xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: pthread_mutex.c,v 1.59 2014/02/03 15:51:01 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * To track threads waiting for mutexes to be released, we use lockless
34  * lists built on atomic operations and memory barriers.
35  *
36  * A simple spinlock would be faster and make the code easier to
37  * follow, but spinlocks are problematic in userspace.  If a thread is
38  * preempted by the kernel while holding a spinlock, any other thread
39  * attempting to acquire that spinlock will needlessly busy wait.
40  *
41  * There is no good way to know that the holding thread is no longer
42  * running, nor to request a wake-up once it has begun running again.
43  * Of more concern, threads in the SCHED_FIFO class do not have a
44  * limited time quantum and so could spin forever, preventing the
45  * thread holding the spinlock from getting CPU time: it would never
46  * be released.
47  */
48 
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.59 2014/02/03 15:51:01 rmind Exp $");
51 
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/lock.h>
55 
56 #include <errno.h>
57 #include <limits.h>
58 #include <stdlib.h>
59 #include <time.h>
60 #include <string.h>
61 #include <stdio.h>
62 
63 #include "pthread.h"
64 #include "pthread_int.h"
65 #include "reentrant.h"
66 
67 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
68 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
69 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
70 #define	MUTEX_THREAD			((uintptr_t)-16L)
71 
72 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
73 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
74 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
75 
76 #if __GNUC_PREREQ__(3, 0)
77 #define	NOINLINE		__attribute ((noinline))
78 #else
79 #define	NOINLINE		/* nothing */
80 #endif
81 
82 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
83 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
84 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
85 static void	pthread__mutex_pause(void);
86 
87 int		_pthread_mutex_held_np(pthread_mutex_t *);
88 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
89 
90 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
91 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
92 
93 __strong_alias(__libc_mutex_init,pthread_mutex_init)
94 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
95 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
96 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
97 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
98 
99 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
100 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
101 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
102 
103 int
104 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
105 {
106 	intptr_t type;
107 
108 	if (__predict_false(__uselibcstub))
109 		return __libc_mutex_init_stub(ptm, attr);
110 
111 	if (attr == NULL)
112 		type = PTHREAD_MUTEX_NORMAL;
113 	else
114 		type = (intptr_t)attr->ptma_private;
115 
116 	switch (type) {
117 	case PTHREAD_MUTEX_ERRORCHECK:
118 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
119 		ptm->ptm_owner = NULL;
120 		break;
121 	case PTHREAD_MUTEX_RECURSIVE:
122 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
123 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
124 		break;
125 	default:
126 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
127 		ptm->ptm_owner = NULL;
128 		break;
129 	}
130 
131 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
132 	ptm->ptm_waiters = NULL;
133 	ptm->ptm_recursed = 0;
134 
135 	return 0;
136 }
137 
138 int
139 pthread_mutex_destroy(pthread_mutex_t *ptm)
140 {
141 
142 	if (__predict_false(__uselibcstub))
143 		return __libc_mutex_destroy_stub(ptm);
144 
145 	pthread__error(EINVAL, "Invalid mutex",
146 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
147 	pthread__error(EBUSY, "Destroying locked mutex",
148 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
149 
150 	ptm->ptm_magic = _PT_MUTEX_DEAD;
151 	return 0;
152 }
153 
154 int
155 pthread_mutex_lock(pthread_mutex_t *ptm)
156 {
157 	pthread_t self;
158 	void *val;
159 
160 	if (__predict_false(__uselibcstub))
161 		return __libc_mutex_lock_stub(ptm);
162 
163 	self = pthread__self();
164 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
165 	if (__predict_true(val == NULL)) {
166 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
167 		membar_enter();
168 #endif
169 		return 0;
170 	}
171 	return pthread__mutex_lock_slow(ptm);
172 }
173 
174 /* We want function call overhead. */
175 NOINLINE static void
176 pthread__mutex_pause(void)
177 {
178 
179 	pthread__smt_pause();
180 }
181 
182 /*
183  * Spin while the holder is running.  'lwpctl' gives us the true
184  * status of the thread.  pt_blocking is set by libpthread in order
185  * to cut out system call and kernel spinlock overhead on remote CPUs
186  * (could represent many thousands of clock cycles).  pt_blocking also
187  * makes this thread yield if the target is calling sched_yield().
