xref: /netbsd-src/lib/libpthread/pthread_mutex.c (revision 453f6b99a313f2f372963fe81f55bf6f811e3f55)
1 /*	$NetBSD: pthread_mutex.c,v 1.8 2003/01/31 02:55:00 nathanw Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include <assert.h>
41 #include <errno.h>
42 #include <limits.h>
43 #include <stdlib.h>
44 #include <string.h>
45 
46 #include "pthread.h"
47 #include "pthread_int.h"
48 
49 static int pthread_mutex_lock_slow(pthread_mutex_t *);
50 
51 __strong_alias(__libc_mutex_init,pthread_mutex_init)
52 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
53 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
54 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
55 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
56 
57 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
58 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
59 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
60 
61 __strong_alias(__libc_thr_once,pthread_once)
62 
63 struct mutex_private {
64 	int	type;
65 	int	recursecount;
66 };
67 
68 static const struct mutex_private mutex_private_default = {
69 	PTHREAD_MUTEX_DEFAULT,
70 	0,
71 };
72 
73 struct mutexattr_private {
74 	int	type;
75 };
76 
77 static const struct mutexattr_private mutexattr_private_default = {
78 	PTHREAD_MUTEX_DEFAULT,
79 };
80 
81 /*
82  * If the mutex does not already have private data (i.e. was statically
83  * initialized), then give it the default.
84  */
85 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
86 do {									\
87 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
88 		/* LINTED cast away const */				\
89 		mp = ((mutex)->ptm_private =				\
90 		    (void *)&mutex_private_default);			\
91 	}								\
92 } while (/*CONSTCOND*/0)
93 
94 int
95 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
96 {
97 	struct mutexattr_private *map;
98 	struct mutex_private *mp;
99 
100 #ifdef ERRORCHECK
101 	if ((mutex == NULL) ||
102 	    (attr && (attr->ptma_magic != _PT_MUTEXATTR_MAGIC)))
103 		return EINVAL;
104 #endif
105 
106 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
107 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
108 		mp = malloc(sizeof(*mp));
109 		if (mp == NULL)
110 			return ENOMEM;
111 
112 		mp->type = map->type;
113 		mp->recursecount = 0;
114 	} else {
115 		/* LINTED cast away const */
116 		mp = (struct mutex_private *) &mutex_private_default;
117 	}
118 
119 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
120 	mutex->ptm_owner = NULL;
121 	pthread_lockinit(&mutex->ptm_lock);
122 	pthread_lockinit(&mutex->ptm_interlock);
123 	PTQ_INIT(&mutex->ptm_blocked);
124 	mutex->ptm_private = mp;
125 
126 	return 0;
127 }
128 
129 
130 int
131 pthread_mutex_destroy(pthread_mutex_t *mutex)
132 {
133 
134 #ifdef ERRORCHECK
135 	if ((mutex == NULL) ||
136 	    (mutex->ptm_magic != _PT_MUTEX_MAGIC) ||
137 	    (mutex->ptm_lock != __SIMPLELOCK_UNLOCKED))
138 		return EINVAL;
139 #endif
140 
141 	mutex->ptm_magic = _PT_MUTEX_DEAD;
142 	if (mutex->ptm_private != NULL &&
143 	    mutex->ptm_private != (const void *)&mutex_private_default)
144 		free(mutex->ptm_private);
145 
146 	return 0;
147 }
148 
149 
150 /*
151  * Note regarding memory visibility: Pthreads has rules about memory
152  * visibility and mutexes. Very roughly: Memory a thread can see when
153  * it unlocks a mutex can be seen by another thread that locks the
154  * same mutex.
155  *
156  * A memory barrier after a lock and before an unlock will provide
157  * this behavior. This code relies on pthread__simple_lock_try() to issue
158  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
159  * issue a barrier before releasing a lock.
160  */
161 
162 int
163 pthread_mutex_lock(pthread_mutex_t *mutex)
164 {
165 	int error;
166 
167 #ifdef ERRORCHECK
168 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
169 		return EINVAL;
170 #endif
171 
172 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
173 	/*
174 	 * Note that if we get the lock, we don't have to deal with any
175 	 * non-default lock type handling.
176 	 */
177 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
178 		error = pthread_mutex_lock_slow(mutex);
179 		if (error)
180 			return error;
181 	}
182 
183 	/* We have the lock! */
184 	/*
185 	 * Identifying ourselves may be slow, and this assignment is
186 	 * only needed for (a) debugging identity of the owning thread
187 	 * and (b) handling errorcheck and recursive mutexes. It's
188 	 * better to just stash our stack pointer here and let those
189 	 * slow exception cases compute the stack->thread mapping.
