xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision c62a74e6d5cfb2fb5034e98b983da7e2fc87709d)
1 /*	$NetBSD: pthread_mutex.c,v 1.2 2003/01/18 10:34:16 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include <assert.h>
41 #include <errno.h>
42 #include <limits.h>
43 #include <stdlib.h>
44 
45 #include "pthread.h"
46 #include "pthread_int.h"
47 
48 static int pthread_mutex_lock_slow(pthread_mutex_t *);
49 
50 __strong_alias(__libc_mutex_init,pthread_mutex_init)
51 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
52 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
53 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
54 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
55 
56 __strong_alias(__libc_thr_once,pthread_once)
57 
58 struct mutex_private {
59 	int	type;
60 	int	recursecount;
61 };
62 
63 static const struct mutex_private mutex_private_default = {
64 	PTHREAD_MUTEX_DEFAULT,
65 	0,
66 };
67 
68 struct mutexattr_private {
69 	int	type;
70 };
71 
72 static const struct mutexattr_private mutexattr_private_default = {
73 	PTHREAD_MUTEX_DEFAULT,
74 };
75 
76 /*
77  * If the mutex does not already have private data (i.e. was statically
78  * initialized), then give it the default.
79  */
80 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
81 do {									\
82 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
83 		/* LINTED cast away const */				\
84 		mp = ((mutex)->ptm_private =				\
85 		    (void *)&mutex_private_default);			\
86 	}								\
87 } while (/*CONSTCOND*/0)
88 
89 int
90 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
91 {
92 	struct mutexattr_private *map;
93 	struct mutex_private *mp;
94 
95 #ifdef ERRORCHECK
96 	if ((mutex == NULL) ||
97 	    (attr && (attr->ptma_magic != _PT_MUTEXATTR_MAGIC)))
98 		return EINVAL;
99 #endif
100 
101 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
102 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
103 		mp = malloc(sizeof(*mp));
104 		if (mp == NULL)
105 			return ENOMEM;
106 
107 		mp->type = map->type;
108 		mp->recursecount = 0;
109 	} else {
110 		/* LINTED cast away const */
111 		mp = (struct mutex_private *) &mutex_private_default;
112 	}
113 
114 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
115 	mutex->ptm_owner = NULL;
116 	pthread_lockinit(&mutex->ptm_lock);
117 	pthread_lockinit(&mutex->ptm_interlock);
118 	PTQ_INIT(&mutex->ptm_blocked);
119 	mutex->ptm_private = mp;
120 
121 	return 0;
122 }
123 
124 
125 int
126 pthread_mutex_destroy(pthread_mutex_t *mutex)
127 {
128 
129 #ifdef ERRORCHECK
130 	if ((mutex == NULL) ||
131 	    (mutex->ptm_magic != _PT_MUTEX_MAGIC) ||
132 	    (mutex->ptm_lock != __SIMPLELOCK_UNLOCKED))
133 		return EINVAL;
134 #endif
135 
136 	mutex->ptm_magic = _PT_MUTEX_DEAD;
137 	if (mutex->ptm_private != NULL &&
138 	    mutex->ptm_private != (void *)&mutex_private_default)
139 		free(mutex->ptm_private);
140 
141 	return 0;
142 }
143 
144 
145 /*
146  * Note regarding memory visibility: Pthreads has rules about memory
147  * visibility and mutexes. Very roughly: Memory a thread can see when
148  * it unlocks a mutex can be seen by another thread that locks the
149  * same mutex.
150  *
151  * A memory barrier after a lock and before an unlock will provide
152  * this behavior. This code relies on pthread__simple_lock_try() to issue
153  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
154  * issue a barrier before releasing a lock.
155  */
156 
157 int
158 pthread_mutex_lock(pthread_mutex_t *mutex)
159 {
160 	int error;
161 
162 #ifdef ERRORCHECK
163 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
164 		return EINVAL;
165 #endif
166 
167 	/*
168 	 * Note that if we get the lock, we don't have to deal with any
169 	 * non-default lock type handling.
