xref: /netbsd-src/lib/libnvmm/libnvmm_x86.c (revision 2d8e86c2f207da6fbbd50f11b6f33765ebdfa0e9)
1 /*	$NetBSD: libnvmm_x86.c,v 1.31 2019/06/08 07:27:44 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Maxime Villard.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <unistd.h>
38 #include <fcntl.h>
39 #include <errno.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <machine/vmparam.h>
43 #include <machine/pte.h>
44 #include <machine/psl.h>
45 
46 #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
47 #define __cacheline_aligned __attribute__((__aligned__(64)))
48 
49 #include <x86/specialreg.h>
50 
51 /* -------------------------------------------------------------------------- */
52 
53 /*
54  * Undocumented debugging function. Helpful.
55  */
56 int
57 nvmm_vcpu_dump(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
58 {
59 	struct nvmm_x64_state *state = vcpu->state;
60 	uint16_t *attr;
61 	size_t i;
62 	int ret;
63 
64 	const char *segnames[] = {
65 		"ES", "CS", "SS", "DS", "FS", "GS", "GDT", "IDT", "LDT", "TR"
66 	};
67 
68 	ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_ALL);
69 	if (ret == -1)
70 		return -1;
71 
72 	printf("+ VCPU id=%d\n", (int)vcpu->cpuid);
73 	printf("| -> RIP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RIP]);
74 	printf("| -> RSP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSP]);
75 	printf("| -> RAX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RAX]);
76 	printf("| -> RBX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBX]);
77 	printf("| -> RCX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RCX]);
78 	printf("| -> RFLAGS=%p\n", (void *)state->gprs[NVMM_X64_GPR_RFLAGS]);
79 	for (i = 0; i < NVMM_X64_NSEG; i++) {
80 		attr = (uint16_t *)&state->segs[i].attrib;
81 		printf("| -> %s: sel=0x%x base=%"PRIx64", limit=%x, attrib=%x\n",
82 		    segnames[i],
83 		    state->segs[i].selector,
84 		    state->segs[i].base,
85 		    state->segs[i].limit,
86 		    *attr);
87 	}
88 	printf("| -> MSR_EFER=%"PRIx64"\n", state->msrs[NVMM_X64_MSR_EFER]);
89 	printf("| -> CR0=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR0]);
90 	printf("| -> CR3=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR3]);
91 	printf("| -> CR4=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR4]);
92 	printf("| -> CR8=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR8]);
93 
94 	return 0;
95 }
96 
97 /* -------------------------------------------------------------------------- */
98 
99 #define PTE32_L1_SHIFT	12
100 #define PTE32_L2_SHIFT	22
101 
102 #define PTE32_L2_MASK	0xffc00000
103 #define PTE32_L1_MASK	0x003ff000
104 
105 #define PTE32_L2_FRAME	(PTE32_L2_MASK)
106 #define PTE32_L1_FRAME	(PTE32_L2_FRAME|PTE32_L1_MASK)
107 
108 #define pte32_l1idx(va)	(((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
109 #define pte32_l2idx(va)	(((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
110 
111 #define CR3_FRAME_32BIT	PG_FRAME
112 
113 typedef uint32_t pte_32bit_t;
114 
115 static int
116 x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
117     gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
118 {
119 	gpaddr_t L2gpa, L1gpa;
120 	uintptr_t L2hva, L1hva;
121 	pte_32bit_t *pdir, pte;
122 	nvmm_prot_t pageprot;
123 
124 	/* We begin with an RWXU access. */
125 	*prot = NVMM_PROT_ALL;
126 
127 	/* Parse L2. */
128 	L2gpa = (cr3 & CR3_FRAME_32BIT);
129 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
130 		return -1;
131 	pdir = (pte_32bit_t *)L2hva;
132 	pte = pdir[pte32_l2idx(gva)];
133 	if ((pte & PG_V) == 0)
134 		return -1;
135 	if ((pte & PG_u) == 0)
136 		*prot &= ~NVMM_PROT_USER;
137 	if ((pte & PG_KW) == 0)
138 		*prot &= ~NVMM_PROT_WRITE;
139 	if ((pte & PG_PS) && !has_pse)
140 		return -1;
141 	if (pte & PG_PS) {
142 		*gpa = (pte & PTE32_L2_FRAME);
143 		*gpa = *gpa + (gva & PTE32_L1_MASK);
144 		return 0;
145 	}
146 
147 	/* Parse L1. */
148 	L1gpa = (pte & PG_FRAME);
149 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
150 		return -1;
151 	pdir = (pte_32bit_t *)L1hva;
152 	pte = pdir[pte32_l1idx(gva)];
153 	if ((pte & PG_V) == 0)
154 		return -1;
155 	if ((pte & PG_u) == 0)
156 		*prot &= ~NVMM_PROT_USER;
157 	if ((pte & PG_KW) == 0)
158 		*prot &= ~NVMM_PROT_WRITE;
159 	if (pte & PG_PS)
160 		return -1;
161 
162 	*gpa = (pte & PG_FRAME);
163 	return 0;
164 }
165 
166 /* -------------------------------------------------------------------------- */
167 
168 #define	PTE32_PAE_L1_SHIFT	12
169 #define	PTE32_PAE_L2_SHIFT	21
170 #define	PTE32_PAE_L3_SHIFT	30
171 
172 #define	PTE32_PAE_L3_MASK	0xc0000000
173 #define	PTE32_PAE_L2_MASK	0x3fe00000
174 #define	PTE32_PAE_L1_MASK	0x001ff000
175 
176 #define	PTE32_PAE_L3_FRAME	(PTE32_PAE_L3_MASK)
177 #define	PTE32_PAE_L2_FRAME	(PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
178 #define	PTE32_PAE_L1_FRAME	(PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
179 
180 #define pte32_pae_l1idx(va)	(((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
181 #define pte32_pae_l2idx(va)	(((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
182 #define pte32_pae_l3idx(va)	(((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
183 
184 #define CR3_FRAME_32BIT_PAE	__BITS(31, 5)
185 
186 typedef uint64_t pte_32bit_pae_t;
187 
188 static int
189 x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
190     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
191 {
192 	gpaddr_t L3gpa, L2gpa, L1gpa;
193 	uintptr_t L3hva, L2hva, L1hva;
194 	pte_32bit_pae_t *pdir, pte;
195 	nvmm_prot_t pageprot;
196 
197 	/* We begin with an RWXU access. */
198 	*prot = NVMM_PROT_ALL;
199 
200 	/* Parse L3. */
201 	L3gpa = (cr3 & CR3_FRAME_32BIT_PAE);
202 	if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
203 		return -1;
204 	pdir = (pte_32bit_pae_t *)L3hva;
205 	pte = pdir[pte32_pae_l3idx(gva)];
206 	if ((pte & PG_V) == 0)
207 		return -1;
208 	if (pte & PG_NX)
209 		*prot &= ~NVMM_PROT_EXEC;
210 	if (pte & PG_PS)
211 		return -1;
212 
213 	/* Parse L2. */
214 	L2gpa = (pte & PG_FRAME);
215 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
216 		return -1;
217 	pdir = (pte_32bit_pae_t *)L2hva;
218 	pte = pdir[pte32_pae_l2idx(gva)];
219 	if ((pte & PG_V) == 0)
220 		return -1;
221 	if ((pte & PG_u) == 0)
222 		*prot &= ~NVMM_PROT_USER;
223 	if ((pte & PG_KW) == 0)
224 		*prot &= ~NVMM_PROT_WRITE;
225 	if (pte & PG_NX)
226 		*prot &= ~NVMM_PROT_EXEC;
227 	if (pte & PG_PS) {
228 		*gpa = (pte & PTE32_PAE_L2_FRAME);
229 		*gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
230 		return 0;
231 	}
232 
233 	/* Parse L1. */
234 	L1gpa = (pte & PG_FRAME);
235 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
236 		return -1;
237 	pdir = (pte_32bit_pae_t *)L1hva;
238 	pte = pdir[pte32_pae_l1idx(gva)];
239 	if ((pte & PG_V) == 0)
240 		return -1;
241 	if ((pte & PG_u) == 0)
242 		*prot &= ~NVMM_PROT_USER;
243 	if ((pte & PG_KW) == 0)
244 		*prot &= ~NVMM_PROT_WRITE;
245 	if (pte & PG_NX)
246 		*prot &= ~NVMM_PROT_EXEC;
247 	if (pte & PG_PS)
248 		return -1;
249 
250 	*gpa = (pte & PG_FRAME);
251 	return 0;
252 }
253 
254 /* -------------------------------------------------------------------------- */
255 
256 #define PTE64_L1_SHIFT	12
257 #define PTE64_L2_SHIFT	21
258 #define PTE64_L3_SHIFT	30
259 #define PTE64_L4_SHIFT	39
260 
261 #define PTE64_L4_MASK	0x0000ff8000000000
262 #define PTE64_L3_MASK	0x0000007fc0000000
263 #define PTE64_L2_MASK	0x000000003fe00000
264 #define PTE64_L1_MASK	0x00000000001ff000
265 
266 #define PTE64_L4_FRAME	PTE64_L4_MASK
267 #define PTE64_L3_FRAME	(PTE64_L4_FRAME|PTE64_L3_MASK)
268 #define PTE64_L2_FRAME	(PTE64_L3_FRAME|PTE64_L2_MASK)
269 #define PTE64_L1_FRAME	(PTE64_L2_FRAME|PTE64_L1_MASK)
270 
271 #define pte64_l1idx(va)	(((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
272 #define pte64_l2idx(va)	(((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
273 #define pte64_l3idx(va)	(((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
274 #define pte64_l4idx(va)	(((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
275 
276 #define CR3_FRAME_64BIT	PG_FRAME
277 
278 typedef uint64_t pte_64bit_t;
279 
280 static inline bool
281 x86_gva_64bit_canonical(gvaddr_t gva)
282 {
283 	/* Bits 63:47 must have the same value. */
284 #define SIGN_EXTEND	0xffff800000000000ULL
285 	return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
286 }
287 
288 static int
289 x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
290     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
291 {
292 	gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
293 	uintptr_t L4hva, L3hva, L2hva, L1hva;
294 	pte_64bit_t *pdir, pte;
295 	nvmm_prot_t pageprot;
296 
297 	/* We begin with an RWXU access. */
298 	*prot = NVMM_PROT_ALL;
299 
300 	if (!x86_gva_64bit_canonical(gva))
301 		return -1;
302 
303 	/* Parse L4. */
304 	L4gpa = (cr3 & CR3_FRAME_64BIT);
305 	if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva, &pageprot) == -1)
306 		return -1;
307 	pdir = (pte_64bit_t *)L4hva;
308 	pte = pdir[pte64_l4idx(gva)];
309 	if ((pte & PG_V) == 0)
310 		return -1;
311 	if ((pte & PG_u) == 0)
312 		*prot &= ~NVMM_PROT_USER;
313 	if ((pte & PG_KW) == 0)
314 		*prot &= ~NVMM_PROT_WRITE;
315 	if (pte & PG_NX)
316 		*prot &= ~NVMM_PROT_EXEC;
317 	if (pte & PG_PS)
318 		return -1;
319 
320 	/* Parse L3. */
321 	L3gpa = (pte & PG_FRAME);
322 	if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
323 		return -1;
324 	pdir = (pte_64bit_t *)L3hva;
325 	pte = pdir[pte64_l3idx(gva)];
326 	if ((pte & PG_V) == 0)
327 		return -1;
328 	if ((pte & PG_u) == 0)
329 		*prot &= ~NVMM_PROT_USER;
330 	if ((pte & PG_KW) == 0)
331 		*prot &= ~NVMM_PROT_WRITE;
332 	if (pte & PG_NX)
333 		*prot &= ~NVMM_PROT_EXEC;
334 	if (pte & PG_PS) {
335 		*gpa = (pte & PTE64_L3_FRAME);
336 		*gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
337 		return 0;
338 	}
339 
340 	/* Parse L2. */
341 	L2gpa = (pte & PG_FRAME);
342 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
343 		return -1;
344 	pdir = (pte_64bit_t *)L2hva;
345 	pte = pdir[pte64_l2idx(gva)];
346 	if ((pte & PG_V) == 0)
347 		return -1;
348 	if ((pte & PG_u) == 0)
349 		*prot &= ~NVMM_PROT_USER;
350 	if ((pte & PG_KW) == 0)
351 		*prot &= ~NVMM_PROT_WRITE;
352 	if (pte & PG_NX)
353 		*prot &= ~NVMM_PROT_EXEC;
354 	if (pte & PG_PS) {
355 		*gpa = (pte & PTE64_L2_FRAME);
356 		*gpa = *gpa + (gva & PTE64_L1_MASK);
357 		return 0;
358 	}
359 
360 	/* Parse L1. */
361 	L1gpa = (pte & PG_FRAME);
362 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
363 		return -1;
364 	pdir = (pte_64bit_t *)L1hva;
365 	pte = pdir[pte64_l1idx(gva)];
366 	if ((pte & PG_V) == 0)
367 		return -1;
368 	if ((pte & PG_u) == 0)
369 		*prot &= ~NVMM_PROT_USER;
370 	if ((pte & PG_KW) == 0)
371 		*prot &= ~NVMM_PROT_WRITE;
372 	if (pte & PG_NX)
373 		*prot &= ~NVMM_PROT_EXEC;
374 	if (pte & PG_PS)
375 		return -1;
376 
377 	*gpa = (pte & PG_FRAME);
378 	return 0;
379 }
380 
381 static inline int
382 x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
383     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
384 {
385 	bool is_pae, is_lng, has_pse;
386 	uint64_t cr3;
387 	size_t off;
388 	int ret;
389 
390 	if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
391 		/* No paging. */
392 		*prot = NVMM_PROT_ALL;
393 		*gpa = gva;
394 		return 0;
395 	}
396 
397 	off = (gva & PAGE_MASK);
398 	gva &= ~PAGE_MASK;
399 
400 	is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
401 	is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
402 	has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
403 	cr3 = state->crs[NVMM_X64_CR_CR3];
404 
405 	if (is_pae && is_lng) {
406 		/* 64bit */
407 		ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
408 	} else if (is_pae && !is_lng) {
409 		/* 32bit PAE */
410 		ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, prot);
411 	} else if (!is_pae && !is_lng) {
412 		/* 32bit */
413 		ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
414 	} else {
415 		ret = -1;
416 	}
417 
418 	if (ret == -1) {
419 		errno = EFAULT;
420 	}
421 
422 	*gpa = *gpa + off;
423 
424 	return ret;
425 }
426 
427 int
428 nvmm_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
429     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
430 {
431 	struct nvmm_x64_state *state = vcpu->state;
432 	int ret;
433 
434 	ret = nvmm_vcpu_getstate(mach, vcpu,
435 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
436 	if (ret == -1)
437 		return -1;
438 
439 	return x86_gva_to_gpa(mach, state, gva, gpa, prot);
440 }
441 
442 /* -------------------------------------------------------------------------- */
443 
444 static inline bool
445 is_long_mode(struct nvmm_x64_state *state)
446 {
447 	return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
448 }
449 
450 static inline bool
451 is_64bit(struct nvmm_x64_state *state)
452 {
453 	return (state->segs[NVMM_X64_SEG_CS].attrib.l != 0);
454 }
455 
456 static inline bool
457 is_32bit(struct nvmm_x64_state *state)
458 {
459 	return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
460 	    (state->segs[NVMM_X64_SEG_CS].attrib.def == 1);
461 }
462 
463 static inline bool
464 is_16bit(struct nvmm_x64_state *state)
465 {
466 	return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
467 	    (state->segs[NVMM_X64_SEG_CS].attrib.def == 0);
468 }
469 
470 static int
471 segment_check(struct nvmm_x64_state_seg *seg, gvaddr_t gva, size_t size)
472 {
473 	uint64_t limit;
474 
475 	/*
476 	 * This is incomplete. We should check topdown, etc, really that's
477 	 * tiring.
