1 /* $NetBSD: pthread_mutex.c,v 1.38 2007/11/19 15:14:13 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 __RCSID("$NetBSD: pthread_mutex.c,v 1.38 2007/11/19 15:14:13 ad Exp $"); 41 42 #include <errno.h> 43 #include <limits.h> 44 #include <stdlib.h> 45 #include <string.h> 46 47 #include <sys/types.h> 48 #include <sys/lock.h> 49 50 #include "pthread.h" 51 #include "pthread_int.h" 52 53 #ifndef PTHREAD__HAVE_ATOMIC 54 55 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *); 56 57 __strong_alias(__libc_mutex_init,pthread_mutex_init) 58 __strong_alias(__libc_mutex_lock,pthread_mutex_lock) 59 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock) 60 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock) 61 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy) 62 63 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init) 64 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy) 65 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype) 66 67 __strong_alias(__libc_thr_once,pthread_once) 68 69 struct mutex_private { 70 int type; 71 int recursecount; 72 }; 73 74 static const struct mutex_private mutex_private_default = { 75 PTHREAD_MUTEX_DEFAULT, 76 0, 77 }; 78 79 struct mutexattr_private { 80 int type; 81 }; 82 83 static const struct mutexattr_private mutexattr_private_default = { 84 PTHREAD_MUTEX_DEFAULT, 85 }; 86 87 int 88 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr) 89 { 90 struct mutexattr_private *map; 91 struct mutex_private *mp; 92 93 pthread__error(EINVAL, "Invalid mutex attribute", 94 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC)); 95 96 if (attr != NULL && (map = attr->ptma_private) != NULL && 97 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) { 98 mp = malloc(sizeof(*mp)); 99 if (mp == NULL) 100 return ENOMEM; 101 102 mp->type = map->type; 103 mp->recursecount = 0; 104 } else { 105 /* LINTED cast away const */ 106 mp = (struct mutex_private *) &mutex_private_default; 107 } 108 109 mutex->ptm_magic = _PT_MUTEX_MAGIC; 110 mutex->ptm_owner = NULL; 111 pthread_lockinit(&mutex->ptm_lock); 112 pthread_lockinit(&mutex->ptm_interlock); 113 PTQ_INIT(&mutex->ptm_blocked); 114 mutex->ptm_private = mp; 115 116 return 0; 117 } 118 119 120 int 121 pthread_mutex_destroy(pthread_mutex_t *mutex) 122 { 123 124 pthread__error(EINVAL, "Invalid mutex", 125 mutex->ptm_magic == _PT_MUTEX_MAGIC); 126 pthread__error(EBUSY, "Destroying locked mutex", 127 __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)); 128 129 mutex->ptm_magic = _PT_MUTEX_DEAD; 130 if (mutex->ptm_private != NULL && 131 mutex->ptm_private != (const void *)&mutex_private_default) 132 free(mutex->ptm_private); 133 134 return 0; 135 } 136 137 138 /* 139 * Note regarding memory visibility: Pthreads has rules about memory 140 * visibility and mutexes. Very roughly: Memory a thread can see when 141 * it unlocks a mutex can be seen by another thread that locks the 142 * same mutex. 143 * 144 * A memory barrier after a lock and before an unlock will provide 145 * this behavior. This code relies on pthread__spintrylock() to issue 146 * a barrier after obtaining a lock, and on pthread__spinunlock() to 147 * issue a barrier before releasing a lock. 148 */ 149 150 int 151 pthread_mutex_lock(pthread_mutex_t *mutex) 152 { 153 pthread_t self; 154 int error; 155 156 self = pthread__self(); 157 158 /* 159 * Note that if we get the lock, we don't have to deal with any 160 * non-default lock type handling. 