xref: /netbsd-src/sys/arch/arm/vfp/vfp_init.c (revision 040f3e2bc695bf105f2ec65860ff68212c7f8e71)
1*040f3e2bSriastradh /*      $NetBSD: vfp_init.c,v 1.78 2022/08/20 11:34:08 riastradh Exp $ */
2b45167b6Srearnsha 
3b45167b6Srearnsha /*
4b45167b6Srearnsha  * Copyright (c) 2008 ARM Ltd
5b45167b6Srearnsha  * All rights reserved.
6b45167b6Srearnsha  *
7b45167b6Srearnsha  * Redistribution and use in source and binary forms, with or without
8b45167b6Srearnsha  * modification, are permitted provided that the following conditions
9b45167b6Srearnsha  * are met:
10b45167b6Srearnsha  * 1. Redistributions of source code must retain the above copyright
11b45167b6Srearnsha  *    notice, this list of conditions and the following disclaimer.
12b45167b6Srearnsha  * 2. Redistributions in binary form must reproduce the above copyright
13b45167b6Srearnsha  *    notice, this list of conditions and the following disclaimer in the
14b45167b6Srearnsha  *    documentation and/or other materials provided with the distribution.
15b45167b6Srearnsha  * 3. The name of the company may not be used to endorse or promote
16b45167b6Srearnsha  *    products derived from this software without specific prior written
17b45167b6Srearnsha  *    permission.
18b45167b6Srearnsha  *
19b45167b6Srearnsha  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20b45167b6Srearnsha  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21b45167b6Srearnsha  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22b45167b6Srearnsha  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23b45167b6Srearnsha  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24b45167b6Srearnsha  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25b45167b6Srearnsha  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26b45167b6Srearnsha  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27b45167b6Srearnsha  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28b45167b6Srearnsha  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29b45167b6Srearnsha  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30b45167b6Srearnsha  */
31b45167b6Srearnsha 
32fee210abSskrll #include "opt_cputypes.h"
33fee210abSskrll 
3409029ecdSskrll #include <sys/cdefs.h>
35*040f3e2bSriastradh __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.78 2022/08/20 11:34:08 riastradh Exp $");
3609029ecdSskrll 
37b45167b6Srearnsha #include <sys/param.h>
38b45167b6Srearnsha #include <sys/types.h>
39b45167b6Srearnsha #include <sys/systm.h>
40b45167b6Srearnsha #include <sys/device.h>
41b451bcfcSriastradh #include <sys/kernel.h>
42764da9e9Sriastradh #include <sys/kthread.h>
43b45167b6Srearnsha #include <sys/proc.h>
44c58ada7bSmatt #include <sys/cpu.h>
45b45167b6Srearnsha 
46ab152917Smatt #include <arm/locore.h>
47440251beSmatt #include <arm/pcb.h>
48b45167b6Srearnsha #include <arm/undefined.h>
49b45167b6Srearnsha #include <arm/vfpreg.h>
50cb72f657Smatt #include <arm/mcontext.h>
51c41eed1fSriastradh #include <arm/fpu.h>
52b45167b6Srearnsha 
53bc0ae315Smatt #include <uvm/uvm_extern.h>		/* for pmap.h */
54bc0ae315Smatt 
55518b19bbSriastradh #include <crypto/aes/aes_impl.h>
560a776e17Sriastradh #include <crypto/aes/arch/arm/aes_neon.h>
57f7b532ddSriastradh #include <crypto/chacha/arch/arm/chacha_neon.h>
58f7b532ddSriastradh #include <crypto/chacha/chacha_impl.h>
590a776e17Sriastradh 
60e34a352fSmatt #ifdef FPU_VFP
61e34a352fSmatt 
62e1771516Smatt #ifdef CPU_CORTEX
632176986cSchristos #define SETFPU __asm(".fpu\tvfpv4")
64e1771516Smatt #else
652176986cSchristos #define SETFPU __asm(".fpu\tvfp")
66e1771516Smatt #endif
672176986cSchristos SETFPU;
68e1771516Smatt 
69b45167b6Srearnsha /* FLDMD <X>, {d0-d15} */
70e34a352fSmatt static inline void
load_vfpregs_lo(const uint64_t * p)71adeb5a52Smatt load_vfpregs_lo(const uint64_t *p)
72a431007dSmatt {
732176986cSchristos 	SETFPU;
74b45d78c7Sjoerg 	__asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
75a431007dSmatt }
76a431007dSmatt 
77a431007dSmatt /* FSTMD <X>, {d0-d15} */
78e34a352fSmatt static inline void
save_vfpregs_lo(uint64_t * p)79a431007dSmatt save_vfpregs_lo(uint64_t *p)
80a431007dSmatt {
812176986cSchristos 	SETFPU;
82b45d78c7Sjoerg 	__asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
83a431007dSmatt }
84a431007dSmatt 
85a431007dSmatt #ifdef CPU_CORTEX
86a431007dSmatt /* FLDMD <X>, {d16-d31} */
87e34a352fSmatt static inline void
load_vfpregs_hi(const uint64_t * p)88adeb5a52Smatt load_vfpregs_hi(const uint64_t *p)
