xref: /netbsd-src/sys/arch/arm/imx/if_enet.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: if_enet.c,v 1.15 2018/09/03 16:29:23 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 Ryo Shimizu <ryo@nerv.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * i.MX6,7 10/100/1000-Mbps ethernet MAC (ENET)
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.15 2018/09/03 16:29:23 riastradh Exp $");
35 
36 #include "vlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/mbuf.h>
41 #include <sys/device.h>
42 #include <sys/sockio.h>
43 #include <sys/kernel.h>
44 #include <sys/rndsource.h>
45 
46 #include <lib/libkern/libkern.h>
47 
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_ether.h>
52 #include <net/bpf.h>
53 #include <net/if_vlanvar.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <arm/imx/if_enetreg.h>
63 #include <arm/imx/if_enetvar.h>
64 
65 #undef DEBUG_ENET
66 #undef ENET_EVENT_COUNTER
67 
68 #define ENET_TICK	hz
69 
70 #ifdef DEBUG_ENET
71 int enet_debug = 0;
72 # define DEVICE_DPRINTF(args...)	\
73 	do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
74 #else
75 # define DEVICE_DPRINTF(args...)
76 #endif
77 
78 
79 #define RXDESC_MAXBUFSIZE	0x07f0
80 				/* ENET does not work greather than 0x0800... */
81 
82 #undef ENET_SUPPORT_JUMBO	/* JUMBO FRAME SUPPORT is unstable */
83 #ifdef ENET_SUPPORT_JUMBO
84 # define ENET_MAX_PKT_LEN	4034	/* MAX FIFO LEN */
85 #else
86 # define ENET_MAX_PKT_LEN	1522
87 #endif
88 #define ENET_DEFAULT_PKT_LEN	1522	/* including VLAN tag */
89 #define MTU2FRAMESIZE(n)	\
90 	((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
91 
92 
93 #define ENET_MAX_PKT_NSEGS	64
94 
95 #define ENET_TX_NEXTIDX(idx)	\
96 	(((idx) >= (ENET_TX_RING_CNT - 1)) ? 0 : ((idx) + 1))
97 #define ENET_RX_NEXTIDX(idx)	\
98 	(((idx) >= (ENET_RX_RING_CNT - 1)) ? 0 : ((idx) + 1))
99 
100 #define TXDESC_WRITEOUT(idx)					\
101 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
102 	    sizeof(struct enet_txdesc) * (idx),			\
103 	    sizeof(struct enet_txdesc),				\
104 	    BUS_DMASYNC_PREWRITE)
105 
106 #define TXDESC_READIN(idx)					\
107 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
108 	    sizeof(struct enet_txdesc) * (idx),			\
109 	    sizeof(struct enet_txdesc),				\
110 	    BUS_DMASYNC_PREREAD)
111 
112 #define RXDESC_WRITEOUT(idx)					\
113 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
114 	    sizeof(struct enet_rxdesc) * (idx),			\
115 	    sizeof(struct enet_rxdesc),				\
116 	    BUS_DMASYNC_PREWRITE)
117 
118 #define RXDESC_READIN(idx)					\
119 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
120 	    sizeof(struct enet_rxdesc) * (idx),			\
121 	    sizeof(struct enet_rxdesc),				\
122 	    BUS_DMASYNC_PREREAD)
123 
124 #define ENET_REG_READ(sc, reg)					\
125 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
126 
127 #define ENET_REG_WRITE(sc, reg, value)				\
128 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
129 
130 #ifdef ENET_EVENT_COUNTER
131 static void enet_attach_evcnt(struct enet_softc *);
132 static void enet_update_evcnt(struct enet_softc *);
133 #endif
134 
135 static int enet_intr(void *);
136 static void enet_tick(void *);
137 static int enet_tx_intr(void *);
138 static int enet_rx_intr(void *);
139 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
140                          int);
141 
142 static void enet_start(struct ifnet *);
143 static int enet_ifflags_cb(struct ethercom *);
144 static int enet_ioctl(struct ifnet *, u_long, void *);
145 static int enet_init(struct ifnet *);
146 static void enet_stop(struct ifnet *, int);
147 static void enet_watchdog(struct ifnet *);
148 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
149 
150 static int enet_miibus_readreg(device_t, int, int);
151 static void enet_miibus_writereg(device_t, int, int, int);
152 static void enet_miibus_statchg(struct ifnet *);
153 
154 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
155 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
156 static void enet_setmulti(struct enet_softc *);
157 static int enet_encap_mbufalign(struct mbuf **);
158 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
159 static int enet_init_regs(struct enet_softc *, int);
160 static int enet_alloc_ring(struct enet_softc *);
161 static void enet_init_txring(struct enet_softc *);
162 static int enet_init_rxring(struct enet_softc *);
163 static void enet_reset_rxdesc(struct enet_softc *, int);
164 static int enet_alloc_rxbuf(struct enet_softc *, int);
165 static void enet_drain_txbuf(struct enet_softc *);
166 static void enet_drain_rxbuf(struct enet_softc *);
167 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
168                           bus_dmamap_t *);
169 
170 CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
171     enet_match, enet_attach, NULL, NULL);
172 
173 void
174 enet_attach_common(device_t self, bus_space_tag_t iot,
175     bus_dma_tag_t dmat, bus_addr_t addr, bus_size_t size, int irq)
176 {
177 	struct enet_softc *sc;
178 	struct ifnet *ifp;
179 
180 	sc = device_private(self);
181 	sc->sc_dev = self;
182 	sc->sc_iot = iot;
183 	sc->sc_addr = addr;
184 	sc->sc_dmat = dmat;
185 
186 	aprint_naive("\n");
187 	aprint_normal(": Gigabit Ethernet Controller\n");
188 	if (bus_space_map(sc->sc_iot, sc->sc_addr, size, 0,
189 	    &sc->sc_ioh)) {
190 		aprint_error_dev(self, "cannot map registers\n");
191 		return;
192 	}
193 
194 	/* allocate dma buffer */
195 	if (enet_alloc_ring(sc))
196 		return;
197 
198 #define IS_ENADDR_ZERO(enaddr)				\
199 	((enaddr[0] | enaddr[1] | enaddr[2] |		\
200 	 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
201 
202 	if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
203 		/* by any chance, mac-address is already set by bootloader? */
204 		enet_gethwaddr(sc, sc->sc_enaddr);
205 		if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
206 			/* give up. set randomly */
207 			uint32_t eaddr = random();
208 			/* not multicast */
209 			sc->sc_enaddr[0] = (eaddr >> 24) & 0xfc;
210 			sc->sc_enaddr[1] = eaddr >> 16;
211 			sc->sc_enaddr[2] = eaddr >> 8;
212 			sc->sc_enaddr[3] = eaddr;
213 			eaddr = random();
214 			sc->sc_enaddr[4] = eaddr >> 8;
215 			sc->sc_enaddr[5] = eaddr;
216 
217 			aprint_error_dev(self,
218 			    "cannot get mac address. set randomly\n");
219 		}
220 	}
221 	enet_sethwaddr(sc, sc->sc_enaddr);
222 
223 	aprint_normal_dev(self, "Ethernet address %s\n",
224 	    ether_sprintf(sc->sc_enaddr));
225 
226 	enet_init_regs(sc, 1);
227 
228 	/* setup interrupt handlers */
229 	if ((sc->sc_ih = intr_establish(irq, IPL_NET,
230 	    IST_LEVEL, enet_intr, sc)) == NULL) {
231 		aprint_error_dev(self, "unable to establish interrupt\n");
232 		goto failure;
233 	}
234 
235 	if (sc->sc_imxtype == 7) {
236 		/* i.MX7 use 3 interrupts */
237 		if ((sc->sc_ih2 = intr_establish(irq + 1, IPL_NET,
238 		    IST_LEVEL, enet_intr, sc)) == NULL) {
239 			aprint_error_dev(self,
240 			    "unable to establish 2nd interrupt\n");
241 			intr_disestablish(sc->sc_ih);
242 			goto failure;
243 		}
244 		if ((sc->sc_ih3 = intr_establish(irq + 2, IPL_NET,
245 		    IST_LEVEL, enet_intr, sc)) == NULL) {
246 			aprint_error_dev(self,
247 			    "unable to establish 3rd interrupt\n");
