1 /* $NetBSD: pmap.h,v 1.156 2018/10/18 09:01:52 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1994,1995 Mark Brinicombe. 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by Mark Brinicombe 53 * 4. The name of the author may not be used to endorse or promote products 54 * derived from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 #ifndef _ARM32_PMAP_H_ 69 #define _ARM32_PMAP_H_ 70 71 #ifdef _KERNEL 72 73 #include <arm/cpuconf.h> 74 #include <arm/arm32/pte.h> 75 #ifndef _LOCORE 76 #if defined(_KERNEL_OPT) 77 #include "opt_arm32_pmap.h" 78 #include "opt_multiprocessor.h" 79 #endif 80 #include <arm/cpufunc.h> 81 #include <arm/locore.h> 82 #include <uvm/uvm_object.h> 83 #include <uvm/pmap/pmap_pvt.h> 84 #endif 85 86 #ifdef ARM_MMU_EXTENDED 87 #define PMAP_HWPAGEWALKER 1 88 #define PMAP_TLB_MAX 1 89 #if PMAP_TLB_MAX > 1 90 #define PMAP_TLB_NEED_SHOOTDOWN 1 91 #endif 92 #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p) 93 #define PMAP_TLB_NUM_PIDS 256 94 #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti))) 95 #if PMAP_TLB_MAX > 1 96 #define cpu_tlb_info(ci) ((ci)->ci_tlb_info) 97 #else 98 #define cpu_tlb_info(ci) (&pmap_tlb0_info) 99 #endif 100 #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1) 101 #include <uvm/pmap/tlb.h> 102 #include <uvm/pmap/pmap_tlb.h> 103 104 /* 105 * If we have an EXTENDED MMU and the address space is split evenly between 106 * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for 107 * user and kernel address spaces. 108 */ 109 #if (KERNEL_BASE & 0x80000000) == 0 110 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000 111 #endif 112 #endif /* ARM_MMU_EXTENDED */ 113 114 /* 115 * a pmap describes a processes' 4GB virtual address space. this 116 * virtual address space can be broken up into 4096 1MB regions which 117 * are described by L1 PTEs in the L1 table. 118 * 119 * There is a line drawn at KERNEL_BASE. Everything below that line 120 * changes when the VM context is switched. Everything above that line 121 * is the same no matter which VM context is running. This is achieved 122 * by making the L1 PTEs for those slots above KERNEL_BASE reference 123 * kernel L2 tables. 124 * 125 * The basic layout of the virtual address space thus looks like this: 126 * 127 * 0xffffffff 128 * . 129 * . 130 * . 131 * KERNEL_BASE 132 * -------------------- 133 * . 134 * . 135 * . 136 * 0x00000000 137 */ 138 139 /* 140 * The number of L2 descriptor tables which can be tracked by an l2_dtable. 141 * A bucket size of 16 provides for 16MB of contiguous virtual address 142 * space per l2_dtable. Most processes will, therefore, require only two or 143 * three of these to map their whole working set. 144 */ 145 #define L2_BUCKET_XLOG2 (L1_S_SHIFT) 146 #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2) 147 #define L2_BUCKET_LOG2 4 148 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) 149 150 /* 151 * Given the above "L2-descriptors-per-l2_dtable" constant, the number 152 * of l2_dtable structures required to track all possible page descriptors 153 * mappable by an L1 translation table is given by the following constants: 154 */ 155 #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2)) 156 #define L2_SIZE (1 << L2_LOG2) 157 158 /* 159 * tell MI code that the cache is virtually-indexed. 160 * ARMv6 is physically-tagged but all others are virtually-tagged. 161 */ 162 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 163 #define PMAP_CACHE_VIPT 164 #else 165 #define PMAP_CACHE_VIVT 166 #endif 167 168 #ifndef _LOCORE 169 170 #ifndef ARM_MMU_EXTENDED 171 struct l1_ttable; 172 struct l2_dtable; 173 174 /* 175 * Track cache/tlb occupancy using the following structure 176 */ 177 union pmap_cache_state { 178 struct { 179 union { 180 uint8_t csu_cache_b[2]; 181 uint16_t csu_cache; 182 } cs_cache_u; 183 184 union { 185 uint8_t csu_tlb_b[2]; 186 uint16_t csu_tlb; 187 } cs_tlb_u; 188 } cs_s; 189 uint32_t cs_all; 190 }; 191 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0] 192 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1] 193 #define cs_cache cs_s.cs_cache_u.csu_cache 194 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0] 195 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1] 196 #define cs_tlb cs_s.cs_tlb_u.csu_tlb 197 198 /* 199 * Assigned to cs_all to force cacheops to work for a particular pmap 200 */ 201 #define PMAP_CACHE_STATE_ALL 0xffffffffu 202 #endif /* !ARM_MMU_EXTENDED */ 203 204 /* 205 * This structure is used by machine-dependent code to describe 206 * static mappings of devices, created at bootstrap time. 207 */ 208 struct pmap_devmap { 209 vaddr_t pd_va; /* virtual address */ 210 paddr_t pd_pa; /* physical address */ 211 psize_t pd_size; /* size of region */ 212 