89a431007dSmatt {
902176986cSchristos 	SETFPU;
91b45d78c7Sjoerg 	__asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
92a431007dSmatt }
93a431007dSmatt 
94a431007dSmatt /* FLDMD <X>, {d16-d31} */
95e34a352fSmatt static inline void
save_vfpregs_hi(uint64_t * p)96a431007dSmatt save_vfpregs_hi(uint64_t *p)
97a431007dSmatt {
982176986cSchristos 	SETFPU;
99b45d78c7Sjoerg 	__asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
100a431007dSmatt }
101a431007dSmatt #endif
102b45167b6Srearnsha 
103adeb5a52Smatt static inline void
load_vfpregs(const struct vfpreg * fregs)104adeb5a52Smatt load_vfpregs(const struct vfpreg *fregs)
105adeb5a52Smatt {
106adeb5a52Smatt 	load_vfpregs_lo(fregs->vfp_regs);
107adeb5a52Smatt #ifdef CPU_CORTEX
108adeb5a52Smatt #ifdef CPU_ARM11
109adeb5a52Smatt 	switch (curcpu()->ci_vfp_id) {
110adeb5a52Smatt 	case FPU_VFP_CORTEXA5:
111adeb5a52Smatt 	case FPU_VFP_CORTEXA7:
112adeb5a52Smatt 	case FPU_VFP_CORTEXA8:
113adeb5a52Smatt 	case FPU_VFP_CORTEXA9:
114222a05d7Smatt 	case FPU_VFP_CORTEXA15:
115cddbe280Sslp 	case FPU_VFP_CORTEXA15_QEMU:
1168142c3d9Sskrll 	case FPU_VFP_CORTEXA53:
117da90d24cSjmcneill 	case FPU_VFP_CORTEXA57:
118adeb5a52Smatt #endif
119adeb5a52Smatt 		load_vfpregs_hi(fregs->vfp_regs);
120adeb5a52Smatt #ifdef CPU_ARM11
121adeb5a52Smatt 		break;
122adeb5a52Smatt 	}
123adeb5a52Smatt #endif
124adeb5a52Smatt #endif
125adeb5a52Smatt }
126adeb5a52Smatt 
127adeb5a52Smatt static inline void
save_vfpregs(struct vfpreg * fregs)128adeb5a52Smatt save_vfpregs(struct vfpreg *fregs)
129adeb5a52Smatt {
130adeb5a52Smatt 	save_vfpregs_lo(fregs->vfp_regs);
131adeb5a52Smatt #ifdef CPU_CORTEX
132adeb5a52Smatt #ifdef CPU_ARM11
133adeb5a52Smatt 	switch (curcpu()->ci_vfp_id) {
134adeb5a52Smatt 	case FPU_VFP_CORTEXA5:
135adeb5a52Smatt 	case FPU_VFP_CORTEXA7:
136adeb5a52Smatt 	case FPU_VFP_CORTEXA8:
137adeb5a52Smatt 	case FPU_VFP_CORTEXA9:
138222a05d7Smatt 	case FPU_VFP_CORTEXA15:
139cddbe280Sslp 	case FPU_VFP_CORTEXA15_QEMU:
1408142c3d9Sskrll 	case FPU_VFP_CORTEXA53:
141da90d24cSjmcneill 	case FPU_VFP_CORTEXA57:
142adeb5a52Smatt #endif
143adeb5a52Smatt 		save_vfpregs_hi(fregs->vfp_regs);
144adeb5a52Smatt #ifdef CPU_ARM11
145adeb5a52Smatt 		break;
146adeb5a52Smatt 	}
147adeb5a52Smatt #endif
148adeb5a52Smatt #endif
149adeb5a52Smatt }
150adeb5a52Smatt 
151b45167b6Srearnsha /* The real handler for VFP bounces.  */
152b45167b6Srearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
153adeb5a52Smatt #ifdef CPU_CORTEX
154adeb5a52Smatt static int neon_handler(u_int, u_int, trapframe_t *, int);
155adeb5a52Smatt #endif
156b45167b6Srearnsha 
157adeb5a52Smatt static void vfp_state_load(lwp_t *, u_int);
158d67ab12cSrmind static void vfp_state_save(lwp_t *);
159d67ab12cSrmind static void vfp_state_release(lwp_t *);
160c58ada7bSmatt 
161c58ada7bSmatt const pcu_ops_t arm_vfp_ops = {
162c58ada7bSmatt 	.pcu_id = PCU_FPU,
163c58ada7bSmatt 	.pcu_state_save = vfp_state_save,
164adeb5a52Smatt 	.pcu_state_load = vfp_state_load,
165c58ada7bSmatt 	.pcu_state_release = vfp_state_release,
166c58ada7bSmatt };
167b45167b6Srearnsha 
16882ca3739Smatt /* determine what bits can be changed */
16982ca3739Smatt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
17082ca3739Smatt /* default to run fast */
17182ca3739Smatt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
17282ca3739Smatt 
17393bd3693Smatt #else
17493bd3693Smatt /* determine what bits can be changed */
17593bd3693Smatt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
176c58ada7bSmatt #endif /* FPU_VFP */
177c58ada7bSmatt 
178c58ada7bSmatt static int
vfp_fpscr_handler(u_int address,u_int insn,trapframe_t * frame,int fault_code)179c58ada7bSmatt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
180c58ada7bSmatt {
181c58ada7bSmatt 	struct lwp * const l = curlwp;
182c58ada7bSmatt 	const u_int regno = (insn >> 12) & 0xf;
183c58ada7bSmatt 	/*
184c58ada7bSmatt 	 * Only match move to/from the FPSCR register and we
185c58ada7bSmatt 	 * can't be using the SP,LR,PC as a source.
186c58ada7bSmatt 	 */
187c58ada7bSmatt 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
188c58ada7bSmatt 		return 1;
189c58ada7bSmatt 
190c58ada7bSmatt 	struct pcb * const pcb = lwp_getpcb(l);
191c58ada7bSmatt 
192c58ada7bSmatt #ifdef FPU_VFP
193c58ada7bSmatt 	/*
194c58ada7bSmatt 	 * If FPU is valid somewhere, let's just reenable VFP and
195c58ada7bSmatt 	 * retry the instruction (only safe thing to do since the
196c58ada7bSmatt 	 * pcb has a stale copy).
