1 /* $NetBSD: pmap_bootstrap.c,v 1.61 2016/12/22 16:05:15 cherry Exp $ */ 2 3 /* 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.61 2016/12/22 16:05:15 cherry Exp $"); 40 41 #include "opt_m68k_arch.h" 42 43 #include <sys/param.h> 44 #include <uvm/uvm_extern.h> 45 46 #include <machine/cpu.h> 47 #include <machine/pte.h> 48 #include <machine/vmparam.h> 49 #include <arch/x68k/x68k/iodevice.h> 50 51 #define RELOC(v, t) *((t*)((uintptr_t)&(v) + firstpa)) 52 53 extern char *etext; 54 55 extern int maxmem; 56 extern psize_t physmem; 57 extern paddr_t avail_start, avail_end; 58 59 /* 60 * Special purpose kernel virtual addresses, used for mapping 61 * physical pages for a variety of temporary or permanent purposes: 62 * 63 * CADDR1, CADDR2: pmap zero/copy operations 64 * vmmap: /dev/mem, crash dumps, parity error checking 65 * msgbufaddr: kernel message buffer 66 */ 67 void *CADDR1, *CADDR2; 68 char *vmmap; 69 void *msgbufaddr; 70 71 void pmap_bootstrap(paddr_t, paddr_t); 72 73 /* 74 * Bootstrap the VM system. 75 * 76 * Called with MMU off so we must relocate all global references by `firstpa' 77 * (don't call any functions here!) `nextpa' is the first available physical 78 * memory address. Returns an updated first PA reflecting the memory we 79 * have allocated. MMU is still off when we return. 80 * 81 * XXX assumes sizeof(u_int) == sizeof(pt_entry_t) 82 * XXX a PIC compiler would make this much easier. 83 */ 84 void 85 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa) 86 { 87 paddr_t lwp0upa, kstpa, kptmpa, kptpa; 88 u_int nptpages, kstsize; 89 st_entry_t protoste, *ste, *este; 90 pt_entry_t protopte, *pte, *epte; 91 #if defined(M68040) || defined(M68060) 92 u_int stfree = 0; /* XXX: gcc -Wuninitialized */ 93 #endif 94 95 /* 96 * Calculate important physical addresses: 97 * 98 * lwp0upa lwp0 u-area UPAGES pages 99 * 100 * kstpa kernel segment table 1 page (!040) 101 * N pages (040) 102 * 103 * kptmpa kernel PT map 1 page 104 * 105 * kptpa statically allocated 106 * kernel PT pages Sysptsize+ pages 107 * 108 * [ Sysptsize is the number of pages of PT, and IIOMAPSIZE 109 * is the number of PTEs, hence we need to round 110 * the total to a page boundary with IO maps at the end. ] 111 * 112 * The KVA corresponding to any of these PAs is: 113 * (PA - firstpa + KERNBASE). 114 */ 115 lwp0upa = nextpa; 116 nextpa += USPACE; 117 if (RELOC(mmutype, int) == MMU_68040) 118 kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE); 119 else 120 kstsize = 1; 121 kstpa = nextpa; 122 nextpa += kstsize * PAGE_SIZE; 123 kptmpa = nextpa; 124 nextpa += PAGE_SIZE; 125 kptpa = nextpa; 126 nptpages = RELOC(Sysptsize, int) + howmany(RELOC(physmem, int), NPTEPG) + 127 (IIOMAPSIZE + NPTEPG - 1) / NPTEPG; 128 nextpa += nptpages * PAGE_SIZE; 129 130 /* 131 * Clear all PTEs to zero 132 */ 133 for (pte = (pt_entry_t *)kstpa; pte < (pt_entry_t *)nextpa; pte++) 134 *pte = 0; 135 136 /* 137 * Initialize segment table and kernel page table map. 138 * 139 * On 68030s and earlier MMUs the two are