vm_prot_t pd_prot; /* protection code */ 213 int pd_cache; /* cache attributes */ 214 }; 215 216 #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET) 217 #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE) 218 #define DEVMAP_ENTRY(va, pa, sz) \ 219 { \ 220 .pd_va = DEVMAP_ALIGN(va), \ 221 .pd_pa = DEVMAP_ALIGN(pa), \ 222 .pd_size = DEVMAP_SIZE(sz), \ 223 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, \ 224 .pd_cache = PTE_NOCACHE \ 225 } 226 #define DEVMAP_ENTRY_END { 0 } 227 228 /* 229 * The pmap structure itself 230 */ 231 struct pmap { 232 struct uvm_object pm_obj; 233 kmutex_t pm_obj_lock; 234 #define pm_lock pm_obj.vmobjlock 235 #ifndef ARM_HAS_VBAR 236 pd_entry_t *pm_pl1vec; 237 pd_entry_t pm_l1vec; 238 #endif 239 struct l2_dtable *pm_l2[L2_SIZE]; 240 struct pmap_statistics pm_stats; 241 LIST_ENTRY(pmap) pm_list; 242 #ifdef ARM_MMU_EXTENDED 243 pd_entry_t *pm_l1; 244 paddr_t pm_l1_pa; 245 bool pm_remove_all; 246 #ifdef MULTIPROCESSOR 247 kcpuset_t *pm_onproc; 248 kcpuset_t *pm_active; 249 #if PMAP_TLB_MAX > 1 250 u_int pm_shootdown_pending; 251 #endif 252 #endif 253 struct pmap_asid_info pm_pai[PMAP_TLB_MAX]; 254 #else 255 struct l1_ttable *pm_l1; 256 union pmap_cache_state pm_cstate; 257 uint8_t pm_domain; 258 bool pm_activated; 259 bool pm_remove_all; 260 #endif 261 }; 262 263 struct pmap_kernel { 264 struct pmap kernel_pmap; 265 }; 266 267 /* 268 * Physical / virtual address structure. In a number of places (particularly 269 * during bootstrapping) we need to keep track of the physical and virtual 270 * addresses of various pages 271 */ 272 typedef struct pv_addr { 273 SLIST_ENTRY(pv_addr) pv_list; 274 paddr_t pv_pa; 275 vaddr_t pv_va; 276 vsize_t pv_size; 277 uint8_t pv_cache; 278 uint8_t pv_prot; 279 } pv_addr_t; 280 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t; 281 282 extern pv_addrqh_t pmap_freeq; 283 extern pv_addr_t kernelstack; 284 extern pv_addr_t abtstack; 285 extern pv_addr_t fiqstack; 286 extern pv_addr_t irqstack; 287 extern pv_addr_t undstack; 288 extern pv_addr_t idlestack; 289 extern pv_addr_t systempage; 290 extern pv_addr_t kernel_l1pt; 291 292 #ifdef ARM_MMU_EXTENDED 293 extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */ 294 #endif 295 296 /* 297 * Determine various modes for PTEs (user vs. kernel, cacheable 298 * vs. non-cacheable). 299 */ 300 #define PTE_KERNEL 0 301 #define PTE_USER 1 302 #define PTE_NOCACHE 0 303 #define PTE_CACHE 1 304 #define PTE_PAGETABLE 2 305 306 /* 307 * Flags that indicate attributes of pages or mappings of pages. 308 * 309 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each 310 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual 311 * pv_entry's for each page. They live in the same "namespace" so 312 * that we can clear multiple attributes at a time. 313 * 314 * Note the "non-cacheable" flag generally means the page has 315 * multiple mappings in a given address space. 316 */ 317 #define PVF_MOD 0x01 /* page is modified */ 318 #define PVF_REF 0x02 /* page is referenced */ 319 #define PVF_WIRED 0x04 /* mapping is wired */ 320 #define PVF_WRITE 0x08 /* mapping is writable */ 321 #define PVF_EXEC 0x10 /* mapping is executable */ 322 #ifdef PMAP_CACHE_VIVT 323 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ 324 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ 325 #define PVF_NC (PVF_UNC|PVF_KNC) 326 #endif 327 #ifdef PMAP_CACHE_VIPT 328 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */ 329 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */ 330 #endif 331 #define PVF_COLORED 0x80 /* page has or had a color */ 332 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */ 333 #define PVF_KMPAGE 0x0200 /* page is used for kmem */ 334 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */ 335 #define PVF_KMOD 0x0800 /* unmanaged page is modified */ 336 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE) 337 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE) 338 339 /* 340 * Commonly referenced structures 341 */ 342 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */ 343 extern int arm_poolpage_vmfreelist; 344 345 /* 346 * Macros that we need to export 347 */ 348 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) 349 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) 350 351 #define pmap_is_modified(pg) \ 352 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0) 353 #define pmap_is_referenced(pg) \ 354 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0) 355 #define pmap_is_page_colored_p(md) \ 356 (((md)->pvh_attrs & PVF_COLORED) != 0) 357 358 #define pmap_copy(dp, sp, da, l, sa) /* nothing */ 359 360 #define pmap_phys_address(ppn) (arm_ptob((ppn))) 361 u_int arm32_mmap_flags(paddr_t); 362 #define ARM32_MMAP_WRITECOMBINE 