xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: pthread_mutex.c,v 1.54 2012/08/16 04:49:47 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * To track threads waiting for mutexes to be released, we use lockless
34  * lists built on atomic operations and memory barriers.
35  *
36  * A simple spinlock would be faster and make the code easier to
37  * follow, but spinlocks are problematic in userspace.  If a thread is
38  * preempted by the kernel while holding a spinlock, any other thread
39  * attempting to acquire that spinlock will needlessly busy wait.
40  *
41  * There is no good way to know that the holding thread is no longer
42  * running, nor to request a wake-up once it has begun running again.
43  * Of more concern, threads in the SCHED_FIFO class do not have a
44  * limited time quantum and so could spin forever, preventing the
45  * thread holding the spinlock from getting CPU time: it would never
46  * be released.
47  */
48 
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.54 2012/08/16 04:49:47 matt Exp $");
51 
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/lock.h>
55 
56 #include <errno.h>
57 #include <limits.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <stdio.h>
61 
62 #include "pthread.h"
63 #include "pthread_int.h"
64 
65 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
66 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
67 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
68 #define	MUTEX_THREAD			((uintptr_t)-16L)
69 
70 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
71 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
72 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
73 
74 #if __GNUC_PREREQ__(3, 0)
75 #define	NOINLINE		__attribute ((noinline))
76 #else
77 #define	NOINLINE		/* nothing */
78 #endif
79 
80 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
81 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
82 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
83 static void	pthread__mutex_pause(void);
84 
85 int		_pthread_mutex_held_np(pthread_mutex_t *);
86 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
87 
88 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
89 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
90 
91 __strong_alias(__libc_mutex_init,pthread_mutex_init)
92 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
93 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
94 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
95 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
96 
97 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
98 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
99 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
100 
101 int
102 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
103 {
104 	intptr_t type;
105 
106 	if (attr == NULL)
107 		type = PTHREAD_MUTEX_NORMAL;
108 	else
109 		type = (intptr_t)attr->ptma_private;
110 
111 	switch (type) {
112 	case PTHREAD_MUTEX_ERRORCHECK:
113 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
114 		ptm->ptm_owner = NULL;
115 		break;
116 	case PTHREAD_MUTEX_RECURSIVE:
117 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
118 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
119 		break;
120 	default:
121 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
122 		ptm->ptm_owner = NULL;
123 		break;
124 	}
125 
126 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
127 	ptm->ptm_waiters = NULL;
128 	ptm->ptm_recursed = 0;
129 
130 	return 0;
131 }
132 
133 
134 int
135 pthread_mutex_destroy(pthread_mutex_t *ptm)
136 {
137 
138 	pthread__error(EINVAL, "Invalid mutex",
139 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
140 	pthread__error(EBUSY, "Destroying locked mutex",
141 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
142 
143 	ptm->ptm_magic = _PT_MUTEX_DEAD;
144 	return 0;
145 }
146 
147 int
148 pthread_mutex_lock(pthread_mutex_t *ptm)
149 {
150 	pthread_t self;
151 	void *val;
152 
153 	self = pthread__self();
154 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
155 	if (__predict_true(val == NULL)) {
156 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
157 		membar_enter();
158 #endif
159 		return 0;
160 	}
161 	return pthread__mutex_lock_slow(ptm);
162 }
163 
164 /* We want function call overhead. */
165 NOINLINE static void
166 pthread__mutex_pause(void)
167 {
168 
169 	pthread__smt_pause();
170 }
171 
172 /*
173  * Spin while the holder is running.  'lwpctl' gives us the true
174  * status of the thread.  pt_blocking is set by libpthread in order
175  * to cut out system call and kernel spinlock overhead on remote CPUs
176  * (could represent many thousands of clock cycles).  pt_blocking also
177  * makes this thread yield if the target is calling sched_yield().