197c58ada7bSmatt 	 */
198c58ada7bSmatt 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
199c58ada7bSmatt 		return 1;
200c58ada7bSmatt 
201877a3ccfSchs 	if (__predict_false(!vfp_used_p(l))) {
20293bd3693Smatt 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
203c58ada7bSmatt 	}
2040138e9e5Smatt #endif
205c58ada7bSmatt 
206c58ada7bSmatt 	/*
207194648c1Sskrll 	 * We now know the pcb has the saved copy.
208c58ada7bSmatt 	 */
209c58ada7bSmatt 	register_t * const regp = &frame->tf_r0 + regno;
210c58ada7bSmatt 	if (insn & 0x00100000) {
211c58ada7bSmatt 		*regp = pcb->pcb_vfp.vfp_fpscr;
212c58ada7bSmatt 	} else {
21382ca3739Smatt 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
21482ca3739Smatt 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
215c58ada7bSmatt 	}
216c58ada7bSmatt 
217d6e299a9Smatt 	curcpu()->ci_vfp_evs[0].ev_count++;
218c58ada7bSmatt 
219c58ada7bSmatt 	frame->tf_pc += INSN_SIZE;
220c58ada7bSmatt 	return 0;
221c58ada7bSmatt }
222c58ada7bSmatt 
223c58ada7bSmatt #ifndef FPU_VFP
224e677f16fSskrll void
vfp_detect(struct cpu_info * ci)225e677f16fSskrll vfp_detect(struct cpu_info *ci)
226e677f16fSskrll {
227e677f16fSskrll 	ci->ci_vfp_id = 0;
228e677f16fSskrll 	return;
229e677f16fSskrll }
230c58ada7bSmatt /*
231c58ada7bSmatt  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
232c58ada7bSmatt  * instructions.
233c58ada7bSmatt  */
234b45167b6Srearnsha void
vfp_attach(struct cpu_info * ci)235d6e299a9Smatt vfp_attach(struct cpu_info *ci)
236b45167b6Srearnsha {
237d6e299a9Smatt 	if (CPU_IS_PRIMARY(ci)) {
238e677f16fSskrll 		replace_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
239c58ada7bSmatt 	}
240d6e299a9Smatt 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
241d6e299a9Smatt 	    ci->ci_cpuname, "vfp fpscr traps");
242d6e299a9Smatt }
243c58ada7bSmatt 
244c58ada7bSmatt #else
245c58ada7bSmatt void
vfp_detect(struct cpu_info * ci)246e677f16fSskrll vfp_detect(struct cpu_info *ci)
247c58ada7bSmatt {
248b45167b6Srearnsha 
249d6e299a9Smatt 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
250d6e299a9Smatt 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
251d6e299a9Smatt 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
252d6e299a9Smatt #if 0
253d6e299a9Smatt 		const uint32_t nsacr = armreg_nsacr_read();
254d6e299a9Smatt 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
255d6e299a9Smatt 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
256e677f16fSskrll 			ci->ci_fp_id = 0;
257d6e299a9Smatt 			return;
258d6e299a9Smatt 		}
259d6e299a9Smatt #endif
260c872068cSmatt 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
261c872068cSmatt 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
262df4c4d2cSmatt 
263c872068cSmatt 		/*
264c872068cSmatt 		 * We first need to enable access to the coprocessors.
265c872068cSmatt 		 */
266c872068cSmatt 		uint32_t cpacr = armreg_cpacr_read();
267c872068cSmatt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
268c872068cSmatt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
269df4c4d2cSmatt 		armreg_cpacr_write(cpacr);
270c872068cSmatt 
271ce993bccSskrll 		isb();
272fd24bc2eSjmcneill 
273c872068cSmatt 		/*
274c872068cSmatt 		 * If we could enable them, then they exist.
275c872068cSmatt 		 */
276df4c4d2cSmatt 		cpacr = armreg_cpacr_read();
2773397f5bdSmatt 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
2783397f5bdSmatt 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
2796dbb00d8Smatt 		if (!vfp_p) {
2806dbb00d8Smatt 			ci->ci_vfp_id = 0;
2816dbb00d8Smatt 			return;
2826dbb00d8Smatt 		}
283df4c4d2cSmatt 	}
284df4c4d2cSmatt 
285e677f16fSskrll 	/* borrow the ci_vfd_id field for VFP detection */
286e677f16fSskrll 	ci->ci_vfp_id = -1;
287c872068cSmatt 
2881eb5d070Smatt 	const uint32_t fpsid = armreg_fpsid_read();
289e677f16fSskrll 	if (ci->ci_vfp_id == 0) {
290b45167b6Srearnsha 		return;
291b45167b6Srearnsha 	}
292b45167b6Srearnsha 
293c58ada7bSmatt 	ci->ci_vfp_id = fpsid;
294e677f16fSskrll 
295e677f16fSskrll 	ci->ci_mvfr[0] = armreg_mvfr0_read();
296e677f16fSskrll 	ci->ci_mvfr[1] = armreg_mvfr1_read();
297e677f16fSskrll 
298e677f16fSskrll }
299e677f16fSskrll 
300e677f16fSskrll void
vfp_attach(struct cpu_info * ci)301e677f16fSskrll vfp_attach(struct cpu_info *ci)
302e677f16fSskrll {
303e677f16fSskrll 	const char *model = NULL;
304e677f16fSskrll 
305e677f16fSskrll 	switch (ci->ci_vfp_id & ~ VFP_FPSID_REV_MSK) {
306b45167b6Srearnsha 	case FPU_VFP10_ARM10E:
307b45167b6Srearnsha 		model = "VFP10 R1";
308b45167b6Srearnsha 		break;
309b45167b6Srearnsha 	case FPU_VFP11_ARM11:
310b45167b6Srearnsha 		model = "VFP11";
311b45167b6Srearnsha 		break;
312df768d50Smatt 	case FPU_VFP_MV88SV58XX:
313df768d50Smatt 		model = "VFP3";
314df768d50Smatt 		break;
315c872068cSmatt 	case FPU_VFP_CORTEXA5:
316c872068cSmatt 	case FPU_VFP_CORTEXA7:
317c872068cSmatt 	case FPU_VFP_CORTEXA8:
318c872068cSmatt 	case FPU_VFP_CORTEXA9:
