine)); 425 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname)); 426 427 return copyout(&luts, SCARG(uap, up), sizeof(luts)); 428 } 429 430 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */ 431 /* Used indirectly on: arm, i386, m68k */ 432 433 /* 434 * New type Linux mmap call. 435 * Only called directly on machines with >= 6 free regs. 436 */ 437 int 438 linux_sys_mmap(l, v, retval) 439 struct lwp *l; 440 void *v; 441 register_t *retval; 442 { 443 struct linux_sys_mmap_args /* { 444 syscallarg(unsigned long) addr; 445 syscallarg(size_t) len; 446 syscallarg(int) prot; 447 syscallarg(int) flags; 448 syscallarg(int) fd; 449 syscallarg(linux_off_t) offset; 450 } */ *uap = v; 451 struct sys_mmap_args cma; 452 int flags = 0, fl = SCARG(uap, flags); 453 454 if (SCARG(uap, offset) & PAGE_MASK) 455 return EINVAL; 456 457 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); 458 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); 459 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); 460 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); 461 /* XXX XAX ERH: Any other flags here? There are more defined... */ 462 463 SCARG(&cma, addr) = (void *)SCARG(uap, addr); 464 SCARG(&cma, len) = SCARG(uap, len); 465 SCARG(&cma, prot) = SCARG(uap, prot); 466 if (SCARG(&cma, prot) & VM_PROT_WRITE) /* XXX */ 467 SCARG(&cma, prot) |= VM_PROT_READ; 468 SCARG(&cma, flags) = flags; 469 SCARG(&cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); 470 SCARG(&cma, pad) = 0; 471 SCARG(&cma, pos) = (off_t)SCARG(uap, offset); 472 473 return sys_mmap(l, &cma, retval); 474 } 475 476 int 477 linux_sys_mremap(l, v, retval) 478 struct lwp *l; 479 void *v; 480 register_t *retval; 481 { 482 struct linux_sys_mremap_args /* { 483 syscallarg(void *) old_address; 484 syscallarg(size_t) old_size; 485 syscallarg(size_t) new_size; 486 syscallarg(u_long) flags; 487 } */ *uap = v; 488 struct sys_munmap_args mua; 489 size_t old_size, new_size; 490 int error; 491 492 old_size = round_page(SCARG(uap, old_size)); 493 new_size = round_page(SCARG(uap, new_size)); 494 495 /* 496 * Growing mapped region. 497 */ 498 if (new_size > old_size) { 499 /* 500 * XXX Implement me. What we probably want to do is 501 * XXX dig out the guts of the old mapping, mmap that 502 * XXX object again with the new size, then munmap 503 * XXX the old mapping. 504 */ 505 *retval = 0; 506 return (ENOMEM); 507 } 508 509 /* 510 * Shrinking mapped region. 511 */ 512 if (new_size < old_size) { 513 SCARG(&mua, addr) = (caddr_t)SCARG(uap, old_address) + 514 new_size; 515 SCARG(&mua, len) = old_size - new_size; 516 error = sys_munmap(l, &mua, retval); 517 *retval = error ? 0 : (register_t)SCARG(uap, old_address); 518 return (error); 519 } 520 521 /* 522 * No change. 523 */ 524 *retval = (register_t)SCARG(uap, old_address); 525 return (0); 526 } 527 528 int 529 linux_sys_msync(l, v, retval) 530 struct lwp *l; 531 void *v; 532 register_t *retval; 533 { 534 struct linux_sys_msync_args /* { 535 syscallarg(caddr_t) addr; 536 syscallarg(int) len; 537 syscallarg(int) fl; 538 } */ *uap = v; 539 540 struct sys___msync13_args bma; 541 542 /* flags are ignored */ 543 SCARG(&bma, addr) = SCARG(uap, addr); 544 SCARG(&bma, len) = SCARG(uap, len); 545 SCARG(&bma, flags) = SCARG(uap, fl); 546 547 return sys___msync13(l, &bma, retval); 548 } 549 550 int 551 linux_sys_mprotect(l, v, retval) 552 struct lwp *l; 553 void *v; 554 register_t *retval; 555 { 556 struct linux_sys_mprotect_args /* { 557 syscallarg(const void *) start; 558 syscallarg(unsigned long) len; 559 syscallarg(int) prot; 560 } */ *uap = v; 561 unsigned long end, start = (unsigned long)SCARG(uap, start), len; 562 int prot = SCARG(uap, prot); 563 struct vm_map_entry *entry; 564 struct vm_map *map = &l->l_proc->p_vmspace->vm_map; 565 566 if (start & PAGE_MASK) 567 return EINVAL; 568 569 len = round_page(SCARG(uap, len)); 570 end = start + len; 571 572 