xref: /netbsd-src/lib/libpthread/pthread_tsd.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: pthread_tsd.c,v 1.16 2017/07/09 20:21:08 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __RCSID("$NetBSD: pthread_tsd.c,v 1.16 2017/07/09 20:21:08 christos Exp $");
34 
35 /* Functions and structures dealing with thread-specific data */
36 #include <errno.h>
37 #include <sys/mman.h>
38 
39 #include "pthread.h"
40 #include "pthread_int.h"
41 #include "reentrant.h"
42 
43 int pthread_keys_max;
44 static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
45 static int nextkey;
46 
47 PTQ_HEAD(pthread__tsd_list, pt_specific) *pthread__tsd_list = NULL;
48 void (**pthread__tsd_destructors)(void *) = NULL;
49 
50 __strong_alias(__libc_thr_keycreate,pthread_key_create)
51 __strong_alias(__libc_thr_keydelete,pthread_key_delete)
52 
53 static void
54 /*ARGSUSED*/
55 null_destructor(void *p)
56 {
57 }
58 
59 #include <err.h>
60 #include <stdlib.h>
61 #include <stdio.h>
62 
63 void *
64 pthread_tsd_init(size_t *tlen)
65 {
66 	char *pkm;
67 	size_t alen;
68 	char *arena;
69 
70 	if ((pkm = pthread__getenv("PTHREAD_KEYS_MAX")) != NULL) {
71 		pthread_keys_max = (int)strtol(pkm, NULL, 0);
72 		if (pthread_keys_max < _POSIX_THREAD_KEYS_MAX)
73 			pthread_keys_max = _POSIX_THREAD_KEYS_MAX;
74 	} else {
75 		pthread_keys_max = PTHREAD_KEYS_MAX;
76 	}
77 
78 	/*
79 	 * Can't use malloc here yet, because malloc will use the fake
80 	 * libc thread functions to initialize itself, so mmap the space.
81 	 */
82 	*tlen = sizeof(struct __pthread_st)
83 	    + pthread_keys_max * sizeof(struct pt_specific);
84 	alen = *tlen
85 	    + sizeof(*pthread__tsd_list) * pthread_keys_max
86 	    + sizeof(*pthread__tsd_destructors) * pthread_keys_max;
87 
88 	arena = mmap(NULL, alen, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
89 	if (arena == MAP_FAILED) {
90 		pthread_keys_max = 0;
91 		return NULL;
92 	}
93 
94 	pthread__tsd_list = (void *)arena;
95 	arena += sizeof(*pthread__tsd_list) * pthread_keys_max;
96 	pthread__tsd_destructors = (void *)arena;
97 	arena += sizeof(*pthread__tsd_destructors) * pthread_keys_max;
98 	return arena;
99 }
100 
101 int
102 pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
103 {
104 	int i;
105 
106 	if (__predict_false(__uselibcstub))
107 		return __libc_thr_keycreate_stub(key, destructor);
108 
109 	/* Get a lock on the allocation list */
110 	pthread_mutex_lock(&tsd_mutex);
111 
112 	/* Find an available slot:
113 	 * The condition for an available slot is one with the destructor
114 	 * not being NULL. If the desired destructor is NULL we set it to
115 	 * our own internal destructor to satisfy the non NULL condition.
116 	 */
117 	/* 1. Search from "nextkey" to the end of the list. */
118 	for (i = nextkey; i < pthread_keys_max; i++)
119 		if (pthread__tsd_destructors[i] == NULL)
120 			break;
121 
122 	if (i == pthread_keys_max) {
123 		/* 2. If that didn't work, search from the start
124 		 *    of the list back to "nextkey".
125 		 */
126 		for (i = 0; i < nextkey; i++)
127 			if (pthread__tsd_destructors[i] == NULL)
128 				break;
129 
130 		if (i == nextkey) {
131 			/* If we didn't find one here, there isn't one
132 			 * to be found.
133 			 */
134 			pthread_mutex_unlock(&tsd_mutex);
135 			return EAGAIN;
136 		}
137 	}
138 
139 	/* Got one. */
140 	pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
141 	pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
142 
143 	nextkey = (i + 1) % pthread_keys_max;
144 	pthread_mutex_unlock(&tsd_mutex);
145 	*key = i;
146 
147 	return 0;
148 }
149 
150 /*
151  * Each thread holds an array of pthread_keys_max pt_specific list
152  * elements. When an element is used it is inserted into the appropriate
153  * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
154  * means that the element is not threaded, ptqe_prev != NULL it is
155  * already part of the list. When we set to a NULL value we delete from the
156  * list if it was in the list, and when we set to non-NULL value, we insert
157  * in the list if it was not already there.