248 			intr_disestablish(sc->sc_ih2);
249 			intr_disestablish(sc->sc_ih);
250 			goto failure;
251 		}
252 	}
253 
254 	/* callout will be scheduled from enet_init() */
255 	callout_init(&sc->sc_tick_ch, 0);
256 	callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
257 
258 	/* setup ifp */
259 	ifp = &sc->sc_ethercom.ec_if;
260 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
261 	ifp->if_softc = sc;
262 	ifp->if_mtu = ETHERMTU;
263 	ifp->if_baudrate = IF_Gbps(1);
264 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
265 	ifp->if_ioctl = enet_ioctl;
266 	ifp->if_start = enet_start;
267 	ifp->if_init = enet_init;
268 	ifp->if_stop = enet_stop;
269 	ifp->if_watchdog = enet_watchdog;
270 
271 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
272 #ifdef ENET_SUPPORT_JUMBO
273 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
274 #endif
275 
276 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
277 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
278 	    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
279 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
280 	    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
281 
282 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(ENET_TX_RING_CNT, IFQ_MAXLEN));
283 	IFQ_SET_READY(&ifp->if_snd);
284 
285 	/* setup MII */
286 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
287 	sc->sc_mii.mii_ifp = ifp;
288 	sc->sc_mii.mii_readreg = enet_miibus_readreg;
289 	sc->sc_mii.mii_writereg = enet_miibus_writereg;
290 	sc->sc_mii.mii_statchg = enet_miibus_statchg;
291 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
292 	    enet_mediastatus);
293 
294 	/* try to attach PHY */
295 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
296 	    MII_OFFSET_ANY, 0);
297 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
298 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
299 		    0, NULL);
300 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
301 	} else {
302 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
303 	}
304 
305 	if_attach(ifp);
306 	ether_ifattach(ifp, sc->sc_enaddr);
307 	ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
308 
309 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
310 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
311 
312 #ifdef ENET_EVENT_COUNTER
313 	enet_attach_evcnt(sc);
314 #endif
315 
316 	sc->sc_stopping = false;
317 
318 	return;
319 
320  failure:
321 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, size);
322 	return;
323 }
324 
325 #ifdef ENET_EVENT_COUNTER
326 static void
327 enet_attach_evcnt(struct enet_softc *sc)
328 {
329 	const char *xname;
330 
331 	xname = device_xname(sc->sc_dev);
332 
333 #define ENET_EVCNT_ATTACH(name)	\
334 	evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC,	\
335 	    NULL, xname, #name);
336 
337 	ENET_EVCNT_ATTACH(t_drop);
338 	ENET_EVCNT_ATTACH(t_packets);
339 	ENET_EVCNT_ATTACH(t_bc_pkt);
340 	ENET_EVCNT_ATTACH(t_mc_pkt);
341 	ENET_EVCNT_ATTACH(t_crc_align);
342 	ENET_EVCNT_ATTACH(t_undersize);
343 	ENET_EVCNT_ATTACH(t_oversize);
344 	ENET_EVCNT_ATTACH(t_frag);
345 	ENET_EVCNT_ATTACH(t_jab);
346 	ENET_EVCNT_ATTACH(t_col);
347 	ENET_EVCNT_ATTACH(t_p64);
348 	ENET_EVCNT_ATTACH(t_p65to127n);
349 	ENET_EVCNT_ATTACH(t_p128to255n);
350 	ENET_EVCNT_ATTACH(t_p256to511);
351 	ENET_EVCNT_ATTACH(t_p512to1023);
352 	ENET_EVCNT_ATTACH(t_p1024to2047);
353 	ENET_EVCNT_ATTACH(t_p_gte2048);
354 	ENET_EVCNT_ATTACH(t_octets);
355 	ENET_EVCNT_ATTACH(r_packets);
356 	ENET_EVCNT_ATTACH(r_bc_pkt);
357 	ENET_EVCNT_ATTACH(r_mc_pkt);
358 	ENET_EVCNT_ATTACH(r_crc_align);
359 	ENET_EVCNT_ATTACH(r_undersize);
360 	ENET_EVCNT_ATTACH(r_oversize);
361 	ENET_EVCNT_ATTACH(r_frag);
362 	ENET_EVCNT_ATTACH(r_jab);
363 	ENET_EVCNT_ATTACH(r_p64);
364 	ENET_EVCNT_ATTACH(r_p65to127);
365 	ENET_EVCNT_ATTACH(r_p128to255);
366 	ENET_EVCNT_ATTACH(r_p256to511);
367 	ENET_EVCNT_ATTACH(r_p512to1023);
368 	ENET_EVCNT_ATTACH(r_p1024to2047);
369 	ENET_EVCNT_ATTACH(r_p_gte2048);
370 	ENET_EVCNT_ATTACH(r_octets);
371 }
372 
373 static void
374 enet_update_evcnt(struct enet_softc *sc)
375 {
376 	sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
377 	sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
378 	sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
379 	sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
380 	sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
381 	sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
382 	sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
383 	sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
384 	sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
385 	sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
386 	sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
387 	sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
388 	sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
389 	sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
390 	sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
391 	sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
392 	sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
393 	sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
394 	sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
395 	sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
396 	sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
397 	sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
398 	sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
399 	sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
400 	sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
401 	sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
402 	sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
403 	sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
404 	sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
405 	sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
406 	sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
407 	sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
408 	sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
409 	sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
410 }
411 #endif /* ENET_EVENT_COUNTER */
412 
413 static void
414 enet_tick(void *arg)
415 {
416 	struct enet_softc *sc;
417 	struct mii_data *mii;
418 	struct ifnet *ifp;
419 	int s;
420 
421 	sc = arg;
422 	mii = &sc->sc_mii;
423 	ifp = &sc->sc_ethercom.ec_if;
424 
425 	s = splnet();
426 
427 	if (sc->sc_stopping)
428 		goto out;
429 
430 #ifdef ENET_EVENT_COUNTER
431 	enet_update_evcnt(sc);
432 #endif
433 
434 	/* update counters */
435 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
436 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
437 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
438 
439 	/* clear counters */
440 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
441 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
442 
443 	mii_tick(mii);
444  out:
445 
446 	if (!sc->sc_stopping)
447 		callout_schedule(&sc->sc_tick_ch, ENET_TICK);
448 
449 	splx(s);
450 }
451 
452 static int
453 enet_intr(void *arg)
454 {
455 	struct enet_softc *sc;
456 	struct ifnet *ifp;
457 	uint32_t status;
458 
459 	sc = arg;
460 	status = ENET_REG_READ(sc, ENET_EIR);