identical except for 140 * the valid bits so both are initialized with essentially the 141 * same values. On the 68040, which has a mandatory 3-level 142 * structure, the segment table holds the level 1 table and part 143 * (or all) of the level 2 table and hence is considerably 144 * different. Here the first level consists of 128 descriptors 145 * (512 bytes) each mapping 32mb of address space. Each of these 146 * points to blocks of 128 second level descriptors (512 bytes) 147 * each mapping 256kb. Note that there may be additional "segment 148 * table" pages depending on how large MAXKL2SIZE is. 149 * 150 * Portions of the last segment of KVA space (0xFFC00000 - 151 * 0xFFFFFFFF) are mapped for the kernel page tables. 152 * 153 * XXX cramming two levels of mapping into the single "segment" 154 * table on the 68040 is intended as a temporary hack to get things 155 * working. The 224mb of address space that this allows will most 156 * likely be insufficient in the future (at least for the kernel). 157 */ 158 #if defined(M68040) || defined(M68060) 159 if (RELOC(mmutype, int) == MMU_68040) { 160 int nl1desc, nl2desc, i; 161 162 /* 163 * First invalidate the entire "segment table" pages 164 * (levels 1 and 2 have the same "invalid" value). 165 */ 166 ste = (st_entry_t *)kstpa; 167 este = &ste[kstsize * NPTEPG]; 168 while (ste < este) 169 *ste++ = SG_NV; 170 /* 171 * Initialize level 2 descriptors (which immediately 172 * follow the level 1 table). We need: 173 * NPTEPG / SG4_LEV3SIZE 174 * level 2 descriptors to map each of the nptpages 175 * pages of PTEs. Note that we set the "used" bit 176 * now to save the HW the expense of doing it. 177 */ 178 nl2desc = nptpages * (NPTEPG / SG4_LEV3SIZE); 179 ste = (st_entry_t *)kstpa; 180 ste = &ste[SG4_LEV1SIZE]; 181 este = &ste[nl2desc]; 182 protoste = kptpa | SG_U | SG_RW | SG_V; 183 while (ste < este) { 184 *ste++ = protoste; 185 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 186 } 187 /* 188 * Initialize level 1 descriptors. We need: 189 * howmany(nl2desc, SG4_LEV2SIZE) 190 * level 1 descriptors to map the `nl2desc' level 2's. 191 */ 192 nl1desc = howmany(nl2desc, SG4_LEV2SIZE); 193 ste = (st_entry_t *)kstpa; 194 este = &ste[nl1desc]; 195 protoste = (paddr_t)&ste[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V; 196 while (ste < este) { 197 *ste++ = protoste; 198 protoste += (SG4_LEV2SIZE * sizeof(st_entry_t)); 199 } 200 /* 201 * Initialize the final level 1 descriptor to map the next 202 * block of level 2 descriptors for Sysptmap. 203 */ 204 ste = (st_entry_t *)kstpa; 205 ste = &ste[SG4_LEV1SIZE - 1]; 206 *ste = protoste; 207 /* 208 * Now initialize the final portion of that block of 209 * descriptors to map Sysmap. 