1 /* $NetBSD: pmap_bootstrap.c,v 1.36 2007/10/17 19:58:04 garbled Exp $ */ 2 3 /* 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.36 2007/10/17 19:58:04 garbled Exp $"); 40 41 #include "opt_m680x0.h" 42 43 #include <sys/param.h> 44 #include <uvm/uvm_extern.h> 45 #include <machine/pte.h> 46 #include <machine/vmparam.h> 47 #include <machine/cpu.h> 48 #include <arch/x68k/x68k/iodevice.h> 49 50 51 #define RELOC(v, t) *((t*)((char *)&(v) + firstpa)) 52 53 extern char *etext; 54 extern int Sysptsize; 55 extern char *proc0paddr; 56 extern st_entry_t *Sysseg; 57 extern pt_entry_t *Sysptmap, *Sysmap; 58 59 extern int maxmem, physmem; 60 extern paddr_t avail_start, avail_end; 61 extern vaddr_t virtual_avail, virtual_end; 62 extern psize_t mem_size; 63 extern int protection_codes[]; 64 65 u_int8_t *intiobase = (u_int8_t *) PHYS_IODEV; 66 67 void pmap_bootstrap(paddr_t, paddr_t); 68 69 /* 70 * Special purpose kernel virtual addresses, used for mapping 71 * physical pages for a variety of temporary or permanent purposes: 72 * 73 * CADDR1, CADDR2: pmap zero/copy operations 74 * vmmap: /dev/mem, crash dumps, parity error checking 75 * msgbufaddr: kernel message buffer 76 */ 77 void *CADDR1, *CADDR2; 78 char *vmmap; 79 void *msgbufaddr; 80 81 /* 82 * Bootstrap the VM system. 83 * 84 * Called with MMU off so we must relocate all global references by `firstpa' 85 * (don't call any functions here!) `nextpa' is the first available physical 86 * memory address. Returns an updated first PA reflecting the memory we 87 * have allocated. MMU is still off when we return. 88 * 89 * XXX assumes sizeof(u_int) == sizeof(pt_entry_t) 90 * XXX a PIC compiler would make this much easier. 91 */ 92 void 93 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa) 94 { 95 paddr_t kstpa, kptpa, kptmpa, p0upa; 96 u_int nptpages, kstsize; 97 st_entry_t protoste, *ste; 98 pt_entry_t protopte, *pte, *epte; 99 100 /* 101 * Calculate important physical addresses: 102 * 103 * kstpa kernel segment table 1 page (!040) 104 * N pages (040) 105 * 106 * kptpa statically allocated 107 * kernel PT pages Sysptsize+ pages 108 * 109 * [ Sysptsize is the number of pages of PT, and IIOMAPSIZE 110 * is the number of PTEs, hence we need to round 111 * the total to a page boundary with IO maps at the end. ] 112 * 113 * kptmpa kernel PT map 1 page 114 * 115 * p0upa proc 0 u-area UPAGES pages 116 * 117 * The KVA corresponding to any of these PAs is: 118 * (PA - firstpa + KERNBASE). 119 */ 120 if (RELOC(mmutype, int) == MMU_68040) 121 kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE); 122 else 123 kstsize = 1; 124 kstpa = nextpa; 125 nextpa += kstsize * PAGE_SIZE; 126 kptmpa = nextpa; 127 nextpa += PAGE_SIZE; 128 p0upa = nextpa; 129 nextpa += USPACE; 130 kptpa = nextpa; 131 nptpages = RELOC(Sysptsize, int) + 132 (IIOMAPSIZE + NPTEPG - 1) / NPTEPG; 133 nextpa += nptpages * PAGE_SIZE; 134 135 /* 136 * Clear all PTEs to zero 137 */ 138 for (pte = (pt_entry_t *)kstpa; pte < (pt_entry_t *)nextpa; pte++) 139 *pte = 0; 140 141 /* 142 * Initialize segment table and kernel page table map. 143 * 144 * On 68030s and earlier MMUs the two are identical except for 145 * the valid bits so both are initialized with essentially the 146 * same values. On