461 
462 	if (sc->sc_imxtype == 7) {
463 		if (status & (ENET_EIR_TXF|ENET_EIR_TXF1|ENET_EIR_TXF2))
464 			enet_tx_intr(arg);
465 		if (status & (ENET_EIR_RXF|ENET_EIR_RXF1|ENET_EIR_RXF2))
466 			enet_rx_intr(arg);
467 	} else {
468 		if (status & ENET_EIR_TXF)
469 			enet_tx_intr(arg);
470 		if (status & ENET_EIR_RXF)
471 			enet_rx_intr(arg);
472 	}
473 
474 	if (status & ENET_EIR_EBERR) {
475 		device_printf(sc->sc_dev, "Ethernet Bus Error\n");
476 		ifp = &sc->sc_ethercom.ec_if;
477 		enet_stop(ifp, 1);
478 		enet_init(ifp);
479 	} else {
480 		ENET_REG_WRITE(sc, ENET_EIR, status);
481 	}
482 
483 	rnd_add_uint32(&sc->sc_rnd_source, status);
484 
485 	return 1;
486 }
487 
488 static int
489 enet_tx_intr(void *arg)
490 {
491 	struct enet_softc *sc;
492 	struct ifnet *ifp;
493 	struct enet_txsoft *txs;
494 	int idx;
495 
496 	sc = (struct enet_softc *)arg;
497 	ifp = &sc->sc_ethercom.ec_if;
498 
499 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
500 	    idx = ENET_TX_NEXTIDX(idx)) {
501 
502 		txs = &sc->sc_txsoft[idx];
503 
504 		TXDESC_READIN(idx);
505 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
506 			/* This TX Descriptor has not been transmitted yet */
507 			break;
508 		}
509 
510 		/* txsoft is available on first segment (TXFLAGS1_T1) */
511 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
512 			bus_dmamap_unload(sc->sc_dmat,
513 			    txs->txs_dmamap);
514 			m_freem(txs->txs_mbuf);
515 			ifp->if_opackets++;
516 		}
517 
518 		/* checking error */
519 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
520 			uint32_t flags2;
521 
522 			flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
523 
524 			if (flags2 & (TXFLAGS2_TXE |
525 			    TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
526 			    TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
527 #ifdef DEBUG_ENET
528 				if (enet_debug) {
529 					char flagsbuf[128];
530 
531 					snprintb(flagsbuf, sizeof(flagsbuf),
532 					    "\20" "\20TRANSMIT" "\16UNDERFLOW"
533 					    "\15COLLISION" "\14FRAME"
534 					    "\13LATECOLLISION" "\12OVERFLOW",
535 					    flags2);
536 
537 					device_printf(sc->sc_dev,
538 					    "txdesc[%d]: transmit error: "
539 					    "flags2=%s\n", idx, flagsbuf);
540 				}
541 #endif /* DEBUG_ENET */
542 				ifp->if_oerrors++;
543 			}
544 		}
545 
546 		sc->sc_tx_free++;
547 	}
548 	sc->sc_tx_considx = idx;
549 
550 	if (sc->sc_tx_free > 0)
551 		ifp->if_flags &= ~IFF_OACTIVE;
552 
553 	/*
554 	 * No more pending TX descriptor,
555 	 * cancel the watchdog timer.
556 	 */
557 	if (sc->sc_tx_free == ENET_TX_RING_CNT)
558 		ifp->if_timer = 0;
559 
560 	return 1;
561 }
562 
563 static int
564 enet_rx_intr(void *arg)
565 {
566 	struct enet_softc *sc;
567 	struct ifnet *ifp;
568 	struct enet_rxsoft *rxs;
569 	int idx, len, amount;
570 	uint32_t flags1, flags2;
571 	struct mbuf *m, *m0, *mprev;
572 
573 	sc = arg;
574 	ifp = &sc->sc_ethercom.ec_if;
575 
576 	m0 = mprev = NULL;
577 	amount = 0;
578 	for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
579 
580 		rxs = &sc->sc_rxsoft[idx];
581 
582 		RXDESC_READIN(idx);
583 		if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
584 			/* This RX Descriptor has not been received yet */
585 			break;
586 		}
587 
588 		/*
589 		 * build mbuf from RX Descriptor if needed
590 		 */
591 		m = rxs->rxs_mbuf;
592 		rxs->rxs_mbuf = NULL;
593 
594 		flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
595 		len = RXFLAGS1_LEN(flags1);
596 
597 #define RACC_SHIFT16	2
598 		if (m0 == NULL) {
599 			m0 = m;
600 			m_adj(m0, RACC_SHIFT16);
601 			len -= RACC_SHIFT16;
602 			m->m_len = len;
603 			amount = len;
604 		} else {
605 			if (flags1 & RXFLAGS1_L)
606 				len = len - amount - RACC_SHIFT16;
607 
608 			m->m_len = len;
609 			amount += len;
610 			if (m->m_flags & M_PKTHDR)
611 				m_remove_pkthdr(m);
612 			mprev->m_next = m;
613 		}
614 		mprev = m;
615 
616 		flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
617 
618 		if (flags1 & RXFLAGS1_L) {
619 			/* last buffer */
620 			if ((amount < ETHER_HDR_LEN) ||
621 			    ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
622 			    RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
623 			    (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
624 			    RXFLAGS2_CE)))) {
625 
626 #ifdef DEBUG_ENET
627 				if (enet_debug) {
628 					char flags1buf[128], flags2buf[128];
629 					snprintb(flags1buf, sizeof(flags1buf),
630 					    "\20" "\31MISS" "\26LENGTHVIOLATION"
631 					    "\25NONOCTET" "\23CRC" "\22OVERRUN"
632 					    "\21TRUNCATED", flags1);
633 					snprintb(flags2buf, sizeof(flags2buf),
634 					    "\20" "\40MAC" "\33PHY"
635 					    "\32COLLISION", flags2);
636 
637 					DEVICE_DPRINTF(
638 					    "rxdesc[%d]: receive error: "
639 					    "flags1=%s,flags2=%s,len=%d\n",
640 					    idx, flags1buf, flags2buf, amount);
641 				}
642 #endif /* DEBUG_ENET */
643 				ifp->if_ierrors++;
644 				m_freem(m0);
645 
646 			} else {
647 				/* packet receive ok */
648 				m_set_rcvif(m0, ifp);
649 				m0->m_pkthdr.len = amount;
650 
651 				bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
652 				    rxs->rxs_dmamap->dm_mapsize,
653 				    BUS_DMASYNC_PREREAD);
654 
655 				if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
656 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
657 				    M_CSUM_TCPv6 | M_CSUM_UDPv6))
658 					enet_rx_csum(sc, ifp, m0, idx);
659 
660 				if_percpuq_enqueue(ifp->if_percpuq, m0);
661 			}
662 
663 			m0 = NULL;
664 			mprev = NULL;
665 			amount = 0;
666 
667 		} else {
668 			/* continued from previous buffer */
669 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
670 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
671 		}
672 
673 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
674 		if (enet_alloc_rxbuf(sc, idx) != 0) {
675 			panic("enet_alloc_rxbuf NULL\n");
676 		}
677 	}
678 	sc->sc_rx_readidx = idx;
679 
680 	/* re-enable RX DMA to make sure */
681 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
682 
683 	return 1;
684 }
685 
686 static void
687 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
688 {
689 	uint32_t flags2;
690 	uint8_t proto;
691 
692 	flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
693 
694 	if (flags2 & RXFLAGS2_IPV6) {
695 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
696 
697 		/* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
698 		if ((proto == IPPROTO_TCP) &&
699 		    (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
700 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
701 		else if ((proto == IPPROTO_UDP) &&
702 		    (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
703 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
704 		else
705 			return;
706 
707 		/* IPv6 protocol checksum error */
708 		if (flags2 & RXFLAGS2_PCR)
709 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
710 
711 	} else {
712 		struct ether_header *eh;
713 		uint8_t *ip;
714 
715 		eh = mtod(m, struct ether_header *);
716 
717 		/* XXX: is an IPv4? */
718 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
719 			return;
720 		ip = (uint8_t *)(eh + 1);
721 		if ((ip[0] & 0xf0) == 0x40)