210 */ 211 i = SG4_LEV1SIZE + (nl1desc * SG4_LEV2SIZE); 212 ste = (st_entry_t *)kstpa; 213 ste = &ste[i + SG4_LEV2SIZE - (NPTEPG / SG4_LEV3SIZE)]; 214 este = &ste[NPTEPG / SG4_LEV3SIZE]; 215 protoste = kptmpa | SG_U | SG_RW | SG_V; 216 while (ste < este) { 217 *ste++ = protoste; 218 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 219 } 220 /* 221 * Calculate the free level 2 descriptor mask 222 * noting that we have used: 223 * 0: level 1 table 224 * 1 to nl1desc: map page tables 225 * nl1desc + 1: maps kptmpa and last-page page table 226 */ 227 /* mark an entry for level 1 table */ 228 stfree = ~l2tobm(0); 229 /* mark entries for map page tables */ 230 for (i = 1; i <= nl1desc; i++) 231 stfree &= ~l2tobm(i); 232 /* mark an entry for kptmpa and lkptpa */ 233 stfree &= ~l2tobm(i); 234 /* mark entries not available */ 235 for (i = MAXKL2SIZE; i < sizeof(stfree) * NBBY; i++) 236 stfree &= ~l2tobm(i); 237 238 /* 239 * Initialize Sysptmap 240 */ 241 pte = (pt_entry_t *)kptmpa; 242 epte = &pte[nptpages]; 243 protopte = kptpa | PG_RW | PG_CI | PG_V; 244 while (pte < epte) { 245 *pte++ = protopte; 246 protopte += PAGE_SIZE; 247 } 248 /* 249 * Invalidate all remaining entries. 250 */ 251 epte = (pt_entry_t *)kptmpa; 252 epte = &epte[TIB_SIZE]; 253 while (pte < epte) { 254 *pte++ = PG_NV; 255 } 256 /* 257 * Initialize the last one to point to Sysptmap. 258 */ 259 pte = (pt_entry_t *)kptmpa; 260 pte = &pte[SYSMAP_VA >> SEGSHIFT]; 261 *pte = kptmpa | PG_RW | PG_CI | PG_V; 262 } else 263 #endif /* M68040 || M68060 */ 264 { 265 /* 266 * Map the page table pages in both the HW segment table 267 * and the software Sysptmap. 268 */ 269 ste = (st_entry_t *)kstpa; 270 pte = (pt_entry_t *)kptmpa; 271 epte = &pte[nptpages]; 272 protoste = kptpa | SG_RW | SG_V; 273 protopte = kptpa | PG_RW | PG_CI | PG_V; 274 while (pte < epte) { 275 *ste++ = protoste; 276 *pte++ = protopte; 277 protoste += PAGE_SIZE; 278 protopte += PAGE_SIZE; 279 } 280 /* 281 * Invalidate all remaining entries in both. 282 */ 283 este = (st_entry_t *)kstpa; 284 este = &este[TIA_SIZE]; 285 while (ste < este) 286 *ste++ = SG_NV; 287 epte = (pt_entry_t *)kptmpa; 288 epte = &epte[TIB_SIZE]; 289 while (pte < epte) 290 *pte++ = PG_NV; 291 /* 292 * Initialize the last one to point to Sysptmap. 293 */ 294 ste = (st_entry_t *)kstpa; 295 ste = &ste[SYSMAP_VA >> SEGSHIFT]; 296 pte = (pt_entry_t *)kptmpa; 297 pte = &pte[SYSMAP_VA >> SEGSHIFT]; 298 *ste = kptmpa | SG_RW | SG_V; 299 *pte = kptmpa | PG_RW | PG_CI | PG_V; 300 } 301 302 /* 303 * Initialize kernel page table. 304 * Start by invalidating the `nptpages' that we have allocated. 305 */ 306 pte = (pt_entry_t *)kptpa; 307 epte = &pte[nptpages * NPTEPG]; 308 while (pte < epte) 309 *pte++ = PG_NV; 310 /* 311 * Validate PTEs for kernel text (RO). 312 */ 313 pte = (pt_entry_t *)kptpa; 314 pte = &pte[m68k_btop(KERNBASE)]; 315 epte = &pte[m68k_btop(m68k_trunc_page(&etext))]; 316 protopte = firstpa | PG_RO | PG_V; 317 while (pte < epte) { 318 *pte++ = protopte; 319 protopte += PAGE_SIZE; 320 } 321 /* 322 * Validate PTEs for kernel data/bss, dynamic data allocated 323 * by us so far (kstpa - firstpa bytes), and pages for lwp0 324 * u-area and page table allocated below (RW). 