161 */ 162 if (__predict_false(pthread__spintrylock(self, &mutex->ptm_lock) == 0)) { 163 error = pthread_mutex_lock_slow(self, mutex); 164 if (error) 165 return error; 166 } 167 168 /* 169 * We have the lock! 170 */ 171 mutex->ptm_owner = self; 172 173 return 0; 174 } 175 176 177 static int 178 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex) 179 { 180 extern int pthread__started; 181 struct mutex_private *mp; 182 sigset_t ss; 183 int count; 184 185 pthread__error(EINVAL, "Invalid mutex", 186 mutex->ptm_magic == _PT_MUTEX_MAGIC); 187 188 for (;;) { 189 /* Spin for a while. */ 190 count = pthread__nspins; 191 while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0) 192 pthread__smt_pause(); 193 if (count > 0) { 194 if (pthread__spintrylock(self, &mutex->ptm_lock) != 0) 195 break; 196 continue; 197 } 198 199 /* Okay, didn't look free. Get the interlock... */ 200 pthread__spinlock(self, &mutex->ptm_interlock); 201 202 /* 203 * The mutex_unlock routine will get the interlock 204 * before looking at the list of sleepers, so if the 205 * lock is held we can safely put ourselves on the 206 * sleep queue. If it's not held, we can try taking it 207 * again. 208 */ 209 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep); 210 if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) { 211 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep); 212 pthread__spinunlock(self, &mutex->ptm_interlock); 213 continue; 214 } 215 216 mp = mutex->ptm_private; 217 if (mutex->ptm_owner == self && mp != NULL) { 218 switch (mp->type) { 219 case PTHREAD_MUTEX_ERRORCHECK: 220 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep); 221 pthread__spinunlock(self, &mutex->ptm_interlock); 222 return EDEADLK; 223 224 case PTHREAD_MUTEX_RECURSIVE: 225 /* 226 * It's safe to do this without 227 * holding the interlock, because 228 * we only modify it if we know we 229 * own the mutex. 230 */ 231 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep); 232 pthread__spinunlock(self, &mutex->ptm_interlock); 233 if (mp->recursecount == INT_MAX) 234 return EAGAIN; 235 mp->recursecount++; 236 return 0; 237 } 238 } 239 240 if (pthread__started == 0) { 241 /* The spec says we must deadlock, so... */ 242 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL); 243 (void) sigprocmask(SIG_SETMASK, NULL, &ss); 244 for (;;) { 245 sigsuspend(&ss); 246 } 247 /*NOTREACHED*/ 248 } 249 250 /* 251 * Locking a mutex is not a cancellation 252 * point, so we don't need to do the 253 * test-cancellation dance. We may get woken 254 * up spuriously by pthread_cancel or signals, 255 * but it's okay since we're just going to 256 * retry. 257 */ 258 self->pt_sleeponq = 1; 259 self->pt_sleepobj = &mutex->ptm_blocked; 260 pthread__spinunlock(self, &mutex->ptm_interlock); 261 (void)pthread__park(self, &mutex->ptm_interlock, 262 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked); 263 } 264 265 return 0; 266 } 267 268 269 int 270 pthread_mutex_trylock(pthread_mutex_t *mutex) 271 { 272 struct mutex_private *mp; 273 pthread_t self; 274 275 pthread__error(EINVAL, "Invalid mutex", 276 mutex->ptm_magic == _PT_MUTEX_MAGIC); 277 278 self = pthread__self(); 279 280 if (pthread__spintrylock(self, &mutex->ptm_lock) == 0) { 281 /* 282 * These tests can be performed without holding the 283 * interlock because these fields are only modified 284 * if we know we own the mutex. 285 */ 286 mp = mutex->ptm_private; 287 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE && 288 mutex->ptm_owner == self) { 289 if (mp->recursecount == INT_MAX) 290 return EAGAIN; 291 mp->recursecount++; 292 return 0; 293 } 294 295 return EBUSY; 296 } 297 298 mutex->ptm_owner = self; 299 300 return 0; 301 } 302 303 304 int 305 pthread_mutex_unlock(pthread_mutex_t *mutex) 306 { 307 struct mutex_private *mp; 308 pthread_t self; 309 int weown; 310 311 pthread__error(EINVAL, "Invalid mutex", 312 mutex->ptm_magic == _PT_MUTEX_MAGIC); 313 314 /* 315 * These tests can be performed without holding the 316 * interlock because these fields are only modified 317 * if we know we own the mutex. 