478 	 */
479 	if (__predict_false(!seg->attrib.p)) {
480 		goto error;
481 	}
482 
483 	limit = (uint64_t)seg->limit + 1;
484 	if (__predict_true(seg->attrib.g)) {
485 		limit *= PAGE_SIZE;
486 	}
487 
488 	if (__predict_false(gva + size > limit)) {
489 		goto error;
490 	}
491 
492 	return 0;
493 
494 error:
495 	errno = EFAULT;
496 	return -1;
497 }
498 
499 static inline void
500 segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva)
501 {
502 	*gva += seg->base;
503 }
504 
505 static inline uint64_t
506 size_to_mask(size_t size)
507 {
508 	switch (size) {
509 	case 1:
510 		return 0x00000000000000FF;
511 	case 2:
512 		return 0x000000000000FFFF;
513 	case 4:
514 		return 0x00000000FFFFFFFF;
515 	case 8:
516 	default:
517 		return 0xFFFFFFFFFFFFFFFF;
518 	}
519 }
520 
521 static uint64_t
522 rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
523 {
524 	uint64_t mask, cnt;
525 
526 	mask = size_to_mask(adsize);
527 	cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
528 
529 	return cnt;
530 }
531 
532 static void
533 rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
534 {
535 	uint64_t mask;
536 
537 	/* XXX: should we zero-extend? */
538 	mask = size_to_mask(adsize);
539 	state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
540 	state->gprs[NVMM_X64_GPR_RCX] |= cnt;
541 }
542 
543 static int
544 read_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
545     gvaddr_t gva, uint8_t *data, size_t size)
546 {
547 	struct nvmm_mem mem;
548 	nvmm_prot_t prot;
549 	gpaddr_t gpa;
550 	uintptr_t hva;
551 	bool is_mmio;
552 	int ret, remain;
553 
554 	ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
555 	if (__predict_false(ret == -1)) {
556 		return -1;
557 	}
558 	if (__predict_false(!(prot & NVMM_PROT_READ))) {
559 		errno = EFAULT;
560 		return -1;
561 	}
562 
563 	if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
564 		remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
565 	} else {
566 		remain = 0;
567 	}
568 	size -= remain;
569 
570 	ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
571 	is_mmio = (ret == -1);
572 
573 	if (is_mmio) {
574 		mem.data = data;
575 		mem.gpa = gpa;
576 		mem.write = false;
577 		mem.size = size;
578 		(*mach->cbs.mem)(&mem);
579 	} else {
580 		if (__predict_false(!(prot & NVMM_PROT_READ))) {
581 			errno = EFAULT;
582 			return -1;
583 		}
584 		memcpy(data, (uint8_t *)hva, size);
585 	}
586 
587 	if (remain > 0) {
588 		ret = read_guest_memory(mach, state, gva + size,
589 		    data + size, remain);
590 	} else {
591 		ret = 0;
592 	}
593 
594 	return ret;
595 }
596 
597 static int
598 write_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
599     gvaddr_t gva, uint8_t *data, size_t size)
600 {
601 	struct nvmm_mem mem;
602 	nvmm_prot_t prot;
603 	gpaddr_t gpa;
604 	uintptr_t hva;
605 	bool is_mmio;
606 	int ret, remain;
607 
608 	ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
609 	if (__predict_false(ret == -1)) {
610 		return -1;
611 	}
612 	if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
613 		errno = EFAULT;
614 		return -1;
615 	}
616 
617 	if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
618 		remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
619 	} else {
620 		remain = 0;
621 	}
622 	size -= remain;
623 
624 	ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
625 	is_mmio = (ret == -1);
626 
627 	if (is_mmio) {
628 		mem.data = data;
629 		mem.gpa = gpa;
630 		mem.write = true;
631 		mem.size = size;
632 		(*mach->cbs.mem)(&mem);
633 	} else {
634 		if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
635 			errno = EFAULT;
636 			return -1;
637 		}
638 		memcpy((uint8_t *)hva, data, size);
639 	}
640 
641 	if (remain > 0) {
642 		ret = write_guest_memory(mach, state, gva + size,
643 		    data + size, remain);
644 	} else {
645 		ret = 0;
646 	}
647 
648 	return ret;
649 }
650 
651 /* -------------------------------------------------------------------------- */
652 
653 static int fetch_segment(struct nvmm_machine *, struct nvmm_x64_state *);
654 
655 #define NVMM_IO_BATCH_SIZE	32
656 
657 static int
658 assist_io_batch(struct nvmm_machine *mach, struct nvmm_x64_state *state,
659     struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
660 {
661 	uint8_t iobuf[NVMM_IO_BATCH_SIZE];
662 	size_t i, iosize, iocnt;
663 	int ret;
664 
665 	cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
666 	iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
667 	iocnt = iosize / io->size;
668 
669 	io->data = iobuf;
670 
671 	if (!io->in) {
672 		ret = read_guest_memory(mach, state, gva, iobuf, iosize);
673 		if (ret == -1)
674 			return -1;
675 	}
676 
677 	for (i = 0; i < iocnt; i++) {
678 		(*mach->cbs.io)(io);
679 		io->data += io->size;
680 	}
681 
682 	if (io->in) {
683 		ret = write_guest_memory(mach, state, gva, iobuf, iosize);
684 		if (ret == -1)
685 			return -1;
686 	}
687 
688 	return iocnt;
689 }
690 
691 int
692 nvmm_assist_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
693 {
694 	struct nvmm_x64_state *state = vcpu->state;
695 	struct nvmm_exit *exit = vcpu->exit;
696 	struct nvmm_io io;
697 	uint64_t cnt = 0; /* GCC */
698 	uint8_t iobuf[8];
699 	int iocnt = 1;
700 	gvaddr_t gva = 0; /* GCC */
701 	int reg = 0; /* GCC */
702 	int ret, seg;
703 	bool psld = false;
704 
705 	if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
706 		errno = EINVAL;
707 		return -1;
708 	}
709 
710 	io.port = exit->u.io.port;
711 	io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
712 	io.size = exit->u.io.operand_size;
713 	io.data = iobuf;
714 
715 	ret = nvmm_vcpu_getstate(mach, vcpu,
716 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
717 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
718 	if (ret == -1)
719 		return -1;
720 
721 	if (exit->u.io.rep) {
722 		cnt = rep_get_cnt(state, exit->u.io.address_size);
723 		if (__predict_false(cnt == 0)) {
724 			state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
725 			goto out;
726 		}
727 	}
728 
729 	if (__predict_false(state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
730 		psld = true;
731 	}
732 
733 	/*
734 	 * Determine GVA.