158  *
159  * We keep this global array of lists of threads that have called
160  * pthread_set_specific with non-null values, for each key so that
161  * we don't have to check all threads for non-NULL values in
162  * pthread_key_destroy
163  *
164  * We could keep an accounting of the number of specific used
165  * entries per thread, so that we can update pt_havespecific when we delete
166  * the last one, but we don't bother for now
167  */
168 int
169 pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
170 {
171 	struct pt_specific *pt;
172 
173 	pthread__assert(key >= 0 && key < pthread_keys_max);
174 
175 	pthread_mutex_lock(&tsd_mutex);
176 	pthread__assert(pthread__tsd_destructors[key] != NULL);
177 	pt = &self->pt_specific[key];
178 	self->pt_havespecific = 1;
179 	if (value) {
180 		if (pt->pts_next.ptqe_prev == NULL)
181 			PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
182 	} else {
183 		if (pt->pts_next.ptqe_prev != NULL) {
184 			PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
185 			pt->pts_next.ptqe_prev = NULL;
186 		}
187 	}
188 	pt->pts_value = __UNCONST(value);
189 	pthread_mutex_unlock(&tsd_mutex);
190 
191 	return 0;
192 }
193 
194 int
195 pthread_key_delete(pthread_key_t key)
196 {
197 	/*
198 	 * This is tricky.  The standard says of pthread_key_create()
199 	 * that new keys have the value NULL associated with them in
200 	 * all threads.  According to people who were present at the
201 	 * standardization meeting, that requirement was written
202 	 * before pthread_key_delete() was introduced, and not
203 	 * reconsidered when it was.
204 	 *
205 	 * See David Butenhof's article in comp.programming.threads:
206 	 * Subject: Re: TSD key reusing issue
207 	 * Message-ID: <u97d8.29$fL6.200@news.cpqcorp.net>
208 	 * Date: Thu, 21 Feb 2002 09:06:17 -0500
209 	 *	 http://groups.google.com/groups?\
210 	 *	 hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
211 	 *
212 	 * Given:
213 	 *
214 	 * 1: Applications are not required to clear keys in all
215 	 *    threads before calling pthread_key_delete().
216 	 * 2: Clearing pointers without running destructors is a
217 	 *    memory leak.
218 	 * 3: The pthread_key_delete() function is expressly forbidden
219 	 *    to run any destructors.
220 	 *
221 	 * Option 1: Make this function effectively a no-op and
222 	 * prohibit key reuse. This is a possible resource-exhaustion
223 	 * problem given that we have a static storage area for keys,
224 	 * but having a non-static storage area would make
225 	 * pthread_setspecific() expensive (might need to realloc the
226 	 * TSD array).
227 	 *
228 	 * Option 2: Ignore the specified behavior of
229 	 * pthread_key_create() and leave the old values. If an
230 	 * application deletes a key that still has non-NULL values in
231 	 * some threads... it's probably a memory leak and hence
232 	 * incorrect anyway, and we're within our rights to let the
233 	 * application lose. However, it's possible (if unlikely) that
234 	 * the application is storing pointers to non-heap data, or
235 	 * non-pointers that have been wedged into a void pointer, so
236 	 * we can't entirely write off such applications as incorrect.
237 	 * This could also lead to running (new) destructors on old
238 	 * data that was never supposed to be associated with that
239 	 * destructor.
240 	 *
241 	 * Option 3: Follow the specified behavior of
242 	 * pthread_key_create().  Either pthread_key_create() or
243 	 * pthread_key_delete() would then have to clear the values in
244 	 * every thread's slot for that key. In order to guarantee the
245 	 * visibility of the NULL value in other threads, there would
246 	 * have to be synchronization operations in both the clearer
247 	 * and pthread_getspecific().  Putting synchronization in
248 	 * pthread_getspecific() is a big performance lose.  But in
249 	 * reality, only (buggy) reuse of an old key would require
250 	 * this synchronization; for a new key, there has to be a
251 	 * memory-visibility propagating event between the call to
252 	 * pthread_key_create() and pthread_getspecific() with that
253 	 * key, so setting the entries to NULL without synchronization
254 	 * will work, subject to problem (2) above. However, it's kind
255 	 * of slow.