190 	 */
191 	mutex->ptm_owner = (pthread_t)pthread__sp();
192 
193 	return 0;
194 }
195 
196 
197 static int
198 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
199 {
200 	pthread_t self;
201 
202 	self = pthread__self();
203 
204 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
205 	while (/*CONSTCOND*/1) {
206 		if (pthread__simple_lock_try(&mutex->ptm_lock))
207 			break; /* got it! */
208 
209 		/* Okay, didn't look free. Get the interlock... */
210 		pthread_spinlock(self, &mutex->ptm_interlock);
211 		/*
212 		 * The mutex_unlock routine will get the interlock
213 		 * before looking at the list of sleepers, so if the
214 		 * lock is held we can safely put ourselves on the
215 		 * sleep queue. If it's not held, we can try taking it
216 		 * again.
217 		 */
218 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
219 			struct mutex_private *mp;
220 
221 			GET_MUTEX_PRIVATE(mutex, mp);
222 
223 			if (pthread__id(mutex->ptm_owner) == self) {
224 				switch (mp->type) {
225 				case PTHREAD_MUTEX_ERRORCHECK:
226 					pthread_spinunlock(self,
227 					    &mutex->ptm_interlock);
228 					return EDEADLK;
229 
230 				case PTHREAD_MUTEX_RECURSIVE:
231 					/*
232 					 * It's safe to do this without
233 					 * holding the interlock, because
234 					 * we only modify it if we know we
235 					 * own the mutex.
236 					 */
237 					pthread_spinunlock(self,
238 					    &mutex->ptm_interlock);
239 					if (mp->recursecount == INT_MAX)
240 						return EAGAIN;
241 					mp->recursecount++;
242 					return 0;
243 				}
244 			}
245 
246 			PTQ_INSERT_TAIL(&mutex->ptm_blocked, self, pt_sleep);
247 			/*
248 			 * Locking a mutex is not a cancellation
249 			 * point, so we don't need to do the
250 			 * test-cancellation dance. We may get woken
251 			 * up spuriously by pthread_cancel or signals,
252 			 * but it's okay since we're just going to
253 			 * retry.
254 			 */
255 			pthread_spinlock(self, &self->pt_statelock);
256 			self->pt_state = PT_STATE_BLOCKED_QUEUE;
257 			self->pt_sleepobj = mutex;
258 			self->pt_sleepq = &mutex->ptm_blocked;
259 			self->pt_sleeplock = &mutex->ptm_interlock;
260 			pthread_spinunlock(self, &self->pt_statelock);
261 
262 			pthread__block(self, &mutex->ptm_interlock);
263 			/* interlock is not held when we return */
264 		} else {
265 			pthread_spinunlock(self, &mutex->ptm_interlock);
266 		}
267 		/* Go around for another try. */
268 	}
269 
270 	return 0;
271 }
272 
273 
274 int
275 pthread_mutex_trylock(pthread_mutex_t *mutex)
276 {
277 
278 #ifdef ERRORCHECK
279 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
280 		return EINVAL;
281 #endif
282 
283 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
284 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
285 		pthread_t self;
286 		struct mutex_private *mp;
287 
288 		GET_MUTEX_PRIVATE(mutex, mp);
289 
290 		/*
291 		 * These tests can be performed without holding the
292 		 * interlock because these fields are only modified
293 		 * if we know we own the mutex.
294 		 */
295 		self = pthread__self();
296 		if (pthread__id(mutex->ptm_owner) == self) {
297 			switch (mp->type) {
298 			case PTHREAD_MUTEX_ERRORCHECK:
299 				return EDEADLK;
300 
301 			case PTHREAD_MUTEX_RECURSIVE:
302 				if (mp->recursecount == INT_MAX)
303 					return EAGAIN;
304 				mp->recursecount++;
305 				return 0;
306 			}
307 		}
308 
309 		return EBUSY;
310 	}
311 
312 	/* see comment at the end of pthread_mutex_lock() */
313 	mutex->ptm_owner = (pthread_t)pthread__sp();
314 
315 	return 0;
316 }
317 
318 
319 int
320 pthread_mutex_unlock(pthread_mutex_t *mutex)
321 {
322 	struct mutex_private *mp;
323 	pthread_t self, blocked;
324 
325 #ifdef ERRORCHECK
326 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
327 		return EINVAL;
328 
329 	if (mutex->ptm_lock != __SIMPLELOCK_LOCKED)
330 		return EPERM; /* Not exactly the right error. */
331 #endif
332 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
333 
334 	GET_MUTEX_PRIVATE(mutex, mp);
335 
336 	/*
337 	 * These tests can be performed without holding the
338 	 * interlock because these fields are only modified
339 	 * if we know we own the mutex.