735 	 */
736 	if (exit->u.io.str) {
737 		if (io.in) {
738 			reg = NVMM_X64_GPR_RDI;
739 		} else {
740 			reg = NVMM_X64_GPR_RSI;
741 		}
742 
743 		gva = state->gprs[reg];
744 		gva &= size_to_mask(exit->u.io.address_size);
745 
746 		if (exit->u.io.seg != -1) {
747 			seg = exit->u.io.seg;
748 		} else {
749 			if (io.in) {
750 				seg = NVMM_X64_SEG_ES;
751 			} else {
752 				seg = fetch_segment(mach, state);
753 				if (seg == -1)
754 					return -1;
755 			}
756 		}
757 
758 		if (__predict_true(is_long_mode(state))) {
759 			if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
760 				segment_apply(&state->segs[seg], &gva);
761 			}
762 		} else {
763 			ret = segment_check(&state->segs[seg], gva, io.size);
764 			if (ret == -1)
765 				return -1;
766 			segment_apply(&state->segs[seg], &gva);
767 		}
768 
769 		if (exit->u.io.rep && !psld) {
770 			iocnt = assist_io_batch(mach, state, &io, gva, cnt);
771 			if (iocnt == -1)
772 				return -1;
773 			goto done;
774 		}
775 	}
776 
777 	if (!io.in) {
778 		if (!exit->u.io.str) {
779 			memcpy(io.data, &state->gprs[NVMM_X64_GPR_RAX], io.size);
780 		} else {
781 			ret = read_guest_memory(mach, state, gva, io.data,
782 			    io.size);
783 			if (ret == -1)
784 				return -1;
785 		}
786 	}
787 
788 	(*mach->cbs.io)(&io);
789 
790 	if (io.in) {
791 		if (!exit->u.io.str) {
792 			memcpy(&state->gprs[NVMM_X64_GPR_RAX], io.data, io.size);
793 			if (io.size == 4) {
794 				/* Zero-extend to 64 bits. */
795 				state->gprs[NVMM_X64_GPR_RAX] &= size_to_mask(4);
796 			}
797 		} else {
798 			ret = write_guest_memory(mach, state, gva, io.data,
799 			    io.size);
800 			if (ret == -1)
801 				return -1;
802 		}
803 	}
804 
805 done:
806 	if (exit->u.io.str) {
807 		if (__predict_false(psld)) {
808 			state->gprs[reg] -= iocnt * io.size;
809 		} else {
810 			state->gprs[reg] += iocnt * io.size;
811 		}
812 	}
813 
814 	if (exit->u.io.rep) {
815 		cnt -= iocnt;
816 		rep_set_cnt(state, exit->u.io.address_size, cnt);
817 		if (cnt == 0) {
818 			state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
819 		}
820 	} else {
821 		state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
822 	}
823 
824 out:
825 	ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
826 	if (ret == -1)
827 		return -1;
828 
829 	return 0;
830 }
831 
832 /* -------------------------------------------------------------------------- */
833 
834 struct x86_emul {
835 	bool read;
836 	bool notouch;
837 	void (*func)(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
838 };
839 
840 static void x86_func_or(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
841 static void x86_func_and(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
842 static void x86_func_sub(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
843 static void x86_func_xor(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
844 static void x86_func_cmp(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
845 static void x86_func_test(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
846 static void x86_func_mov(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
847 static void x86_func_stos(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
848 static void x86_func_lods(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
849 static void x86_func_movs(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
850 
851 static const struct x86_emul x86_emul_or = {
852 	.read = true,
853 	.func = x86_func_or
854 };
855 
856 static const struct x86_emul x86_emul_and = {
857 	.read = true,
858 	.func = x86_func_and
859 };
860 
861 static const struct x86_emul x86_emul_sub = {
862 	.read = true,
863 	.func = x86_func_sub
864 };
865 
866 static const struct x86_emul x86_emul_xor = {
867 	.read = true,
868 	.func = x86_func_xor
869 };
870 
871 static const struct x86_emul x86_emul_cmp = {
872 	.notouch = true,
873 	.func = x86_func_cmp
874 };
875 
876 static const struct x86_emul x86_emul_test = {
877 	.notouch = true,
878 	.func = x86_func_test
879 };
880 
881 static const struct x86_emul x86_emul_mov = {
882 	.func = x86_func_mov
883 };
884 
885 static const struct x86_emul x86_emul_stos = {
886 	.func = x86_func_stos
887 };
888 
889 static const struct x86_emul x86_emul_lods = {
890 	.func = x86_func_lods
891 };
892 
893 static const struct x86_emul x86_emul_movs = {
894 	.func = x86_func_movs
895 };
896 
897 /* Legacy prefixes. */
898 #define LEG_LOCK	0xF0
899 #define LEG_REPN	0xF2
900 #define LEG_REP		0xF3
901 #define LEG_OVR_CS	0x2E
902 #define LEG_OVR_SS	0x36
903 #define LEG_OVR_DS	0x3E
904 #define LEG_OVR_ES	0x26
905 #define LEG_OVR_FS	0x64
906 #define LEG_OVR_GS	0x65
907 #define LEG_OPR_OVR	0x66
908 #define LEG_ADR_OVR	0x67
909 
910 struct x86_legpref {
911 	bool opr_ovr:1;
912 	bool adr_ovr:1;
913 	bool rep:1;
914 	bool repn:1;
915 	int8_t seg;
916 };
917 
918 struct x86_rexpref {
919 	bool b:1;
920 	bool x:1;
921 	bool r:1;
922 	bool w:1;
923 	bool present:1;
924 };
925 
926 struct x86_reg {
927 	int num;	/* NVMM GPR state index */
928 	uint64_t mask;
929 };
930 
931 enum x86_disp_type {
932 	DISP_NONE,
933 	DISP_0,
934 	DISP_1,
935 	DISP_4
936 };
937 
938 struct x86_disp {
939 	enum x86_disp_type type;
940 	uint64_t data; /* 4 bytes, but can be sign-extended */
941 };
942 
943 enum REGMODRM__Mod {
944 	MOD_DIS0, /* also, register indirect */
945 	MOD_DIS1,
946 	MOD_DIS4,
947 	MOD_REG
948 };
949 
950 enum REGMODRM__Reg {
951 	REG_000, /* these fields are indexes to the register map */
952 	REG_001,
953 	REG_010,
954 	REG_011,
955 	REG_100,
956 	REG_101,
957 	REG_110,
958 	REG_111
959 };
960 
961 enum REGMODRM__Rm {
962 	RM_000, /* reg */
963 	RM_001, /* reg */
964 	RM_010, /* reg */
965 	RM_011, /* reg */
966 	RM_RSP_SIB, /* reg or SIB, depending on the MOD */
967 	RM_RBP_DISP32, /* reg or displacement-only (= RIP-relative on amd64) */
968 	RM_110,
969 	RM_111
970 };
971 
972 struct x86_regmodrm {
973 	uint8_t mod:2;
974 	uint8_t reg:3;
975 	uint8_t rm:3;
976 };
977 
978 struct x86_immediate {
979 	uint64_t data;
980 };
981 
982 struct x86_sib {
983 	uint8_t scale;
984 	const struct x86_reg *idx;
985 	const struct x86_reg *bas;
986 };
987 
988 enum x86_store_type {
989 	STORE_NONE,
990 	STORE_REG,
991 	STORE_IMM,
992 	STORE_SIB,
993 	STORE_DMO
994 };
995 
996 struct x86_store {
997 	enum x86_store_type type;
998 	union {
999 		const struct x86_reg *reg;
1000 		struct x86_immediate imm;
1001 		struct x86_sib sib;
1002 		uint64_t dmo;
1003 	} u;
1004 	struct x86_disp disp;
1005 	int hardseg;
1006 };
1007 
1008 struct x86_instr {
1009 	uint8_t len;
1010 	struct x86_legpref legpref;
1011 	struct x86_rexpref rexpref;
1012 	struct x86_regmodrm regmodrm;
1013 	uint8_t operand_size;
1014 	uint8_t address_size;
1015 	uint64_t zeroextend_mask;
1016 
1017 	const struct x86_opcode *opcode;
1018 	const struct x86_emul *emul;
1019 
1020 	struct x86_store src;
1021 	struct x86_store dst;
1022 	struct x86_store *strm;
1023 };
1024 
1025 struct x86_decode_fsm {
1026 	/* vcpu */
1027 	bool is64bit;
1028 	bool is32bit;
1029 	bool is16bit;
1030 
1031 	/* fsm */
1032 	int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
1033 	uint8_t *buf;
1034 	uint8_t *end;
1035 };
1036 
1037 struct x86_opcode {
1038 	bool valid:1;
1039 	bool regmodrm:1;
1040 	bool regtorm:1;
1041 	bool dmo:1;
1042 	bool todmo:1;
1043 	bool movs:1;
1044 	bool stos:1;
1045 	bool lods:1;
1046 	bool szoverride:1;
1047 	bool group1:1;
1048 	bool group3:1;
1049 	bool group11:1;
1050 	bool immediate:1;
1051 	uint8_t defsize;
1052 	uint8_t flags;
1053 	const struct x86_emul *emul;
1054 };
1055 
1056 struct x86_group_entry {
1057 	const struct x86_emul *emul;
1058 };
1059 
1060 #define OPSIZE_BYTE 0x01
1061 #define OPSIZE_WORD 0x02 /* 2 bytes */
1062 #define OPSIZE_DOUB 0x04 /* 4 bytes */
1063 #define OPSIZE_QUAD 0x08 /* 8 bytes */
1064 
1065 #define FLAG_imm8	0x01
1066 #define FLAG_immz	0x02
1067 #define FLAG_ze		0x04
1068 
1069 static const struct x86_group_entry group1[8] __cacheline_aligned = {
1070 	[1] = { .emul = &x86_emul_or },
1071 	[4] = { .emul = &x86_emul_and },
1072 	[6] = { .emul = &x86_emul_xor },
1073 	[7] = { .emul = &x86_emul_cmp }
1074 };
1075 
1076 static const struct x86_group_entry group3[8] __cacheline_aligned = {
1077 	[0] = { .emul = &x86_emul_test },
1078 	[1] = { .emul = &x86_emul_test }
1079 };
1080 
1081 static const struct x86_group_entry group11[8] __cacheline_aligned = {
1082 	[0] = { .emul = &x86_emul_mov }
1083 };
1084 
1085 static const struct x86_opcode primary_opcode_table[256] __cacheline_aligned = {
1086 	/*
1087 	 * Group1
1088 	 */
1089 	[0x80] = {
1090 		/* Eb, Ib */
1091 		.valid = true,
1092 		.regmodrm = true,
1093 		.regtorm = true,
1094 		.szoverride = false,
1095 		.defsize = OPSIZE_BYTE,
1096 		.group1 = true,
1097 		.immediate = true,
1098 		.emul = NULL /* group1 */
1099 	},
1100 	[0x81] = {
1101 		/* Ev, Iz */
1102 		.valid = true,
1103 		.regmodrm = true,
1104 		.regtorm = true,
1105 		.szoverride = true,
1106 		.defsize = -1,
1107 		.group1 = true,
1108 		.immediate = true,
1109 		.flags = FLAG_immz,
1110 		.emul = NULL /* group1 */
1111 	},
1112 	[0x83] = {
1113 		/* Ev, Ib */
1114 		.valid = true,
1115 		.regmodrm = true,
1116 		.regtorm = true,
1117 		.szoverride = true,
1118 		.defsize = -1,
1119 		.group1 = true,
1120 		.immediate = true,
1121 		.flags = FLAG_imm8,
1122 		.emul = NULL /* group1 */
1123 	},
1124 
1125 	/*
1126 	 * Group3
1127 	 */
1128 	[0xF6] = {
1129 		/* Eb, Ib */
1130 		.valid = true,
1131 		.regmodrm = true,
1132 		.regtorm = true,
1133 		.szoverride = false,
1134 		.defsize = OPSIZE_BYTE,
1135 		.group3 = true,
1136 		.immediate = true,
1137 		.emul = NULL /* group3 */
1138 	},
1139 	[0xF7] = {
1140 		/* Ev, Iz */
1141 		.valid = true,
1142 		.regmodrm = true,
1143 		.regtorm = true,
1144 		.szoverride = true,
1145 		.defsize = -1,
1146 		.group3 = true,
1147 		.immediate = true,
1148 		.flags = FLAG_immz,
1149 		.emul = NULL /* group3 */
1150 	},
1151 
1152 	/*
1153 	 * Group11
1154 	 */
1155 	[0xC6] = {
1156 		/* Eb, Ib */
1157 		.valid = true,
1158 		.regmodrm = true,
1159 		.regtorm = true,
1160 		.szoverride = false,
1161 		.defsize = OPSIZE_BYTE,
1162 		.group11 = true,
1163 		.immediate = true,
1164 		.emul = NULL /* group11 */
1165 	},
1166 	[0xC7] = {
1167 		/* Ev, Iz */
1168 		.valid = true,
1169 		.regmodrm = true,
1170 		.regtorm = true,
1171 		.szoverride = true,
1172 		.defsize = -1,
1173 		.group11 = true,
1174 		.immediate = true,
1175 		.flags = FLAG_immz,
1176 		.emul = NULL /* group11 */
1177 	},
1178 
1179 	/*
1180 	 * OR
1181 	 */
1182 	[0x08] = {
1183 		/* Eb, Gb */
1184 		.valid = true,
1185 		.regmodrm = true,
1186 		.regtorm = true,
1187 		.szoverride = false,
1188 		.defsize = OPSIZE_BYTE,
1189 		.emul = &x86_emul_or
1190 	},
1191 	[0x09] = {