170 	 */
171 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
172 		error = pthread_mutex_lock_slow(mutex);
173 		if (error)
174 			return error;
175 	}
176 
177 	/* We have the lock! */
178 	mutex->ptm_owner = pthread__self();
179 
180 	return 0;
181 }
182 
183 
184 static int
185 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
186 {
187 	pthread_t self;
188 
189 	self = pthread__self();
190 
191 	while (/*CONSTCOND*/1) {
192 		if (pthread__simple_lock_try(&mutex->ptm_lock))
193 			break; /* got it! */
194 
195 		/* Okay, didn't look free. Get the interlock... */
196 		pthread_spinlock(self, &mutex->ptm_interlock);
197 		/*
198 		 * The mutex_unlock routine will get the interlock
199 		 * before looking at the list of sleepers, so if the
200 		 * lock is held we can safely put ourselves on the
201 		 * sleep queue. If it's not held, we can try taking it
202 		 * again.
203 		 */
204 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
205 			struct mutex_private *mp;
206 
207 			GET_MUTEX_PRIVATE(mutex, mp);
208 
209 			if (mutex->ptm_owner == self) {
210 				switch (mp->type) {
211 				case PTHREAD_MUTEX_ERRORCHECK:
212 					pthread_spinunlock(self,
213 					    &mutex->ptm_interlock);
214 					return EDEADLK;
215 
216 				case PTHREAD_MUTEX_RECURSIVE:
217 					/*
218 					 * It's safe to do this without
219 					 * holding the interlock, because
220 					 * we only modify it if we know we
221 					 * own the mutex.
222 					 */
223 					pthread_spinunlock(self,
224 					    &mutex->ptm_interlock);
225 					if (mp->recursecount == INT_MAX)
226 						return EAGAIN;
227 					mp->recursecount++;
228 					return 0;
229 				}
230 			}
231 
232 			PTQ_INSERT_TAIL(&mutex->ptm_blocked, self, pt_sleep);
233 			/*
234 			 * Locking a mutex is not a cancellation
235 			 * point, so we don't need to do the
236 			 * test-cancellation dance. We may get woken
237 			 * up spuriously by pthread_cancel, though,
238 			 * but it's okay since we're just going to
239 			 * retry.
240 			 */
241 			pthread_spinlock(self, &self->pt_statelock);
242 			self->pt_state = PT_STATE_BLOCKED_QUEUE;
243 			self->pt_sleepobj = mutex;
244 			self->pt_sleepq = &mutex->ptm_blocked;
245 			self->pt_sleeplock = &mutex->ptm_interlock;
246 			pthread_spinunlock(self, &self->pt_statelock);
247 
248 			pthread__block(self, &mutex->ptm_interlock);
249 			/* interlock is not held when we return */
250 		} else {
251 			pthread_spinunlock(self, &mutex->ptm_interlock);
252 		}
253 		/* Go around for another try. */
254 	}
255 
256 	return 0;
257 }
258 
259 
260 int
261 pthread_mutex_trylock(pthread_mutex_t *mutex)
262 {
263 	pthread_t self = pthread__self();
264 
265 #ifdef ERRORCHECK
266 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
267 		return EINVAL;
268 #endif
269 
270 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
271 		struct mutex_private *mp;
272 
273 		GET_MUTEX_PRIVATE(mutex, mp);
274 
275 		/*
276 		 * These tests can be performed without holding the
277 		 * interlock because these fields are only modified
278 		 * if we know we own the mutex.