188  */
189 NOINLINE static void *
190 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
191 {
192 	pthread_t thread;
193 	unsigned int count, i;
194 
195 	for (count = 2;; owner = ptm->ptm_owner) {
196 		thread = (pthread_t)MUTEX_OWNER(owner);
197 		if (thread == NULL)
198 			break;
199 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
200 		    thread->pt_blocking)
201 			break;
202 		if (count < 128)
203 			count += count;
204 		for (i = count; i != 0; i--)
205 			pthread__mutex_pause();
206 	}
207 
208 	return owner;
209 }
210 
211 NOINLINE static void
212 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
213 {
214 	void *new, *owner;
215 
216 	/*
217 	 * Note that the mutex can become unlocked before we set
218 	 * the waiters bit.  If that happens it's not safe to sleep
219 	 * as we may never be awoken: we must remove the current
220 	 * thread from the waiters list and try again.
221 	 *
222 	 * Because we are doing this atomically, we can't remove
223 	 * one waiter: we must remove all waiters and awken them,
224 	 * then sleep in _lwp_park() until we have been awoken.
225 	 *
226 	 * Issue a memory barrier to ensure that we are reading
227 	 * the value of ptm_owner/pt_mutexwait after we have entered
228 	 * the waiters list (the CAS itself must be atomic).
229 	 */
230 again:
231 	membar_consumer();
232 	owner = ptm->ptm_owner;
233 
234 	if (MUTEX_OWNER(owner) == 0) {
235 		pthread__mutex_wakeup(self, ptm);
236 		return;
237 	}
238 	if (!MUTEX_HAS_WAITERS(owner)) {
239 		new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
240 		if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
241 			goto again;
242 		}
243 	}
244 
245 	/*
246 	 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
247 	 * We cannot know if the presence of the waiters bit is stable
248 	 * while the holding thread is running.  There are many assumptions;
249 	 * see sys/kern/kern_mutex.c for details.  In short, we must spin if
250 	 * we see that the holder is running again.
251 	 */
252 	membar_sync();
253 	pthread__mutex_spin(ptm, owner);
254 
255 	if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
256 		goto again;
257 	}
258 }
259 
260 NOINLINE static int
261 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
262 {
263 	void *waiters, *new, *owner, *next;
264 	pthread_t self;
265 	int serrno;
266 
267 	pthread__error(EINVAL, "Invalid mutex",
268 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
269 
270 	owner = ptm->ptm_owner;
271 	self = pthread__self();
272 
273 	/* Recursive or errorcheck? */
274 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
275 		if (MUTEX_RECURSIVE(owner)) {
276 			if (ptm->ptm_recursed == INT_MAX)
277 				return EAGAIN;
278 			ptm->ptm_recursed++;
279 			return 0;
280 		}
281 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
282 			return EDEADLK;
283 	}
284 
285 	serrno = errno;
286 	for (;; owner = ptm->ptm_owner) {
287 		/* Spin while the owner is running. */
288 		owner = pthread__mutex_spin(ptm, owner);
289 
290 		/* If it has become free, try to acquire it again. */
291 		if (MUTEX_OWNER(owner) == 0) {
292 			do {
293 				new = (void *)
294 				    ((uintptr_t)self | (uintptr_t)owner);
295 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
296 				    new);
297 				if (next == owner) {
298 					errno = serrno;
299 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
300 					membar_enter();
301 #endif
302 					return 0;
303 				}
304 				owner = next;
305 			} while (MUTEX_OWNER(owner) == 0);
306 			/*
307 			 * We have lost the race to acquire the mutex.
308 			 * The new owner could be running on another
309 			 * CPU, in which case we should spin and avoid
310 			 * the overhead of blocking.
311 			 */
312 			continue;
313 		}
314 
315 		/*
316 		 * Nope, still held.  Add thread to the list of waiters.
317 		 * Issue a memory barrier to ensure mutexwait/mutexnext
318 		 * are visible before we enter the waiters list.
319 		 */
320 		self->pt_mutexwait = 1;
321 		for (waiters = ptm->ptm_waiters;; waiters = next) {
322 			self->pt_mutexnext = waiters;
323 			membar_producer();
324 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
325 			if (next == waiters)
326 			    	break;
327 		}
328 
329 		/* Set the waiters bit and block. */
330 		pthread__mutex_setwaiters(self, ptm);
331 
332 		/*
333 		 * We may have been awoken by the current thread above,
334 		 * or will be awoken by the current holder of the mutex.
335 		 * The key requirement is that we must not proceed until
336 		 * told that we are no longer waiting (via pt_mutexwait
337 		 * being set to zero).  Otherwise it is unsafe to re-enter
338 		 * the thread onto the waiters list.