if (end < start) 573 return EINVAL; 574 else if (end == start) 575 return 0; 576 577 if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) 578 return EINVAL; 579 580 vm_map_lock(map); 581 #ifdef notdef 582 VM_MAP_RANGE_CHECK(map, start, end); 583 #endif 584 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) { 585 vm_map_unlock(map); 586 return EFAULT; 587 } 588 vm_map_unlock(map); 589 return uvm_map_protect(map, start, end, prot, FALSE); 590 } 591 592 /* 593 * This code is partly stolen from src/lib/libc/compat-43/times.c 594 */ 595 596 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) 597 598 int 599 linux_sys_times(l, v, retval) 600 struct lwp *l; 601 void *v; 602 register_t *retval; 603 { 604 struct linux_sys_times_args /* { 605 syscallarg(struct times *) tms; 606 } */ *uap = v; 607 struct proc *p = l->l_proc; 608 struct timeval t; 609 int error, s; 610 611 if (SCARG(uap, tms)) { 612 struct linux_tms ltms; 613 struct rusage ru; 614 615 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL); 616 ltms.ltms_utime = CONVTCK(ru.ru_utime); 617 ltms.ltms_stime = CONVTCK(ru.ru_stime); 618 619 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); 620 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); 621 622 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) 623 return error; 624 } 625 626 s = splclock(); 627 timersub(&time, &boottime, &t); 628 splx(s); 629 630 retval[0] = ((linux_clock_t)(CONVTCK(t))); 631 return 0; 632 } 633 634 #undef CONVTCK 635 636 /* 637 * Linux 'readdir' call. This code is mostly taken from the 638 * SunOS getdents call (see compat/sunos/sunos_misc.c), though 639 * an attempt has been made to keep it a little cleaner (failing 640 * miserably, because of the cruft needed if count 1 is passed). 641 * 642 * The d_off field should contain the offset of the next valid entry, 643 * but in Linux it has the offset of the entry itself. We emulate 644 * that bug here. 645 * 646 * Read in BSD-style entries, convert them, and copy them out. 647 * 648 * Note that this doesn't handle union-mounted filesystems. 649 */ 650 int 651 linux_sys_getdents(l, v, retval) 652 struct lwp *l; 653 void *v; 654 register_t *retval; 655 { 656 struct linux_sys_getdents_args /* { 657 syscallarg(int) fd; 658 syscallarg(struct linux_dirent *) dent; 659 syscallarg(unsigned int) count; 660 } */ *uap = v; 661 struct proc *p = l->l_proc; 662 struct dirent *bdp; 663 struct vnode *vp; 664 caddr_t inp, buf; /* BSD-format */ 665 int len, reclen; /* BSD-format */ 666 caddr_t outp; /* Linux-format */ 667 int resid, linux_reclen = 0; /* Linux-format */ 668 struct file *fp; 669 struct uio auio; 670 struct iovec aiov; 671 struct linux_dirent idb; 672 off_t off; /* true file offset */ 673 int buflen, error, eofflag, nbytes, oldcall; 674 struct vattr va; 675 off_t *cookiebuf = NULL, *cookie; 676 int ncookies; 677 678 /* getvnode() will use the descriptor for us */ 679 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) 680 return (error); 681 682 if ((fp->f_flag & FREAD) == 0) { 683 error = EBADF; 684 goto out1; 685 } 686 687 vp = (struct vnode *)fp->f_data; 688 if (vp->v_type != VDIR) { 689 error = EINVAL; 690 goto out1; 691 } 692 693 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p))) 694 goto out1; 695 696 nbytes = SCARG(uap, count); 697 if (nbytes == 1) { /* emulating old, broken behaviour */ 698 nbytes = sizeof (idb); 699 buflen = max(va.va_blocksize, nbytes); 700 oldcall = 1; 701 } else { 702 buflen = min(MAXBSIZE, nbytes); 703 if (buflen < va.va_blocksize) 704 buflen = va.va_blocksize; 705 oldcall = 0; 706 } 707 buf = malloc(buflen, M_TEMP, M_WAITOK); 708 709 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 710 off = fp->f_offset; 711 again: 712 aiov.iov_base = buf; 713 aiov.iov_len = buflen; 714 auio.uio_iov = &aiov; 715 auio.uio_iovcnt = 1; 716 auio.uio_rw = UIO_READ; 717 auio.uio_segflg = UIO_SYSSPACE; 718 auio.uio_procp = p; 719 auio.uio_resid = buflen; 720 auio.uio_offset = off; 721 /* 722 * First we read into the malloc'ed buffer, then 723 * we massage it into user space, one record at a time. 724 */ 725 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, 726 &ncookies); 727 if (error) 728 goto out; 729 730 inp = buf; 731 outp = (caddr_t)SCARG(uap, dent); 732 resid = nbytes; 733 if ((len = buflen - auio.uio_resid) == 0) 734 goto eof; 735 736 for (cookie = cookiebuf; len > 0; len -= reclen) { 737 bdp = (struct dirent *)inp; 738 reclen = bdp->d_reclen; 739 if (reclen & 3) 740 panic("linux_readdir"); 741 if (bdp->d_fileno == 0) { 742 inp += reclen; /* it is a hole; squish it out */ 743 off = *cookie++; 744 continue; 745 } 746 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen); 747 if (reclen > len || resid < linux_reclen) { 748 /* entry too big for buffer, so just stop */ 749 outp++; 750 break; 751 } 752 /* 753 * Massage in place to make a Linux-shaped dirent (otherwise 754 * we have to worry about touching user memory outside of 755 * the copyout() call). 756 */ 757 idb.d_ino = bdp->d_fileno; 758 /* 759 * The old readdir() call misuses the offset and reclen fields. 760 */ 761 if (oldcall) { 762 idb.d_off = (linux_off_t)linux_reclen; 763 idb.d_reclen = (u_short)bdp->d_namlen; 764 } else { 765 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) { 766 compat_offseterr(vp, "linux_getdents"); 767 error = EINVAL; 768 goto out; 769 } 770 idb.d_off = (linux_off_t)off; 771 idb.d_reclen = (u_short)linux_reclen; 772 } 773 strcpy(idb.d_name, bdp->d_name); 774 if ((error = copyout((caddr_t)&idb, outp, linux_reclen))) 775 goto out; 776 /* advance past this real entry */ 777 inp += reclen; 778 off = *cookie++; /* each entry points to itself */ 779 /* advance output past Linux-shaped entry */ 780 outp += linux_reclen; 781 resid -= linux_reclen; 782 if (oldcall) 783 break; 784 } 785 786 /* if we squished out the whole block, try again */ 787 if (outp == (caddr_t)SCARG(uap, dent)) 788 goto again; 789 fp->f_offset = off; /* update the vnode offset */ 790 791 if (oldcall) 792 nbytes = resid + linux_reclen; 793 794 eof: 795 *retval = nbytes - resid; 796 out: 797 VOP_UNLOCK(vp, 0); 798 if (cookiebuf) 799 free(cookiebuf, M_TEMP); 800 free(buf, M_TEMP); 801 out1: 802 FILE_UNUSE(fp, p); 803 return error; 804 } 805 806 /* 807 * Even when just using registers to pass arguments to syscalls you can 808 * have 5 of them on the i386. So this newer version of select() does 809 * this. 810 */ 811 int 812 linux_sys_select(l, v, retval) 813 struct lwp *l; 814 void *v; 815 register_t *retval; 816 { 817 struct linux_sys_select_args /* { 818 syscallarg(int) nfds; 819 syscallarg(fd_set *) readfds; 820 syscallarg(fd_set *) writefds; 821 syscallarg(fd_set *) exceptfds; 822 syscallarg(struct timeval *) timeout; 823 } */ *uap = v; 824 825 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds), 826 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout)); 827 } 828 829 /* 830 * Common code for the old and new versions of select(). A couple of 831 * things are important: 832 * 1) return the amount of time left in the 'timeout' parameter 833 * 2) select never returns ERESTART on Linux, always return EINTR 834 */ 835 int 836 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout) 837 struct lwp *l; 838 register_t *retval; 839 int nfds; 840 fd_set *readfds, *writefds, *exceptfds; 841 struct timeval *timeout; 842 { 843 struct sys_select_args bsa; 844 struct proc *p = l->l_proc; 845 struct timeval tv0, tv1, utv, *tvp; 846 caddr_t sg; 847 int error; 848 849 SCARG(&bsa, nd) = nfds; 850 SCARG(&bsa, in) = readfds; 851 SCARG(&bsa, ou) = writefds; 852 SCARG(&bsa, ex) = exceptfds; 853 SCARG(&bsa, tv) = timeout; 854 855 /* 856 * Store current time for computation of the amount of 857 * time left. 858 */ 859 if (timeout) { 860 if ((error = copyin(timeout, &utv, sizeof(utv)))) 861 return error; 862 if (itimerfix(&utv)) { 863 /* 864 * The timeval was invalid. Convert it to something 865 * valid that will act as it does under Linux. 