178  */
179 NOINLINE static void *
180 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
181 {
182 	pthread_t thread;
183 	unsigned int count, i;
184 
185 	for (count = 2;; owner = ptm->ptm_owner) {
186 		thread = (pthread_t)MUTEX_OWNER(owner);
187 		if (thread == NULL)
188 			break;
189 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
190 		    thread->pt_blocking)
191 			break;
192 		if (count < 128)
193 			count += count;
194 		for (i = count; i != 0; i--)
195 			pthread__mutex_pause();
196 	}
197 
198 	return owner;
199 }
200 
201 NOINLINE static int
202 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
203 {
204 	void *waiters, *new, *owner, *next;
205 	pthread_t self;
206 
207 	pthread__error(EINVAL, "Invalid mutex",
208 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
209 
210 	owner = ptm->ptm_owner;
211 	self = pthread__self();
212 
213 	/* Recursive or errorcheck? */
214 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
215 		if (MUTEX_RECURSIVE(owner)) {
216 			if (ptm->ptm_recursed == INT_MAX)
217 				return EAGAIN;
218 			ptm->ptm_recursed++;
219 			return 0;
220 		}
221 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
222 			return EDEADLK;
223 	}
224 
225 	for (;; owner = ptm->ptm_owner) {
226 		/* Spin while the owner is running. */
227 		owner = pthread__mutex_spin(ptm, owner);
228 
229 		/* If it has become free, try to acquire it again. */
230 		if (MUTEX_OWNER(owner) == 0) {
231 			do {
232 				new = (void *)
233 				    ((uintptr_t)self | (uintptr_t)owner);
234 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
235 				    new);
236 				if (next == owner) {
237 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
238 					membar_enter();
239 #endif
240 					return 0;
241 				}
242 				owner = next;
243 			} while (MUTEX_OWNER(owner) == 0);
244 			/*
245 			 * We have lost the race to acquire the mutex.
246 			 * The new owner could be running on another
247 			 * CPU, in which case we should spin and avoid
248 			 * the overhead of blocking.
249 			 */
250 			continue;
251 		}
252 
253 		/*
254 		 * Nope, still held.  Add thread to the list of waiters.
255 		 * Issue a memory barrier to ensure mutexwait/mutexnext
256 		 * are visible before we enter the waiters list.
257 		 */
258 		self->pt_mutexwait = 1;
259 		for (waiters = ptm->ptm_waiters;; waiters = next) {
260 			self->pt_mutexnext = waiters;
261 			membar_producer();
262 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
263 			if (next == waiters)
264 			    	break;
265 		}
266 
267 		/*
268 		 * Set the waiters bit and block.
269 		 *
270 		 * Note that the mutex can become unlocked before we set
271 		 * the waiters bit.  If that happens it's not safe to sleep
272 		 * as we may never be awoken: we must remove the current
273 		 * thread from the waiters list and try again.
274 		 *
275 		 * Because we are doing this atomically, we can't remove
276 		 * one waiter: we must remove all waiters and awken them,
277 		 * then sleep in _lwp_park() until we have been awoken.
278 		 *
279 		 * Issue a memory barrier to ensure that we are reading
280 		 * the value of ptm_owner/pt_mutexwait after we have entered
281 		 * the waiters list (the CAS itself must be atomic).
282 		 */
283 		membar_consumer();
284 		for (owner = ptm->ptm_owner;; owner = next) {
285 			if (MUTEX_HAS_WAITERS(owner))
286 				break;
287 			if (MUTEX_OWNER(owner) == 0) {
288 				pthread__mutex_wakeup(self, ptm);
289 				break;
290 			}
291 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
292 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
293 			if (next == owner) {
294 				/*
295 				 * pthread_mutex_unlock() can do a
296 				 * non-interlocked CAS.  We cannot
297 				 * know if our attempt to set the
298 				 * waiters bit has succeeded while
299 				 * the holding thread is running.
300 				 * There are many assumptions; see
301 				 * sys/kern/kern_mutex.c for details.
302 				 * In short, we must spin if we see
303 				 * that the holder is running again.
304 				 */
305 				membar_sync();
306 				next = pthread__mutex_spin(ptm, owner);
307 			}
308 		}
309 
310 		/*
311 		 * We may have been awoken by the current thread above,
312 		 * or will be awoken by the current holder of the mutex.