the 68040, which has a mandatory 3-level 147 * structure, the segment table holds the level 1 table and part 148 * (or all) of the level 2 table and hence is considerably 149 * different. Here the first level consists of 128 descriptors 150 * (512 bytes) each mapping 32mb of address space. Each of these 151 * points to blocks of 128 second level descriptors (512 bytes) 152 * each mapping 256kb. Note that there may be additional "segment 153 * table" pages depending on how large MAXKL2SIZE is. 154 * 155 * XXX cramming two levels of mapping into the single "segment" 156 * table on the 68040 is intended as a temporary hack to get things 157 * working. The 224mb of address space that this allows will most 158 * likely be insufficient in the future (at least for the kernel). 159 */ 160 #if defined(M68040) || defined(M68060) 161 if (RELOC(mmutype, int) == MMU_68040) { 162 int num; 163 164 /* 165 * First invalidate the entire "segment table" pages 166 * (levels 1 and 2 have the same "invalid" value). 167 */ 168 pte = (u_int *)kstpa; 169 epte = &pte[kstsize * NPTEPG]; 170 while (pte < epte) 171 *pte++ = SG_NV; 172 /* 173 * Initialize level 2 descriptors (which immediately 174 * follow the level 1 table). We need: 175 * NPTEPG / SG4_LEV3SIZE 176 * level 2 descriptors to map each of the nptpages 177 * pages of PTEs. Note that we set the "used" bit 178 * now to save the HW the expense of doing it. 179 */ 180 num = nptpages * (NPTEPG / SG4_LEV3SIZE); 181 pte = &((u_int *)kstpa)[SG4_LEV1SIZE]; 182 epte = &pte[num]; 183 protoste = kptpa | SG_U | SG_RW | SG_V; 184 while (pte < epte) { 185 *pte++ = protoste; 186 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 187 } 188 /* 189 * Initialize level 1 descriptors. We need: 190 * roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE 191 * level 1 descriptors to map the `num' level 2's. 192 */ 193 pte = (u_int *)kstpa; 194 epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE]; 195 protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V; 196 while (pte < epte) { 197 *pte++ = protoste; 198 protoste += (SG4_LEV2SIZE * sizeof(st_entry_t)); 199 } 200 /* 201 * Initialize the final level 1 descriptor to map the last 202 * block of level 2 descriptors. 203 */ 204 ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1]; 205 pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE]; 206 *ste = (u_int)pte | SG_U | SG_RW | SG_V; 207 /* 208 * Now initialize the final portion of that block of 209 * descriptors to map kptmpa. 210 */ 211 pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE]; 212 epte = &pte[NPTEPG/SG4_LEV3SIZE]; 213 protoste = kptmpa | SG_U | SG_RW | SG_V; 214 while (pte < epte) { 215 *pte++ = protoste; 216 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 217 } 218 /* 219 * Initialize Sysptmap 220 */ 221 pte = (u_int *)kptmpa; 222 epte = &pte[nptpages]; 223 protopte = kptpa | PG_RW | PG_CI | PG_V; 224 while (pte < epte) { 225 *pte++ = protopte; 226 protopte += PAGE_SIZE; 227 } 228 /* 229 * Invalidate all but the last remaining entry. 230 */ 231 epte = &((u_int *)kptmpa)[NPTEPG-1]; 232 while (pte < epte) { 233 *pte++ = PG_NV; 234 } 235 /* 236 * Initialize the last one to point to Sysptmap. 