31926001a86Stnn 	case FPU_VFP_CORTEXA12:
320222a05d7Smatt 	case FPU_VFP_CORTEXA15:
321cddbe280Sslp 	case FPU_VFP_CORTEXA15_QEMU:
32226001a86Stnn 	case FPU_VFP_CORTEXA17:
3238142c3d9Sskrll 	case FPU_VFP_CORTEXA53:
324da90d24cSjmcneill 	case FPU_VFP_CORTEXA57:
325d6e299a9Smatt 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
326d6e299a9Smatt 			model = "VFP 4.0+";
327d6e299a9Smatt 		} else {
328c872068cSmatt 			model = "NEON MPE (VFP 3.0+)";
32985a02f38Smatt 			cpu_neon_present = 1;
330d6e299a9Smatt 		}
331df4c4d2cSmatt 		break;
332b45167b6Srearnsha 	default:
333df768d50Smatt 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
334e677f16fSskrll 		    ci->ci_vfp_id);
335a4e709f7Sskrll 		if (CPU_IS_PRIMARY(ci))
336e677f16fSskrll 			replace_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
33793bd3693Smatt 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
33893bd3693Smatt 		    |VFP_FPSCR_RMODE;
33993bd3693Smatt 		vfp_fpscr_default = 0;
340b45167b6Srearnsha 		return;
341b45167b6Srearnsha 	}
342b45167b6Srearnsha 
3432d523d35Smatt 	cpu_fpu_present = 1;
344e677f16fSskrll 
345e677f16fSskrll 	const uint32_t f0 = ci->ci_mvfr[0];
346e677f16fSskrll 	const uint32_t f1 = ci->ci_mvfr[1];
34782ca3739Smatt 	aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
348d6e299a9Smatt 	    device_unit(ci->ci_dev),
349d6e299a9Smatt 	    device_xname(ci->ci_dev),
35082ca3739Smatt 	    model,
35182ca3739Smatt 	    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
35282ca3739Smatt 	    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
35307ddce23Smatt 	    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
35482ca3739Smatt 	    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
355e677f16fSskrll 
3567017cd79Sjmcneill 	aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
357d6e299a9Smatt 	    device_unit(ci->ci_dev), f0, f1);
358e677f16fSskrll 
359d6e299a9Smatt 	if (CPU_IS_PRIMARY(ci)) {
360e677f16fSskrll 		cpu_media_and_vfp_features[0] = f0;
361e677f16fSskrll 		cpu_media_and_vfp_features[1] = f1;
362e677f16fSskrll 
363d6e299a9Smatt 		if (f0 & ARM_MVFR0_ROUNDING_MASK) {
36482ca3739Smatt 			vfp_fpscr_changable |= VFP_FPSCR_RMODE;
36582ca3739Smatt 		}
366d6e299a9Smatt 		if (f1 & ARM_MVFR0_EXCEPT_MASK) {
36782ca3739Smatt 			vfp_fpscr_changable |= VFP_FPSCR_ESUM;
36882ca3739Smatt 		}
36907ddce23Smatt 		// If hardware supports propagation of NaNs, select it.
370d6e299a9Smatt 		if (f1 & ARM_MVFR1_D_NAN_MASK) {
37182ca3739Smatt 			vfp_fpscr_default &= ~VFP_FPSCR_DN;
37282ca3739Smatt 			vfp_fpscr_changable |= VFP_FPSCR_DN;
37382ca3739Smatt 		}
37482ca3739Smatt 		// If hardware supports denormalized numbers, use it.
375e677f16fSskrll 		if (f1 & ARM_MVFR1_FTZ_MASK) {
37682ca3739Smatt 			vfp_fpscr_default &= ~VFP_FPSCR_FZ;
37782ca3739Smatt 			vfp_fpscr_changable |= VFP_FPSCR_FZ;
37882ca3739Smatt 		}
379e677f16fSskrll 
380e677f16fSskrll 		replace_coproc_handler(VFP_COPROC, vfp_handler);
381b45167b6Srearnsha 		install_coproc_handler(VFP_COPROC2, vfp_handler);
382adeb5a52Smatt #ifdef CPU_CORTEX
3830a776e17Sriastradh 		if (cpu_neon_present) {
3840a776e17Sriastradh 			install_coproc_handler(CORE_UNKNOWN_HANDLER,
3850a776e17Sriastradh 			    neon_handler);
3860a776e17Sriastradh 			aes_md_init(&aes_neon_impl);
387f7b532ddSriastradh 			chacha_md_init(&chacha_neon_impl);
3880a776e17Sriastradh 		}
389adeb5a52Smatt #endif
390b45167b6Srearnsha 	}
391e677f16fSskrll 
392e677f16fSskrll 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
393e677f16fSskrll 	    ci->ci_cpuname, "vfp coproc use");
394e677f16fSskrll 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
395e677f16fSskrll 	    ci->ci_cpuname, "vfp coproc re-use");
396e677f16fSskrll 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
397e677f16fSskrll 	    ci->ci_cpuname, "vfp coproc fault");
398a4e709f7Sskrll }
399b45167b6Srearnsha 
400b45167b6Srearnsha /* The real handler for VFP bounces.  */
401c58ada7bSmatt static int
vfp_handler(u_int address,u_int insn,trapframe_t * frame,int fault_code)4021eb5d070Smatt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
403b45167b6Srearnsha {
404c58ada7bSmatt 	struct cpu_info * const ci = curcpu();
40578e37e73Srin 	uint32_t fpexc;
406b45167b6Srearnsha 
407b45167b6Srearnsha 	/* This shouldn't ever happen.  */
408764da9e9Sriastradh 	if (fault_code != FAULT_USER &&
409764da9e9Sriastradh 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
41008e4b731Smatt 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
411b45167b6Srearnsha 
412d1068917Smatt 	if (ci->ci_vfp_id == 0) {
413b45167b6Srearnsha 		/* No VFP detected, just fault.  */
414b45167b6Srearnsha 		return 1;
415d1068917Smatt 	}
416d1068917Smatt 
417d1068917Smatt 	/*
41871dae66cSmatt 	 * If we already own the FPU and it's enabled (and no exception), raise
41978e37e73Srin 	 * SIGILL.  If there is an exception, raise SIGFPE.