0x40000000 363 #define ARM32_MMAP_CACHEABLE 0x20000000 364 #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE 365 #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE 366 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn) 367 368 #define PMAP_PTE 0x10000000 /* kenter_pa */ 369 370 /* 371 * Functions that we need to export 372 */ 373 void pmap_procwr(struct proc *, vaddr_t, int); 374 void pmap_remove_all(pmap_t); 375 bool pmap_extract(pmap_t, vaddr_t, paddr_t *); 376 377 #define PMAP_NEED_PROCWR 378 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ 379 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */ 380 381 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 382 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td)) 383 void pmap_prefer(vaddr_t, vaddr_t *, int); 384 #endif 385 386 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t); 387 388 /* Functions we use internally. */ 389 #ifdef PMAP_STEAL_MEMORY 390 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *); 391 void pmap_boot_pageadd(pv_addr_t *); 392 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *); 393 #endif 394 void pmap_bootstrap(vaddr_t, vaddr_t); 395 396 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int); 397 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int); 398 int pmap_prefetchabt_fixup(void *); 399 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **); 400 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **); 401 bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *); 402 403 void pmap_debug(int); 404 void pmap_postinit(void); 405 406 void vector_page_setprot(int); 407 408 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t); 409 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t); 410 411 /* Bootstrapping routines. */ 412 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int); 413 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int); 414 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int); 415 void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t); 416 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *); 417 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *); 418 void pmap_devmap_register(const struct pmap_devmap *); 419 420 /* 421 * Special page zero routine for use by the idle loop (no cache cleans). 422 */ 423 bool pmap_pageidlezero(paddr_t); 424 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) 425 426 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS 427 /* 428 * For the pmap, this is a more useful way to map a direct mapped page. 429 * It returns either the direct-mapped VA or the VA supplied if it can't 430 * be direct mapped. 431 */ 432 vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t); 433 #endif 434 435 /* 436 * used by dumpsys to record the PA of the L1 table 437 */ 438 uint32_t pmap_kernel_L1_addr(void); 439 /* 440 * The current top of kernel VM 441 */ 442 extern vaddr_t pmap_curmaxkvaddr; 443 444 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 445 /* 446 * Ending VA of direct mapped memory (usually KERNEL_VM_BASE). 447 */ 448 extern vaddr_t pmap_directlimit; 449 #endif 450 451 /* 452 * Useful macros and constants 453 */ 454 455 /* Virtual address to page table entry */ 456 static inline pt_entry_t * 457 vtopte(vaddr_t va) 458 { 459 pd_entry_t *pdep; 460 pt_entry_t *ptep; 461 462 KASSERT(trunc_page(va) == va); 463 464 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false) 465 return (NULL); 466 return (ptep); 467 } 468 469 /* 470 * Virtual address to physical address 471 */ 472 static inline paddr_t 473 vtophys(vaddr_t va) 474 { 475 paddr_t pa; 476 477 if (pmap_extract(pmap_kernel(), va, &pa) == false) 478 return (0); /* XXXSCW: Panic? */ 479 480 return (pa); 481 } 482 483 /* 484 * The new pmap ensures that page-tables are always mapping Write-Thru. 485 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs 486 * on every change. 487 * 488 * Unfortunately, not all CPUs have a write-through cache mode. So we 489 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, 490 * and if there is the chance for PTE syncs to be needed, we define 491 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) 492 * the code. 493 */ 494 extern int pmap_needs_pte_sync; 495 #if defined(_KERNEL_OPT) 496 /* 497 * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a 498 * single MMU type is selected. 499 * 500 * StrongARM SA-1 caches do not have a write-through mode. So, on these, 501 * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs. 502 * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs. 503 * 504 * Use run time evaluation for all other cases. 