866 */ 867 sg = stackgap_init(p, 0); 868 tvp = stackgap_alloc(p, &sg, sizeof(utv)); 869 utv.tv_sec += utv.tv_usec / 1000000; 870 utv.tv_usec %= 1000000; 871 if (utv.tv_usec < 0) { 872 utv.tv_sec -= 1; 873 utv.tv_usec += 1000000; 874 } 875 if (utv.tv_sec < 0) 876 timerclear(&utv); 877 if ((error = copyout(&utv, tvp, sizeof(utv)))) 878 return error; 879 SCARG(&bsa, tv) = tvp; 880 } 881 microtime(&tv0); 882 } 883 884 error = sys_select(l, &bsa, retval); 885 if (error) { 886 /* 887 * See fs/select.c in the Linux kernel. Without this, 888 * Maelstrom doesn't work. 889 */ 890 if (error == ERESTART) 891 error = EINTR; 892 return error; 893 } 894 895 if (timeout) { 896 if (*retval) { 897 /* 898 * Compute how much time was left of the timeout, 899 * by subtracting the current time and the time 900 * before we started the call, and subtracting 901 * that result from the user-supplied value. 902 */ 903 microtime(&tv1); 904 timersub(&tv1, &tv0, &tv1); 905 timersub(&utv, &tv1, &utv); 906 if (utv.tv_sec < 0) 907 timerclear(&utv); 908 } else 909 timerclear(&utv); 910 if ((error = copyout(&utv, timeout, sizeof(utv)))) 911 return error; 912 } 913 914 return 0; 915 } 916 917 /* 918 * Get the process group of a certain process. Look it up 919 * and return the value. 920 */ 921 int 922 linux_sys_getpgid(l, v, retval) 923 struct lwp *l; 924 void *v; 925 register_t *retval; 926 { 927 struct linux_sys_getpgid_args /* { 928 syscallarg(int) pid; 929 } */ *uap = v; 930 struct proc *p = l->l_proc; 931 struct proc *targp; 932 933 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) { 934 if ((targp = pfind(SCARG(uap, pid))) == 0) 935 return ESRCH; 936 } 937 else 938 targp = p; 939 940 retval[0] = targp->p_pgid; 941 return 0; 942 } 943 944 /* 945 * Set the 'personality' (emulation mode) for the current process. Only 946 * accept the Linux personality here (0). This call is needed because 947 * the Linux ELF crt0 issues it in an ugly kludge to make sure that 948 * ELF binaries run in Linux mode, not SVR4 mode. 949 */ 950 int 951 linux_sys_personality(l, v, retval) 952 struct lwp *l; 953 void *v; 954 register_t *retval; 955 { 956 struct linux_sys_personality_args /* { 957 syscallarg(int) per; 958 } */ *uap = v; 959 960 if (SCARG(uap, per) != 0) 961 return EINVAL; 962 retval[0] = 0; 963 return 0; 964 } 965 966 #if defined(__i386__) || defined(__m68k__) 967 /* 968 * The calls are here because of type conversions. 969 */ 970 int 971 linux_sys_setreuid16(l, v, retval) 972 struct lwp *l; 973 void *v; 974 register_t *retval; 975 { 976 struct linux_sys_setreuid16_args /* { 977 syscallarg(int) ruid; 978 syscallarg(int) euid; 979 } */ *uap = v; 980 struct sys_setreuid_args bsa; 981 982 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? 983 (uid_t)-1 : SCARG(uap, ruid); 984 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? 985 (uid_t)-1 : SCARG(uap, euid); 986 987 return sys_setreuid(l, &bsa, retval); 988 } 989 990 int 991 linux_sys_setregid16(l, v, retval) 992 struct lwp *l; 993 void *v; 994 register_t *retval; 995 { 996 struct linux_sys_setregid16_args /* { 997 syscallarg(int) rgid; 998 syscallarg(int) egid; 999 } */ *uap = v; 1000 struct sys_setregid_args bsa; 1001 1002 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? 1003 (uid_t)-1 : SCARG(uap, rgid); 1004 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? 1005 (uid_t)-1 : SCARG(uap, egid); 1006 1007 return sys_setregid(l, &bsa, retval); 1008 } 1009 1010 int 1011 linux_sys_setresuid16(l, v, retval) 1012 struct lwp *l; 1013 void *v; 1014 register_t *retval; 1015 { 1016 struct linux_sys_setresuid16_args /* { 1017 syscallarg(uid_t) ruid; 1018 syscallarg(uid_t) euid; 1019 syscallarg(uid_t) suid; 1020 } */ *uap = v; 1021 struct linux_sys_setresuid16_args lsa; 1022 1023 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? 