256 	 *
257 	 * Note that the argument in option 3 only applies because we
258 	 * keep TSD in ordinary memory which follows the pthreads
259 	 * visibility rules. The visibility rules are not required by
260 	 * the standard to apply to TSD, so the argument doesn't
261 	 * apply in general, just to this implementation.
262 	 */
263 
264 	/*
265 	 * We do option 3; we find the list of all pt_specific structures
266 	 * threaded on the key we are deleting, unthread them, and set the
267 	 * pointer to NULL. Finally we unthread the entry, freeing it for
268 	 * further use.
269 	 *
270 	 * We don't call the destructor here, it is the responsibility
271 	 * of the application to cleanup the storage:
272 	 * 	http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
273 	 *	pthread_key_delete.html
274 	 */
275 	struct pt_specific *pt;
276 
277 	if (__predict_false(__uselibcstub))
278 		return __libc_thr_keydelete_stub(key);
279 
280 	pthread__assert(key >= 0 && key < pthread_keys_max);
281 
282 	pthread_mutex_lock(&tsd_mutex);
283 
284 	pthread__assert(pthread__tsd_destructors[key] != NULL);
285 
286 	while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
287 		PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
288 		pt->pts_value = NULL;
289 		pt->pts_next.ptqe_prev = NULL;
290 	}
291 
292 	pthread__tsd_destructors[key] = NULL;
293 	pthread_mutex_unlock(&tsd_mutex);
294 
295 	return 0;
296 }
297 
298 /* Perform thread-exit-time destruction of thread-specific data. */
299 void
300 pthread__destroy_tsd(pthread_t self)
301 {
302 	int i, done, iterations;
303 	void *val;
304 	void (*destructor)(void *);
305 
306 	if (!self->pt_havespecific)
307 		return;
308 	pthread_mutex_unlock(&self->pt_lock);
309 
310 	/* Butenhof, section 5.4.2 (page 167):
311 	 *
312 	 * ``Also, Pthreads sets the thread-specific data value for a
313 	 * key to NULL before calling that key's destructor (passing
314 	 * the previous value of the key) when a thread terminates [*].
315 	 * ...
316 	 * [*] That is, unfortunately, not what the standard
317 	 * says. This is one of the problems with formal standards -
318 	 * they say what they say, not what they were intended to
319 	 * say. Somehow, an error crept in, and the sentence
320 	 * specifying that "the implementation clears the
321 	 * thread-specific data value before calling the destructor"
322 	 * was deleted. Nobody noticed, and the standard was approved
323 	 * with the error. So the standard says (by omission) that if
324 	 * you want to write a portable application using
325 	 * thread-specific data, that will not hang on thread
326 	 * termination, you must call pthread_setspecific within your
327 	 * destructor function to change the value to NULL. This would
328 	 * be silly, and any serious implementation of Pthreads will
329 	 * violate the standard in this respect. Of course, the
330 	 * standard will be fixed, probably by the 1003.1n amendment
331 	 * (assorted corrections to 1003.1c-1995), but that will take
332 	 * a while.''
333 	 */
334 
335 	/* We're not required to try very hard */
336 	iterations = PTHREAD_DESTRUCTOR_ITERATIONS;
337 	do {
338 		done = 1;
339 		for (i = 0; i < pthread_keys_max; i++) {
340 			struct pt_specific *pt = &self->pt_specific[i];
341 			if (pt->pts_next.ptqe_prev == NULL)
342 				continue;
343 			pthread_mutex_lock(&tsd_mutex);
344 
345 			if (pt->pts_next.ptqe_prev != NULL)  {
346 				PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
347 				val = pt->pts_value;
348 				pt->pts_value = NULL;
349 				pt->pts_next.ptqe_prev = NULL;
350 				destructor = pthread__tsd_destructors[i];
351 			} else
352 				destructor = NULL;
353 
354 			pthread_mutex_unlock(&tsd_mutex);
355 			if (destructor != NULL) {
356 				done = 0;
357 				(*destructor)(val);
358 			}
359 		}
360 	} while (!done && --iterations);
361 
362 	self->pt_havespecific = 0;
363 	pthread_mutex_lock(&self->pt_lock);
364 }
365