237 */ 238 *pte = kptmpa | PG_RW | PG_CI | PG_V; 239 } else 240 #endif /* M68040 || M68060 */ 241 { 242 /* 243 * Map the page table pages in both the HW segment table 244 * and the software Sysptmap. 245 */ 246 ste = (u_int *)kstpa; 247 pte = (u_int *)kptmpa; 248 epte = &pte[nptpages]; 249 protoste = kptpa | SG_RW | SG_V; 250 protopte = kptpa | PG_RW | PG_CI | PG_V; 251 while (pte < epte) { 252 *ste++ = protoste; 253 *pte++ = protopte; 254 protoste += PAGE_SIZE; 255 protopte += PAGE_SIZE; 256 } 257 /* 258 * Invalidate all but the last remaining entries in both. 259 */ 260 epte = &((u_int *)kptmpa)[NPTEPG-1]; 261 while (pte < epte) { 262 *ste++ = SG_NV; 263 *pte++ = PG_NV; 264 } 265 /* 266 * Initialize the last one to point to Sysptmap. 267 */ 268 *ste = kptmpa | SG_RW | SG_V; 269 *pte = kptmpa | PG_RW | PG_CI | PG_V; 270 } 271 272 /* 273 * Initialize kernel page table. 274 * Start by invalidating the `nptpages' that we have allocated. 275 */ 276 pte = (u_int *)kptpa; 277 epte = &pte[nptpages * NPTEPG]; 278 while (pte < epte) 279 *pte++ = PG_NV; 280 /* 281 * Validate PTEs for kernel text (RO) 282 */ 283 pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)]; 284 /* XXX why KERNBASE relative? */ 285 epte = &pte[m68k_btop(m68k_trunc_page(&etext))]; 286 protopte = firstpa | PG_RO | PG_V; 287 while (pte < epte) { 288 *pte++ = protopte; 289 protopte += PAGE_SIZE; 290 } 291 /* 292 * Validate PTEs for kernel data/bss, dynamic data allocated 293 * by us so far (kstpa - firstpa bytes), and pages for proc0 294 * u-area and page table allocated below (RW). 295 */ 296 epte = &((u_int *)kptpa)[m68k_btop(kstpa - firstpa)]; 297 protopte = (protopte & ~PG_PROT) | PG_RW; 298 /* 299 * Enable copy-back caching of data pages 300 */ 301 if (RELOC(mmutype, int) == MMU_68040) 302 protopte |= PG_CCB; 303 while (pte < epte) { 304 *pte++ = protopte; 305 protopte += PAGE_SIZE; 306 } 307 /* 308 * map the kernel segment table cache invalidated for 309 * these machines (for the 68040 not strictly necessary, but 310 * recommended by Motorola; for the 68060 mandatory) 311 * XXX this includes p0upa. why? 312 */ 313 epte = &((u_int *)kptpa)[m68k_btop(nextpa - firstpa)]; 314 protopte = (protopte & ~PG_PROT) | PG_RW; 315 if (RELOC(mmutype, int) == MMU_68040) { 316 protopte &= ~PG_CCB; 317 protopte |= PG_CIN; 318 } 319 while (pte < epte) { 320 *pte++ = protopte; 321 protopte += PAGE_SIZE; 322 } 323 324 /* 325 * Finally, validate the internal IO space PTEs (RW+CI). 326 */ 327 328 #define PTE2VA(pte) m68k_ptob(pte - ((pt_entry_t *)kptpa)) 329 330 protopte = INTIOBASE | PG_RW | PG_CI | PG_V; 331 epte = &pte[IIOMAPSIZE]; 332 RELOC(IODEVbase, char *) = (char *)PTE2VA(pte); 333 RELOC(intiobase, u_int8_t *) = RELOC(IODEVbase, u_int8_t *); /* XXX */ 334 RELOC(intiolimit, char *) = (char *)PTE2VA(epte); 335 while (pte < epte) { 336 *pte++ = protopte; 337 protopte += PAGE_SIZE; 338 } 339 RELOC(virtual_avail, vaddr_t) = PTE2VA(pte); 340 341 /* 342 * Calculate important exported kernel virtual addresses 343 */ 344 /* 345 * Sysseg: base of kernel segment table 346 */ 347 RELOC(Sysseg, st_entry_t *) = 348 (st_entry_t *)(kstpa - firstpa); 349 /* 350 * Sysptmap: base of kernel page table map 351 */ 352 RELOC(Sysptmap, pt_entry_t *) = 353 (pt_entry_t *)(kptmpa - firstpa); 354 /* 355 * Sysmap: kernel page table (as mapped through Sysptmap) 356 * Allocated at the end of KVA space. 