xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision de2138164cd16145ee5fd4d0aef1e8f952c1a9fb)
1 /*	$NetBSD: pthread_mutex.c,v 1.25 2007/03/02 18:53:52 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.25 2007/03/02 18:53:52 ad Exp $");
41 
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46 
47 #include "pthread.h"
48 #include "pthread_int.h"
49 
50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
51 
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57 
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61 
62 __strong_alias(__libc_thr_once,pthread_once)
63 
64 struct mutex_private {
65 	int	type;
66 	int	recursecount;
67 };
68 
69 static const struct mutex_private mutex_private_default = {
70 	PTHREAD_MUTEX_DEFAULT,
71 	0,
72 };
73 
74 struct mutexattr_private {
75 	int	type;
76 };
77 
78 static const struct mutexattr_private mutexattr_private_default = {
79 	PTHREAD_MUTEX_DEFAULT,
80 };
81 
82 /*
83  * If the mutex does not already have private data (i.e. was statically
84  * initialized), then give it the default.
85  */
86 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
87 do {									\
88 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
89 		/* LINTED cast away const */				\
90 		mp = ((mutex)->ptm_private =				\
91 		    (void *)&mutex_private_default);			\
92 	}								\
93 } while (/*CONSTCOND*/0)
94 
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 	struct mutexattr_private *map;
99 	struct mutex_private *mp;
100 
101 	pthread__error(EINVAL, "Invalid mutex attribute",
102 	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103 
104 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 		mp = malloc(sizeof(*mp));
107 		if (mp == NULL)
108 			return ENOMEM;
109 
110 		mp->type = map->type;
111 		mp->recursecount = 0;
112 	} else {
113 		/* LINTED cast away const */
114 		mp = (struct mutex_private *) &mutex_private_default;
115 	}
116 
117 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 	mutex->ptm_owner = NULL;
119 	pthread_lockinit(&mutex->ptm_lock);
120 	pthread_lockinit(&mutex->ptm_interlock);
121 	PTQ_INIT(&mutex->ptm_blocked);
122 	mutex->ptm_private = mp;
123 
124 	return 0;
125 }
126 
127 
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131 
132 	pthread__error(EINVAL, "Invalid mutex",
133 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 	pthread__error(EBUSY, "Destroying locked mutex",
135 	    mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136 
137 	mutex->ptm_magic = _PT_MUTEX_DEAD;
138 	if (mutex->ptm_private != NULL &&
139 	    mutex->ptm_private != (const void *)&mutex_private_default)
140 		free(mutex->ptm_private);
141 
142 	return 0;
143 }
144 
145 
146 /*
147  * Note regarding memory visibility: Pthreads has rules about memory
148  * visibility and mutexes. Very roughly: Memory a thread can see when
149  * it unlocks a mutex can be seen by another thread that locks the
150  * same mutex.
151  *
152  * A memory barrier after a lock and before an unlock will provide
153  * this behavior. This code relies on pthread__simple_lock_try() to issue
154  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155  * issue a barrier before releasing a lock.
156  */
157 
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 	int error;
162 
163 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
164 	/*
165 	 * Note that if we get the lock, we don't have to deal with any
166 	 * non-default lock type handling.
167 	 */
168 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
169 		error = pthread_mutex_lock_slow(mutex);
170 		if (error)
171 			return error;
172 	}
173 
174 	/* We have the lock! */
175 	/*
176 	 * Identifying ourselves may be slow, and this assignment is
177 	 * only needed for (a) debugging identity of the owning thread
178 	 * and (b) handling errorcheck and recursive mutexes. It's
179 	 * better to just stash our stack pointer here and let those
180 	 * slow exception cases compute the stack->thread mapping.
181 	 */
182 	mutex->ptm_owner = (pthread_t)pthread__sp();
183 
184 	return 0;
185 }
186 
187 
188 static int
189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
190 {
191 	pthread_t self;
192 	extern int pthread__started;
193 
194 	pthread__error(EINVAL, "Invalid mutex",
195 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
196 
197 	self = pthread__self();
198 
199 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
200 	while (/*CONSTCOND*/1) {
201 		if (pthread__simple_lock_try(&mutex->ptm_lock))
202 			break; /* got it! */
203 
204 		/* Okay, didn't look free. Get the interlock... */
205 		pthread_spinlock(self, &mutex->ptm_interlock);
206 
207 		/*
208 		 * The mutex_unlock routine will get the interlock
209 		 * before looking at the list of sleepers, so if the
210 		 * lock is held we can safely put ourselves on the
211 		 * sleep queue. If it's not held, we can try taking it
212 		 * again.