1192 		/* Ev, Gv */
1193 		.valid = true,
1194 		.regmodrm = true,
1195 		.regtorm = true,
1196 		.szoverride = true,
1197 		.defsize = -1,
1198 		.emul = &x86_emul_or
1199 	},
1200 	[0x0A] = {
1201 		/* Gb, Eb */
1202 		.valid = true,
1203 		.regmodrm = true,
1204 		.regtorm = false,
1205 		.szoverride = false,
1206 		.defsize = OPSIZE_BYTE,
1207 		.emul = &x86_emul_or
1208 	},
1209 	[0x0B] = {
1210 		/* Gv, Ev */
1211 		.valid = true,
1212 		.regmodrm = true,
1213 		.regtorm = false,
1214 		.szoverride = true,
1215 		.defsize = -1,
1216 		.emul = &x86_emul_or
1217 	},
1218 
1219 	/*
1220 	 * AND
1221 	 */
1222 	[0x20] = {
1223 		/* Eb, Gb */
1224 		.valid = true,
1225 		.regmodrm = true,
1226 		.regtorm = true,
1227 		.szoverride = false,
1228 		.defsize = OPSIZE_BYTE,
1229 		.emul = &x86_emul_and
1230 	},
1231 	[0x21] = {
1232 		/* Ev, Gv */
1233 		.valid = true,
1234 		.regmodrm = true,
1235 		.regtorm = true,
1236 		.szoverride = true,
1237 		.defsize = -1,
1238 		.emul = &x86_emul_and
1239 	},
1240 	[0x22] = {
1241 		/* Gb, Eb */
1242 		.valid = true,
1243 		.regmodrm = true,
1244 		.regtorm = false,
1245 		.szoverride = false,
1246 		.defsize = OPSIZE_BYTE,
1247 		.emul = &x86_emul_and
1248 	},
1249 	[0x23] = {
1250 		/* Gv, Ev */
1251 		.valid = true,
1252 		.regmodrm = true,
1253 		.regtorm = false,
1254 		.szoverride = true,
1255 		.defsize = -1,
1256 		.emul = &x86_emul_and
1257 	},
1258 
1259 	/*
1260 	 * SUB
1261 	 */
1262 	[0x28] = {
1263 		/* Eb, Gb */
1264 		.valid = true,
1265 		.regmodrm = true,
1266 		.regtorm = true,
1267 		.szoverride = false,
1268 		.defsize = OPSIZE_BYTE,
1269 		.emul = &x86_emul_sub
1270 	},
1271 	[0x29] = {
1272 		/* Ev, Gv */
1273 		.valid = true,
1274 		.regmodrm = true,
1275 		.regtorm = true,
1276 		.szoverride = true,
1277 		.defsize = -1,
1278 		.emul = &x86_emul_sub
1279 	},
1280 	[0x2A] = {
1281 		/* Gb, Eb */
1282 		.valid = true,
1283 		.regmodrm = true,
1284 		.regtorm = false,
1285 		.szoverride = false,
1286 		.defsize = OPSIZE_BYTE,
1287 		.emul = &x86_emul_sub
1288 	},
1289 	[0x2B] = {
1290 		/* Gv, Ev */
1291 		.valid = true,
1292 		.regmodrm = true,
1293 		.regtorm = false,
1294 		.szoverride = true,
1295 		.defsize = -1,
1296 		.emul = &x86_emul_sub
1297 	},
1298 
1299 	/*
1300 	 * XOR
1301 	 */
1302 	[0x30] = {
1303 		/* Eb, Gb */
1304 		.valid = true,
1305 		.regmodrm = true,
1306 		.regtorm = true,
1307 		.szoverride = false,
1308 		.defsize = OPSIZE_BYTE,
1309 		.emul = &x86_emul_xor
1310 	},
1311 	[0x31] = {
1312 		/* Ev, Gv */
1313 		.valid = true,
1314 		.regmodrm = true,
1315 		.regtorm = true,
1316 		.szoverride = true,
1317 		.defsize = -1,
1318 		.emul = &x86_emul_xor
1319 	},
1320 	[0x32] = {
1321 		/* Gb, Eb */
1322 		.valid = true,
1323 		.regmodrm = true,
1324 		.regtorm = false,
1325 		.szoverride = false,
1326 		.defsize = OPSIZE_BYTE,
1327 		.emul = &x86_emul_xor
1328 	},
1329 	[0x33] = {
1330 		/* Gv, Ev */
1331 		.valid = true,
1332 		.regmodrm = true,
1333 		.regtorm = false,
1334 		.szoverride = true,
1335 		.defsize = -1,
1336 		.emul = &x86_emul_xor
1337 	},
1338 
1339 	/*
1340 	 * MOV
1341 	 */
1342 	[0x88] = {
1343 		/* Eb, Gb */
1344 		.valid = true,
1345 		.regmodrm = true,
1346 		.regtorm = true,
1347 		.szoverride = false,
1348 		.defsize = OPSIZE_BYTE,
1349 		.emul = &x86_emul_mov
1350 	},
1351 	[0x89] = {
1352 		/* Ev, Gv */
1353 		.valid = true,
1354 		.regmodrm = true,
1355 		.regtorm = true,
1356 		.szoverride = true,
1357 		.defsize = -1,
1358 		.emul = &x86_emul_mov
1359 	},
1360 	[0x8A] = {
1361 		/* Gb, Eb */
1362 		.valid = true,
1363 		.regmodrm = true,
1364 		.regtorm = false,
1365 		.szoverride = false,
1366 		.defsize = OPSIZE_BYTE,
1367 		.emul = &x86_emul_mov
1368 	},
1369 	[0x8B] = {
1370 		/* Gv, Ev */
1371 		.valid = true,
1372 		.regmodrm = true,
1373 		.regtorm = false,
1374 		.szoverride = true,
1375 		.defsize = -1,
1376 		.emul = &x86_emul_mov
1377 	},
1378 	[0xA0] = {
1379 		/* AL, Ob */
1380 		.valid = true,
1381 		.dmo = true,
1382 		.todmo = false,
1383 		.szoverride = false,
1384 		.defsize = OPSIZE_BYTE,
1385 		.emul = &x86_emul_mov
1386 	},
1387 	[0xA1] = {
1388 		/* rAX, Ov */
1389 		.valid = true,
1390 		.dmo = true,
1391 		.todmo = false,
1392 		.szoverride = true,
1393 		.defsize = -1,
1394 		.emul = &x86_emul_mov
1395 	},
1396 	[0xA2] = {
1397 		/* Ob, AL */
1398 		.valid = true,
1399 		.dmo = true,
1400 		.todmo = true,
1401 		.szoverride = false,
1402 		.defsize = OPSIZE_BYTE,
1403 		.emul = &x86_emul_mov
1404 	},
1405 	[0xA3] = {
1406 		/* Ov, rAX */
1407 		.valid = true,
1408 		.dmo = true,
1409 		.todmo = true,
1410 		.szoverride = true,
1411 		.defsize = -1,
1412 		.emul = &x86_emul_mov
1413 	},
1414 
1415 	/*
1416 	 * MOVS
1417 	 */
1418 	[0xA4] = {
1419 		/* Yb, Xb */
1420 		.valid = true,
1421 		.movs = true,
1422 		.szoverride = false,
1423 		.defsize = OPSIZE_BYTE,
1424 		.emul = &x86_emul_movs
1425 	},
1426 	[0xA5] = {
1427 		/* Yv, Xv */
1428 		.valid = true,
1429 		.movs = true,
1430 		.szoverride = true,
1431 		.defsize = -1,
1432 		.emul = &x86_emul_movs
1433 	},
1434 
1435 	/*
1436 	 * STOS
1437 	 */
1438 	[0xAA] = {
1439 		/* Yb, AL */
1440 		.valid = true,
1441 		.stos = true,
1442 		.szoverride = false,
1443 		.defsize = OPSIZE_BYTE,
1444 		.emul = &x86_emul_stos
1445 	},
1446 	[0xAB] = {
1447 		/* Yv, rAX */
1448 		.valid = true,
1449 		.stos = true,
1450 		.szoverride = true,
1451 		.defsize = -1,
1452 		.emul = &x86_emul_stos
1453 	},
1454 
1455 	/*
1456 	 * LODS
1457 	 */
1458 	[0xAC] = {
1459 		/* AL, Xb */
1460 		.valid = true,
1461 		.lods = true,
1462 		.szoverride = false,
1463 		.defsize = OPSIZE_BYTE,
1464 		.emul = &x86_emul_lods
1465 	},
1466 	[0xAD] = {
1467 		/* rAX, Xv */
1468 		.valid = true,
1469 		.lods = true,
1470 		.szoverride = true,
1471 		.defsize = -1,
1472 		.emul = &x86_emul_lods
1473 	},
1474 };
1475 
1476 static const struct x86_opcode secondary_opcode_table[256] __cacheline_aligned = {
1477 	/*
1478 	 * MOVZX
1479 	 */
1480 	[0xB6] = {
1481 		/* Gv, Eb */
1482 		.valid = true,
1483 		.regmodrm = true,
1484 		.regtorm = false,
1485 		.szoverride = true,
1486 		.defsize = OPSIZE_BYTE,
1487 		.flags = FLAG_ze,
1488 		.emul = &x86_emul_mov
1489 	},
1490 	[0xB7] = {
1491 		/* Gv, Ew */
1492 		.valid = true,
1493 		.regmodrm = true,
1494 		.regtorm = false,
1495 		.szoverride = true,
1496 		.defsize = OPSIZE_WORD,
1497 		.flags = FLAG_ze,
1498 		.emul = &x86_emul_mov
1499 	},
1500 };
1501 
1502 static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1503 
1504 /* [REX-present][enc][opsize] */
1505 static const struct x86_reg gpr_map__special[2][4][8] __cacheline_aligned = {
1506 	[false] = {
1507 		/* No REX prefix. */
1508 		[0b00] = {
1509 			[0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1510 			[1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1511 			[2] = { -1, 0 },
1512 			[3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1513 			[4] = { -1, 0 },
1514 			[5] = { -1, 0 },
1515 			[6] = { -1, 0 },
1516 			[7] = { -1, 0 },
1517 		},
1518 		[0b01] = {
1519 			[0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1520 			[1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1521 			[2] = { -1, 0 },
1522 			[3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF },	/* EBP */
1523 			[4] = { -1, 0 },
1524 			[5] = { -1, 0 },
1525 			[6] = { -1, 0 },
1526 			[7] = { -1, 0 },
1527 		},
1528 		[0b10] = {
1529 			[0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1530 			[1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1531 			[2] = { -1, 0 },
1532 			[3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1533 			[4] = { -1, 0 },
1534 			[5] = { -1, 0 },
1535 			[6] = { -1, 0 },
1536 			[7] = { -1, 0 },
1537 		},
1538 		[0b11] = {
1539 			[0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1540 			[1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1541 			[2] = { -1, 0 },
1542 			[3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1543 			[4] = { -1, 0 },
1544 			[5] = { -1, 0 },
1545 			[6] = { -1, 0 },
1546 			[7] = { -1, 0 },
1547 		}
1548 	},
1549 	[true] = {
1550 		/* Has REX prefix. */
1551 		[0b00] = {
1552 			[0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1553 			[1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1554 			[2] = { -1, 0 },
1555 			[3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1556 			[4] = { -1, 0 },
1557 			[5] = { -1, 0 },
1558 			[6] = { -1, 0 },
1559 			[7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1560 		},
1561 		[0b01] = {
1562 			[0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1563 			[1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1564 			[2] = { -1, 0 },
1565 			[3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1566 			[4] = { -1, 0 },
1567 			[5] = { -1, 0 },
1568 			[6] = { -1, 0 },
1569 			[7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1570 		},
1571 		[0b10] = {
1572 			[0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1573 			[1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1574 			[2] = { -1, 0 },
1575 			[3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1576 			[4] = { -1, 0 },
1577 			[5] = { -1, 0 },
1578 			[6] = { -1, 0 },
1579 			[7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1580 		},
1581 		[0b11] = {
1582 			[0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1583 			[1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1584 			[2] = { -1, 0 },
1585 			[3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1586 			[4] = { -1, 0 },
1587 			[5] = { -1, 0 },
1588 			[6] = { -1, 0 },
1589 			[7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1590 		}
1591 	}
1592 };
1593 
1594 /* [depends][enc][size] */
1595 static const struct x86_reg gpr_map[2][8][8] __cacheline_aligned = {
1596 	[false] = {
1597 		/* Not extended. */
1598 		[0b000] = {
1599 			[0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1600 			[1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1601 			[2] = { -1, 0 },
1602 			[3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1603 			[4] = { -1, 0 },
1604 			[5] = { -1, 0 },
1605 			[6] = { -1, 0 },
1606 			[7] = { NVMM_X64_GPR_RAX, 0xFFFFFFFFFFFFFFFF }, /* RAX */
1607 		},
1608 		[0b001] = {
1609 			[0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1610 			[1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1611 			[2] = { -1, 0 },
1612 			[3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1613 			[4] = { -1, 0 },
1614 			[5] = { -1, 0 },
1615 			[6] = { -1, 0 },
1616 			[7] = { NVMM_X64_GPR_RCX, 0xFFFFFFFFFFFFFFFF }, /* RCX */
1617 		},
1618 		[0b010] = {
1619 			[0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1620 			[1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1621 			[2] = { -1, 0 },
1622 			[3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1623 			[4] = { -1, 0 },