1024 (uid_t)-1 : SCARG(uap, ruid); 1025 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? 1026 (uid_t)-1 : SCARG(uap, euid); 1027 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ? 1028 (uid_t)-1 : SCARG(uap, suid); 1029 1030 return linux_sys_setresuid(l, &lsa, retval); 1031 } 1032 1033 int 1034 linux_sys_setresgid16(l, v, retval) 1035 struct lwp *l; 1036 void *v; 1037 register_t *retval; 1038 { 1039 struct linux_sys_setresgid16_args /* { 1040 syscallarg(gid_t) rgid; 1041 syscallarg(gid_t) egid; 1042 syscallarg(gid_t) sgid; 1043 } */ *uap = v; 1044 struct linux_sys_setresgid16_args lsa; 1045 1046 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? 1047 (gid_t)-1 : SCARG(uap, rgid); 1048 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? 1049 (gid_t)-1 : SCARG(uap, egid); 1050 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ? 1051 (gid_t)-1 : SCARG(uap, sgid); 1052 1053 return linux_sys_setresgid(l, &lsa, retval); 1054 } 1055 1056 int 1057 linux_sys_getgroups16(l, v, retval) 1058 struct lwp *l; 1059 void *v; 1060 register_t *retval; 1061 { 1062 struct linux_sys_getgroups16_args /* { 1063 syscallarg(int) gidsetsize; 1064 syscallarg(linux_gid_t *) gidset; 1065 } */ *uap = v; 1066 struct proc *p = l->l_proc; 1067 caddr_t sg; 1068 int n, error, i; 1069 struct sys_getgroups_args bsa; 1070 gid_t *bset, *kbset; 1071 linux_gid_t *lset; 1072 struct pcred *pc = p->p_cred; 1073 1074 n = SCARG(uap, gidsetsize); 1075 if (n < 0) 1076 return EINVAL; 1077 error = 0; 1078 bset = kbset = NULL; 1079 lset = NULL; 1080 if (n > 0) { 1081 n = min(pc->pc_ucred->cr_ngroups, n); 1082 sg = stackgap_init(p, 0); 1083 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t)); 1084 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK); 1085 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK); 1086 if (bset == NULL || kbset == NULL || lset == NULL) 1087 return ENOMEM; 1088 SCARG(&bsa, gidsetsize) = n; 1089 SCARG(&bsa, gidset) = bset; 1090 error = sys_getgroups(l, &bsa, retval); 1091 if (error != 0) 1092 goto out; 1093 error = copyin(bset, kbset, n * sizeof (gid_t)); 1094 if (error != 0) 1095 goto out; 1096 for (i = 0; i < n; i++) 1097 lset[i] = (linux_gid_t)kbset[i]; 1098 error = copyout(lset, SCARG(uap, gidset), 1099 n * sizeof (linux_gid_t)); 1100 } else 1101 *retval = pc->pc_ucred->cr_ngroups; 1102 out: 1103 if (kbset != NULL) 1104 free(kbset, M_TEMP); 1105 if (lset != NULL) 1106 free(lset, M_TEMP); 1107 return error; 1108 } 1109 1110 int 1111 linux_sys_setgroups16(l, v, retval) 1112 struct lwp *l; 1113 void *v; 1114 register_t *retval; 1115 { 1116 struct linux_sys_setgroups16_args /* { 1117 syscallarg(int) gidsetsize; 1118 syscallarg(linux_gid_t *) gidset; 1119 } */ *uap = v; 1120 struct proc *p = l->l_proc; 1121 caddr_t sg; 1122 int n; 1123 int error, i; 1124 struct sys_setgroups_args bsa; 1125 gid_t *bset, *kbset; 1126 linux_gid_t *lset; 1127 1128 n = SCARG(uap, gidsetsize); 1129 if (n < 0 || n > NGROUPS) 1130 return EINVAL; 1131 sg = stackgap_init(p, 0); 1132 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t)); 1133 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK); 1134 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK); 1135 if (lset == NULL || bset == NULL) 1136 return ENOMEM; 1137 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t)); 1138 if (error != 0) 1139 goto out; 1140 for (i = 0; i < n; i++) 1141 kbset[i] = (gid_t)lset[i]; 1142 error = copyout(kbset, bset, n * sizeof (gid_t)); 1143 if (error != 0) 1144 goto out; 1145 SCARG(&bsa, gidsetsize) = n; 1146 SCARG(&bsa, gidset) = bset; 1147 error = sys_setgroups(l, &bsa, retval); 1148 1149 out: 1150 if (lset != NULL) 1151 free(lset, M_TEMP); 1152 if (kbset != NULL) 1153 free(kbset, M_TEMP); 1154 1155 return error; 1156 } 1157 1158 #endif /* __i386__ || __m68k__ */ 1159 1160 /* 1161 * We have nonexistent fsuid equal to uid. 1162 * If modification is requested, refuse. 