213 		 */
214 		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
215 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
216 			struct mutex_private *mp;
217 
218 			GET_MUTEX_PRIVATE(mutex, mp);
219 
220 			if (pthread__id(mutex->ptm_owner) == self) {
221 				switch (mp->type) {
222 				case PTHREAD_MUTEX_ERRORCHECK:
223 					PTQ_REMOVE(&mutex->ptm_blocked, self,
224 					    pt_sleep);
225 					pthread_spinunlock(self,
226 					    &mutex->ptm_interlock);
227 					return EDEADLK;
228 
229 				case PTHREAD_MUTEX_RECURSIVE:
230 					/*
231 					 * It's safe to do this without
232 					 * holding the interlock, because
233 					 * we only modify it if we know we
234 					 * own the mutex.
235 					 */
236 					PTQ_REMOVE(&mutex->ptm_blocked, self,
237 					    pt_sleep);
238 					pthread_spinunlock(self,
239 					    &mutex->ptm_interlock);
240 					if (mp->recursecount == INT_MAX)
241 						return EAGAIN;
242 					mp->recursecount++;
243 					return 0;
244 				}
245 			}
246 
247 			if (pthread__started == 0) {
248 				sigset_t ss;
249 
250 				/*
251 				 * The spec says we must deadlock, so...
252 				 */
253 				pthread__assert(mp->type ==
254 						PTHREAD_MUTEX_NORMAL);
255 				(void) sigprocmask(SIG_SETMASK, NULL, &ss);
256 				for (;;) {
257 					sigsuspend(&ss);
258 				}
259 				/*NOTREACHED*/
260 			}
261 
262 			/*
263 			 * Locking a mutex is not a cancellation
264 			 * point, so we don't need to do the
265 			 * test-cancellation dance. We may get woken
266 			 * up spuriously by pthread_cancel or signals,
267 			 * but it's okay since we're just going to
268 			 * retry.
269 			 */
270 			(void)pthread__park(self, &mutex->ptm_interlock,
271 			    mutex, NULL, NULL, 0, 0);
272 			pthread_spinunlock(self, &mutex->ptm_interlock);
273 		} else {
274 			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
275 			pthread_spinunlock(self, &mutex->ptm_interlock);
276 		}
277 		/* Go around for another try. */
278 	}
279 
280 	return 0;
281 }
282 
283 
284 int
285 pthread_mutex_trylock(pthread_mutex_t *mutex)
286 {
287 
288 	pthread__error(EINVAL, "Invalid mutex",
289 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
290 
291 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
292 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
293 		struct mutex_private *mp;
294 
295 		GET_MUTEX_PRIVATE(mutex, mp);
296 
297 		/*
298 		 * These tests can be performed without holding the
299 		 * interlock because these fields are only modified
300 		 * if we know we own the mutex.
301 		 */
302 		if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
303 		    (pthread__id(mutex->ptm_owner) == pthread__self())) {
304 			if (mp->recursecount == INT_MAX)
305 				return EAGAIN;
306 			mp->recursecount++;
307 			return 0;
308 		}
309 
310 		return EBUSY;
311 	}
312 
313 	/* see comment at the end of pthread_mutex_lock() */
314 	mutex->ptm_owner = (pthread_t)pthread__sp();
315 
316 	return 0;
317 }
318 
319 
320 int
321 pthread_mutex_unlock(pthread_mutex_t *mutex)
322 {
323 	struct mutex_private *mp;
324 	pthread_t self, blocked;
325 	int weown;
326 
327 	pthread__error(EINVAL, "Invalid mutex",
328 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
329 
330 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
331 
332 	GET_MUTEX_PRIVATE(mutex, mp);
333 
334 	self = pthread_self();
335 	/*
336 	 * These tests can be performed without holding the
337 	 * interlock because these fields are only modified
338 	 * if we know we own the mutex.