722 			return;
723 
724 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
725 		if (flags2 & RXFLAGS2_ICE) {
726 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
727 				m->m_pkthdr.csum_flags |=
728 				    M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
729 			}
730 		} else {
731 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
732 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
733 			}
734 
735 			/*
736 			 * PCR is valid when
737 			 * ICE == 0 and FRAG == 0
738 			 */
739 			if (flags2 & RXFLAGS2_FRAG)
740 				return;
741 
742 			/*
743 			 * PCR is valid when proto is TCP or UDP
744 			 */
745 			if ((proto == IPPROTO_TCP) &&
746 			    (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
747 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
748 			else if ((proto == IPPROTO_UDP) &&
749 			    (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
750 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
751 			else
752 				return;
753 
754 			/* IPv4 protocol cksum error */
755 			if (flags2 & RXFLAGS2_PCR)
756 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
757 		}
758 	}
759 }
760 
761 static void
762 enet_setmulti(struct enet_softc *sc)
763 {
764 	struct ifnet *ifp;
765 	struct ether_multi *enm;
766 	struct ether_multistep step;
767 	int promisc;
768 	uint32_t crc;
769 	uint32_t gaddr[2];
770 
771 	ifp = &sc->sc_ethercom.ec_if;
772 
773 	promisc = 0;
774 	if ((ifp->if_flags & IFF_PROMISC) || sc->sc_ethercom.ec_multicnt > 0) {
775 		ifp->if_flags |= IFF_ALLMULTI;
776 		if (ifp->if_flags & IFF_PROMISC)
777 			promisc = 1;
778 		gaddr[0] = gaddr[1] = 0xffffffff;
779 	} else {
780 		gaddr[0] = gaddr[1] = 0;
781 
782 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
783 		while (enm != NULL) {
784 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
785 			gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
786 			ETHER_NEXT_MULTI(step, enm);
787 		}
788 	}
789 
790 	ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
791 	ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
792 
793 	if (promisc) {
794 		/* match all packet */
795 		ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
796 		ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
797 	} else {
798 		/* don't match any packet */
799 		ENET_REG_WRITE(sc, ENET_IAUR, 0);
800 		ENET_REG_WRITE(sc, ENET_IALR, 0);
801 	}
802 }
803 
804 static void
805 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
806 {
807 	uint32_t paddr;
808 
809 	paddr = ENET_REG_READ(sc, ENET_PALR);
810 	hwaddr[0] = paddr >> 24;
811 	hwaddr[1] = paddr >> 16;
812 	hwaddr[2] = paddr >> 8;
813 	hwaddr[3] = paddr;
814 
815 	paddr = ENET_REG_READ(sc, ENET_PAUR);
816 	hwaddr[4] = paddr >> 24;
817 	hwaddr[5] = paddr >> 16;
818 }
819 
820 static void
821 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
822 {
823 	uint32_t paddr;
824 
825 	paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
826 	    hwaddr[3];
827 	ENET_REG_WRITE(sc, ENET_PALR, paddr);
828 	paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
829 	ENET_REG_WRITE(sc, ENET_PAUR, paddr);
830 }
831 
832 /*
833  * ifnet interfaces
834  */
835 static int
836 enet_init(struct ifnet *ifp)
837 {
838 	struct enet_softc *sc;
839 	int s, error;
840 
841 	sc = ifp->if_softc;
842 
843 	s = splnet();
844 
845 	enet_init_regs(sc, 0);
846 	enet_init_txring(sc);
847 	error = enet_init_rxring(sc);
848 	if (error != 0) {
849 		enet_drain_rxbuf(sc);
850 		device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
851 		goto init_failure;
852 	}
853 
854 	/* reload mac address */
855 	memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
856 	enet_sethwaddr(sc, sc->sc_enaddr);
857 
858 	/* program multicast address */
859 	enet_setmulti(sc);
860 
861 	/* update if_flags */
862 	ifp->if_flags |= IFF_RUNNING;
863 	ifp->if_flags &= ~IFF_OACTIVE;
864 
865 	/* update local copy of if_flags */
866 	sc->sc_if_flags = ifp->if_flags;
867 
868 	/* mii */
869 	mii_mediachg(&sc->sc_mii);
870 
871 	/* enable RX DMA */
872 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
873 
874 	sc->sc_stopping = false;
875 	callout_schedule(&sc->sc_tick_ch, ENET_TICK);
876 
877  init_failure:
878 	splx(s);
879 
880 	return error;
881 }
882 
883 static void
884 enet_start(struct ifnet *ifp)
885 {
886 	struct enet_softc *sc;
887 	struct mbuf *m;
888 	int npkt;
889 
890 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
891 		return;
892 
893 	sc = ifp->if_softc;
894 	for (npkt = 0; ; npkt++) {
895 		IFQ_POLL(&ifp->if_snd, m);
896 		if (m == NULL)
897 			break;
898 
899 		if (sc->sc_tx_free <= 0) {
900 			/* no tx descriptor now... */
901 			ifp->if_flags |= IFF_OACTIVE;
902 			DEVICE_DPRINTF("TX descriptor is full\n");
903 			break;
904 		}
905 
906 		IFQ_DEQUEUE(&ifp->if_snd, m);
907 
908 		if (enet_encap_txring(sc, &m) != 0) {
909 			/* too many mbuf chains? */
910 			ifp->if_flags |= IFF_OACTIVE;
911 			DEVICE_DPRINTF(
912 			    "TX descriptor is full. dropping packet\n");
913 			m_freem(m);
914 			ifp->if_oerrors++;
915 			break;
916 		}
917 
918 		/* Pass the packet to any BPF listeners */
919 		bpf_mtap(ifp, m, BPF_D_OUT);
920 	}
921 
922 	if (npkt) {
923 		/* enable TX DMA */
924 		ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
925 
926 		ifp->if_timer = 5;
927 	}
928 }
929 
930 static void
931 enet_stop(struct ifnet *ifp, int disable)
932 {
933 	struct enet_softc *sc;
934 	int s;
935 	uint32_t v;
936 
937 	sc = ifp->if_softc;
938 
939 	s = splnet();
940 
941 	sc->sc_stopping = true;
942 	callout_stop(&sc->sc_tick_ch);
943 
944 	/* clear ENET_ECR[ETHEREN] to abort receive and transmit */
945 	v = ENET_REG_READ(sc, ENET_ECR);
946 	ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
947 
948 	/* Mark the interface as down and cancel the watchdog timer. */
949 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
950 	ifp->if_timer = 0;
951 
952 	if (disable) {
953 		enet_drain_txbuf(sc);
954 		enet_drain_rxbuf(sc);
955 	}
956 
957 	splx(s);
958 }
959 
960 static void
961 enet_watchdog(struct ifnet *ifp)
962 {
963 	struct enet_softc *sc;
964 	int s;
965 
966 	sc = ifp->if_softc;
967 	s = splnet();
968 
969 	device_printf(sc->sc_dev, "watchdog timeout\n");
970 	ifp->if_oerrors++;
971 
972 	/* salvage packets left in descriptors */
973 	enet_tx_intr(sc);
974 	enet_rx_intr(sc);
975 
976 	/* reset */
977 	enet_stop(ifp, 1);
978 	enet_init(ifp);
979 
980 	splx(s);
981 }
982 
983 static void
984 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
985 {
986 	struct enet_softc *sc = ifp->if_softc;
987 
988 	ether_mediastatus(ifp, ifmr);
989 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
990 	    | sc->sc_flowflags;
991 }
992 
993 static int
994 enet_ifflags_cb(struct ethercom *ec)
995 {
996 	struct ifnet *ifp = &ec->ec_if;
997 	struct enet_softc *sc = ifp->if_softc;
998 	int change = ifp->if_flags ^ sc->sc_if_flags;
999 
1000 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1001 		return ENETRESET;
1002 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
1003 		return 0;
1004 
1005 	enet_setmulti(sc);
1006 
1007 	sc->sc_if_flags = ifp->if_flags;
1008 	return 0;
1009 }
1010 
1011 static int
1012 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
1013 {