357 */ 358 RELOC(Sysmap, pt_entry_t *) = 359 (pt_entry_t *)m68k_ptob((NPTEPG - 1) * NPTEPG); 360 361 /* 362 * Setup u-area for process 0. 363 */ 364 /* 365 * Zero the u-area. 366 * NOTE: `pte' and `epte' aren't PTEs here. 367 */ 368 pte = (u_int *)p0upa; 369 epte = (u_int *)(p0upa + USPACE); 370 while (pte < epte) 371 *pte++ = 0; 372 /* 373 * Remember the u-area address so it can be loaded in the 374 * proc struct p_addr field later. 375 */ 376 RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa); 377 378 /* 379 * VM data structures are now initialized, set up data for 380 * the pmap module. 381 */ 382 RELOC(avail_start, paddr_t) = nextpa; 383 RELOC(avail_end, paddr_t) = 384 m68k_ptob(RELOC(maxmem, int)) 385 /* XXX allow for msgbuf */ 386 - m68k_round_page(MSGBUFSIZE); 387 RELOC(mem_size, psize_t) = m68k_ptob(RELOC(physmem, int)); 388 RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS; 389 390 /* 391 * Initialize protection array. 392 * XXX don't use a switch statement, it might produce an 393 * absolute "jmp" table. 394 */ 395 { 396 int *kp; 397 398 kp = &RELOC(protection_codes, int); 399 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0; 400 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO; 401 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 402 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 403 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 404 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 405 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 406 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 407 } 408 409 /* 410 * Kernel page/segment table allocated above, 411 * just initialize pointers. 412 */ 413 { 414 struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap); 415 416 kpm->pm_stab = RELOC(Sysseg, st_entry_t *); 417 kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *); 418 simple_lock_init(&kpm->pm_lock); 419 kpm->pm_count = 1; 420 kpm->pm_stpa = (st_entry_t *)kstpa; 421 #if defined(M68040) || defined(M68060) 422 /* 423 * For the 040 we also initialize the free level 2 424 * descriptor mask noting that we have used: 425 * 0: level 1 table 426 * 1 to `num': map page tables 427 * MAXKL2SIZE-1: maps kptmpa and last-page page table 428 */ 429 if (RELOC(mmutype, int) == MMU_68040) { 430 int num; 431 432 kpm->pm_stfree = ~l2tobm(0); 433 num = roundup(nptpages * (NPTEPG / SG4_LEV3SIZE), 434 SG4_LEV2SIZE) / SG4_LEV2SIZE; 435 while (num) 436 kpm->pm_stfree &= ~l2tobm(num--); 437 kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1); 438 for (num = MAXKL2SIZE; 439 num < sizeof(kpm->pm_stfree)*NBBY; 440 num++) 441 kpm->pm_stfree &= ~l2tobm(num); 442 } 443 #endif 444 } 445 446 /* 447 * Allocate some fixed, special purpose kernel virtual addresses 448 */ 449 { 450 vaddr_t va = RELOC(virtual_avail, vaddr_t); 451 452 RELOC(CADDR1, void *) = (void *)va; 453 va += PAGE_SIZE; 454 RELOC(CADDR2, void *) = (void *)va; 455 va += PAGE_SIZE; 456 RELOC(vmmap, void *) = (void *)va; 457 va += PAGE_SIZE; 458 RELOC(msgbufaddr, void *) = (void *)va; 459 va += m68k_round_page(MSGBUFSIZE); 460 RELOC(virtual_avail, vaddr_t) = va; 461 } 462 } 463