505 * 506 */ 507 #if (ARM_NMMUS == 1) 508 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) 509 #define PMAP_INCLUDE_PTE_SYNC 510 #define PMAP_NEEDS_PTE_SYNC 1 511 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0) 512 #define PMAP_NEEDS_PTE_SYNC 0 513 #endif 514 #endif 515 #endif /* _KERNEL_OPT */ 516 517 /* 518 * Provide a fallback in case we were not able to determine it at 519 * compile-time. 520 */ 521 #ifndef PMAP_NEEDS_PTE_SYNC 522 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync 523 #define PMAP_INCLUDE_PTE_SYNC 524 #endif 525 526 static inline void 527 pmap_ptesync(pt_entry_t *ptep, size_t cnt) 528 { 529 if (PMAP_NEEDS_PTE_SYNC) { 530 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t)); 531 #ifdef SHEEVA_L2_CACHE 532 cpu_sdcache_wb_range((vaddr_t)ptep, -1, 533 cnt * sizeof(pt_entry_t)); 534 #endif 535 } 536 arm_dsb(); 537 } 538 539 #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1) 540 #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt)) 541 #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE) 542 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt)) 543 544 #define l1pte_valid_p(pde) ((pde) != 0) 545 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) 546 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \ 547 && ((pde) & L1_S_V6_SUPER) != 0) 548 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) 549 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) 550 #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK) 551 #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT) 552 #define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \ 553 & ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1)) 554 555 static inline void 556 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde) 557 { 558 *pdep = pde; 559 } 560 561 static inline void 562 l1pte_set(pt_entry_t *pdep, pt_entry_t pde) 563 { 564 *pdep = pde; 565 if (l1pte_page_p(pde)) { 566 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep); 567 for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) { 568 pde += L2_T_SIZE; 569 pdep[k] = pde; 570 } 571 } else if (l1pte_supersection_p(pde)) { 572 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep); 573 for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) { 574 pdep[k] = pde; 575 } 576 } 577 } 578 579 #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT)) 580 #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV) 581 #define l2pte_pa(pte) ((pte) & L2_S_FRAME) 582 #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L) 583 #define l2pte_minidata_p(pte) (((pte) & \ 584 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\ 585 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X))) 586 587 static inline void 588 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte) 589 { 590 if (l1pte_lpage_p(pte)) { 591 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 592 for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) { 593 *ptep++ = pte; 594 } 595 } else { 596 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 597 for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) { 598 KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte); 599 *ptep++ = pte; 600 pte += L2_S_SIZE; 601 if (opte) 602 opte += L2_S_SIZE; 603 } 604 } 605 } 606 607 static inline void 608 l2pte_reset(pt_entry_t *ptep) 609 { 610 KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 611 *ptep = 0; 612 for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) { 613 ptep[k] = 0; 614 } 615 } 616 617 /* L1 and L2 page table macros */ 618 #define pmap_pde_v(pde) l1pte_valid(*(pde)) 619 #define pmap_pde_section(pde) l1pte_section_p(*(pde)) 620 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde)) 621 #define pmap_pde_page(pde) l1pte_page_p(*(pde)) 622 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) 623 624 #define pmap_pte_v(pte) l2pte_valid_p(*(pte)) 625 #define pmap_pte_pa(pte) l2pte_pa(*(pte)) 626 627 /* Size of the kernel part of the L1 page table */ 628 #define KERNEL_PD_SIZE \ 629 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t)) 630 631 void bzero_page(vaddr_t); 632 void bcopy_page(vaddr_t, vaddr_t); 633 634 #ifdef FPU_VFP 635 void bzero_page_vfp(vaddr_t); 636 void bcopy_page_vfp(vaddr_t, vaddr_t); 637 #endif 638 639 /************************* ARM MMU configuration *****************************/ 640 641 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0 642 void pmap_copy_page_generic(paddr_t, paddr_t); 643 void pmap_zero_page_generic(paddr_t); 644 645 void pmap_pte_init_generic(void); 646 #if defined(CPU_ARM8) 647 void pmap_pte_init_arm8(void); 648 #endif 649 #if defined(CPU_ARM9) 650 void pmap_pte_init_arm9(void); 651 #endif /* CPU_ARM9 */ 652 #if defined(CPU_ARM10) 653 void pmap_pte_init_arm10(void); 654 #endif /* CPU_ARM10 */ 655 #if defined(CPU_ARM11) /* ARM_MMU_V6 */ 656 