1014 	struct enet_softc *sc;
1015 	struct ifreq *ifr;
1016 	int s, error;
1017 	uint32_t v;
1018 
1019 	sc = ifp->if_softc;
1020 	ifr = data;
1021 
1022 	error = 0;
1023 
1024 	s = splnet();
1025 
1026 	switch (command) {
1027 	case SIOCSIFMTU:
1028 		if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
1029 			error = EINVAL;
1030 		} else {
1031 			ifp->if_mtu = ifr->ifr_mtu;
1032 
1033 			/* set maximum frame length */
1034 			v = MTU2FRAMESIZE(ifr->ifr_mtu);
1035 			ENET_REG_WRITE(sc, ENET_FTRL, v);
1036 			v = ENET_REG_READ(sc, ENET_RCR);
1037 			v &= ~ENET_RCR_MAX_FL(0x3fff);
1038 			v |= ENET_RCR_MAX_FL(ifp->if_mtu + ETHER_HDR_LEN +
1039 			    ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
1040 			ENET_REG_WRITE(sc, ENET_RCR, v);
1041 		}
1042 		break;
1043 	case SIOCSIFMEDIA:
1044 	case SIOCGIFMEDIA:
1045 		/* Flow control requires full-duplex mode. */
1046 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1047 		    (ifr->ifr_media & IFM_FDX) == 0)
1048 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1049 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1050 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1051 				/* We can do both TXPAUSE and RXPAUSE. */
1052 				ifr->ifr_media |=
1053 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1054 			}
1055 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1056 		}
1057 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1058 		break;
1059 	default:
1060 		error = ether_ioctl(ifp, command, data);
1061 		if (error != ENETRESET)
1062 			break;
1063 
1064 		/* post-process */
1065 		error = 0;
1066 		switch (command) {
1067 		case SIOCSIFCAP:
1068 			error = (*ifp->if_init)(ifp);
1069 			break;
1070 		case SIOCADDMULTI:
1071 		case SIOCDELMULTI:
1072 			if (ifp->if_flags & IFF_RUNNING)
1073 				enet_setmulti(sc);
1074 			break;
1075 		}
1076 		break;
1077 	}
1078 
1079 	splx(s);
1080 
1081 	return error;
1082 }
1083 
1084 /*
1085  * for MII
1086  */
1087 static int
1088 enet_miibus_readreg(device_t dev, int phy, int reg)
1089 {
1090 	struct enet_softc *sc;
1091 	int timeout;
1092 	uint32_t val, status;
1093 
1094 	sc = device_private(dev);
1095 
1096 	/* clear MII update */
1097 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1098 
1099 	/* read command */
1100 	ENET_REG_WRITE(sc, ENET_MMFR,
1101 	    ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1102 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1103 
1104 	/* check MII update */
1105 	for (timeout = 5000; timeout > 0; --timeout) {
1106 		status = ENET_REG_READ(sc, ENET_EIR);
1107 		if (status & ENET_EIR_MII)
1108 			break;
1109 	}
1110 	if (timeout <= 0) {
1111 		DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1112 		    reg);
1113 		val = -1;
1114 	} else {
1115 		val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1116 	}
1117 
1118 	return val;
1119 }
1120 
1121 static void
1122 enet_miibus_writereg(device_t dev, int phy, int reg, int val)
1123 {
1124 	struct enet_softc *sc;
1125 	int timeout;
1126 
1127 	sc = device_private(dev);
1128 
1129 	/* clear MII update */
1130 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1131 
1132 	/* write command */
1133 	ENET_REG_WRITE(sc, ENET_MMFR,
1134 	    ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1135 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1136 	    (ENET_MMFR_DATAMASK & val));
1137 
1138 	/* check MII update */
1139 	for (timeout = 5000; timeout > 0; --timeout) {
1140 		if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1141 			break;
1142 	}
1143 	if (timeout <= 0) {
1144 		DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n",
1145 		    reg);
1146 	}
1147 }
1148 
1149 static void
1150 enet_miibus_statchg(struct ifnet *ifp)
1151 {
1152 	struct enet_softc *sc;
1153 	struct mii_data *mii;
1154 	struct ifmedia_entry *ife;
1155 	uint32_t ecr, ecr0;
1156 	uint32_t rcr, rcr0;
1157 	uint32_t tcr, tcr0;
1158 
1159 	sc = ifp->if_softc;
1160 	mii = &sc->sc_mii;
1161 	ife = mii->mii_media.ifm_cur;
1162 
1163 	/* get current status */
1164 	ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1165 	rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1166 	tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1167 
1168 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1169 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1170 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1171 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1172 	}
1173 
1174 	if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1175 		tcr |= ENET_TCR_FDEN;	/* full duplex */
1176 		rcr &= ~ENET_RCR_DRT;;	/* enable receive on transmit */
1177 	} else {
1178 		tcr &= ~ENET_TCR_FDEN;	/* half duplex */
1179 		rcr |= ENET_RCR_DRT;	/* disable receive on transmit */
1180 	}
1181 
1182 	if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1183 		/*
1184 		 * need to reset because
1185 		 * FDEN can change when ECR[ETHEREN] is 0
1186 		 */
1187 		enet_init_regs(sc, 0);
1188 		return;
1189 	}
1190 
1191 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1192 	case IFM_AUTO:
1193 	case IFM_1000_T:
1194 		ecr |= ENET_ECR_SPEED;		/* 1000Mbps mode */
1195 		rcr &= ~ENET_RCR_RMII_10T;
1196 		break;
1197 	case IFM_100_TX:
1198 		ecr &= ~ENET_ECR_SPEED;		/* 100Mbps mode */
1199 		rcr &= ~ENET_RCR_RMII_10T;	/* 100Mbps mode */
1200 		break;
1201 	case IFM_10_T:
1202 		ecr &= ~ENET_ECR_SPEED;		/* 10Mbps mode */
1203 		rcr |= ENET_RCR_RMII_10T;	/* 10Mbps mode */
1204 		break;
1205 	default:
1206 		ecr = ecr0;
1207 		rcr = rcr0;
1208 		tcr = tcr0;
1209 		break;
1210 	}
1211 
1212 	if (sc->sc_rgmii == 0)
1213 		ecr &= ~ENET_ECR_SPEED;
1214 
1215 	if (sc->sc_flowflags & IFM_FLOW)
1216 		rcr |= ENET_RCR_FCE;
1217 	else
1218 		rcr &= ~ENET_RCR_FCE;
1219 
1220 	/* update registers if need change */
1221 	if (ecr != ecr0)
1222 		ENET_REG_WRITE(sc, ENET_ECR, ecr);
1223 	if (rcr != rcr0)
1224 		ENET_REG_WRITE(sc, ENET_RCR, rcr);
1225 	if (tcr != tcr0)
1226 		ENET_REG_WRITE(sc, ENET_TCR, tcr);
1227 }
1228 
1229 /*
1230  * handling descriptors
1231  */
1232 static void
1233 enet_init_txring(struct enet_softc *sc)
1234 {
1235 	int i;
1236 
1237 	/* build TX ring */
1238 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1239 		sc->sc_txdesc_ring[i].tx_flags1_len =
1240 		    ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1241 		sc->sc_txdesc_ring[i].tx_databuf = 0;
1242 		sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1243 		sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1244 		sc->sc_txdesc_ring[i].tx_flags3 = 0;
1245 		sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1246 		sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1247 		sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1248 
1249 		TXDESC_WRITEOUT(i);
1250 	}
1251 
1252 	sc->sc_tx_free = ENET_TX_RING_CNT;
1253 	sc->sc_tx_considx = 0;
1254 	sc->sc_tx_prodidx = 0;
1255 }
1256 
1257 static int
1258 enet_init_rxring(struct enet_softc *sc)
1259 {
1260 	int i, error;
1261 
1262 	/* build RX ring */
1263 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1264 		error = enet_alloc_rxbuf(sc, i);
1265 		if (error != 0)
1266 			return error;
1267 	}
1268 
1269 	sc->sc_rx_readidx = 0;
1270 
1271 	return 0;
1272 }
1273 