279 		 */
280 		if (mutex->ptm_owner == self) {
281 			switch (mp->type) {
282 			case PTHREAD_MUTEX_ERRORCHECK:
283 				return EDEADLK;
284 
285 			case PTHREAD_MUTEX_RECURSIVE:
286 				if (mp->recursecount == INT_MAX)
287 					return EAGAIN;
288 				mp->recursecount++;
289 				return 0;
290 			}
291 		}
292 
293 		return EBUSY;
294 	}
295 
296 	mutex->ptm_owner = self;
297 
298 	return 0;
299 }
300 
301 
302 int
303 pthread_mutex_unlock(pthread_mutex_t *mutex)
304 {
305 	struct mutex_private *mp;
306 	pthread_t self, blocked;
307 
308 	self = pthread__self();
309 
310 #ifdef ERRORCHECK
311 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
312 		return EINVAL;
313 
314 	if (mutex->ptm_lock != __SIMPLELOCK_LOCKED)
315 		return EPERM; /* Not exactly the right error. */
316 #endif
317 
318 	GET_MUTEX_PRIVATE(mutex, mp);
319 
320 	/*
321 	 * These tests can be performed without holding the
322 	 * interlock because these fields are only modified
323 	 * if we know we own the mutex.
324 	 */
325 	switch (mp->type) {
326 	case PTHREAD_MUTEX_ERRORCHECK:
327 		if (mutex->ptm_owner != self)
328 			return EPERM;
329 		break;
330 
331 	case PTHREAD_MUTEX_RECURSIVE:
332 		if (mutex->ptm_owner != self)
333 			return EPERM;
334 		if (mp->recursecount != 0) {
335 			mp->recursecount--;
336 			return 0;
337 		}
338 		break;
339 	}
340 
341 	pthread_spinlock(self, &mutex->ptm_interlock);
342 	blocked = PTQ_FIRST(&mutex->ptm_blocked);
343 	if (blocked)
344 		PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
345 	mutex->ptm_owner = NULL;
346 	pthread__simple_unlock(&mutex->ptm_lock);
347 	pthread_spinunlock(self, &mutex->ptm_interlock);
348 
349 	/* Give the head of the blocked queue another try. */
350 	if (blocked)
351 		pthread__sched(self, blocked);
352 
353 	return 0;
354 }
355 
356 int
357 pthread_mutexattr_init(pthread_mutexattr_t *attr)
358 {
359 	struct mutexattr_private *map;
360 
361 #ifdef ERRORCHECK
362 	if (attr == NULL)
363 		return EINVAL;
364 #endif
365 
366 	map = malloc(sizeof(*map));
367 	if (map == NULL)
368 		return ENOMEM;
369 
370 	*map = mutexattr_private_default;
371 
372 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
373 	attr->ptma_private = map;
374 
375 	return 0;
376 }
377 
378 
379 int
380 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
381 {
382 
383 #ifdef ERRORCHECK
384 	if ((attr == NULL) ||
385 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
386 		return EINVAL;
387 #endif
388 
389 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
390 	if (attr->ptma_private != NULL)
391 		free(attr->ptma_private);
392 
393 	return 0;
394 }
395 
396 
397 int
398 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
399 {
400 	struct mutexattr_private *map;
401 
402 #ifdef ERRORCHECK
403 	if ((attr == NULL) ||
404 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC) ||
405 	    (typep == NULL))
406 		return EINVAL;
407 #endif
408 
409 	map = attr->ptma_private;
410 
411 	*typep = map->type;
412 
413 	return 0;
414 }
415 
416 
417 int
418 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
419 {
420 	struct mutexattr_private *map;
421 
422 #ifdef ERRORCHECK
423 	if ((attr == NULL) ||
424 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
425 		return EINVAL;
426 #endif
427 	map = attr->ptma_private;
428 
429 	switch (type) {
430 	case PTHREAD_MUTEX_NORMAL:
431 	case PTHREAD_MUTEX_ERRORCHECK:
432 	case PTHREAD_MUTEX_RECURSIVE:
433 		map->type = type;
434 		break;
435 
436 	default:
437 		return EINVAL;
438 	}
439 
440 	return 0;
441 }
442 
443 
444 int
445 pthread_once(pthread_once_t *once_control, void (*routine)(void))
446 {
447 
448 	if (once_control->pto_done == 0) {
449 		pthread_mutex_lock(&once_control->pto_mutex);
450 		if (once_control->pto_done == 0) {
451 			routine();
452 			once_control->pto_done = 1;
453 		}
454 		pthread_mutex_unlock(&once_control->pto_mutex);
455 	}
456 
457 	return 0;
458 }
459