void pmap_pte_init_arm11(void); 657 #endif /* CPU_ARM11 */ 658 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */ 659 void pmap_pte_init_arm11mpcore(void); 660 #endif 661 #if ARM_MMU_V7 == 1 662 void pmap_pte_init_armv7(void); 663 #endif /* ARM_MMU_V7 */ 664 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ 665 666 #if ARM_MMU_SA1 == 1 667 void pmap_pte_init_sa1(void); 668 #endif /* ARM_MMU_SA1 == 1 */ 669 670 #if ARM_MMU_XSCALE == 1 671 void pmap_copy_page_xscale(paddr_t, paddr_t); 672 void pmap_zero_page_xscale(paddr_t); 673 674 void pmap_pte_init_xscale(void); 675 676 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t); 677 678 #define PMAP_UAREA(va) pmap_uarea(va) 679 void pmap_uarea(vaddr_t); 680 #endif /* ARM_MMU_XSCALE == 1 */ 681 682 extern pt_entry_t pte_l1_s_cache_mode; 683 extern pt_entry_t pte_l1_s_cache_mask; 684 685 extern pt_entry_t pte_l2_l_cache_mode; 686 extern pt_entry_t pte_l2_l_cache_mask; 687 688 extern pt_entry_t pte_l2_s_cache_mode; 689 extern pt_entry_t pte_l2_s_cache_mask; 690 691 extern pt_entry_t pte_l1_s_cache_mode_pt; 692 extern pt_entry_t pte_l2_l_cache_mode_pt; 693 extern pt_entry_t pte_l2_s_cache_mode_pt; 694 695 extern pt_entry_t pte_l1_s_wc_mode; 696 extern pt_entry_t pte_l2_l_wc_mode; 697 extern pt_entry_t pte_l2_s_wc_mode; 698 699 extern pt_entry_t pte_l1_s_prot_u; 700 extern pt_entry_t pte_l1_s_prot_w; 701 extern pt_entry_t pte_l1_s_prot_ro; 702 extern pt_entry_t pte_l1_s_prot_mask; 703 704 extern pt_entry_t pte_l2_s_prot_u; 705 extern pt_entry_t pte_l2_s_prot_w; 706 extern pt_entry_t pte_l2_s_prot_ro; 707 extern pt_entry_t pte_l2_s_prot_mask; 708 709 extern pt_entry_t pte_l2_l_prot_u; 710 extern pt_entry_t pte_l2_l_prot_w; 711 extern pt_entry_t pte_l2_l_prot_ro; 712 extern pt_entry_t pte_l2_l_prot_mask; 713 714 extern pt_entry_t pte_l1_ss_proto; 715 extern pt_entry_t pte_l1_s_proto; 716 extern pt_entry_t pte_l1_c_proto; 717 extern pt_entry_t pte_l2_s_proto; 718 719 extern void (*pmap_copy_page_func)(paddr_t, paddr_t); 720 extern void (*pmap_zero_page_func)(paddr_t); 721 722 #endif /* !_LOCORE */ 723 724 /*****************************************************************************/ 725 726 #define KERNEL_PID 0 /* The kernel uses ASID 0 */ 727 728 /* 729 * Definitions for MMU domains 730 */ 731 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */ 732 #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */ 733 734 #ifdef ARM_MMU_EXTENDED 735 #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */ 736 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2))) 737 #else 738 #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))) 739 #endif 740 741 /* 742 * These macros define the various bit masks in the PTE. 743 * 744 * We use these macros since we use different bits on different processor 745 * models. 746 */ 747 #define L1_S_PROT_U_generic (L1_S_AP(AP_U)) 748 #define L1_S_PROT_W_generic (L1_S_AP(AP_W)) 749 #define L1_S_PROT_RO_generic (0) 750 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 751 752 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U)) 753 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W)) 754 #define L1_S_PROT_RO_xscale (0) 755 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 756 757 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) 758 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W)) 759 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) 760 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 761 762 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) 763 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W)) 764 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) 765 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 766 767 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) 768 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X)) 769 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)) 770 #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) 771 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) 772 773 #define L2_L_PROT_U_generic (L2_AP(AP_U)) 774 #define L2_L_PROT_W_generic (L2_AP(AP_W)) 775 #define L2_L_PROT_RO_generic (0) 776 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 777 778 #define L2_L_PROT_U_xscale (L2_AP(AP_U)) 779 #define L2_L_PROT_W_xscale (L2_AP(AP_W)) 780 #define L2_L_PROT_RO_xscale (0) 781 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 782 783 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) 784 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W)) 785 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) 786 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 787 788 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 789 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W)) 