42071dae66cSmatt 	 */
42178e37e73Srin 	if (curlwp->l_pcu_cpu[PCU_FPU] == ci) {
422257ebab6Srin 		KASSERT(ci->ci_pcu_curlwp[PCU_FPU] == curlwp);
42378e37e73Srin 
42478e37e73Srin 		fpexc = armreg_fpexc_read();
42578e37e73Srin 		if (fpexc & VFP_FPEXC_EN) {
42678e37e73Srin 			if ((fpexc & VFP_FPEXC_EX) == 0) {
42778e37e73Srin 				return 1;	/* SIGILL */
42878e37e73Srin 			} else {
42978e37e73Srin 				goto fpe;	/* SIGFPE; skip pcu_load(9) */
43078e37e73Srin 			}
43178e37e73Srin 		}
432257ebab6Srin 	}
43371dae66cSmatt 
43471dae66cSmatt 	/*
435d1068917Smatt 	 * Make sure we own the FP.
436d1068917Smatt 	 */
437d1068917Smatt 	pcu_load(&arm_vfp_ops);
438b45167b6Srearnsha 
43978e37e73Srin 	fpexc = armreg_fpexc_read();
4401eb5d070Smatt 	if (fpexc & VFP_FPEXC_EX) {
4411eb5d070Smatt 		ksiginfo_t ksi;
4421eb5d070Smatt 		KASSERT(fpexc & VFP_FPEXC_EN);
4431eb5d070Smatt 
44478e37e73Srin fpe:
445d6e299a9Smatt 		curcpu()->ci_vfp_evs[2].ev_count++;
4461eb5d070Smatt 
4471eb5d070Smatt 		/*
4481eb5d070Smatt 		 * Need the clear the exception condition so any signal
4499bcaadefSskrll 		 * and future use can proceed.
4501eb5d070Smatt 		 */
4517ca5df3eSskrll 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
4521eb5d070Smatt 
453877a3ccfSchs 		pcu_save(&arm_vfp_ops, curlwp);
4549bcaadefSskrll 
4559bcaadefSskrll 		/*
4569bcaadefSskrll 		 * XXX Need to emulate bounce instructions here to get correct
4579bcaadefSskrll 		 * XXX exception codes, etc.
4589bcaadefSskrll 		 */
4591eb5d070Smatt 		KSI_INIT_TRAP(&ksi);
4601eb5d070Smatt 		ksi.ksi_signo = SIGFPE;
4611eb5d070Smatt 		if (fpexc & VFP_FPEXC_IXF)
4621eb5d070Smatt 			ksi.ksi_code = FPE_FLTRES;
4631eb5d070Smatt 		else if (fpexc & VFP_FPEXC_UFF)
4641eb5d070Smatt 			ksi.ksi_code = FPE_FLTUND;
4651eb5d070Smatt 		else if (fpexc & VFP_FPEXC_OFF)
4661eb5d070Smatt 			ksi.ksi_code = FPE_FLTOVF;
4671eb5d070Smatt 		else if (fpexc & VFP_FPEXC_DZF)
4681eb5d070Smatt 			ksi.ksi_code = FPE_FLTDIV;
4691eb5d070Smatt 		else if (fpexc & VFP_FPEXC_IOF)
4701eb5d070Smatt 			ksi.ksi_code = FPE_FLTINV;
4711eb5d070Smatt 		ksi.ksi_addr = (uint32_t *)address;
4721eb5d070Smatt 		ksi.ksi_trap = 0;
4731eb5d070Smatt 		trapsignal(curlwp, &ksi);
4741eb5d070Smatt 		return 0;
4751eb5d070Smatt 	}
4761eb5d070Smatt 
477c58ada7bSmatt 	/* Need to restart the faulted instruction.  */
478c58ada7bSmatt //	frame->tf_pc -= INSN_SIZE;
479c58ada7bSmatt 	return 0;
480b45167b6Srearnsha }
481b45167b6Srearnsha 
482adeb5a52Smatt #ifdef CPU_CORTEX
483adeb5a52Smatt /* The real handler for NEON bounces.  */
484adeb5a52Smatt static int
neon_handler(u_int address,u_int insn,trapframe_t * frame,int fault_code)4851eb5d070Smatt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
486adeb5a52Smatt {
487adeb5a52Smatt 	struct cpu_info * const ci = curcpu();
488adeb5a52Smatt 
489adeb5a52Smatt 	if (ci->ci_vfp_id == 0)
490adeb5a52Smatt 		/* No VFP detected, just fault.  */
491adeb5a52Smatt 		return 1;
492adeb5a52Smatt 
493adeb5a52Smatt 	if ((insn & 0xfe000000) != 0xf2000000
494adeb5a52Smatt 	    && (insn & 0xfe000000) != 0xf4000000)
495adeb5a52Smatt 		/* Not NEON instruction, just fault.  */
496adeb5a52Smatt 		return 1;
497adeb5a52Smatt 
498adeb5a52Smatt 	/* This shouldn't ever happen.  */
499764da9e9Sriastradh 	if (fault_code != FAULT_USER &&
500764da9e9Sriastradh 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
501adeb5a52Smatt 		panic("NEON fault in non-user mode");
502adeb5a52Smatt 
503f50d0b7fSmatt 	/* if we already own the FPU and it's enabled, raise SIGILL */
504f50d0b7fSmatt 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
505f50d0b7fSmatt 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