1624 			[5] = { -1, 0 },
1625 			[6] = { -1, 0 },
1626 			[7] = { NVMM_X64_GPR_RDX, 0xFFFFFFFFFFFFFFFF }, /* RDX */
1627 		},
1628 		[0b011] = {
1629 			[0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1630 			[1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1631 			[2] = { -1, 0 },
1632 			[3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1633 			[4] = { -1, 0 },
1634 			[5] = { -1, 0 },
1635 			[6] = { -1, 0 },
1636 			[7] = { NVMM_X64_GPR_RBX, 0xFFFFFFFFFFFFFFFF }, /* RBX */
1637 		},
1638 		[0b100] = {
1639 			[0] = { -1, 0 }, /* SPECIAL */
1640 			[1] = { -1, 0 }, /* SPECIAL */
1641 			[2] = { -1, 0 },
1642 			[3] = { -1, 0 }, /* SPECIAL */
1643 			[4] = { -1, 0 },
1644 			[5] = { -1, 0 },
1645 			[6] = { -1, 0 },
1646 			[7] = { -1, 0 }, /* SPECIAL */
1647 		},
1648 		[0b101] = {
1649 			[0] = { -1, 0 }, /* SPECIAL */
1650 			[1] = { -1, 0 }, /* SPECIAL */
1651 			[2] = { -1, 0 },
1652 			[3] = { -1, 0 }, /* SPECIAL */
1653 			[4] = { -1, 0 },
1654 			[5] = { -1, 0 },
1655 			[6] = { -1, 0 },
1656 			[7] = { -1, 0 }, /* SPECIAL */
1657 		},
1658 		[0b110] = {
1659 			[0] = { -1, 0 }, /* SPECIAL */
1660 			[1] = { -1, 0 }, /* SPECIAL */
1661 			[2] = { -1, 0 },
1662 			[3] = { -1, 0 }, /* SPECIAL */
1663 			[4] = { -1, 0 },
1664 			[5] = { -1, 0 },
1665 			[6] = { -1, 0 },
1666 			[7] = { -1, 0 }, /* SPECIAL */
1667 		},
1668 		[0b111] = {
1669 			[0] = { -1, 0 }, /* SPECIAL */
1670 			[1] = { -1, 0 }, /* SPECIAL */
1671 			[2] = { -1, 0 },
1672 			[3] = { -1, 0 }, /* SPECIAL */
1673 			[4] = { -1, 0 },
1674 			[5] = { -1, 0 },
1675 			[6] = { -1, 0 },
1676 			[7] = { -1, 0 }, /* SPECIAL */
1677 		},
1678 	},
1679 	[true] = {
1680 		/* Extended. */
1681 		[0b000] = {
1682 			[0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1683 			[1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1684 			[2] = { -1, 0 },
1685 			[3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1686 			[4] = { -1, 0 },
1687 			[5] = { -1, 0 },
1688 			[6] = { -1, 0 },
1689 			[7] = { NVMM_X64_GPR_R8, 0xFFFFFFFFFFFFFFFF }, /* R8 */
1690 		},
1691 		[0b001] = {
1692 			[0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1693 			[1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1694 			[2] = { -1, 0 },
1695 			[3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1696 			[4] = { -1, 0 },
1697 			[5] = { -1, 0 },
1698 			[6] = { -1, 0 },
1699 			[7] = { NVMM_X64_GPR_R9, 0xFFFFFFFFFFFFFFFF }, /* R9 */
1700 		},
1701 		[0b010] = {
1702 			[0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1703 			[1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1704 			[2] = { -1, 0 },
1705 			[3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1706 			[4] = { -1, 0 },
1707 			[5] = { -1, 0 },
1708 			[6] = { -1, 0 },
1709 			[7] = { NVMM_X64_GPR_R10, 0xFFFFFFFFFFFFFFFF }, /* R10 */
1710 		},
1711 		[0b011] = {
1712 			[0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1713 			[1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1714 			[2] = { -1, 0 },
1715 			[3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1716 			[4] = { -1, 0 },
1717 			[5] = { -1, 0 },
1718 			[6] = { -1, 0 },
1719 			[7] = { NVMM_X64_GPR_R11, 0xFFFFFFFFFFFFFFFF }, /* R11 */
1720 		},
1721 		[0b100] = {
1722 			[0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1723 			[1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1724 			[2] = { -1, 0 },
1725 			[3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1726 			[4] = { -1, 0 },
1727 			[5] = { -1, 0 },
1728 			[6] = { -1, 0 },
1729 			[7] = { NVMM_X64_GPR_R12, 0xFFFFFFFFFFFFFFFF }, /* R12 */
1730 		},
1731 		[0b101] = {
1732 			[0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1733 			[1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1734 			[2] = { -1, 0 },
1735 			[3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1736 			[4] = { -1, 0 },
1737 			[5] = { -1, 0 },
1738 			[6] = { -1, 0 },
1739 			[7] = { NVMM_X64_GPR_R13, 0xFFFFFFFFFFFFFFFF }, /* R13 */
1740 		},
1741 		[0b110] = {
1742 			[0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1743 			[1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1744 			[2] = { -1, 0 },
1745 			[3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1746 			[4] = { -1, 0 },
1747 			[5] = { -1, 0 },
1748 			[6] = { -1, 0 },
1749 			[7] = { NVMM_X64_GPR_R14, 0xFFFFFFFFFFFFFFFF }, /* R14 */
1750 		},
1751 		[0b111] = {
1752 			[0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1753 			[1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1754 			[2] = { -1, 0 },
1755 			[3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1756 			[4] = { -1, 0 },
1757 			[5] = { -1, 0 },
1758 			[6] = { -1, 0 },
1759 			[7] = { NVMM_X64_GPR_R15, 0xFFFFFFFFFFFFFFFF }, /* R15 */
1760 		},
1761 	}
1762 };
1763 
1764 static int
1765 node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1766 {
1767 	fsm->fn = NULL;
1768 	return -1;
1769 }
1770 
1771 static int
1772 fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1773 {
1774 	if (fsm->buf + n > fsm->end) {
1775 		return -1;
1776 	}
1777 	memcpy(bytes, fsm->buf, n);
1778 	return 0;
1779 }
1780 
1781 static inline void
1782 fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1783     int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1784 {
1785 	fsm->buf += n;
1786 	if (fsm->buf > fsm->end) {
1787 		fsm->fn = node_overflow;
1788 	} else {
1789 		fsm->fn = fn;
1790 	}
1791 }
1792 
1793 static const struct x86_reg *
1794 resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1795 {
1796 	enc &= 0b11;
1797 	if (regsize == 8) {
1798 		/* May be 64bit without REX */
1799 		return &gpr_map__special[1][enc][regsize-1];
1800 	}
1801 	return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1802 }
1803 
1804 /*
1805  * Special node, for MOVS. Fake two displacements of zero on the source and
1806  * destination registers.
1807  */
1808 static int
1809 node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1810 {
1811 	size_t adrsize;
1812 
1813 	adrsize = instr->address_size;
1814 
1815 	/* DS:RSI */
1816 	instr->src.type = STORE_REG;
1817 	instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1818 	instr->src.disp.type = DISP_0;
1819 
1820 	/* ES:RDI, force ES */
1821 	instr->dst.type = STORE_REG;
1822 	instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1823 	instr->dst.disp.type = DISP_0;
1824 	instr->dst.hardseg = NVMM_X64_SEG_ES;
1825 
1826 	fsm_advance(fsm, 0, NULL);
1827 
1828 	return 0;
1829 }
1830 
1831 /*
1832  * Special node, for STOS and LODS. Fake a displacement of zero on the
1833  * destination register.
1834  */
1835 static int
1836 node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1837 {
1838 	const struct x86_opcode *opcode = instr->opcode;
1839 	struct x86_store *stlo, *streg;
1840 	size_t adrsize, regsize;
1841 
1842 	adrsize = instr->address_size;
1843 	regsize = instr->operand_size;
1844 
1845 	if (opcode->stos) {
1846 		streg = &instr->src;
1847 		stlo = &instr->dst;
1848 	} else {
1849 		streg = &instr->dst;
1850 		stlo = &instr->src;
1851 	}
1852 
1853 	streg->type = STORE_REG;
1854 	streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1855 
1856 	stlo->type = STORE_REG;
1857 	if (opcode->stos) {
1858 		/* ES:RDI, force ES */
1859 		stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1860 		stlo->hardseg = NVMM_X64_SEG_ES;
1861 	} else {
1862 		/* DS:RSI */
1863 		stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1864 	}
1865 	stlo->disp.type = DISP_0;
1866 
1867 	fsm_advance(fsm, 0, NULL);
1868 
1869 	return 0;
1870 }
1871 
1872 static int
1873 node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1874 {
1875 	const struct x86_opcode *opcode = instr->opcode;
1876 	struct x86_store *stdmo, *streg;
1877 	size_t adrsize, regsize;
1878 
1879 	adrsize = instr->address_size;
1880 	regsize = instr->operand_size;
1881 
1882 	if (opcode->todmo) {
1883 		streg = &instr->src;
1884 		stdmo = &instr->dst;
1885 	} else {
1886 		streg = &instr->dst;
1887 		stdmo = &instr->src;
1888 	}
1889 
1890 	streg->type = STORE_REG;
1891 	streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1892 
1893 	stdmo->type = STORE_DMO;
1894 	if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1895 		return -1;
1896 	}
1897 	fsm_advance(fsm, adrsize, NULL);
1898 
1899 	return 0;
1900 }
1901 
1902 static inline uint64_t
1903 sign_extend(uint64_t val, int size)
1904 {
1905 	if (size == 1) {
1906 		if (val & __BIT(7))
1907 			val |= 0xFFFFFFFFFFFFFF00;
1908 	} else if (size == 2) {
1909 		if (val & __BIT(15))
1910 			val |= 0xFFFFFFFFFFFF0000;
1911 	} else if (size == 4) {
1912 		if (val & __BIT(31))
1913 			val |= 0xFFFFFFFF00000000;
1914 	}
1915 	return val;
1916 }
1917 
1918 static int
1919 node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1920 {
1921 	const struct x86_opcode *opcode = instr->opcode;
1922 	struct x86_store *store;
1923 	uint8_t immsize;
1924 	size_t sesize = 0;
1925 
1926 	/* The immediate is the source */
1927 	store = &instr->src;
1928 	immsize = instr->operand_size;
1929 
1930 	if (opcode->flags & FLAG_imm8) {
1931 		sesize = immsize;
1932 		immsize = 1;
1933 	} else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
1934 		sesize = immsize;
1935 		immsize = 4;
1936 	}
1937 
1938 	store->type = STORE_IMM;
1939 	if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
1940 		return -1;
1941 	}
1942 	fsm_advance(fsm, immsize, NULL);
1943 
1944 	if (sesize != 0) {
1945 		store->u.imm.data = sign_extend(store->u.imm.data, sesize);
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 static int
1952 node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1953 {
1954 	const struct x86_opcode *opcode = instr->opcode;
1955 	uint64_t data = 0;
1956 	size_t n;
1957 
1958 	if (instr->strm->disp.type == DISP_1) {
1959 		n = 1;
1960 	} else { /* DISP4 */
1961 		n = 4;
1962 	}
1963 
1964 	if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
1965 		return -1;
1966 	}
1967 
1968 	if (__predict_true(fsm->is64bit)) {
1969 		data = sign_extend(data, n);
1970 	}
1971 
1972 	instr->strm->disp.data = data;
1973 
1974 	if (opcode->immediate) {
1975 		fsm_advance(fsm, n, node_immediate);
1976 	} else {
1977 		fsm_advance(fsm, n, NULL);
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 static const struct x86_reg *
1984 get_register_idx(struct x86_instr *instr, uint8_t index)
1985 {
1986 	uint8_t enc = index;
1987 	const struct x86_reg *reg;
1988 	size_t regsize;
1989 
1990 	regsize = instr->address_size;
1991 	reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
1992 
1993 	if (reg->num == -1) {
1994 		reg = resolve_special_register(instr, enc, regsize);
1995 	}
1996 
1997 	return reg;
1998 }
1999 
2000 static const struct x86_reg *
2001 get_register_bas(struct x86_instr *instr, uint8_t base)