790 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 791 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 792 793 #define L2_L_CACHE_MASK_generic (L2_B|L2_C) 794 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X)) 795 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)) 796 #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) 797 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) 798 799 #define L2_S_PROT_U_generic (L2_AP(AP_U)) 800 #define L2_S_PROT_W_generic (L2_AP(AP_W)) 801 #define L2_S_PROT_RO_generic (0) 802 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 803 804 #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) 805 #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) 806 #define L2_S_PROT_RO_xscale (0) 807 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 808 809 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) 810 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W)) 811 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) 812 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 813 814 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 815 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W)) 816 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 817 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 818 819 #define L2_S_CACHE_MASK_generic (L2_B|L2_C) 820 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X)) 821 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)) 822 #ifdef ARMV6_EXTENDED_SMALL_PAGE 823 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6 824 #else 825 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic 826 #endif 827 #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) 828 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) 829 830 831 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) 832 #define L1_S_PROTO_xscale (L1_TYPE_S) 833 #define L1_S_PROTO_armv6 (L1_TYPE_S) 834 #define L1_S_PROTO_armv7 (L1_TYPE_S) 835 836 #define L1_SS_PROTO_generic 0 837 #define L1_SS_PROTO_xscale 0 838 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS) 839 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS) 840 841 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) 842 #define L1_C_PROTO_xscale (L1_TYPE_C) 843 #define L1_C_PROTO_armv6 (L1_TYPE_C) 844 #define L1_C_PROTO_armv7 (L1_TYPE_C) 845 846 #define L2_L_PROTO (L2_TYPE_L) 847 848 #define L2_S_PROTO_generic (L2_TYPE_S) 849 #define L2_S_PROTO_xscale (L2_TYPE_XS) 850 #ifdef ARMV6_EXTENDED_SMALL_PAGE 851 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */ 852 #else 853 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */ 854 #endif 855 #ifdef ARM_MMU_EXTENDED 856 #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN) 857 #else 858 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */ 859 #endif 860 #ifdef ARM_MMU_EXTENDED 861 #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN) 862 #else 863 #define L2_S_PROTO_armv7 (L2_TYPE_S) 864 #endif 865 866 /* 867 * User-visible names for the ones that vary with MMU class. 868 */ 869 870 #if ARM_NMMUS > 1 871 /* More than one MMU class configured; use variables. */ 872 #define L1_S_PROT_U pte_l1_s_prot_u 873 #define L1_S_PROT_W pte_l1_s_prot_w 874 #define L1_S_PROT_RO pte_l1_s_prot_ro 875 #define L1_S_PROT_MASK pte_l1_s_prot_mask 876 877 #define L2_S_PROT_U pte_l2_s_prot_u 878 #define L2_S_PROT_W pte_l2_s_prot_w 879 #define L2_S_PROT_RO pte_l2_s_prot_ro 880 #define L2_S_PROT_MASK pte_l2_s_prot_mask 881 882 #define L2_L_PROT_U pte_l2_l_prot_u 883 #define L2_L_PROT_W pte_l2_l_prot_w 884 #define L2_L_PROT_RO pte_l2_l_prot_ro 885 #define L2_L_PROT_MASK pte_l2_l_prot_mask 886 887 #define L1_S_CACHE_MASK pte_l1_s_cache_mask 888 #define L2_L_CACHE_MASK pte_l2_l_cache_mask 889 #define L2_S_CACHE_MASK pte_l2_s_cache_mask 890 891 #define L1_SS_PROTO pte_l1_ss_proto 892 #define L1_S_PROTO pte_l1_s_proto 893 #define L1_C_PROTO pte_l1_c_proto 894 #define L2_S_PROTO pte_l2_s_proto 895 896 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d)) 897 #define pmap_zero_page(d) (*pmap_zero_page_func)((d)) 898 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 899 #define L1_S_PROT_U L1_S_PROT_U_generic 900 #define L1_S_PROT_W L1_S_PROT_W_generic 901 #define L1_S_PROT_RO L1_S_PROT_RO_generic 902 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 903 904 #define L2_S_PROT_U L2_S_PROT_U_generic 905 #define L2_S_PROT_W L2_S_PROT_W_generic 906 #define L2_S_PROT_RO L2_S_PROT_RO_generic 907 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 908 909 #define L2_L_PROT_U L2_L_PROT_U_generic 910 #define L2_L_PROT_W L2_L_PROT_W_generic 911 #define L2_L_PROT_RO L2_L_PROT_RO_generic 912 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 913 914 