1163 */ 1164 int 1165 linux_sys_setfsuid(l, v, retval) 1166 struct lwp *l; 1167 void *v; 1168 register_t *retval; 1169 { 1170 struct linux_sys_setfsuid_args /* { 1171 syscallarg(uid_t) uid; 1172 } */ *uap = v; 1173 struct proc *p = l->l_proc; 1174 uid_t uid; 1175 1176 uid = SCARG(uap, uid); 1177 if (p->p_cred->p_ruid != uid) 1178 return sys_nosys(l, v, retval); 1179 else 1180 return (0); 1181 } 1182 1183 /* XXX XXX XXX */ 1184 #ifndef alpha 1185 int 1186 linux_sys_getfsuid(l, v, retval) 1187 struct lwp *l; 1188 void *v; 1189 register_t *retval; 1190 { 1191 return sys_getuid(l, v, retval); 1192 } 1193 #endif 1194 1195 int 1196 linux_sys_setresuid(l, v, retval) 1197 struct lwp *l; 1198 void *v; 1199 register_t *retval; 1200 { 1201 struct linux_sys_setresuid_args /* { 1202 syscallarg(uid_t) ruid; 1203 syscallarg(uid_t) euid; 1204 syscallarg(uid_t) suid; 1205 } */ *uap = v; 1206 1207 /* 1208 * Note: These checks are a little different than the NetBSD 1209 * setreuid(2) call performs. This precisely follows the 1210 * behavior of the Linux kernel. 1211 */ 1212 1213 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid), 1214 SCARG(uap, suid), 1215 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | 1216 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | 1217 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); 1218 } 1219 1220 int 1221 linux_sys_getresuid(l, v, retval) 1222 struct lwp *l; 1223 void *v; 1224 register_t *retval; 1225 { 1226 struct linux_sys_getresuid_args /* { 1227 syscallarg(uid_t *) ruid; 1228 syscallarg(uid_t *) euid; 1229 syscallarg(uid_t *) suid; 1230 } */ *uap = v; 1231 struct proc *p = l->l_proc; 1232 struct pcred *pc = p->p_cred; 1233 int error; 1234 1235 /* 1236 * Linux copies these values out to userspace like so: 1237 * 1238 * 1. Copy out ruid. 1239 * 2. If that succeeds, copy out euid. 1240 * 3. If both of those succeed, copy out suid. 1241 */ 1242 if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid), 1243 sizeof(uid_t))) != 0) 1244 return (error); 1245 1246 if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid), 1247 sizeof(uid_t))) != 0) 1248 return (error); 1249 1250 return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t))); 1251 } 1252 1253 int 1254 linux_sys_ptrace(l, v, retval) 1255 struct lwp *l; 1256 void *v; 1257 register_t *retval; 1258 { 1259 struct linux_sys_ptrace_args /* { 1260 i386, m68k, powerpc: T=int 1261 alpha: T=long 1262 syscallarg(T) request; 1263 syscallarg(T) pid; 1264 syscallarg(T) addr; 1265 syscallarg(T) data; 1266 } */ *uap = v; 1267 const int *ptr; 1268 int request; 1269 int error; 1270 1271 ptr = linux_ptrace_request_map; 1272 request = SCARG(uap, request); 1273 while (*ptr != -1) 1274 if (*ptr++ == request) { 1275 struct sys_ptrace_args pta; 1276 1277 SCARG(&pta, req) = *ptr; 1278 SCARG(&pta, pid) = SCARG(uap, pid); 1279 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr); 1280 SCARG(&pta, data) = SCARG(uap, data); 1281 1282 /* 1283 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually 1284 * to continue where the process left off previously. 1285 * The same thing is achieved by addr == (caddr_t) 1 1286 * on NetBSD, so rewrite 'addr' appropriately. 1287 */ 1288 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0) 1289 SCARG(&pta, addr) = (caddr_t) 1; 1290 1291 error = sys_ptrace(l, &pta, retval); 1292 if (error) 1293 return error; 1294 switch (request) { 1295 case LINUX_PTRACE_PEEKTEXT: 1296 case LINUX_PTRACE_PEEKDATA: 1297 error = copyout (retval, 1298 (caddr_t)SCARG(uap, data), sizeof *retval); 1299 *retval = SCARG(uap, data); 1300 break; 1301 default: 1302 break; 1303 } 1304 return error; 1305 } 1306 else 1307 ptr++; 1308 1309 return LINUX_SYS_PTRACE_ARCH(l, uap, retval); 1310 } 1311 1312 int 1313 linux_sys_reboot(struct lwp *l, void *v, register_t *retval) 1314 { 1315 struct linux_sys_reboot_args /* { 1316 syscallarg(int) magic1; 1317 syscallarg(int) magic2; 1318 syscallarg(int) cmd; 1319 syscallarg(void *) arg; 1320 } */ *uap = v; 1321 struct sys_reboot_args /* { 1322 syscallarg(int) opt; 1323 syscallarg(char *) bootstr; 1324 } */ sra; 1325 struct proc *p = l->l_proc; 1326 int error; 1327 1328 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) 1329 return(error); 1330 1331 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1) 1332 return(EINVAL); 1333 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 && 1334 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A && 1335 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B) 1336 return(EINVAL); 1337 1338 switch (SCARG(uap, cmd)) { 1339 case LINUX_REBOOT_CMD_RESTART: 1340 SCARG(&sra, opt) = RB_AUTOBOOT; 1341 break; 1342 case LINUX_REBOOT_CMD_HALT: 1343 SCARG(&sra, opt) = RB_HALT; 1344 break; 1345 case LINUX_REBOOT_CMD_POWER_OFF: 1346 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN; 1347 break; 1348 case LINUX_REBOOT_CMD_RESTART2: 1349 /* Reboot with an argument. */ 1350 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING; 1351 SCARG(&sra, bootstr) = SCARG(uap, arg); 1352 break; 1353 case LINUX_REBOOT_CMD_CAD_ON: 1354 return(EINVAL); /* We don't implement ctrl-alt-delete */ 1355 case LINUX_REBOOT_CMD_CAD_OFF: 1356 return(0); 1357 default: 1358 return(EINVAL); 1359 } 1360 1361 return(sys_reboot(l, &sra, retval)); 1362 } 1363 1364 /* 1365 * Copy of compat_12_sys_swapon(). 1366 */ 1367 int 1368 linux_sys_swapon(l, v, retval) 1369 struct lwp *l; 1370 void *v; 1371 register_t *retval; 1372 { 1373 struct sys_swapctl_args ua; 1374 struct linux_sys_swapon_args /* { 1375 syscallarg(const char *) name; 1376 } */ *uap = v; 1377 1378 SCARG(&ua, cmd) = SWAP_ON; 1379 SCARG(&ua, arg) = (void *)SCARG(uap, name); 1380 SCARG(&ua, misc) = 0; /* priority */ 1381 return (sys_swapctl(l, &ua, retval)); 1382 } 1383 1384 /* 1385 * Stop swapping to the file or block device specified by path. 1386 */ 1387 int 1388 linux_sys_swapoff(l, v, retval) 1389 struct lwp *l; 1390 void *v; 1391 register_t *retval; 1392 { 1393 struct sys_swapctl_args ua; 1394 struct linux_sys_swapoff_args /* { 1395 syscallarg(const char *) path; 1396 } */ *uap = v; 1397 1398 SCARG(&ua, cmd) = SWAP_OFF; 1399 SCARG(&ua, arg) = (void *)SCARG(uap, path); 1400 return (sys_swapctl(l, &ua, retval)); 1401 } 1402 1403 /* 1404 * Copy of compat_09_sys_setdomainname() 1405 */ 1406 /* ARGSUSED */ 1407 int 1408 linux_sys_setdomainname(l, v, retval) 1409 struct lwp *l; 1410 void *v; 1411 register_t *retval; 1412 { 1413 struct linux_sys_setdomainname_args /* { 1414 syscallarg(char *) domainname; 1415 syscallarg(int) len; 1416 } */ *uap = v; 1417 struct proc *p = l->l_proc; 1418 int name; 1419 int error; 1420 1421 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) 1422 return (error); 1423 name = KERN_DOMAINNAME; 1424 return (kern_sysctl(&name, 1, 0, 0, SCARG(uap, domainname), 1425 SCARG(uap, len), p)); 1426 } 1427 1428 /* 1429 * sysinfo() 1430 */ 1431 /* ARGSUSED */ 1432 int 1433 linux_sys_sysinfo(l, v, retval) 1434 struct lwp *l; 1435 void *v; 1436 register_t *retval; 1437 { 1438 struct linux_sys_sysinfo_args /* { 1439 syscallarg(struct linux_sysinfo *) arg; 1440 } */ *uap = v; 1441 struct linux_sysinfo si; 1442 struct loadavg *la; 1443 1444 si.uptime = time.tv_sec - boottime.tv_sec; 1445 la = &averunnable; 1446 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1447 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1448 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1449 si.totalram = ctob(physmem); 1450 si.freeram = uvmexp.free * uvmexp.pagesize; 1451 si.sharedram = 0; /* XXX */ 1452 si.bufferram = uvmexp.filepages * uvmexp.pagesize; 1453 si.totalswap = uvmexp.swpages * uvmexp.pagesize; 1454 si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize; 1455 si.procs = nprocs; 1456 1457 /* The following are only present