2002 {
2003 	uint8_t enc = base;
2004 	const struct x86_reg *reg;
2005 	size_t regsize;
2006 
2007 	regsize = instr->address_size;
2008 	reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2009 	if (reg->num == -1) {
2010 		reg = resolve_special_register(instr, enc, regsize);
2011 	}
2012 
2013 	return reg;
2014 }
2015 
2016 static int
2017 node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2018 {
2019 	const struct x86_opcode *opcode;
2020 	uint8_t scale, index, base;
2021 	bool noindex, nobase;
2022 	uint8_t byte;
2023 
2024 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2025 		return -1;
2026 	}
2027 
2028 	scale = ((byte & 0b11000000) >> 6);
2029 	index = ((byte & 0b00111000) >> 3);
2030 	base  = ((byte & 0b00000111) >> 0);
2031 
2032 	opcode = instr->opcode;
2033 
2034 	noindex = false;
2035 	nobase = false;
2036 
2037 	if (index == 0b100 && !instr->rexpref.x) {
2038 		/* Special case: the index is null */
2039 		noindex = true;
2040 	}
2041 
2042 	if (instr->regmodrm.mod == 0b00 && base == 0b101) {
2043 		/* Special case: the base is null + disp32 */
2044 		instr->strm->disp.type = DISP_4;
2045 		nobase = true;
2046 	}
2047 
2048 	instr->strm->type = STORE_SIB;
2049 	instr->strm->u.sib.scale = (1 << scale);
2050 	if (!noindex)
2051 		instr->strm->u.sib.idx = get_register_idx(instr, index);
2052 	if (!nobase)
2053 		instr->strm->u.sib.bas = get_register_bas(instr, base);
2054 
2055 	/* May have a displacement, or an immediate */
2056 	if (instr->strm->disp.type == DISP_1 || instr->strm->disp.type == DISP_4) {
2057 		fsm_advance(fsm, 1, node_disp);
2058 	} else if (opcode->immediate) {
2059 		fsm_advance(fsm, 1, node_immediate);
2060 	} else {
2061 		fsm_advance(fsm, 1, NULL);
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 static const struct x86_reg *
2068 get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
2069 {
2070 	uint8_t enc = instr->regmodrm.reg;
2071 	const struct x86_reg *reg;
2072 	size_t regsize;
2073 
2074 	regsize = instr->operand_size;
2075 
2076 	reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
2077 	if (reg->num == -1) {
2078 		reg = resolve_special_register(instr, enc, regsize);
2079 	}
2080 
2081 	return reg;
2082 }
2083 
2084 static const struct x86_reg *
2085 get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
2086 {
2087 	uint8_t enc = instr->regmodrm.rm;
2088 	const struct x86_reg *reg;
2089 	size_t regsize;
2090 
2091 	if (instr->strm->disp.type == DISP_NONE) {
2092 		regsize = instr->operand_size;
2093 	} else {
2094 		/* Indirect access, the size is that of the address. */
2095 		regsize = instr->address_size;
2096 	}
2097 
2098 	reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2099 	if (reg->num == -1) {
2100 		reg = resolve_special_register(instr, enc, regsize);
2101 	}
2102 
2103 	return reg;
2104 }
2105 
2106 static inline bool
2107 has_sib(struct x86_instr *instr)
2108 {
2109 	return (instr->regmodrm.mod != 3 && instr->regmodrm.rm == 4);
2110 }
2111 
2112 static inline bool
2113 is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2114 {
2115 	return (fsm->is64bit && instr->strm->disp.type == DISP_0 &&
2116 	    instr->regmodrm.rm == RM_RBP_DISP32);
2117 }
2118 
2119 static inline bool
2120 is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2121 {
2122 	return (!fsm->is64bit && instr->strm->disp.type == DISP_0 &&
2123 	    instr->regmodrm.rm == RM_RBP_DISP32);
2124 }
2125 
2126 static enum x86_disp_type
2127 get_disp_type(struct x86_instr *instr)
2128 {
2129 	switch (instr->regmodrm.mod) {
2130 	case MOD_DIS0:	/* indirect */
2131 		return DISP_0;
2132 	case MOD_DIS1:	/* indirect+1 */
2133 		return DISP_1;
2134 	case MOD_DIS4:	/* indirect+4 */
2135 		return DISP_4;
2136 	case MOD_REG:	/* direct */
2137 	default:	/* gcc */
2138 		return DISP_NONE;
2139 	}
2140 }
2141 
2142 static int
2143 node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2144 {
2145 	struct x86_store *strg, *strm;
2146 	const struct x86_opcode *opcode;
2147 	const struct x86_reg *reg;
2148 	uint8_t byte;
2149 
2150 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2151 		return -1;
2152 	}
2153 
2154 	opcode = instr->opcode;
2155 
2156 	instr->regmodrm.rm  = ((byte & 0b00000111) >> 0);
2157 	instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2158 	instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2159 
2160 	if (opcode->regtorm) {
2161 		strg = &instr->src;
2162 		strm = &instr->dst;
2163 	} else { /* RM to REG */
2164 		strm = &instr->src;
2165 		strg = &instr->dst;
2166 	}
2167 
2168 	/* Save for later use. */
2169 	instr->strm = strm;
2170 
2171 	/*
2172 	 * Special cases: Groups. The REG field of REGMODRM is the index in
2173 	 * the group. op1 gets overwritten in the Immediate node, if any.
2174 	 */
2175 	if (opcode->group1) {
2176 		if (group1[instr->regmodrm.reg].emul == NULL) {
2177 			return -1;
2178 		}
2179 		instr->emul = group1[instr->regmodrm.reg].emul;
2180 	} else if (opcode->group3) {
2181 		if (group3[instr->regmodrm.reg].emul == NULL) {
2182 			return -1;
2183 		}
2184 		instr->emul = group3[instr->regmodrm.reg].emul;
2185 	} else if (opcode->group11) {
2186 		if (group11[instr->regmodrm.reg].emul == NULL) {
2187 			return -1;
2188 		}
2189 		instr->emul = group11[instr->regmodrm.reg].emul;
2190 	}
2191 
2192 	if (!opcode->immediate) {
2193 		reg = get_register_reg(instr, opcode);
2194 		if (reg == NULL) {
2195 			return -1;
2196 		}
2197 		strg->type = STORE_REG;
2198 		strg->u.reg = reg;
2199 	}
2200 
2201 	/* The displacement applies to RM. */
2202 	strm->disp.type = get_disp_type(instr);
2203 
2204 	if (has_sib(instr)) {
2205 		/* Overwrites RM */
2206 		fsm_advance(fsm, 1, node_sib);
2207 		return 0;
2208 	}
2209 
2210 	if (is_rip_relative(fsm, instr)) {
2211 		/* Overwrites RM */
2212 		strm->type = STORE_REG;
2213 		strm->u.reg = &gpr_map__rip;
2214 		strm->disp.type = DISP_4;
2215 		fsm_advance(fsm, 1, node_disp);
2216 		return 0;
2217 	}
2218 
2219 	if (is_disp32_only(fsm, instr)) {
2220 		/* Overwrites RM */
2221 		strm->type = STORE_REG;
2222 		strm->u.reg = NULL;
2223 		strm->disp.type = DISP_4;
2224 		fsm_advance(fsm, 1, node_disp);
2225 		return 0;
2226 	}
2227 
2228 	reg = get_register_rm(instr, opcode);
2229 	if (reg == NULL) {
2230 		return -1;
2231 	}
2232 	strm->type = STORE_REG;
2233 	strm->u.reg = reg;
2234 
2235 	if (strm->disp.type == DISP_NONE) {
2236 		/* Direct register addressing mode */
2237 		if (opcode->immediate) {
2238 			fsm_advance(fsm, 1, node_immediate);
2239 		} else {
2240 			fsm_advance(fsm, 1, NULL);
2241 		}
2242 	} else if (strm->disp.type == DISP_0) {
2243 		/* Indirect register addressing mode */
2244 		if (opcode->immediate) {
2245 			fsm_advance(fsm, 1, node_immediate);
2246 		} else {
2247 			fsm_advance(fsm, 1, NULL);
2248 		}
2249 	} else {
2250 		fsm_advance(fsm, 1, node_disp);
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 static size_t
2257 get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2258 {
2259 	const struct x86_opcode *opcode = instr->opcode;
2260 	int opsize;
2261 
2262 	/* Get the opsize */
2263 	if (!opcode->szoverride) {
2264 		opsize = opcode->defsize;
2265 	} else if (instr->rexpref.present && instr->rexpref.w) {
2266 		opsize = 8;
2267 	} else {
2268 		if (!fsm->is16bit) {
2269 			if (instr->legpref.opr_ovr) {
2270 				opsize = 2;
2271 			} else {
2272 				opsize = 4;
2273 			}
2274 		} else { /* 16bit */
2275 			if (instr->legpref.opr_ovr) {
2276 				opsize = 4;
2277 			} else {
2278 				opsize = 2;
2279 			}
2280 		}
2281 	}
2282 
2283 	return opsize;
2284 }
2285 
2286 static size_t
2287 get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2288 {
2289 	if (fsm->is64bit) {
2290 		if (__predict_false(instr->legpref.adr_ovr)) {
2291 			return 4;
2292 		}
2293 		return 8;
2294 	}
2295 
2296 	if (fsm->is32bit) {
2297 		if (__predict_false(instr->legpref.adr_ovr)) {
2298 			return 2;
2299 		}
2300 		return 4;
2301 	}
2302 
2303 	/* 16bit. */
2304 	if (__predict_false(instr->legpref.adr_ovr)) {
2305 		return 4;
2306 	}
2307 	return 2;
2308 }
2309 
2310 static int
2311 node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2312 {
2313 	const struct x86_opcode *opcode;
2314 	uint8_t byte;
2315 
2316 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2317 		return -1;
2318 	}
2319 
2320 	opcode = &primary_opcode_table[byte];
2321 	if (__predict_false(!opcode->valid)) {
2322 		return -1;
2323 	}
2324 
2325 	instr->opcode = opcode;
2326 	instr->emul = opcode->emul;
2327 	instr->operand_size = get_operand_size(fsm, instr);
2328 	instr->address_size = get_address_size(fsm, instr);
2329 
2330 	if (fsm->is64bit && (instr->operand_size == 4)) {
2331 		/* Zero-extend to 64 bits. */
2332 		instr->zeroextend_mask = ~size_to_mask(4);
2333 	}
2334 
2335 	if (opcode->regmodrm) {
2336 		fsm_advance(fsm, 1, node_regmodrm);
2337 	} else if (opcode->dmo) {
2338 		/* Direct-Memory Offsets */
2339 		fsm_advance(fsm, 1, node_dmo);
2340 	} else if (opcode->stos || opcode->lods) {
2341 		fsm_advance(fsm, 1, node_stlo);
2342 	} else if (opcode->movs) {
2343 		fsm_advance(fsm, 1, node_movs);
2344 	} else {
2345 		return -1;
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 static int
2352 node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2353 {
2354 	const struct x86_opcode *opcode;
2355 	uint8_t byte;
2356 
2357 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2358 		return -1;
2359 	}
2360 
2361 	opcode = &secondary_opcode_table[byte];
2362 	if (__predict_false(!opcode->valid)) {
2363 		return -1;
2364 	}
2365 
2366 	instr->opcode = opcode;
2367 	instr->emul = opcode->emul;
2368 	instr->operand_size = get_operand_size(fsm, instr);
2369 	instr->address_size = get_address_size(fsm, instr);
2370 
2371 	if (fsm->is64bit && (instr->operand_size == 4)) {
2372 		/* Zero-extend to 64 bits. */
2373 		instr->zeroextend_mask = ~size_to_mask(4);
2374 	}
2375 
2376 	if (opcode->flags & FLAG_ze) {
2377 		/*
2378 		 * Compute the mask for zero-extend. Update the operand size,
2379 		 * we move fewer bytes.
2380 		 */
2381 		instr->zeroextend_mask |= size_to_mask(instr->operand_size);
2382 		instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2383 		instr->operand_size = opcode->defsize;
2384 	}
2385 
2386 	if (opcode->regmodrm) {
2387 		fsm_advance(fsm, 1, node_regmodrm);
2388 	} else {
2389 		return -1;
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 static int
2396 node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2397 {
2398 	uint8_t byte;
2399 
2400 #define ESCAPE	0x0F
2401 #define VEX_1	0xC5
2402 #define VEX_2	0xC4
2403 #define XOP	0x8F
2404 
2405 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2406 		return -1;
2407 	}
2408 
2409 	/*
2410 	 * We don't take XOP. It is AMD-specific, and it was removed shortly
2411 	 * after being introduced.