339 	 */
340 	weown = (pthread__id(mutex->ptm_owner) == self);
341 	switch (mp->type) {
342 	case PTHREAD_MUTEX_RECURSIVE:
343 		if (!weown)
344 			return EPERM;
345 		if (mp->recursecount != 0) {
346 			mp->recursecount--;
347 			return 0;
348 		}
349 		break;
350 	case PTHREAD_MUTEX_ERRORCHECK:
351 		if (!weown)
352 			return EPERM;
353 		/*FALLTHROUGH*/
354 	default:
355 		if (__predict_false(!weown)) {
356 			pthread__error(EPERM, "Unlocking unlocked mutex",
357 			    (mutex->ptm_owner != 0));
358 			pthread__error(EPERM,
359 			    "Unlocking mutex owned by another thread", weown);
360 		}
361 		break;
362 	}
363 
364 	mutex->ptm_owner = NULL;
365 	pthread__simple_unlock(&mutex->ptm_lock);
366 	/*
367 	 * Do a double-checked locking dance to see if there are any
368 	 * waiters.  If we don't see any waiters, we can exit, because
369 	 * we've already released the lock. If we do see waiters, they
370 	 * were probably waiting on us... there's a slight chance that
371 	 * they are waiting on a different thread's ownership of the
372 	 * lock that happened between the unlock above and this
373 	 * examination of the queue; if so, no harm is done, as the
374 	 * waiter will loop and see that the mutex is still locked.
375 	 */
376 	pthread_spinlock(self, &mutex->ptm_interlock);
377 	if ((blocked = PTQ_FIRST(&mutex->ptm_blocked)) != NULL) {
378 		PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
379 		PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
380 		pthread__unpark(self, &mutex->ptm_interlock, mutex, blocked);
381 	} else
382 		pthread_spinunlock(self, &mutex->ptm_interlock);
383 
384 	return 0;
385 }
386 
387 int
388 pthread_mutexattr_init(pthread_mutexattr_t *attr)
389 {
390 	struct mutexattr_private *map;
391 
392 	map = malloc(sizeof(*map));
393 	if (map == NULL)
394 		return ENOMEM;
395 
396 	*map = mutexattr_private_default;
397 
398 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
399 	attr->ptma_private = map;
400 
401 	return 0;
402 }
403 
404 
405 int
406 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
407 {
408 
409 	pthread__error(EINVAL, "Invalid mutex attribute",
410 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
411 
412 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
413 	if (attr->ptma_private != NULL)
414 		free(attr->ptma_private);
415 
416 	return 0;
417 }
418 
419 
420 int
421 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
422 {
423 	struct mutexattr_private *map;
424 
425 	pthread__error(EINVAL, "Invalid mutex attribute",
426 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
427 
428 	map = attr->ptma_private;
429 
430 	*typep = map->type;
431 
432 	return 0;
433 }
434 
435 
436 int
437 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
438 {
439 	struct mutexattr_private *map;
440 
441 	pthread__error(EINVAL, "Invalid mutex attribute",
442 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
443 
444 	map = attr->ptma_private;
445 
446 	switch (type) {
447 	case PTHREAD_MUTEX_NORMAL:
448 	case PTHREAD_MUTEX_ERRORCHECK:
449 	case PTHREAD_MUTEX_RECURSIVE:
450 		map->type = type;
451 		break;
452 
453 	default:
454 		return EINVAL;
455 	}
456 
457 	return 0;
458 }
459 
460 
461 static void
462 once_cleanup(void *closure)
463 {
464 
465        pthread_mutex_unlock((pthread_mutex_t *)closure);
466 }
467 
468 
469 int
470 pthread_once(pthread_once_t *once_control, void (*routine)(void))
471 {
472 
473 	if (once_control->pto_done == 0) {
474 		pthread_mutex_lock(&once_control->pto_mutex);
475 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
476 		if (once_control->pto_done == 0) {
477 			routine();
478 			once_control->pto_done = 1;
479 		}
480 		pthread_cleanup_pop(1);
481 	}
482 
483 	return 0;
484 }
485