339 		 */
340 		while (self->pt_mutexwait) {
341 			self->pt_blocking++;
342 			(void)_lwp_park(CLOCK_REALTIME, TIMER_ABSTIME, NULL,
343 			    self->pt_unpark, __UNVOLATILE(&ptm->ptm_waiters),
344 			    __UNVOLATILE(&ptm->ptm_waiters));
345 			self->pt_unpark = 0;
346 			self->pt_blocking--;
347 			membar_sync();
348 		}
349 	}
350 }
351 
352 int
353 pthread_mutex_trylock(pthread_mutex_t *ptm)
354 {
355 	pthread_t self;
356 	void *val, *new, *next;
357 
358 	if (__predict_false(__uselibcstub))
359 		return __libc_mutex_trylock_stub(ptm);
360 
361 	self = pthread__self();
362 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
363 	if (__predict_true(val == NULL)) {
364 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
365 		membar_enter();
366 #endif
367 		return 0;
368 	}
369 
370 	if (MUTEX_RECURSIVE(val)) {
371 		if (MUTEX_OWNER(val) == 0) {
372 			new = (void *)((uintptr_t)self | (uintptr_t)val);
373 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
374 			if (__predict_true(next == val)) {
375 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
376 				membar_enter();
377 #endif
378 				return 0;
379 			}
380 		}
381 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
382 			if (ptm->ptm_recursed == INT_MAX)
383 				return EAGAIN;
384 			ptm->ptm_recursed++;
385 			return 0;
386 		}
387 	}
388 
389 	return EBUSY;
390 }
391 
392 int
393 pthread_mutex_unlock(pthread_mutex_t *ptm)
394 {
395 	pthread_t self;
396 	void *value;
397 
398 	if (__predict_false(__uselibcstub))
399 		return __libc_mutex_unlock_stub(ptm);
400 
401 	/*
402 	 * Note this may be a non-interlocked CAS.  See lock_slow()
403 	 * above and sys/kern/kern_mutex.c for details.
404 	 */
405 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
406 	membar_exit();
407 #endif
408 	self = pthread__self();
409 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
410 	if (__predict_true(value == self)) {
411 		pthread__smt_wake();
412 		return 0;
413 	}
414 	return pthread__mutex_unlock_slow(ptm);
415 }
416 
417 NOINLINE static int
418 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
419 {
420 	pthread_t self, owner, new;
421 	int weown, error, deferred;
422 
423 	pthread__error(EINVAL, "Invalid mutex",
424 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
425 
426 	self = pthread__self();
427 	owner = ptm->ptm_owner;
428 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
429 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
430 	error = 0;
431 
432 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
433 		if (!weown) {
434 			error = EPERM;
435 			new = owner;
436 		} else {
437 			new = NULL;
438 		}
439 	} else if (MUTEX_RECURSIVE(owner)) {
440 		if (!weown) {
441 			error = EPERM;
442 			new = owner;
443 		} else if (ptm->ptm_recursed) {
444 			ptm->ptm_recursed--;
445 			new = owner;
446 		} else {
447 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
448 		}
449 	} else {
450 		pthread__error(EPERM,
451 		    "Unlocking unlocked mutex", (owner != NULL));
452 		pthread__error(EPERM,
453 		    "Unlocking mutex owned by another thread", weown);
454 		new = NULL;
455 	}
456 
457 	/*
458 	 * Release the mutex.  If there appear to be waiters, then
459 	 * wake them up.
460 	 */
461 	if (new != owner) {
462 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
463 		if (MUTEX_HAS_WAITERS(owner) != 0) {
464 			pthread__mutex_wakeup(self, ptm);
465 			return 0;
466 		}
467 	}
468 
469 	/*
470 	 * There were no waiters, but we may have deferred waking
471 	 * other threads until mutex unlock - we must wake them now.
472 	 */
473 	if (!deferred)
474 		return error;
475 
476 	if (self->pt_nwaiters == 1) {
477 		/*
478 		 * If the calling thread is about to block, defer
479 		 * unparking the target until _lwp_park() is called.
480 		 */
481 		if (self->pt_willpark && self->pt_unpark == 0) {
482 			self->pt_unpark = self->pt_waiters[0];
483 		} else {
484 			(void)_lwp_unpark(self->pt_waiters[0],
485 			    __UNVOLATILE(&ptm->ptm_waiters));
486 		}
487 	} else {
488 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
489 		    __UNVOLATILE(&ptm->ptm_waiters));
490 	}
491 	self->pt_nwaiters = 0;
492 
493 	return error;
494 }
495 
496 /*
497  * pthread__mutex_wakeup: unpark threads waiting for us
498  *
499  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
500  */
501 
502 static void
503 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
504 {
505 	pthread_t thread, next;
506 	ssize_t n, rv;
507 
508 	/*
509 	 * Take ownership of the current set of waiters.  No
510 	 * need for a memory barrier following this, all loads
511 	 * are dependent upon 'thread'.