2412 	 */
2413 	if (byte == ESCAPE) {
2414 		fsm_advance(fsm, 1, node_secondary_opcode);
2415 	} else if (!instr->rexpref.present) {
2416 		if (byte == VEX_1) {
2417 			return -1;
2418 		} else if (byte == VEX_2) {
2419 			return -1;
2420 		} else {
2421 			fsm->fn = node_primary_opcode;
2422 		}
2423 	} else {
2424 		fsm->fn = node_primary_opcode;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 static int
2431 node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2432 {
2433 	struct x86_rexpref *rexpref = &instr->rexpref;
2434 	uint8_t byte;
2435 	size_t n = 0;
2436 
2437 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2438 		return -1;
2439 	}
2440 
2441 	if (byte >= 0x40 && byte <= 0x4F) {
2442 		if (__predict_false(!fsm->is64bit)) {
2443 			return -1;
2444 		}
2445 		rexpref->b = ((byte & 0x1) != 0);
2446 		rexpref->x = ((byte & 0x2) != 0);
2447 		rexpref->r = ((byte & 0x4) != 0);
2448 		rexpref->w = ((byte & 0x8) != 0);
2449 		rexpref->present = true;
2450 		n = 1;
2451 	}
2452 
2453 	fsm_advance(fsm, n, node_main);
2454 	return 0;
2455 }
2456 
2457 static int
2458 node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2459 {
2460 	uint8_t byte;
2461 
2462 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2463 		return -1;
2464 	}
2465 
2466 	if (byte == LEG_OPR_OVR) {
2467 		instr->legpref.opr_ovr = 1;
2468 	} else if (byte == LEG_OVR_DS) {
2469 		instr->legpref.seg = NVMM_X64_SEG_DS;
2470 	} else if (byte == LEG_OVR_ES) {
2471 		instr->legpref.seg = NVMM_X64_SEG_ES;
2472 	} else if (byte == LEG_REP) {
2473 		instr->legpref.rep = 1;
2474 	} else if (byte == LEG_OVR_GS) {
2475 		instr->legpref.seg = NVMM_X64_SEG_GS;
2476 	} else if (byte == LEG_OVR_FS) {
2477 		instr->legpref.seg = NVMM_X64_SEG_FS;
2478 	} else if (byte == LEG_ADR_OVR) {
2479 		instr->legpref.adr_ovr = 1;
2480 	} else if (byte == LEG_OVR_CS) {
2481 		instr->legpref.seg = NVMM_X64_SEG_CS;
2482 	} else if (byte == LEG_OVR_SS) {
2483 		instr->legpref.seg = NVMM_X64_SEG_SS;
2484 	} else if (byte == LEG_REPN) {
2485 		instr->legpref.repn = 1;
2486 	} else if (byte == LEG_LOCK) {
2487 		/* ignore */
2488 	} else {
2489 		/* not a legacy prefix */
2490 		fsm_advance(fsm, 0, node_rex_prefix);
2491 		return 0;
2492 	}
2493 
2494 	fsm_advance(fsm, 1, node_legacy_prefix);
2495 	return 0;
2496 }
2497 
2498 static int
2499 x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2500     struct nvmm_x64_state *state)
2501 {
2502 	struct x86_decode_fsm fsm;
2503 	int ret;
2504 
2505 	memset(instr, 0, sizeof(*instr));
2506 	instr->legpref.seg = -1;
2507 	instr->src.hardseg = -1;
2508 	instr->dst.hardseg = -1;
2509 
2510 	fsm.is64bit = is_64bit(state);
2511 	fsm.is32bit = is_32bit(state);
2512 	fsm.is16bit = is_16bit(state);
2513 
2514 	fsm.fn = node_legacy_prefix;
2515 	fsm.buf = inst_bytes;
2516 	fsm.end = inst_bytes + inst_len;
2517 
2518 	while (fsm.fn != NULL) {
2519 		ret = (*fsm.fn)(&fsm, instr);
2520 		if (ret == -1)
2521 			return -1;
2522 	}
2523 
2524 	instr->len = fsm.buf - inst_bytes;
2525 
2526 	return 0;
2527 }
2528 
2529 /* -------------------------------------------------------------------------- */
2530 
2531 #define EXEC_INSTR(sz, instr)						\
2532 static uint##sz##_t							\
2533 exec_##instr##sz(uint##sz##_t op1, uint##sz##_t op2, uint64_t *rflags)	\
2534 {									\
2535 	uint##sz##_t res;						\
2536 	__asm __volatile (						\
2537 		#instr " %2, %3;"					\
2538 		"mov %3, %1;"						\
2539 		"pushfq;"						\
2540 		"popq %0"						\
2541 	    : "=r" (*rflags), "=r" (res)				\
2542 	    : "r" (op1), "r" (op2));					\
2543 	return res;							\
2544 }
2545 
2546 #define EXEC_DISPATCHER(instr)						\
2547 static uint64_t								\
2548 exec_##instr(uint64_t op1, uint64_t op2, uint64_t *rflags, size_t opsize) \
2549 {									\
2550 	switch (opsize) {						\
2551 	case 1:								\
2552 		return exec_##instr##8(op1, op2, rflags);		\
2553 	case 2:								\
2554 		return exec_##instr##16(op1, op2, rflags);		\
2555 	case 4:								\
2556 		return exec_##instr##32(op1, op2, rflags);		\
2557 	default:							\
2558 		return exec_##instr##64(op1, op2, rflags);		\
2559 	}								\
2560 }
2561 
2562 /* SUB: ret = op1 - op2 */
2563 #define PSL_SUB_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF|PSL_AF)
2564 EXEC_INSTR(8, sub)
2565 EXEC_INSTR(16, sub)
2566 EXEC_INSTR(32, sub)
2567 EXEC_INSTR(64, sub)
2568 EXEC_DISPATCHER(sub)
2569 
2570 /* OR:  ret = op1 | op2 */
2571 #define PSL_OR_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2572 EXEC_INSTR(8, or)
2573 EXEC_INSTR(16, or)
2574 EXEC_INSTR(32, or)
2575 EXEC_INSTR(64, or)
2576 EXEC_DISPATCHER(or)
2577 
2578 /* AND: ret = op1 & op2 */
2579 #define PSL_AND_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2580 EXEC_INSTR(8, and)
2581 EXEC_INSTR(16, and)
2582 EXEC_INSTR(32, and)
2583 EXEC_INSTR(64, and)
2584 EXEC_DISPATCHER(and)
2585 
2586 /* XOR: ret = op1 ^ op2 */
2587 #define PSL_XOR_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2588 EXEC_INSTR(8, xor)
2589 EXEC_INSTR(16, xor)
2590 EXEC_INSTR(32, xor)
2591 EXEC_INSTR(64, xor)
2592 EXEC_DISPATCHER(xor)
2593 
2594 /* -------------------------------------------------------------------------- */
2595 
2596 /*
2597  * Emulation functions. We don't care about the order of the operands, except
2598  * for SUB, CMP and TEST. For these ones we look at mem->write todetermine who
2599  * is op1 and who is op2.
2600  */
2601 
2602 static void
2603 x86_func_or(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2604 {
2605 	uint64_t *retval = (uint64_t *)mem->data;
2606 	const bool write = mem->write;
2607 	uint64_t *op1, op2, fl, ret;
2608 
2609 	op1 = (uint64_t *)mem->data;
2610 	op2 = 0;
2611 
2612 	/* Fetch the value to be OR'ed (op2). */
2613 	mem->data = (uint8_t *)&op2;
2614 	mem->write = false;
2615 	(*mach->cbs.mem)(mem);
2616 
2617 	/* Perform the OR. */
2618 	ret = exec_or(*op1, op2, &fl, mem->size);
2619 
2620 	if (write) {
2621 		/* Write back the result. */
2622 		mem->data = (uint8_t *)&ret;
2623 		mem->write = true;
2624 		(*mach->cbs.mem)(mem);
2625 	} else {
2626 		/* Return data to the caller. */
2627 		*retval = ret;
2628 	}
2629 
2630 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_OR_MASK;
2631 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_OR_MASK);
2632 }
2633 
2634 static void
2635 x86_func_and(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2636 {
2637 	uint64_t *retval = (uint64_t *)mem->data;
2638 	const bool write = mem->write;
2639 	uint64_t *op1, op2, fl, ret;
2640 
2641 	op1 = (uint64_t *)mem->data;
2642 	op2 = 0;
2643 
2644 	/* Fetch the value to be AND'ed (op2). */
2645 	mem->data = (uint8_t *)&op2;
2646 	mem->write = false;
2647 	(*mach->cbs.mem)(mem);
2648 
2649 	/* Perform the AND. */
2650 	ret = exec_and(*op1, op2, &fl, mem->size);
2651 
2652 	if (write) {
2653 		/* Write back the result. */
2654 		mem->data = (uint8_t *)&ret;
2655 		mem->write = true;
2656 		(*mach->cbs.mem)(mem);
2657 	} else {
2658 		/* Return data to the caller. */
2659 		*retval = ret;
2660 	}
2661 
2662 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2663 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2664 }
2665 
2666 static void
2667 x86_func_sub(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2668 {
2669 	uint64_t *retval = (uint64_t *)mem->data;
2670 	const bool write = mem->write;
2671 	uint64_t *op1, *op2, fl, ret;
2672 	uint64_t tmp;
2673 	bool memop1;
2674 
2675 	memop1 = !mem->write;
2676 	op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2677 	op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2678 
2679 	/* Fetch the value to be SUB'ed (op1 or op2). */
2680 	mem->data = (uint8_t *)&tmp;
2681 	mem->write = false;
2682 	(*mach->cbs.mem)(mem);
2683 
2684 	/* Perform the SUB. */
2685 	ret = exec_sub(*op1, *op2, &fl, mem->size);
2686 
2687 	if (write) {
2688 		/* Write back the result. */
2689 		mem->data = (uint8_t *)&ret;
2690 		mem->write = true;
2691 		(*mach->cbs.mem)(mem);
2692 	} else {
2693 		/* Return data to the caller. */
2694 		*retval = ret;
2695 	}
2696 
2697 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2698 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2699 }
2700 
2701 static void
2702 x86_func_xor(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2703 {
2704 	uint64_t *retval = (uint64_t *)mem->data;
2705 	const bool write = mem->write;
2706 	uint64_t *op1, op2, fl, ret;
2707 
2708 	op1 = (uint64_t *)mem->data;
2709 	op2 = 0;
2710 
2711 	/* Fetch the value to be XOR'ed (op2). */
2712 	mem->data = (uint8_t *)&op2;
2713 	mem->write = false;
2714 	(*mach->cbs.mem)(mem);
2715 
2716 	/* Perform the XOR. */
2717 	ret = exec_xor(*op1, op2, &fl, mem->size);
2718 
2719 	if (write) {
2720 		/* Write back the result. */
2721 		mem->data = (uint8_t *)&ret;
2722 		mem->write = true;
2723 		(*mach->cbs.mem)(mem);
2724 	} else {
2725 		/* Return data to the caller. */
2726 		*retval = ret;
2727 	}
2728 
2729 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_XOR_MASK;
2730 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_XOR_MASK);
2731 }
2732 
2733 static void
2734 x86_func_cmp(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2735 {
2736 	uint64_t *op1, *op2, fl;
2737 	uint64_t tmp;
2738 	bool memop1;
2739 
2740 	memop1 = !mem->write;
2741 	op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2742 	op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2743 
2744 	/* Fetch the value to be CMP'ed (op1 or op2). */
2745 	mem->data = (uint8_t *)&tmp;
2746 	mem->write = false;
2747 	(*mach->cbs.mem)(mem);
2748 
2749 	/* Perform the CMP. */
2750 	exec_sub(*op1, *op2, &fl, mem->size);
2751 
2752 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2753 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2754 }
2755 
2756 static void
2757 x86_func_test(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2758 {
2759 	uint64_t *op1, *op2, fl;
2760 	uint64_t tmp;
2761 	bool memop1;
2762 
2763 	memop1 = !mem->write;
2764 	op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2765 	op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2766 
2767 	/* Fetch the value to be TEST'ed (op1 or op2). */
2768 	mem->data = (uint8_t *)&tmp;
2769 	mem->write = false;
2770 	(*mach->cbs.mem)(mem);
2771 
2772 	/* Perform the TEST. */
2773 	exec_and(*op1, *op2, &fl, mem->size);
2774 
2775 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2776 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2777 }
2778 
2779 static void
2780 x86_func_mov(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2781 {
2782 	/*
2783 	 * Nothing special, just move without emulation.
2784 	 */
2785 	(*mach->cbs.mem)(mem);
2786 }
2787 
2788 static void
2789 x86_func_stos(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2790 {
2791 	/*
2792 	 * Just move, and update RDI.
2793 	 */
2794 	(*mach->cbs.mem)(mem);
2795 
2796 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2797 		gprs[NVMM_X64_GPR_RDI] -= mem->size;
2798 	} else {
2799 		gprs[NVMM_X64_GPR_RDI] += mem->size;
2800 	}
2801 }
2802 
2803 static void
2804 x86_func_lods(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2805 {
2806 	/*
2807 	 * Just move, and update RSI.