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 915 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 916 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 917 918 #define L1_SS_PROTO L1_SS_PROTO_generic 919 #define L1_S_PROTO L1_S_PROTO_generic 920 #define L1_C_PROTO L1_C_PROTO_generic 921 #define L2_S_PROTO L2_S_PROTO_generic 922 923 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 924 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 925 #elif ARM_MMU_V6N != 0 926 #define L1_S_PROT_U L1_S_PROT_U_armv6 927 #define L1_S_PROT_W L1_S_PROT_W_armv6 928 #define L1_S_PROT_RO L1_S_PROT_RO_armv6 929 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6 930 931 #define L2_S_PROT_U L2_S_PROT_U_armv6n 932 #define L2_S_PROT_W L2_S_PROT_W_armv6n 933 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n 934 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n 935 936 #define L2_L_PROT_U L2_L_PROT_U_armv6n 937 #define L2_L_PROT_W L2_L_PROT_W_armv6n 938 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n 939 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n 940 941 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n 942 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n 943 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n 944 945 /* 946 * These prototypes make writeable mappings, while the other MMU types 947 * make read-only mappings. 948 */ 949 #define L1_SS_PROTO L1_SS_PROTO_armv6 950 #define L1_S_PROTO L1_S_PROTO_armv6 951 #define L1_C_PROTO L1_C_PROTO_armv6 952 #define L2_S_PROTO L2_S_PROTO_armv6n 953 954 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 955 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 956 #elif ARM_MMU_V6C != 0 957 #define L1_S_PROT_U L1_S_PROT_U_generic 958 #define L1_S_PROT_W L1_S_PROT_W_generic 959 #define L1_S_PROT_RO L1_S_PROT_RO_generic 960 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 961 962 #define L2_S_PROT_U L2_S_PROT_U_generic 963 #define L2_S_PROT_W L2_S_PROT_W_generic 964 #define L2_S_PROT_RO L2_S_PROT_RO_generic 965 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 966 967 #define L2_L_PROT_U L2_L_PROT_U_generic 968 #define L2_L_PROT_W L2_L_PROT_W_generic 969 #define L2_L_PROT_RO L2_L_PROT_RO_generic 970 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 971 972 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 973 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 974 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 975 976 #define L1_SS_PROTO L1_SS_PROTO_armv6 977 #define L1_S_PROTO L1_S_PROTO_generic 978 #define L1_C_PROTO L1_C_PROTO_generic 979 #define L2_S_PROTO L2_S_PROTO_generic 980 981 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 982 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 983 #elif ARM_MMU_XSCALE == 1 984 #define L1_S_PROT_U L1_S_PROT_U_generic 985 #define L1_S_PROT_W L1_S_PROT_W_generic 986 #define L1_S_PROT_RO L1_S_PROT_RO_generic 987 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 988 989 #define L2_S_PROT_U L2_S_PROT_U_xscale 990 #define L2_S_PROT_W L2_S_PROT_W_xscale 991 #define L2_S_PROT_RO L2_S_PROT_RO_xscale 992 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale 993 994 #define L2_L_PROT_U L2_L_PROT_U_generic 995 #define L2_L_PROT_W L2_L_PROT_W_generic 996 #define L2_L_PROT_RO L2_L_PROT_RO_generic 997 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 998 999 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale 1000 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale 1001 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale 1002 1003 #define L1_SS_PROTO L1_SS_PROTO_xscale 1004 #define L1_S_PROTO L1_S_PROTO_xscale 1005 #define L1_C_PROTO L1_C_PROTO_xscale 1006 #define L2_S_PROTO L2_S_PROTO_xscale 1007 1008 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d)) 1009 #define pmap_zero_page(d) pmap_zero_page_xscale((d)) 1010 #elif ARM_MMU_V7 == 1 1011 #define L1_S_PROT_U L1_S_PROT_U_armv7 1012 #define L1_S_PROT_W L1_S_PROT_W_armv7 1013 #define L1_S_PROT_RO L1_S_PROT_RO_armv7 1014 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7 1015 1016 #define L2_S_PROT_U L2_S_PROT_U_armv7 1017 #define L2_S_PROT_W L2_S_PROT_W_armv7 1018 #define L2_S_PROT_RO L2_S_PROT_RO_armv7 1019 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7 1020 1021 #define L2_L_PROT_U L2_L_PROT_U_armv7 1022 #define L2_L_PROT_W L2_L_PROT_W_armv7 1023 #define L2_L_PROT_RO L2_L_PROT_RO_armv7 1024 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7 1025 1026 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7 1027 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7 1028 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7 1029 1030 /* 1031 * These prototypes make writeable mappings, while the other MMU types 1032 * make read-only mappings. 