325 */ 326 epte = (pt_entry_t *)kptpa; 327 epte = &epte[m68k_btop(kstpa - firstpa)]; 328 protopte = (protopte & ~PG_PROT) | PG_RW; 329 /* 330 * Enable copy-back caching of data pages 331 */ 332 if (RELOC(mmutype, int) == MMU_68040) 333 protopte |= PG_CCB; 334 while (pte < epte) { 335 *pte++ = protopte; 336 protopte += PAGE_SIZE; 337 } 338 /* 339 * Map the kernel segment table cache invalidated for 68040/68060. 340 * (for the 68040 not strictly necessary, but recommended by Motorola; 341 * for the 68060 mandatory) 342 */ 343 epte = (pt_entry_t *)kptpa; 344 epte = &epte[m68k_btop(nextpa - firstpa)]; 345 protopte = (protopte & ~PG_PROT) | PG_RW; 346 if (RELOC(mmutype, int) == MMU_68040) { 347 protopte &= ~PG_CCB; 348 protopte |= PG_CIN; 349 } 350 while (pte < epte) { 351 *pte++ = protopte; 352 protopte += PAGE_SIZE; 353 } 354 355 /* 356 * Finally, validate the internal IO space PTEs (RW+CI). 357 */ 358 359 #define PTE2VA(pte) m68k_ptob(pte - ((pt_entry_t *)kptpa)) 360 361 protopte = INTIOBASE | PG_RW | PG_CI | PG_V; 362 epte = &pte[IIOMAPSIZE]; 363 RELOC(intiobase, uint8_t *) = (uint8_t *)PTE2VA(pte); 364 RELOC(intiolimit, uint8_t *) = (uint8_t *)PTE2VA(epte); 365 while (pte < epte) { 366 *pte++ = protopte; 367 protopte += PAGE_SIZE; 368 } 369 RELOC(virtual_avail, vaddr_t) = PTE2VA(pte); 370 371 /* 372 * Calculate important exported kernel addresses and related values. 373 */ 374 /* 375 * Sysseg: base of kernel segment table 376 */ 377 RELOC(Sysseg, st_entry_t *) = (st_entry_t *)(kstpa - firstpa); 378 RELOC(Sysseg_pa, paddr_t) = kstpa; 379 #if defined(M68040) || defined(M68060) 380 if (RELOC(mmutype, int) == MMU_68040) 381 RELOC(protostfree, u_int) = stfree; 382 #endif 383 /* 384 * Sysptmap: base of kernel page table map 385 */ 386 RELOC(Sysptmap, pt_entry_t *) = (pt_entry_t *)(kptmpa - firstpa); 387 /* 388 * Sysmap: kernel page table (as mapped through Sysptmap) 389 * Allocated at the end of KVA space. 390 */ 391 RELOC(Sysmap, pt_entry_t *) = (pt_entry_t *)SYSMAP_VA; 392 393 /* 394 * Remember the u-area address so it can be loaded in the lwp0 395 * via uvm_lwp_setuarea() later in pmap_bootstrap_finalize(). 396 */ 397 RELOC(lwp0uarea, vaddr_t) = lwp0upa - firstpa; 398 399 /* 400 * VM data structures are now initialized, set up data for 401 * the pmap module. 402 * 403 * Note about avail_end: msgbuf is initialized at the end of 404 * main memory region (not after avail_end) in machdep.c. 405 */ 406 RELOC(avail_start, paddr_t) = nextpa; 407 RELOC(avail_end, paddr_t) = m68k_ptob(RELOC(maxmem, int)); 408 RELOC(mem_size, psize_t) = m68k_ptob(RELOC(physmem, int)); 409 RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS; 410 411 /* 412 * Allocate some fixed, special purpose kernel virtual addresses 413 */ 414 { 415 vaddr_t va = RELOC(virtual_avail, vaddr_t); 416 417 RELOC(CADDR1, void *) = (void *)va; 418 va += PAGE_SIZE; 419 RELOC(CADDR2, void *) = (void *)va; 420 va += PAGE_SIZE; 421 RELOC(vmmap, void *) = (void *)va; 422 va += PAGE_SIZE; 423 RELOC(msgbufaddr, void *) = (void *)va; 424 va += m68k_round_page(MSGBUFSIZE); 425 RELOC(virtual_avail, vaddr_t) = va; 426 } 427 } 428