50671dae66cSmatt 		return 1;
507fd405b92Smatt 
508adeb5a52Smatt 	pcu_load(&arm_vfp_ops);
509adeb5a52Smatt 
510adeb5a52Smatt 	/* Need to restart the faulted instruction.  */
511adeb5a52Smatt //	frame->tf_pc -= INSN_SIZE;
512adeb5a52Smatt 	return 0;
513adeb5a52Smatt }
514adeb5a52Smatt #endif
515adeb5a52Smatt 
516c58ada7bSmatt static void
vfp_state_load(lwp_t * l,u_int flags)517adeb5a52Smatt vfp_state_load(lwp_t *l, u_int flags)
518c58ada7bSmatt {
519c58ada7bSmatt 	struct pcb * const pcb = lwp_getpcb(l);
520c58ada7bSmatt 	struct vfpreg * const fregs = &pcb->pcb_vfp;
521b45167b6Srearnsha 
522b45167b6Srearnsha 	/*
523b45167b6Srearnsha 	 * Instrument VFP usage -- if a process has not previously
524b45167b6Srearnsha 	 * used the VFP, mark it as having used VFP for the first time,
525b45167b6Srearnsha 	 * and count this event.
526b45167b6Srearnsha 	 *
527b45167b6Srearnsha 	 * If a process has used the VFP, count a "used VFP, and took
528b45167b6Srearnsha 	 * a trap to use it again" event.
529b45167b6Srearnsha 	 */
530d67ab12cSrmind 	if (__predict_false((flags & PCU_VALID) == 0)) {
531d6e299a9Smatt 		curcpu()->ci_vfp_evs[0].ev_count++;
53282ca3739Smatt 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
533c58ada7bSmatt 	} else {
534d6e299a9Smatt 		curcpu()->ci_vfp_evs[1].ev_count++;
535b45167b6Srearnsha 	}
536b45167b6Srearnsha 
53736e1796fSbouyer 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
538d67ab12cSrmind 	/*
539d67ab12cSrmind 	 * If the VFP is already enabled we must be bouncing an instruction.
540d67ab12cSrmind 	 */
541d67ab12cSrmind 	if (flags & PCU_REENABLE) {
5429bcaadefSskrll 		uint32_t fpexc = armreg_fpexc_read();
543d67ab12cSrmind 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
54436e1796fSbouyer 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
545d67ab12cSrmind 		return;
546d67ab12cSrmind 	}
54736e1796fSbouyer 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
5489bcaadefSskrll 
549c58ada7bSmatt 	/*
550d67ab12cSrmind 	 * Load and Enable the VFP (so that we can write the registers).
551c58ada7bSmatt 	 */
5529bcaadefSskrll 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
5531eb5d070Smatt 	armreg_fpexc_write(fregs->vfp_fpexc);
55436e1796fSbouyer 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
55536e1796fSbouyer 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
556b45167b6Srearnsha 
557adeb5a52Smatt 	load_vfpregs(fregs);
5581eb5d070Smatt 	armreg_fpscr_write(fregs->vfp_fpscr);
559c58ada7bSmatt 
560b45167b6Srearnsha 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
561b45167b6Srearnsha 		/* Need to restore the exception handling state.  */
5621eb5d070Smatt 		armreg_fpinst_write(fregs->vfp_fpinst);
563ea6bb78fSchs 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
564ea6bb78fSchs 			armreg_fpinst2_write(fregs->vfp_fpinst2);
565b45167b6Srearnsha 	}
566b45167b6Srearnsha }
567b45167b6Srearnsha 
568b45167b6Srearnsha void
vfp_state_save(lwp_t * l)569d67ab12cSrmind vfp_state_save(lwp_t *l)
570b45167b6Srearnsha {
571c58ada7bSmatt 	struct pcb * const pcb = lwp_getpcb(l);
572d67ab12cSrmind 	struct vfpreg * const fregs = &pcb->pcb_vfp;
5731eb5d070Smatt 	uint32_t fpexc = armreg_fpexc_read();
5749bcaadefSskrll 
57536e1796fSbouyer 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
57636e1796fSbouyer 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
57736e1796fSbouyer 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
5789bcaadefSskrll 	/*
5799bcaadefSskrll 	 * Enable the VFP (so we can read the registers).
5809bcaadefSskrll 	 * Make sure the exception bit is cleared so that we can
5819bcaadefSskrll 	 * safely dump the registers.