340 	 */
341 	switch (mp->type) {
342 	case PTHREAD_MUTEX_ERRORCHECK:
343 		if (pthread__id(mutex->ptm_owner) != pthread__self())
344 			return EPERM;
345 		break;
346 
347 	case PTHREAD_MUTEX_RECURSIVE:
348 		if (pthread__id(mutex->ptm_owner) != pthread__self())
349 			return EPERM;
350 		if (mp->recursecount != 0) {
351 			mp->recursecount--;
352 			return 0;
353 		}
354 		break;
355 	}
356 
357 	mutex->ptm_owner = NULL;
358 	pthread__simple_unlock(&mutex->ptm_lock);
359 	/*
360 	 * Do a double-checked locking dance to see if there are any
361 	 * waiters.  If we don't see any waiters, we can exit, because
362 	 * we've already released the lock. If we do see waiters, they
363 	 * were probably waiting on us... there's a slight chance that
364 	 * they are waiting on a different thread's ownership of the
365 	 * lock that happened between the unlock above and this
366 	 * examination of the queue; if so, no harm is done, as the
367 	 * waiter will loop and see that the mutex is still locked.
368 	 */
369 	if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
370 		self = pthread__self();
371 		pthread_spinlock(self, &mutex->ptm_interlock);
372 		blocked = PTQ_FIRST(&mutex->ptm_blocked);
373 		if (blocked)
374 			PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
375 		pthread_spinunlock(self, &mutex->ptm_interlock);
376 
377 		/* Give the head of the blocked queue another try. */
378 		if (blocked) {
379 			PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
380 			pthread__sched(self, blocked);
381 		}
382 	}
383 	return 0;
384 }
385 
386 int
387 pthread_mutexattr_init(pthread_mutexattr_t *attr)
388 {
389 	struct mutexattr_private *map;
390 
391 #ifdef ERRORCHECK
392 	if (attr == NULL)
393 		return EINVAL;
394 #endif
395 
396 	map = malloc(sizeof(*map));
397 	if (map == NULL)
398 		return ENOMEM;
399 
400 	*map = mutexattr_private_default;
401 
402 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
403 	attr->ptma_private = map;
404 
405 	return 0;
406 }
407 
408 
409 int
410 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
411 {
412 
413 #ifdef ERRORCHECK
414 	if ((attr == NULL) ||
415 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
416 		return EINVAL;
417 #endif
418 
419 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
420 	if (attr->ptma_private != NULL)
421 		free(attr->ptma_private);
422 
423 	return 0;
424 }
425 
426 
427 int
428 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
429 {
430 	struct mutexattr_private *map;
431 
432 #ifdef ERRORCHECK
433 	if ((attr == NULL) ||
434 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC) ||
435 	    (typep == NULL))
436 		return EINVAL;
437 #endif
438 
439 	map = attr->ptma_private;
440 
441 	*typep = map->type;
442 
443 	return 0;
444 }
445 
446 
447 int
448 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
449 {
450 	struct mutexattr_private *map;
451 
452 #ifdef ERRORCHECK
453 	if ((attr == NULL) ||
454 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
455 		return EINVAL;
456 #endif
457 	map = attr->ptma_private;
458 
459 	switch (type) {
460 	case PTHREAD_MUTEX_NORMAL:
461 	case PTHREAD_MUTEX_ERRORCHECK:
462 	case PTHREAD_MUTEX_RECURSIVE:
463 		map->type = type;
464 		break;
465 
466 	default:
467 		return EINVAL;
468 	}
469 
470 	return 0;
471 }
472 
473 
474 int
475 pthread_once(pthread_once_t *once_control, void (*routine)(void))
476 {
477 
478 	if (once_control->pto_done == 0) {
479 		pthread_mutex_lock(&once_control->pto_mutex);
480 		if (once_control->pto_done == 0) {
481 			routine();
482 			once_control->pto_done = 1;
483 		}
484 		pthread_mutex_unlock(&once_control->pto_mutex);
485 	}
486 
487 	return 0;
488 }
489