1033 */ 1034 #define L1_SS_PROTO L1_SS_PROTO_armv7 1035 #define L1_S_PROTO L1_S_PROTO_armv7 1036 #define L1_C_PROTO L1_C_PROTO_armv7 1037 #define L2_S_PROTO L2_S_PROTO_armv7 1038 1039 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 1040 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 1041 #endif /* ARM_NMMUS > 1 */ 1042 1043 /* 1044 * Macros to set and query the write permission on page descriptors. 1045 */ 1046 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W) 1047 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO) 1048 1049 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W) 1050 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO) 1051 1052 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \ 1053 (L2_S_PROT_RO == 0 || \ 1054 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO)) 1055 1056 /* 1057 * These macros return various bits based on kernel/user and protection. 1058 * Note that the compiler will usually fold these at compile time. 1059 */ 1060 1061 #define L1_S_PROT(ku, pr) ( \ 1062 (((ku) == PTE_USER) ? \ 1063 L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \ 1064 : \ 1065 (((L1_S_PROT_RO && \ 1066 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ 1067 L1_S_PROT_RO : L1_S_PROT_W))) \ 1068 ) 1069 1070 #define L2_L_PROT(ku, pr) ( \ 1071 (((ku) == PTE_USER) ? \ 1072 L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \ 1073 : \ 1074 (((L2_L_PROT_RO && \ 1075 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ 1076 L2_L_PROT_RO : L2_L_PROT_W))) \ 1077 ) 1078 1079 #define L2_S_PROT(ku, pr) ( \ 1080 (((ku) == PTE_USER) ? \ 1081 L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \ 1082 : \ 1083 (((L2_S_PROT_RO && \ 1084 ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ 1085 L2_S_PROT_RO : L2_S_PROT_W))) \ 1086 ) 1087 1088 /* 1089 * Macros to test if a mapping is mappable with an L1 SuperSection, 1090 * L1 Section, or an L2 Large Page mapping. 1091 */ 1092 #define L1_SS_MAPPABLE_P(va, pa, size) \ 1093 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE) 1094 1095 #define L1_S_MAPPABLE_P(va, pa, size) \ 1096 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) 1097 1098 #define L2_L_MAPPABLE_P(va, pa, size) \ 1099 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) 1100 1101 #define PMAP_MAPSIZE1 L2_L_SIZE 1102 #define PMAP_MAPSIZE2 L1_S_SIZE 1103 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 1104 #define PMAP_MAPSIZE3 L1_SS_SIZE 1105 #endif 1106 1107 #ifndef _LOCORE 1108 /* 1109 * Hooks for the pool allocator. 1110 */ 1111 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) 1112 extern paddr_t physical_start, physical_end; 1113 #ifdef PMAP_NEED_ALLOC_POOLPAGE 1114 struct vm_page *arm_pmap_alloc_poolpage(int); 1115 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage 1116 #endif 1117 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 1118 vaddr_t pmap_map_poolpage(paddr_t); 1119 paddr_t pmap_unmap_poolpage(vaddr_t); 1120 #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa) 1121 #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va) 1122 #endif 1123 1124 #define __HAVE_PMAP_PV_TRACK 1 1125 1126 void pmap_pv_protect(paddr_t, vm_prot_t); 1127 1128 struct pmap_page { 1129 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */ 1130 int pvh_attrs; /* page attributes */ 1131 u_int uro_mappings; 1132 u_int urw_mappings; 1133 union { 1134 u_short s_mappings[2]; /* Assume kernel count <= 65535 */ 1135 u_int i_mappings; 1136 } k_u; 1137 }; 1138 1139 /* 1140 * pmap-specific data store in the vm_page structure. 1141 */ 1142 #define __HAVE_VM_PAGE_MD 1143 struct vm_page_md { 1144 struct pmap_page pp; 1145 #define pvh_list pp.pvh_list 1146 #define pvh_attrs pp.pvh_attrs 1147 #define uro_mappings pp.uro_mappings 1148 #define urw_mappings pp.urw_mappings 1149 #define kro_mappings pp.k_u.s_mappings[0] 1150 #define krw_mappings pp.k_u.s_mappings[1] 1151 #define k_mappings pp.k_u.i_mappings 1152 }; 1153 1154 #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp) 1155 1156 /* 1157 * Set the default color of each page. 1158 */ 1159 #if ARM_MMU_V6 > 0 1160 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 1161 (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask 1162 #else 1163 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 1164 (pg)->mdpage.pvh_attrs = 0 1165 #endif 1166 1167 #define VM_MDPAGE_INIT(pg) \ 1168 do { \ 1169 SLIST_INIT(&(pg)->mdpage.pvh_list); \ 1170 VM_MDPAGE_PVH_ATTRS_INIT(pg); \ 1171 (pg)->mdpage.uro_mappings = 0; \ 1172 (pg)->mdpage.urw_mappings = 0; \ 1173 (pg)->mdpage.k_mappings = 0; \ 1174 } while (/*CONSTCOND*/0) 1175 1176 #endif /* !_LOCORE */ 1177 1178 #endif /* _KERNEL */ 1179 1180 #endif /* _ARM32_PMAP_H_ */ 1181