in newer Linux kernels. */ 1458 si.totalbig = 0; 1459 si.freebig = 0; 1460 si.mem_unit = 1; 1461 1462 return (copyout(&si, SCARG(uap, arg), sizeof si)); 1463 } 1464 1465 #define bsd_to_linux_rlimit1(l, b, f) \ 1466 (l)->f = ((b)->f == RLIM_INFINITY || \ 1467 ((b)->f & 0xffffffff00000000ULL) != 0) ? \ 1468 LINUX_RLIM_INFINITY : (int32_t)(b)->f 1469 #define bsd_to_linux_rlimit(l, b) \ 1470 bsd_to_linux_rlimit1(l, b, rlim_cur); \ 1471 bsd_to_linux_rlimit1(l, b, rlim_max) 1472 1473 #define linux_to_bsd_rlimit1(b, l, f) \ 1474 (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f 1475 #define linux_to_bsd_rlimit(b, l) \ 1476 linux_to_bsd_rlimit1(b, l, rlim_cur); \ 1477 linux_to_bsd_rlimit1(b, l, rlim_max) 1478 1479 static int 1480 linux_to_bsd_limit(lim) 1481 int lim; 1482 { 1483 switch (lim) { 1484 case LINUX_RLIMIT_CPU: 1485 return RLIMIT_CPU; 1486 case LINUX_RLIMIT_FSIZE: 1487 return RLIMIT_FSIZE; 1488 case LINUX_RLIMIT_DATA: 1489 return RLIMIT_DATA; 1490 case LINUX_RLIMIT_STACK: 1491 return RLIMIT_STACK; 1492 case LINUX_RLIMIT_CORE: 1493 return RLIMIT_CORE; 1494 case LINUX_RLIMIT_RSS: 1495 return RLIMIT_RSS; 1496 case LINUX_RLIMIT_NPROC: 1497 return RLIMIT_NPROC; 1498 case LINUX_RLIMIT_NOFILE: 1499 return RLIMIT_NOFILE; 1500 case LINUX_RLIMIT_MEMLOCK: 1501 return RLIMIT_MEMLOCK; 1502 case LINUX_RLIMIT_AS: 1503 case LINUX_RLIMIT_LOCKS: 1504 return -EOPNOTSUPP; 1505 default: 1506 return -EINVAL; 1507 } 1508 } 1509 1510 1511 int 1512 linux_sys_getrlimit(l, v, retval) 1513 struct lwp *l; 1514 void *v; 1515 register_t *retval; 1516 { 1517 struct linux_sys_getrlimit_args /* { 1518 syscallarg(int) which; 1519 syscallarg(struct orlimit *) rlp; 1520 } */ *uap = v; 1521 struct proc *p = l->l_proc; 1522 caddr_t sg = stackgap_init(p, 0); 1523 struct sys_getrlimit_args ap; 1524 struct rlimit rl; 1525 struct orlimit orl; 1526 int error; 1527 1528 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which)); 1529 if ((error = SCARG(&ap, which)) < 0) 1530 return -error; 1531 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl); 1532 if ((error = sys_getrlimit(l, &ap, retval)) != 0) 1533 return error; 1534 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0) 1535 return error; 1536 bsd_to_linux_rlimit(&orl, &rl); 1537 return copyout(&orl, SCARG(uap, rlp), sizeof(orl)); 1538 } 1539 1540 int 1541 linux_sys_setrlimit(l, v, retval) 1542 struct lwp *l; 1543 void *v; 1544 register_t *retval; 1545 { 1546 struct linux_sys_setrlimit_args /* { 1547 syscallarg(int) which; 1548 syscallarg(struct orlimit *) rlp; 1549 } */ *uap = v; 1550 struct proc *p = l->l_proc; 1551 caddr_t sg = stackgap_init(p, 0); 1552 struct sys_setrlimit_args ap; 1553 struct rlimit rl; 1554 struct orlimit orl; 1555 int error; 1556 1557 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which)); 1558 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl); 1559 if ((error = SCARG(&ap, which)) < 0) 1560 return -error; 1561 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0) 1562 return error; 1563 linux_to_bsd_rlimit(&rl, &orl); 1564 /* XXX: alpha complains about this */ 1565 if ((error = copyout(&rl, (void *)SCARG(&ap, rlp), sizeof(rl))) != 0) 1566 return error; 1567 return sys_setrlimit(l, &ap, retval); 1568 } 1569 1570 #ifndef __mips__ 1571 /* XXX: this doesn't look 100% common, at least mips doesn't have it */ 1572 int 1573 linux_sys_ugetrlimit(l, v, retval) 1574 struct lwp *l; 1575 void *v; 1576 register_t *retval; 1577 { 1578 return linux_sys_getrlimit(l, v, retval); 1579 } 1580 #endif 1581 1582 /* 1583 * This gets called for unsupported syscalls. The difference to sys_nosys() 1584 * is that process does not get SIGSYS, the call just returns with ENOSYS. 1585 * This is the way Linux does it and glibc depends on this behaviour. 1586 */ 1587 int 1588 linux_sys_nosys(l, v, retval) 1589 struct lwp *l; 1590 void *v; 1591 register_t *retval; 1592 { 1593 return (ENOSYS); 1594 } 1595