1274 static int
1275 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1276 {
1277 	struct mbuf *m;
1278 	int error;
1279 
1280 	KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1281 
1282 	/* free mbuf if already allocated */
1283 	if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1284 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1285 		m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1286 		sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1287 	}
1288 
1289 	/* allocate new mbuf cluster */
1290 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1291 	if (m == NULL)
1292 		return ENOBUFS;
1293 	MCLGET(m, M_DONTWAIT);
1294 	if (!(m->m_flags & M_EXT)) {
1295 		m_freem(m);
1296 		return ENOBUFS;
1297 	}
1298 	m->m_len = MCLBYTES;
1299 	m->m_next = NULL;
1300 
1301 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1302 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1303 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1304 	if (error) {
1305 		m_freem(m);
1306 		return error;
1307 	}
1308 
1309 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1310 	    sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1311 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1312 
1313 	sc->sc_rxsoft[idx].rxs_mbuf = m;
1314 	enet_reset_rxdesc(sc, idx);
1315 	return 0;
1316 }
1317 
1318 static void
1319 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1320 {
1321 	uint32_t paddr;
1322 
1323 	paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1324 
1325 	sc->sc_rxdesc_ring[idx].rx_flags1_len =
1326 	    RXFLAGS1_E |
1327 	    ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1328 	sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1329 	sc->sc_rxdesc_ring[idx].rx_flags2 =
1330 	    RXFLAGS2_INT;
1331 	sc->sc_rxdesc_ring[idx].rx_hl = 0;
1332 	sc->sc_rxdesc_ring[idx].rx_proto = 0;
1333 	sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1334 	sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1335 	sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1336 	sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1337 	sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1338 
1339 	RXDESC_WRITEOUT(idx);
1340 }
1341 
1342 static void
1343 enet_drain_txbuf(struct enet_softc *sc)
1344 {
1345 	int idx;
1346 	struct enet_txsoft *txs;
1347 	struct ifnet *ifp;
1348 
1349 	ifp = &sc->sc_ethercom.ec_if;
1350 
1351 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1352 	    idx = ENET_TX_NEXTIDX(idx)) {
1353 
1354 		/* txsoft[] is used only first segment */
1355 		txs = &sc->sc_txsoft[idx];
1356 		TXDESC_READIN(idx);
1357 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1358 			sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1359 			bus_dmamap_unload(sc->sc_dmat,
1360 			    txs->txs_dmamap);
1361 			m_freem(txs->txs_mbuf);
1362 
1363 			ifp->if_oerrors++;
1364 		}
1365 		sc->sc_tx_free++;
1366 	}
1367 }
1368 
1369 static void
1370 enet_drain_rxbuf(struct enet_softc *sc)
1371 {
1372 	int i;
1373 
1374 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1375 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1376 			sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1377 			bus_dmamap_unload(sc->sc_dmat,
1378 			    sc->sc_rxsoft[i].rxs_dmamap);
1379 			m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1380 			sc->sc_rxsoft[i].rxs_mbuf = NULL;
1381 		}
1382 	}
1383 }
1384 
1385 static int
1386 enet_alloc_ring(struct enet_softc *sc)
1387 {
1388 	int i, error;
1389 
1390 	/*
1391 	 * build DMA maps for TX.
1392 	 * TX descriptor must be able to contain mbuf chains,
1393 	 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1394 	 */
1395 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1396 		error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1397 		    ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1398 		    &sc->sc_txsoft[i].txs_dmamap);
1399 
1400 		if (error) {
1401 			aprint_error_dev(sc->sc_dev,
1402 			    "can't create DMA map for TX descs\n");
1403 			goto fail_1;
1404 		}
1405 	}
1406 
1407 	/*
1408 	 * build DMA maps for RX.
1409 	 * RX descripter contains An mbuf cluster,
1410 	 * and make up a dmamap.
1411 	 */
1412 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1413 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1414 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1415 		    &sc->sc_rxsoft[i].rxs_dmamap);
1416 		if (error) {
1417 			aprint_error_dev(sc->sc_dev,
1418 			    "can't create DMA map for RX descs\n");
1419 			goto fail_2;
1420 		}
1421 	}
1422 
1423 	if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1424 	    (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1425 		return -1;
1426 	memset(sc->sc_txdesc_ring, 0,
1427 	    sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1428 
1429 	if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1430 	    (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1431 		return -1;
1432 	memset(sc->sc_rxdesc_ring, 0,
1433 	    sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1434 
1435 	return 0;
1436 
1437  fail_2:
1438 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1439 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1440 			bus_dmamap_destroy(sc->sc_dmat,
1441 			    sc->sc_rxsoft[i].rxs_dmamap);
1442 	}
1443  fail_1:
1444 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1445 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1446 			bus_dmamap_destroy(sc->sc_dmat,
1447 			    sc->sc_txsoft[i].txs_dmamap);
1448 	}
1449 	return error;
1450 }
1451 
1452 static int
1453 enet_encap_mbufalign(struct mbuf **mp)
1454 {
1455 	struct mbuf *m, *m0, *mt, *p, *x;
1456 	void *ap;
1457 	uint32_t alignoff, chiplen;
1458 
1459 	/*
1460 	 * iMX6 SoC ethernet controller requires
1461 	 * address of buffer must aligned 8, and
1462 	 * length of buffer must be greater than 10 (first fragment only?)
1463 	 */
1464 #define ALIGNBYTE	8
1465 #define MINBUFSIZE	10
1466 #define ALIGN_PTR(p, align)	\
1467 	(void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1468 
1469 	m0 = *mp;
1470 	mt = p = NULL;
1471 	for (m = m0; m != NULL; m = m->m_next) {
1472 		alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1473 		if (m->m_len < (ALIGNBYTE * 2)) {
1474 			/*
1475 			 * rearrange mbuf data aligned
1476 			 *
1477 			 *        align 8 *       *       *       *       *
1478 			 *               +0123456789abcdef0123456789abcdef0
1479 			 * FROM m->m_data[___________abcdefghijklmn_______]
1480 			 *
1481 			 *               +0123456789abcdef0123456789abcdef0
1482 			 * TO   m->m_data[________abcdefghijklm___________] or
1483 			 *      m->m_data[________________abcdefghijklmn__]
1484 			 */
1485 			if ((alignoff != 0) && (m->m_len != 0)) {
1486 				chiplen = ALIGNBYTE - alignoff;
1487 				if (M_LEADINGSPACE(m) >= alignoff) {
1488 					ap = m->m_data - alignoff;
1489 					memmove(ap, m->m_data, m->m_len);
1490 					m->m_data = ap;
1491 				} else if (M_TRAILINGSPACE(m) >= chiplen) {
1492 					ap = m->m_data + chiplen;
1493 					memmove(ap, m->m_data, m->m_len);
1494 					m->m_data = ap;
1495 				} else {
1496 					/*
1497 					 * no space to align data. (M_READONLY?)
1498 					 * allocate new mbuf aligned,
1499 					 * and copy to it.