2808 	 */
2809 	(*mach->cbs.mem)(mem);
2810 
2811 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2812 		gprs[NVMM_X64_GPR_RSI] -= mem->size;
2813 	} else {
2814 		gprs[NVMM_X64_GPR_RSI] += mem->size;
2815 	}
2816 }
2817 
2818 static void
2819 x86_func_movs(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2820 {
2821 	/*
2822 	 * Special instruction: double memory operand. Don't call the cb,
2823 	 * because the storage has already been performed earlier.
2824 	 */
2825 
2826 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2827 		gprs[NVMM_X64_GPR_RSI] -= mem->size;
2828 		gprs[NVMM_X64_GPR_RDI] -= mem->size;
2829 	} else {
2830 		gprs[NVMM_X64_GPR_RSI] += mem->size;
2831 		gprs[NVMM_X64_GPR_RDI] += mem->size;
2832 	}
2833 }
2834 
2835 /* -------------------------------------------------------------------------- */
2836 
2837 static inline uint64_t
2838 gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2839 {
2840 	uint64_t val;
2841 
2842 	val = state->gprs[gpr];
2843 	val &= size_to_mask(instr->address_size);
2844 
2845 	return val;
2846 }
2847 
2848 static int
2849 store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
2850     struct x86_store *store, gvaddr_t *gvap, size_t size)
2851 {
2852 	struct x86_sib *sib;
2853 	gvaddr_t gva = 0;
2854 	uint64_t reg;
2855 	int ret, seg;
2856 
2857 	if (store->type == STORE_SIB) {
2858 		sib = &store->u.sib;
2859 		if (sib->bas != NULL)
2860 			gva += gpr_read_address(instr, state, sib->bas->num);
2861 		if (sib->idx != NULL) {
2862 			reg = gpr_read_address(instr, state, sib->idx->num);
2863 			gva += sib->scale * reg;
2864 		}
2865 	} else if (store->type == STORE_REG) {
2866 		if (store->u.reg == NULL) {
2867 			/* The base is null. Happens with disp32-only. */
2868 		} else {
2869 			gva = gpr_read_address(instr, state, store->u.reg->num);
2870 		}
2871 	} else {
2872 		gva = store->u.dmo;
2873 	}
2874 
2875 	if (store->disp.type != DISP_NONE) {
2876 		gva += store->disp.data;
2877 	}
2878 
2879 	if (store->hardseg != -1) {
2880 		seg = store->hardseg;
2881 	} else {
2882 		if (__predict_false(instr->legpref.seg != -1)) {
2883 			seg = instr->legpref.seg;
2884 		} else {
2885 			seg = NVMM_X64_SEG_DS;
2886 		}
2887 	}
2888 
2889 	if (__predict_true(is_long_mode(state))) {
2890 		if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
2891 			segment_apply(&state->segs[seg], &gva);
2892 		}
2893 	} else {
2894 		ret = segment_check(&state->segs[seg], gva, size);
2895 		if (ret == -1)
2896 			return -1;
2897 		segment_apply(&state->segs[seg], &gva);
2898 	}
2899 
2900 	*gvap = gva;
2901 	return 0;
2902 }
2903 
2904 static int
2905 fetch_segment(struct nvmm_machine *mach, struct nvmm_x64_state *state)
2906 {
2907 	uint8_t inst_bytes[5], byte;
2908 	size_t i, fetchsize;
2909 	gvaddr_t gva;
2910 	int ret, seg;
2911 
2912 	fetchsize = sizeof(inst_bytes);
2913 
2914 	gva = state->gprs[NVMM_X64_GPR_RIP];
2915 	if (__predict_false(!is_long_mode(state))) {
2916 		ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
2917 		    fetchsize);
2918 		if (ret == -1)
2919 			return -1;
2920 		segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
2921 	}
2922 
2923 	ret = read_guest_memory(mach, state, gva, inst_bytes, fetchsize);
2924 	if (ret == -1)
2925 		return -1;
2926 
2927 	seg = NVMM_X64_SEG_DS;
2928 	for (i = 0; i < fetchsize; i++) {
2929 		byte = inst_bytes[i];
2930 
2931 		if (byte == LEG_OVR_DS) {
2932 			seg = NVMM_X64_SEG_DS;
2933 		} else if (byte == LEG_OVR_ES) {
2934 			seg = NVMM_X64_SEG_ES;
2935 		} else if (byte == LEG_OVR_GS) {
2936 			seg = NVMM_X64_SEG_GS;
2937 		} else if (byte == LEG_OVR_FS) {
2938 			seg = NVMM_X64_SEG_FS;
2939 		} else if (byte == LEG_OVR_CS) {
2940 			seg = NVMM_X64_SEG_CS;
2941 		} else if (byte == LEG_OVR_SS) {
2942 			seg = NVMM_X64_SEG_SS;
2943 		} else if (byte == LEG_OPR_OVR) {
2944 			/* nothing */
2945 		} else if (byte == LEG_ADR_OVR) {
2946 			/* nothing */
2947 		} else if (byte == LEG_REP) {
2948 			/* nothing */
2949 		} else if (byte == LEG_REPN) {
2950 			/* nothing */
2951 		} else if (byte == LEG_LOCK) {
2952 			/* nothing */
2953 		} else {
2954 			return seg;
2955 		}
2956 	}
2957 
2958 	return seg;
2959 }
2960 
2961 static int
2962 fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2963     struct nvmm_exit *exit)
2964 {
2965 	size_t fetchsize;
2966 	gvaddr_t gva;
2967 	int ret;
2968 
2969 	fetchsize = sizeof(exit->u.mem.inst_bytes);
2970 
2971 	gva = state->gprs[NVMM_X64_GPR_RIP];
2972 	if (__predict_false(!is_long_mode(state))) {
2973 		ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
2974 		    fetchsize);
2975 		if (ret == -1)
2976 			return -1;
2977 		segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
2978 	}
2979 
2980 	ret = read_guest_memory(mach, state, gva, exit->u.mem.inst_bytes,
2981 	    fetchsize);
2982 	if (ret == -1)
2983 		return -1;
2984 
2985 	exit->u.mem.inst_len = fetchsize;
2986 
2987 	return 0;
2988 }
2989 
2990 static int
2991 assist_mem_double(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2992     struct x86_instr *instr)
2993 {
2994 	struct nvmm_mem mem;
2995 	uint8_t data[8];
2996 	gvaddr_t gva;
2997 	size_t size;
2998 	int ret;
2999 
3000 	size = instr->operand_size;
3001 
3002 	/* Source. */
3003 	ret = store_to_gva(state, instr, &instr->src, &gva, size);
3004 	if (ret == -1)
3005 		return -1;
3006 	ret = read_guest_memory(mach, state, gva, data, size);
3007 	if (ret == -1)
3008 		return -1;
3009 
3010 	/* Destination. */
3011 	ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3012 	if (ret == -1)
3013 		return -1;
3014 	ret = write_guest_memory(mach, state, gva, data, size);
3015 	if (ret == -1)
3016 		return -1;
3017 
3018 	mem.size = size;
3019 	(*instr->emul->func)(mach, &mem, state->gprs);
3020 
3021 	return 0;
3022 }
3023 
3024 #define DISASSEMBLER_BUG()	\
3025 	do {			\
3026 		errno = EINVAL;	\
3027 		return -1;	\
3028 	} while (0);
3029 
3030 static int
3031 assist_mem_single(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3032     struct x86_instr *instr, struct nvmm_exit *exit)
3033 {
3034 	struct nvmm_mem mem;
3035 	uint8_t membuf[8];
3036 	uint64_t val;
3037 
3038 	memset(membuf, 0, sizeof(membuf));
3039 
3040 	mem.gpa = exit->u.mem.gpa;
3041 	mem.size = instr->operand_size;
3042 	mem.data = membuf;
3043 
3044 	/* Determine the direction. */
3045 	switch (instr->src.type) {
3046 	case STORE_REG:
3047 		if (instr->src.disp.type != DISP_NONE) {
3048 			/* Indirect access. */
3049 			mem.write = false;
3050 		} else {
3051 			/* Direct access. */
3052 			mem.write = true;
3053 		}
3054 		break;
3055 	case STORE_IMM:
3056 		mem.write = true;
3057 		break;
3058 	case STORE_SIB:
3059 		mem.write = false;
3060 		break;
3061 	case STORE_DMO:
3062 		mem.write = false;
3063 		break;
3064 	default:
3065 		DISASSEMBLER_BUG();
3066 	}
3067 
3068 	if (mem.write) {
3069 		switch (instr->src.type) {
3070 		case STORE_REG:
3071 			if (instr->src.disp.type != DISP_NONE) {
3072 				DISASSEMBLER_BUG();
3073 			}
3074 			val = state->gprs[instr->src.u.reg->num];
3075 			val = __SHIFTOUT(val, instr->src.u.reg->mask);
3076 			memcpy(mem.data, &val, mem.size);
3077 			break;
3078 		case STORE_IMM:
3079 			memcpy(mem.data, &instr->src.u.imm.data, mem.size);
3080 			break;
3081 		default:
3082 			DISASSEMBLER_BUG();
3083 		}
3084 	} else if (instr->emul->read) {
3085 		if (instr->dst.type != STORE_REG) {
3086 			DISASSEMBLER_BUG();
3087 		}
3088 		if (instr->dst.disp.type != DISP_NONE) {
3089 			DISASSEMBLER_BUG();
3090 		}
3091 		val = state->gprs[instr->dst.u.reg->num];
3092 		val = __SHIFTOUT(val, instr->dst.u.reg->mask);
3093 		memcpy(mem.data, &val, mem.size);
3094 	}
3095 
3096 	(*instr->emul->func)(mach, &mem, state->gprs);
3097 
3098 	if (!instr->emul->notouch && !mem.write) {
3099 		if (instr->dst.type != STORE_REG) {
3100 			DISASSEMBLER_BUG();
3101 		}
3102 		memcpy(&val, membuf, sizeof(uint64_t));
3103 		val = __SHIFTIN(val, instr->dst.u.reg->mask);
3104 		state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
3105 		state->gprs[instr->dst.u.reg->num] |= val;
3106 		state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
3107 	}
3108 
3109 	return 0;
3110 }
3111 
3112 int
3113 nvmm_assist_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3114 {
3115 	struct nvmm_x64_state *state = vcpu->state;
3116 	struct nvmm_exit *exit = vcpu->exit;
3117 	struct x86_instr instr;
3118 	uint64_t cnt = 0; /* GCC */
3119 	int ret;
3120 
3121 	if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
3122 		errno = EINVAL;
3123 		return -1;
3124 	}
3125 
3126 	ret = nvmm_vcpu_getstate(mach, vcpu,
3127 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
3128 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
3129 	if (ret == -1)
3130 		return -1;
3131 
3132 	if (exit->u.mem.inst_len == 0) {
3133 		/*
3134 		 * The instruction was not fetched from the kernel. Fetch
3135 		 * it ourselves.
3136 		 */
3137 		ret = fetch_instruction(mach, state, exit);
3138 		if (ret == -1)
3139 			return -1;
3140 	}
3141 
3142 	ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
3143 	    &instr, state);
3144 	if (ret == -1) {
3145 		errno = ENODEV;
3146 		return -1;
3147 	}
3148 
3149 	if (instr.legpref.rep || instr.legpref.repn) {
3150 		cnt = rep_get_cnt(state, instr.address_size);
3151 		if (__predict_false(cnt == 0)) {
3152 			state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3153 			goto out;
3154 		}
3155 	}
3156 
3157 	if (instr.opcode->movs) {
3158 		ret = assist_mem_double(mach, state, &instr);
3159 	} else {
3160 		ret = assist_mem_single(mach, state, &instr, exit);
3161 	}
3162 	if (ret == -1) {
3163 		errno = ENODEV;
3164 		return -1;
3165 	}
3166 
3167 	if (instr.legpref.rep || instr.legpref.repn) {
3168 		cnt -= 1;
3169 		rep_set_cnt(state, instr.address_size, cnt);
3170 		if (cnt == 0) {
3171 			state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3172 		} else if (__predict_false(instr.legpref.repn)) {
3173 			if (state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) {
3174 				state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3175 			}
3176 		}
3177 	} else {
3178 		state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3179 	}
3180 
3181 out:
3182 	ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
3183 	if (ret == -1)
3184 		return -1;
3185 
3186 	return 0;
3187 }
3188