512 	 */
513 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
514 	pthread__smt_wake();
515 
516 	for (;;) {
517 		/*
518 		 * Pull waiters from the queue and add to our list.
519 		 * Use a memory barrier to ensure that we safely
520 		 * read the value of pt_mutexnext before 'thread'
521 		 * sees pt_mutexwait being cleared.
522 		 */
523 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
524 		    n < pthread__unpark_max && thread != NULL;
525 		    thread = next) {
526 		    	next = thread->pt_mutexnext;
527 		    	if (thread != self) {
528 				self->pt_waiters[n++] = thread->pt_lid;
529 				membar_sync();
530 			}
531 			thread->pt_mutexwait = 0;
532 			/* No longer safe to touch 'thread' */
533 		}
534 
535 		switch (n) {
536 		case 0:
537 			return;
538 		case 1:
539 			/*
540 			 * If the calling thread is about to block,
541 			 * defer unparking the target until _lwp_park()
542 			 * is called.
543 			 */
544 			if (self->pt_willpark && self->pt_unpark == 0) {
545 				self->pt_unpark = self->pt_waiters[0];
546 				return;
547 			}
548 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
549 			    __UNVOLATILE(&ptm->ptm_waiters));
550 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
551 			    errno != ESRCH) {
552 				pthread__errorfunc(__FILE__, __LINE__,
553 				    __func__, "_lwp_unpark failed");
554 			}
555 			return;
556 		default:
557 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
558 			    __UNVOLATILE(&ptm->ptm_waiters));
559 			if (rv != 0 && errno != EINTR) {
560 				pthread__errorfunc(__FILE__, __LINE__,
561 				    __func__, "_lwp_unpark_all failed");
562 			}
563 			break;
564 		}
565 	}
566 }
567 
568 int
569 pthread_mutexattr_init(pthread_mutexattr_t *attr)
570 {
571 	if (__predict_false(__uselibcstub))
572 		return __libc_mutexattr_init_stub(attr);
573 
574 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
575 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
576 	return 0;
577 }
578 
579 int
580 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
581 {
582 	if (__predict_false(__uselibcstub))
583 		return __libc_mutexattr_destroy_stub(attr);
584 
585 	pthread__error(EINVAL, "Invalid mutex attribute",
586 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
587 
588 	return 0;
589 }
590 
591 int
592 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
593 {
594 	pthread__error(EINVAL, "Invalid mutex attribute",
595 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
596 
597 	*typep = (int)(intptr_t)attr->ptma_private;
598 	return 0;
599 }
600 
601 int
602 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
603 {
604 	if (__predict_false(__uselibcstub))
605 		return __libc_mutexattr_settype_stub(attr, type);
606 
607 	pthread__error(EINVAL, "Invalid mutex attribute",
608 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
609 
610 	switch (type) {
611 	case PTHREAD_MUTEX_NORMAL:
612 	case PTHREAD_MUTEX_ERRORCHECK:
613 	case PTHREAD_MUTEX_RECURSIVE:
614 		attr->ptma_private = (void *)(intptr_t)type;
615 		return 0;
616 	default:
617 		return EINVAL;
618 	}
619 }
620 
621 /*
622  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
623  *
624  * In order to avoid unnecessary contention on the interlocking mutex,
625  * we defer waking up threads until we unlock the mutex.  The threads will
626  * be woken up when the calling thread (self) releases the first mutex with
627  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
628  * even if it isn't.
629  */
630 
631 void
632 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
633 {
634 
635 	if (__predict_false(ptm == NULL ||
636 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
637 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
638 	    	    __UNVOLATILE(&ptm->ptm_waiters));
639 	    	self->pt_nwaiters = 0;
640 	} else {
641 		atomic_or_ulong((volatile unsigned long *)
642 		    (uintptr_t)&ptm->ptm_owner,
643 		    (unsigned long)MUTEX_DEFERRED_BIT);
644 	}
645 }
646 
647 int
648 _pthread_mutex_held_np(pthread_mutex_t *ptm)
649 {
650 
651 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
652 }
653 
654 pthread_t
655 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
656 {
657 
658 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
659 }
660