1500 					 */
1501 					MGET(x, M_DONTWAIT, m->m_type);
1502 					if (x == NULL) {
1503 						m_freem(m);
1504 						return ENOBUFS;
1505 					}
1506 					MCLAIM(x, m->m_owner);
1507 					if (m->m_flags & M_PKTHDR)
1508 						M_MOVE_PKTHDR(x, m);
1509 					x->m_len = m->m_len;
1510 					x->m_data = ALIGN_PTR(x->m_data,
1511 					    ALIGNBYTE);
1512 					memcpy(mtod(x, void *), mtod(m, void *),
1513 					    m->m_len);
1514 					p->m_next = x;
1515 					x->m_next = m_free(m);
1516 					m = x;
1517 				}
1518 			}
1519 
1520 			/*
1521 			 * fill 1st mbuf at least 10byte
1522 			 *
1523 			 *        align 8 *       *       *       *       *
1524 			 *               +0123456789abcdef0123456789abcdef0
1525 			 * FROM m->m_data[________abcde___________________]
1526 			 *      m->m_data[__fg____________________________]
1527 			 *      m->m_data[_________________hi_____________]
1528 			 *      m->m_data[__________jk____________________]
1529 			 *      m->m_data[____l___________________________]
1530 			 *
1531 			 *               +0123456789abcdef0123456789abcdef0
1532 			 * TO   m->m_data[________abcdefghij______________]
1533 			 *      m->m_data[________________________________]
1534 			 *      m->m_data[________________________________]
1535 			 *      m->m_data[___________k____________________]
1536 			 *      m->m_data[____l___________________________]
1537 			 */
1538 			if (mt == NULL) {
1539 				mt = m;
1540 				while (mt->m_len == 0) {
1541 					mt = mt->m_next;
1542 					if (mt == NULL) {
1543 						m_freem(m);
1544 						return ENOBUFS;
1545 					}
1546 				}
1547 
1548 				/* mt = 1st mbuf, x = 2nd mbuf */
1549 				x = mt->m_next;
1550 				while (mt->m_len < MINBUFSIZE) {
1551 					if (x == NULL) {
1552 						m_freem(m);
1553 						return ENOBUFS;
1554 					}
1555 
1556 					alignoff = (uintptr_t)x->m_data &
1557 					    (ALIGNBYTE - 1);
1558 					chiplen = ALIGNBYTE - alignoff;
1559 					if (chiplen > x->m_len) {
1560 						chiplen = x->m_len;
1561 					} else if ((mt->m_len + chiplen) <
1562 					    MINBUFSIZE) {
1563 						/*
1564 						 * next mbuf should be greater
1565 						 * than ALIGNBYTE?
1566 						 */
1567 						if (x->m_len >= (chiplen +
1568 						    ALIGNBYTE * 2))
1569 							chiplen += ALIGNBYTE;
1570 						else
1571 							chiplen = x->m_len;
1572 					}
1573 
1574 					if (chiplen &&
1575 					    (M_TRAILINGSPACE(mt) < chiplen)) {
1576 						/*
1577 						 * move data to the begining of
1578 						 * m_dat[] (aligned) to en-
1579 						 * large trailingspace
1580 						 */
1581 						if (mt->m_flags & M_EXT) {
1582 							ap = mt->m_ext.ext_buf;
1583 						} else if (mt->m_flags &
1584 						    M_PKTHDR) {
1585 							ap = mt->m_pktdat;
1586 						} else {
1587 							ap = mt->m_dat;
1588 						}
1589 						ap = ALIGN_PTR(ap, ALIGNBYTE);
1590 						memcpy(ap, mt->m_data,
1591 						    mt->m_len);
1592 						mt->m_data = ap;
1593 					}
1594 
1595 					if (chiplen &&
1596 					    (M_TRAILINGSPACE(mt) >= chiplen)) {
1597 						memcpy(mt->m_data + mt->m_len,
1598 						    x->m_data, chiplen);
1599 						mt->m_len += chiplen;
1600 						m_adj(x, chiplen);
1601 					}
1602 
1603 					x = x->m_next;
1604 				}
1605 			}
1606 
1607 		} else {
1608 			mt = m;
1609 
1610 			/*
1611 			 * allocate new mbuf x, and rearrange as below;
1612 			 *
1613 			 *        align 8 *       *       *       *       *
1614 			 *               +0123456789abcdef0123456789abcdef0
1615 			 * FROM m->m_data[____________abcdefghijklmnopq___]
1616 			 *
1617 			 *               +0123456789abcdef0123456789abcdef0
1618 			 * TO   x->m_data[________abcdefghijkl____________]
1619 			 *      m->m_data[________________________mnopq___]
1620 			 *
1621 			 */
1622 			if (alignoff != 0) {
1623 				/* at least ALIGNBYTE */
1624 				chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1625 
1626 				MGET(x, M_DONTWAIT, m->m_type);
1627 				if (x == NULL) {
1628 					m_freem(m);
1629 					return ENOBUFS;
1630 				}
1631 				MCLAIM(x, m->m_owner);
1632 				if (m->m_flags & M_PKTHDR)
1633 					M_MOVE_PKTHDR(x, m);
1634 				x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1635 				memcpy(mtod(x, void *), mtod(m, void *),
1636 				    chiplen);
1637 				x->m_len = chiplen;
1638 				x->m_next = m;
1639 				m_adj(m, chiplen);
1640 
1641 				if (p == NULL)
1642 					m0 = x;
1643 				else
1644 					p->m_next = x;
1645 			}
1646 		}
1647 		p = m;
1648 	}
1649 	*mp = m0;
1650 
1651 	return 0;
1652 }
1653 
1654 static int
1655 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1656 {
1657 	bus_dmamap_t map;
1658 	struct mbuf *m;
1659 	int csumflags, idx, i, error;
1660 	uint32_t flags1, flags2;
1661 
1662 	idx = sc->sc_tx_prodidx;
1663 	map = sc->sc_txsoft[idx].txs_dmamap;
1664 
1665 	/* align mbuf data for claim of ENET */
1666 	error = enet_encap_mbufalign(mp);
1667 	if (error != 0)
1668 		return error;
1669 
1670 	m = *mp;
1671 	csumflags = m->m_pkthdr.csum_flags;
1672 
1673 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1674 	    BUS_DMA_NOWAIT);
1675 	if (error != 0) {
1676 		device_printf(sc->sc_dev,
1677 		    "Error mapping mbuf into TX chain: error=%d\n", error);
1678 		m_freem(m);
1679 		return error;
1680 	}
1681 
1682 	if (map->dm_nsegs > sc->sc_tx_free) {
1683 		bus_dmamap_unload(sc->sc_dmat, map);
1684 		device_printf(sc->sc_dev,
1685 		    "too many mbuf chain %d\n", map->dm_nsegs);
1686 		m_freem(m);
1687 		return ENOBUFS;
1688 	}
1689 
1690 	/* fill protocol cksum zero beforehand */
1691 	if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1692 	    M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1693 		int ehlen;
1694 		uint16_t etype;
1695 
1696 		m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1697 		switch (ntohs(etype)) {
1698 		case ETHERTYPE_IP:
1699 		case ETHERTYPE_IPV6:
1700 			ehlen = ETHER_HDR_LEN;
1701 			break;
1702 		case ETHERTYPE_VLAN:
1703 			ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1704 			break;
1705 		default:
1706 			ehlen = 0;
1707 			break;
1708 		}
1709 
1710 		if (ehlen) {
1711 			const int off =
1712 			    M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1713 			    M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1714 			if (m->m_pkthdr.len >= ehlen + off + sizeof(uint16_t)) {
1715 				uint16_t zero = 0;
1716 				m_copyback(m, ehlen + off, sizeof(zero), &zero);
1717 			}
1718 		}
1719 	}
1720 
1721 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1722 	    BUS_DMASYNC_PREWRITE);
1723 
1724 	for (i = 0; i < map->dm_nsegs; i++) {
1725 		flags1 = TXFLAGS1_R;
1726 		flags2 = 0;
1727 
1728 		if (i == 0) {
1729 			flags1 |= TXFLAGS1_T1;	/* mark as first segment */
1730 			sc->sc_txsoft[idx].txs_mbuf = m;
1731 		}
1732 
1733 		/* checksum offloading */
1734 		if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1735 		    M_CSUM_UDPv6 | M_CSUM_TCPv6))
1736 			flags2 |= TXFLAGS2_PINS;
1737 		if (csumflags & (M_CSUM_IPv4))