313 		 * The key requirement is that we must not proceed until
314 		 * told that we are no longer waiting (via pt_mutexwait
315 		 * being set to zero).  Otherwise it is unsafe to re-enter
316 		 * the thread onto the waiters list.
317 		 */
318 		while (self->pt_mutexwait) {
319 			self->pt_blocking++;
320 			(void)_lwp_park(NULL, self->pt_unpark,
321 			    __UNVOLATILE(&ptm->ptm_waiters),
322 			    __UNVOLATILE(&ptm->ptm_waiters));
323 			self->pt_unpark = 0;
324 			self->pt_blocking--;
325 			membar_sync();
326 		}
327 	}
328 }
329 
330 int
331 pthread_mutex_trylock(pthread_mutex_t *ptm)
332 {
333 	pthread_t self;
334 	void *val, *new, *next;
335 
336 	self = pthread__self();
337 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
338 	if (__predict_true(val == NULL)) {
339 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
340 		membar_enter();
341 #endif
342 		return 0;
343 	}
344 
345 	if (MUTEX_RECURSIVE(val)) {
346 		if (MUTEX_OWNER(val) == 0) {
347 			new = (void *)((uintptr_t)self | (uintptr_t)val);
348 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
349 			if (__predict_true(next == val)) {
350 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
351 				membar_enter();
352 #endif
353 				return 0;
354 			}
355 		}
356 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
357 			if (ptm->ptm_recursed == INT_MAX)
358 				return EAGAIN;
359 			ptm->ptm_recursed++;
360 			return 0;
361 		}
362 	}
363 
364 	return EBUSY;
365 }
366 
367 int
368 pthread_mutex_unlock(pthread_mutex_t *ptm)
369 {
370 	pthread_t self;
371 	void *value;
372 
373 	/*
374 	 * Note this may be a non-interlocked CAS.  See lock_slow()
375 	 * above and sys/kern/kern_mutex.c for details.
376 	 */
377 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
378 	membar_exit();
379 #endif
380 	self = pthread__self();
381 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
382 	if (__predict_true(value == self)) {
383 		pthread__smt_wake();
384 		return 0;
385 	}
386 	return pthread__mutex_unlock_slow(ptm);
387 }
388 
389 NOINLINE static int
390 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
391 {
392 	pthread_t self, owner, new;
393 	int weown, error, deferred;
394 
395 	pthread__error(EINVAL, "Invalid mutex",
396 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
397 
398 	self = pthread__self();
399 	owner = ptm->ptm_owner;
400 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
401 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
402 	error = 0;
403 
404 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
405 		if (!weown) {
406 			error = EPERM;
407 			new = owner;
408 		} else {
409 			new = NULL;
410 		}
411 	} else if (MUTEX_RECURSIVE(owner)) {
412 		if (!weown) {
413 			error = EPERM;
414 			new = owner;
415 		} else if (ptm->ptm_recursed) {
416 			ptm->ptm_recursed--;
417 			new = owner;
418 		} else {
419 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
420 		}
421 	} else {
422 		pthread__error(EPERM,
423 		    "Unlocking unlocked mutex", (owner != NULL));
424 		pthread__error(EPERM,
425 		    "Unlocking mutex owned by another thread", weown);
426 		new = NULL;
427 	}
428 
429 	/*
430 	 * Release the mutex.  If there appear to be waiters, then
431 	 * wake them up.
432 	 */
433 	if (new != owner) {
434 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
435 		if (MUTEX_HAS_WAITERS(owner) != 0) {
436 			pthread__mutex_wakeup(self, ptm);
437 			return 0;
438 		}
439 	}
440 
441 	/*
442 	 * There were no waiters, but we may have deferred waking
443 	 * other threads until mutex unlock - we must wake them now.
444 	 */
445 	if (!deferred)
446 		return error;
447 
448 	if (self->pt_nwaiters == 1) {
449 		/*
450 		 * If the calling thread is about to block, defer
451 		 * unparking the target until _lwp_park() is called.