5829bcaadefSskrll 	 */
5831eb5d070Smatt 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
584b45167b6Srearnsha 
585b45167b6Srearnsha 	fregs->vfp_fpexc = fpexc;
586b45167b6Srearnsha 	if (fpexc & VFP_FPEXC_EX) {
587b45167b6Srearnsha 		/* Need to save the exception handling state */
5881eb5d070Smatt 		fregs->vfp_fpinst = armreg_fpinst_read();
5891eb5d070Smatt 		if (fpexc & VFP_FPEXC_FP2V)
5901eb5d070Smatt 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
591b45167b6Srearnsha 	}
5921eb5d070Smatt 	fregs->vfp_fpscr = armreg_fpscr_read();
593adeb5a52Smatt 	save_vfpregs(fregs);
594b45167b6Srearnsha 
595c58ada7bSmatt 	/* Disable the VFP.  */
5969bcaadefSskrll 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
597b45167b6Srearnsha }
598b45167b6Srearnsha 
599b45167b6Srearnsha void
vfp_state_release(lwp_t * l)600d67ab12cSrmind vfp_state_release(lwp_t *l)
601b45167b6Srearnsha {
602c58ada7bSmatt 	struct pcb * const pcb = lwp_getpcb(l);
603b45167b6Srearnsha 
604adeb5a52Smatt 	/*
605adeb5a52Smatt 	 * Now mark the VFP as disabled (and our state
606adeb5a52Smatt 	 * has been already saved or is being discarded).
607b45167b6Srearnsha 	 */
608c58ada7bSmatt 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
609c58ada7bSmatt 
610c58ada7bSmatt 	/*
611c58ada7bSmatt 	 * Turn off the FPU so the next time a VFP instruction is issued
612c58ada7bSmatt 	 * an exception happens.  We don't know if this LWP's state was
613c58ada7bSmatt 	 * loaded but if we turned off the FPU for some other LWP, when
614c58ada7bSmatt 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
615adeb5a52Smatt 	 * is still set so it just restore fpexc and return since its
616c58ada7bSmatt 	 * contents are still sitting in the VFP.
617c58ada7bSmatt 	 */
6181eb5d070Smatt 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
619b45167b6Srearnsha }
620b45167b6Srearnsha 
621b45167b6Srearnsha void
vfp_savecontext(lwp_t * l)622877a3ccfSchs vfp_savecontext(lwp_t *l)
623b45167b6Srearnsha {
624877a3ccfSchs 	pcu_save(&arm_vfp_ops, l);
625b45167b6Srearnsha }
626b45167b6Srearnsha 
627b45167b6Srearnsha void
vfp_discardcontext(lwp_t * l,bool used_p)628877a3ccfSchs vfp_discardcontext(lwp_t *l, bool used_p)
629b45167b6Srearnsha {
630877a3ccfSchs 	pcu_discard(&arm_vfp_ops, l, used_p);
6312efaa8f8Smatt }
6322efaa8f8Smatt 
6332efaa8f8Smatt bool
vfp_used_p(const lwp_t * l)634877a3ccfSchs vfp_used_p(const lwp_t *l)
6352efaa8f8Smatt {
636877a3ccfSchs 	return pcu_valid_p(&arm_vfp_ops, l);
637adeb5a52Smatt }
638adeb5a52Smatt 
639adeb5a52Smatt void
vfp_getcontext(struct lwp * l,mcontext_t * mcp,int * flagsp)640cb72f657Smatt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
641cb72f657Smatt {
642877a3ccfSchs 	if (vfp_used_p(l)) {
643cb72f657Smatt 		const struct pcb * const pcb = lwp_getpcb(l);
644877a3ccfSchs 
645877a3ccfSchs 		pcu_save(&arm_vfp_ops, l);
646cb72f657Smatt 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
647cb72f657Smatt 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
648cb72f657Smatt 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
649a431007dSmatt 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
650cb72f657Smatt 	}
651cb72f657Smatt }
652cb72f657Smatt 
653cb72f657Smatt void
vfp_setcontext(struct lwp * l,const mcontext_t * mcp)654cb72f657Smatt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
655cb72f657Smatt {
656cb72f657Smatt 	struct pcb * const pcb = lwp_getpcb(l);
657877a3ccfSchs 
658877a3ccfSchs 	pcu_discard(&arm_vfp_ops, l, true);
659cb72f657Smatt 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
660cb72f657Smatt 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
661cb72f657Smatt 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
662cb72f657Smatt }
663cb72f657Smatt 
664764da9e9Sriastradh /*
665764da9e9Sriastradh  * True if this is a system thread with its own private FPU state.
666764da9e9Sriastradh  */
667764da9e9Sriastradh static inline bool
lwp_system_fpu_p(struct lwp * l)668764da9e9Sriastradh lwp_system_fpu_p(struct lwp *l)
669764da9e9Sriastradh {
670764da9e9Sriastradh 
671764da9e9Sriastradh 	return (l->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) ==
672764da9e9Sriastradh 	    (LW_SYSTEM|LW_SYSTEM_FPU);
673764da9e9Sriastradh }
674764da9e9Sriastradh 
675764da9e9Sriastradh static const struct vfpreg zero_vfpreg;
676764da9e9Sriastradh 
677c41eed1fSriastradh void
fpu_kern_enter(void)678c41eed1fSriastradh fpu_kern_enter(void)
679c41eed1fSriastradh {
680c41eed1fSriastradh 	struct cpu_info *ci;
681c41eed1fSriastradh 	uint32_t fpexc;
682c41eed1fSriastradh 	int s;
683c41eed1fSriastradh 
684764da9e9Sriastradh 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
685764da9e9Sriastradh 		KASSERT(!cpu_softintr_p());
686764da9e9Sriastradh 		return;
687764da9e9Sriastradh 	}
688764da9e9Sriastradh 
689c41eed1fSriastradh 	/*
690a555d8eaSriastradh 	 * Block interrupts up to IPL_VM.  We must block preemption
691a555d8eaSriastradh 	 * since -- if this is a user thread -- there is nowhere to
692a555d8eaSriastradh 	 * save the kernel fpu state, and if we want this to be usable
693a555d8eaSriastradh 	 * in interrupts, we can't let interrupts interfere with the
694a555d8eaSriastradh 	 * fpu state in use since there's nowhere for them to save it.