318 */ 319 self = pthread__self(); 320 weown = (mutex->ptm_owner == self); 321 mp = mutex->ptm_private; 322 323 if (mp == NULL) { 324 if (__predict_false(!weown)) { 325 pthread__error(EPERM, "Unlocking unlocked mutex", 326 (mutex->ptm_owner != 0)); 327 pthread__error(EPERM, 328 "Unlocking mutex owned by another thread", weown); 329 } 330 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) { 331 if (!weown) 332 return EPERM; 333 if (mp->recursecount != 0) { 334 mp->recursecount--; 335 return 0; 336 } 337 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) { 338 if (!weown) 339 return EPERM; 340 if (__predict_false(!weown)) { 341 pthread__error(EPERM, "Unlocking unlocked mutex", 342 (mutex->ptm_owner != 0)); 343 pthread__error(EPERM, 344 "Unlocking mutex owned by another thread", weown); 345 } 346 } 347 348 mutex->ptm_owner = NULL; 349 pthread__spinunlock(self, &mutex->ptm_lock); 350 351 /* 352 * Do a double-checked locking dance to see if there are any 353 * waiters. If we don't see any waiters, we can exit, because 354 * we've already released the lock. If we do see waiters, they 355 * were probably waiting on us... there's a slight chance that 356 * they are waiting on a different thread's ownership of the 357 * lock that happened between the unlock above and this 358 * examination of the queue; if so, no harm is done, as the 359 * waiter will loop and see that the mutex is still locked. 360 */ 361 pthread__spinlock(self, &mutex->ptm_interlock); 362 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked); 363 return 0; 364 } 365 366 int 367 pthread_mutexattr_init(pthread_mutexattr_t *attr) 368 { 369 struct mutexattr_private *map; 370 371 map = malloc(sizeof(*map)); 372 if (map == NULL) 373 return ENOMEM; 374 375 *map = mutexattr_private_default; 376 377 attr->ptma_magic = _PT_MUTEXATTR_MAGIC; 378 attr->ptma_private = map; 379 380 return 0; 381 } 382 383 384 int 385 pthread_mutexattr_destroy(pthread_mutexattr_t *attr) 386 { 387 388 pthread__error(EINVAL, "Invalid mutex attribute", 389 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 390 391 attr->ptma_magic = _PT_MUTEXATTR_DEAD; 392 if (attr->ptma_private != NULL) 393 free(attr->ptma_private); 394 395 return 0; 396 } 397 398 399 int 400 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep) 401 { 402 struct mutexattr_private *map; 403 404 pthread__error(EINVAL, "Invalid mutex attribute", 405 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 406 407 map = attr->ptma_private; 408 409 *typep = map->type; 410 411 return 0; 412 } 413 414 415 int 416 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) 417 { 418 struct mutexattr_private *map; 419 420 pthread__error(EINVAL, "Invalid mutex attribute", 421 attr->ptma_magic == _PT_MUTEXATTR_MAGIC); 422 423 map = attr->ptma_private; 424 425 switch (type) { 426 case PTHREAD_MUTEX_NORMAL: 427 case PTHREAD_MUTEX_ERRORCHECK: 428 case PTHREAD_MUTEX_RECURSIVE: 429 map->type = type; 430 break; 431 432 default: 433 return EINVAL; 434 } 435 436 return 0; 437 } 438 439 440 static void 441 once_cleanup(void *closure) 442 { 443 444 pthread_mutex_unlock((pthread_mutex_t *)closure); 445 } 446 447 448 int 449 pthread_once(pthread_once_t *once_control, void (*routine)(void)) 450 { 451 452 if (once_control->pto_done == 0) { 453 pthread_mutex_lock(&once_control->pto_mutex); 454 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex); 455 if (once_control->pto_done == 0) { 456 routine(); 457 once_control->pto_done = 1; 458 } 459 pthread_cleanup_pop(1); 460 } 461 462 return 0; 463 } 464 465 int 466 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex) 467 { 468 469 return mutex->ptm_owner == thread; 470 } 471 472 #endif /* !PTHREAD__HAVE_ATOMIC */ 473