452 		 */
453 		if (self->pt_willpark && self->pt_unpark == 0) {
454 			self->pt_unpark = self->pt_waiters[0];
455 		} else {
456 			(void)_lwp_unpark(self->pt_waiters[0],
457 			    __UNVOLATILE(&ptm->ptm_waiters));
458 		}
459 	} else {
460 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
461 		    __UNVOLATILE(&ptm->ptm_waiters));
462 	}
463 	self->pt_nwaiters = 0;
464 
465 	return error;
466 }
467 
468 static void
469 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
470 {
471 	pthread_t thread, next;
472 	ssize_t n, rv;
473 
474 	/*
475 	 * Take ownership of the current set of waiters.  No
476 	 * need for a memory barrier following this, all loads
477 	 * are dependent upon 'thread'.
478 	 */
479 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
480 	pthread__smt_wake();
481 
482 	for (;;) {
483 		/*
484 		 * Pull waiters from the queue and add to our list.
485 		 * Use a memory barrier to ensure that we safely
486 		 * read the value of pt_mutexnext before 'thread'
487 		 * sees pt_mutexwait being cleared.
488 		 */
489 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
490 		    n < pthread__unpark_max && thread != NULL;
491 		    thread = next) {
492 		    	next = thread->pt_mutexnext;
493 		    	if (thread != self) {
494 				self->pt_waiters[n++] = thread->pt_lid;
495 				membar_sync();
496 			}
497 			thread->pt_mutexwait = 0;
498 			/* No longer safe to touch 'thread' */
499 		}
500 
501 		switch (n) {
502 		case 0:
503 			return;
504 		case 1:
505 			/*
506 			 * If the calling thread is about to block,
507 			 * defer unparking the target until _lwp_park()
508 			 * is called.
509 			 */
510 			if (self->pt_willpark && self->pt_unpark == 0) {
511 				self->pt_unpark = self->pt_waiters[0];
512 				return;
513 			}
514 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
515 			    __UNVOLATILE(&ptm->ptm_waiters));
516 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
517 			    errno != ESRCH) {
518 				pthread__errorfunc(__FILE__, __LINE__,
519 				    __func__, "_lwp_unpark failed");
520 			}
521 			return;
522 		default:
523 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
524 			    __UNVOLATILE(&ptm->ptm_waiters));
525 			if (rv != 0 && errno != EINTR) {
526 				pthread__errorfunc(__FILE__, __LINE__,
527 				    __func__, "_lwp_unpark_all failed");
528 			}
529 			break;
530 		}
531 	}
532 }
533 int
534 pthread_mutexattr_init(pthread_mutexattr_t *attr)
535 {
536 
537 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
538 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
539 	return 0;
540 }
541 
542 int
543 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
544 {
545 
546 	pthread__error(EINVAL, "Invalid mutex attribute",
547 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
548 
549 	return 0;
550 }
551 
552 int
553 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
554 {
555 
556 	pthread__error(EINVAL, "Invalid mutex attribute",
557 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
558 
559 	*typep = (int)(intptr_t)attr->ptma_private;
560 	return 0;
561 }
562 
563 int
564 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
565 {
566 
567 	pthread__error(EINVAL, "Invalid mutex attribute",
568 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
569 
570 	switch (type) {
571 	case PTHREAD_MUTEX_NORMAL:
572 	case PTHREAD_MUTEX_ERRORCHECK:
573 	case PTHREAD_MUTEX_RECURSIVE:
574 		attr->ptma_private = (void *)(intptr_t)type;
575 		return 0;
576 	default:
577 		return EINVAL;
578 	}
579 }
580 
581 void
582 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
583 {
584 
585 	if (__predict_false(ptm == NULL ||
586 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
587 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
588 	    	    __UNVOLATILE(&ptm->ptm_waiters));
589 	    	self->pt_nwaiters = 0;
590 	} else {
591 		atomic_or_ulong((volatile unsigned long *)
592 		    (uintptr_t)&ptm->ptm_owner,
593 		    (unsigned long)MUTEX_DEFERRED_BIT);
594 	}
595 }
596 
597 int
598 _pthread_mutex_held_np(pthread_mutex_t *ptm)
599 {
600 
601 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
602 }
603 
604 pthread_t
605 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
606 {
607 
608 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
609 }
610