695c41eed1fSriastradh 	 */
696a555d8eaSriastradh 	s = splvm();
697c41eed1fSriastradh 	ci = curcpu();
698*040f3e2bSriastradh #if 0
699*040f3e2bSriastradh 	/*
700*040f3e2bSriastradh 	 * Can't assert this because if the caller holds a spin lock at
701*040f3e2bSriastradh 	 * IPL_VM, and previously held and released a spin lock at
702*040f3e2bSriastradh 	 * higher IPL, the IPL remains raised above IPL_VM.
703*040f3e2bSriastradh 	 */
704b451bcfcSriastradh 	KASSERTMSG(ci->ci_cpl <= IPL_VM || cold, "cpl=%d", ci->ci_cpl);
705*040f3e2bSriastradh #endif
706c41eed1fSriastradh 	KASSERT(ci->ci_kfpu_spl == -1);
707c41eed1fSriastradh 	ci->ci_kfpu_spl = s;
708c41eed1fSriastradh 
70950e0ab0aSriastradh 	/* Save any fpu state on the current CPU.  */
71050e0ab0aSriastradh 	pcu_save_all_on_cpu();
711c41eed1fSriastradh 
712c41eed1fSriastradh 	/* Enable the fpu.  */
713c41eed1fSriastradh 	fpexc = armreg_fpexc_read();
714c41eed1fSriastradh 	fpexc |= VFP_FPEXC_EN;
715c41eed1fSriastradh 	fpexc &= ~VFP_FPEXC_EX;
716c41eed1fSriastradh 	armreg_fpexc_write(fpexc);
717c41eed1fSriastradh }
718c41eed1fSriastradh 
719c41eed1fSriastradh void
fpu_kern_leave(void)720c41eed1fSriastradh fpu_kern_leave(void)
721c41eed1fSriastradh {
722c41eed1fSriastradh 	struct cpu_info *ci = curcpu();
723c41eed1fSriastradh 	int s;
724c41eed1fSriastradh 	uint32_t fpexc;
725c41eed1fSriastradh 
726764da9e9Sriastradh 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
727764da9e9Sriastradh 		KASSERT(!cpu_softintr_p());
728764da9e9Sriastradh 		return;
729764da9e9Sriastradh 	}
730764da9e9Sriastradh 
731*040f3e2bSriastradh #if 0
732*040f3e2bSriastradh 	/*
733*040f3e2bSriastradh 	 * Can't assert this because if the caller holds a spin lock at
734*040f3e2bSriastradh 	 * IPL_VM, and previously held and released a spin lock at
735*040f3e2bSriastradh 	 * higher IPL, the IPL remains raised above IPL_VM.
736*040f3e2bSriastradh 	 */
737b451bcfcSriastradh 	KASSERT(ci->ci_cpl == IPL_VM || cold);
738*040f3e2bSriastradh #endif
739c41eed1fSriastradh 	KASSERT(ci->ci_kfpu_spl != -1);
740c41eed1fSriastradh 
741c41eed1fSriastradh 	/*
742c41eed1fSriastradh 	 * Zero the fpu registers; otherwise we might leak secrets
743c41eed1fSriastradh 	 * through Spectre-class attacks to userland, even if there are
744c41eed1fSriastradh 	 * no bugs in fpu state management.
745c41eed1fSriastradh 	 */
746c41eed1fSriastradh 	load_vfpregs(&zero_vfpreg);
747c41eed1fSriastradh 
748c41eed1fSriastradh 	/*
749c41eed1fSriastradh 	 * Disable the fpu so that the kernel can't accidentally use
750c41eed1fSriastradh 	 * it again.
751c41eed1fSriastradh 	 */
752c41eed1fSriastradh 	fpexc = armreg_fpexc_read();
753c41eed1fSriastradh 	fpexc &= ~VFP_FPEXC_EN;
754c41eed1fSriastradh 	armreg_fpexc_write(fpexc);
755c41eed1fSriastradh 
756c41eed1fSriastradh 	/* Restore interrupts.  */
757c41eed1fSriastradh 	s = ci->ci_kfpu_spl;
758c41eed1fSriastradh 	ci->ci_kfpu_spl = -1;
759c41eed1fSriastradh 	splx(s);
760c41eed1fSriastradh }
761c41eed1fSriastradh 
762764da9e9Sriastradh void
kthread_fpu_enter_md(void)763764da9e9Sriastradh kthread_fpu_enter_md(void)
764764da9e9Sriastradh {
765764da9e9Sriastradh 
766764da9e9Sriastradh 	pcu_load(&arm_vfp_ops);
767764da9e9Sriastradh }
768764da9e9Sriastradh 
769764da9e9Sriastradh void
kthread_fpu_exit_md(void)770764da9e9Sriastradh kthread_fpu_exit_md(void)
771764da9e9Sriastradh {
772764da9e9Sriastradh 
773764da9e9Sriastradh 	/* XXX Should vfp_state_release zero the registers itself?  */
774764da9e9Sriastradh 	load_vfpregs(&zero_vfpreg);
775764da9e9Sriastradh 	vfp_discardcontext(curlwp, 0);
776764da9e9Sriastradh }
777764da9e9Sriastradh 
778c58ada7bSmatt #endif /* FPU_VFP */
779