1738 			flags2 |= TXFLAGS2_IINS;
1739 
1740 		if (i == map->dm_nsegs - 1) {
1741 			/* mark last segment */
1742 			flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1743 			flags2 |= TXFLAGS2_INT;
1744 		}
1745 		if (idx == ENET_TX_RING_CNT - 1) {
1746 			/* mark end of ring */
1747 			flags1 |= TXFLAGS1_W;
1748 		}
1749 
1750 		sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1751 		sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1752 		sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1753 		TXDESC_WRITEOUT(idx);
1754 
1755 		sc->sc_txdesc_ring[idx].tx_flags1_len =
1756 		    flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1757 		TXDESC_WRITEOUT(idx);
1758 
1759 		idx = ENET_TX_NEXTIDX(idx);
1760 		sc->sc_tx_free--;
1761 	}
1762 
1763 	sc->sc_tx_prodidx = idx;
1764 
1765 	return 0;
1766 }
1767 
1768 /*
1769  * device initialize
1770  */
1771 static int
1772 enet_init_regs(struct enet_softc *sc, int init)
1773 {
1774 	struct mii_data *mii;
1775 	struct ifmedia_entry *ife;
1776 	paddr_t paddr;
1777 	uint32_t val;
1778 	int miimode, fulldup, ecr_speed, rcr_speed, flowctrl;
1779 
1780 	if (init) {
1781 		fulldup = 1;
1782 		ecr_speed = ENET_ECR_SPEED;
1783 		rcr_speed = 0;
1784 		flowctrl = 0;
1785 	} else {
1786 		mii = &sc->sc_mii;
1787 		ife = mii->mii_media.ifm_cur;
1788 
1789 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1790 			fulldup = 1;
1791 		else
1792 			fulldup = 0;
1793 
1794 		switch (IFM_SUBTYPE(ife->ifm_media)) {
1795 		case IFM_10_T:
1796 			ecr_speed = 0;
1797 			rcr_speed = ENET_RCR_RMII_10T;
1798 			break;
1799 		case IFM_100_TX:
1800 			ecr_speed = 0;
1801 			rcr_speed = 0;
1802 			break;
1803 		default:
1804 			ecr_speed = ENET_ECR_SPEED;
1805 			rcr_speed = 0;
1806 			break;
1807 		}
1808 
1809 		flowctrl = sc->sc_flowflags & IFM_FLOW;
1810 	}
1811 
1812 	if (sc->sc_rgmii == 0)
1813 		ecr_speed = 0;
1814 
1815 	/* reset */
1816 	ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1817 
1818 	/* mask and clear all interrupt */
1819 	ENET_REG_WRITE(sc, ENET_EIMR, 0);
1820 	ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1821 
1822 	/* full duplex */
1823 	ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1824 
1825 	/* clear and enable MIB register */
1826 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1827 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
1828 
1829 	/* MII speed setup. MDCclk(=2.5MHz) = ENET_PLL/((val+1)*2) */
1830 	val = ((sc->sc_pllclock) / 500000 - 1) / 10;
1831 	ENET_REG_WRITE(sc, ENET_MSCR, val << 1);
1832 
1833 	/* Opcode/Pause Duration */
1834 	ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1835 
1836 	/* Receive FIFO */
1837 	ENET_REG_WRITE(sc, ENET_RSFL, 16);	/* RxFIFO Section Full */
1838 	ENET_REG_WRITE(sc, ENET_RSEM, 0x84);	/* RxFIFO Section Empty */
1839 	ENET_REG_WRITE(sc, ENET_RAEM, 8);	/* RxFIFO Almost Empty */
1840 	ENET_REG_WRITE(sc, ENET_RAFL, 8);	/* RxFIFO Almost Full */
1841 
1842 	/* Transmit FIFO */
1843 	ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1844 	    ENET_TFWR_FIFO(128));		/* TxFIFO Watermark */
1845 	ENET_REG_WRITE(sc, ENET_TSEM, 0);	/* TxFIFO Section Empty */
1846 	ENET_REG_WRITE(sc, ENET_TAEM, 256);	/* TxFIFO Almost Empty */
1847 	ENET_REG_WRITE(sc, ENET_TAFL, 8);	/* TxFIFO Almost Full */
1848 	ENET_REG_WRITE(sc, ENET_TIPG, 12);	/* Tx Inter-Packet Gap */
1849 
1850 	/* hardware checksum is default off (override in TX descripter) */
1851 	ENET_REG_WRITE(sc, ENET_TACC, 0);
1852 
1853 	/*
1854 	 * align ethernet payload on 32bit, discard frames with MAC layer error,
1855 	 * and don't discard checksum error
1856 	 */
1857 	ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1858 
1859 	/* maximum frame size */
1860 	val = ENET_DEFAULT_PKT_LEN;
1861 	ENET_REG_WRITE(sc, ENET_FTRL, val);	/* Frame Truncation Length */
1862 
1863 	if (sc->sc_rgmii == 0)
1864 		miimode = ENET_RCR_RMII_MODE | ENET_RCR_MII_MODE;
1865 	else
1866 		miimode = ENET_RCR_RGMII_EN;
1867 	ENET_REG_WRITE(sc, ENET_RCR,
1868 	    ENET_RCR_PADEN |			/* RX frame padding remove */
1869 	    miimode |
1870 	    (flowctrl ? ENET_RCR_FCE : 0) |	/* flow control enable */
1871 	    rcr_speed |
1872 	    (fulldup ? 0 : ENET_RCR_DRT) |
1873 	    ENET_RCR_MAX_FL(val));
1874 
1875 	/* Maximum Receive BufSize per one descriptor */
1876 	ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1877 
1878 
1879 	/* TX/RX Descriptor Physical Address */
1880 	paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1881 	ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1882 	paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1883 	ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1884 	/* sync cache */
1885 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1886 	    sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1887 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
1888 	    sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1889 
1890 	/* enable interrupts */
1891 	val = ENET_EIMR|ENET_EIR_TXF|ENET_EIR_RXF|ENET_EIR_EBERR;
1892 	if (sc->sc_imxtype == 7)
1893 		val |= ENET_EIR_TXF2|ENET_EIR_RXF2|ENET_EIR_TXF1|ENET_EIR_RXF1;
1894 	ENET_REG_WRITE(sc, ENET_EIMR, val);
1895 
1896 	/* enable ether */
1897 	ENET_REG_WRITE(sc, ENET_ECR,
1898 #if _BYTE_ORDER == _LITTLE_ENDIAN
1899 	    ENET_ECR_DBSWP |
1900 #endif
1901 	    ecr_speed |
1902 	    ENET_ECR_EN1588 |	/* use enhanced TX/RX descriptor */
1903 	    ENET_ECR_ETHEREN);	/* Ethernet Enable */
1904 
1905 	return 0;
1906 }
1907 
1908 static int
1909 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
1910               bus_dmamap_t *mapp)
1911 {
1912 	bus_dma_segment_t seglist[1];
1913 	int nsegs, error;
1914 
1915 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
1916 	    1, &nsegs, M_NOWAIT)) != 0) {
1917 		device_printf(sc->sc_dev,
1918 		    "unable to allocate DMA buffer, error=%d\n", error);
1919 		goto fail_alloc;
1920 	}
1921 
1922 	if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
1923 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1924 		device_printf(sc->sc_dev,
1925 		    "unable to map DMA buffer, error=%d\n",
1926 		    error);
1927 		goto fail_map;
1928 	}
1929 
1930 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1931 	    BUS_DMA_NOWAIT, mapp)) != 0) {
1932 		device_printf(sc->sc_dev,
1933 		    "unable to create DMA map, error=%d\n", error);
1934 		goto fail_create;
1935 	}
1936 
1937 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
1938 	    BUS_DMA_NOWAIT)) != 0) {
1939 		aprint_error_dev(sc->sc_dev,
1940 		    "unable to load DMA map, error=%d\n", error);
1941 		goto fail_load;
1942 	}
1943 
1944 	return 0;
1945 
1946  fail_load:
1947 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
1948  fail_create:
1949 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
1950  fail_map:
1951 	bus_dmamem_free(sc->sc_dmat, seglist, 1);
1952  fail_alloc:
1953 	return error;
1954 }
1955