1 /* 2 * ==================================================== 3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * 5 * Developed at SunPro, a Sun Microsystems, Inc. business. 6 * Permission to use, copy, modify, and distribute this 7 * software is freely granted, provided that this notice 8 * is preserved. 9 * ==================================================== 10 */ 11 12 /* 13 * from: @(#)fdlibm.h 5.1 93/09/24 14 * $NetBSD: math_private.h,v 1.17 2012/05/05 17:54:14 christos Exp $ 15 */ 16 17 #ifndef _MATH_PRIVATE_H_ 18 #define _MATH_PRIVATE_H_ 19 20 #include <sys/types.h> 21 22 /* The original fdlibm code used statements like: 23 n0 = ((*(int*)&one)>>29)^1; * index of high word * 24 ix0 = *(n0+(int*)&x); * high word of x * 25 ix1 = *((1-n0)+(int*)&x); * low word of x * 26 to dig two 32 bit words out of the 64 bit IEEE floating point 27 value. That is non-ANSI, and, moreover, the gcc instruction 28 scheduler gets it wrong. We instead use the following macros. 29 Unlike the original code, we determine the endianness at compile 30 time, not at run time; I don't see much benefit to selecting 31 endianness at run time. */ 32 33 /* A union which permits us to convert between a double and two 32 bit 34 ints. */ 35 36 /* 37 * The ARM ports are little endian except for the FPA word order which is 38 * big endian. 39 */ 40 41 #if (BYTE_ORDER == BIG_ENDIAN) || (defined(__arm__) && !defined(__VFP_FP__)) 42 43 typedef union 44 { 45 double value; 46 struct 47 { 48 u_int32_t msw; 49 u_int32_t lsw; 50 } parts; 51 } ieee_double_shape_type; 52 53 #endif 54 55 #if (BYTE_ORDER == LITTLE_ENDIAN) && \ 56 !(defined(__arm__) && !defined(__VFP_FP__)) 57 58 typedef union 59 { 60 double value; 61 struct 62 { 63 u_int32_t lsw; 64 u_int32_t msw; 65 } parts; 66 } ieee_double_shape_type; 67 68 #endif 69 70 /* Get two 32 bit ints from a double. */ 71 72 #define EXTRACT_WORDS(ix0,ix1,d) \ 73 do { \ 74 ieee_double_shape_type ew_u; \ 75 ew_u.value = (d); \ 76 (ix0) = ew_u.parts.msw; \ 77 (ix1) = ew_u.parts.lsw; \ 78 } while (/*CONSTCOND*/0) 79 80 /* Get the more significant 32 bit int from a double. */ 81 82 #define GET_HIGH_WORD(i,d) \ 83 do { \ 84 ieee_double_shape_type gh_u; \ 85 gh_u.value = (d); \ 86 (i) = gh_u.parts.msw; \ 87 } while (/*CONSTCOND*/0) 88 89 /* Get the less significant 32 bit int from a double. */ 90 91 #define GET_LOW_WORD(i,d) \ 92 do { \ 93 ieee_double_shape_type gl_u; \ 94 gl_u.value = (d); \ 95 (i) = gl_u.parts.lsw; \ 96 } while (/*CONSTCOND*/0) 97 98 /* Set a double from two 32 bit ints. */ 99 100 #define INSERT_WORDS(d,ix0,ix1) \ 101 do { \ 102 ieee_double_shape_type iw_u; \ 103 iw_u.parts.msw = (ix0); \ 104 iw_u.parts.lsw = (ix1); \ 105 (d) = iw_u.value; \ 106 } while (/*CONSTCOND*/0) 107 108 /* Set the more significant 32 bits of a double from an int. */ 109 110 #define SET_HIGH_WORD(d,v) \ 111 do { \ 112 ieee_double_shape_type sh_u; \ 113 sh_u.value = (d); \ 114 sh_u.parts.msw = (v); \ 115 (d) = sh_u.value; \ 116 } while (/*CONSTCOND*/0) 117 118 /* Set the less significant 32 bits of a double from an int. */ 119 120 #define SET_LOW_WORD(d,v) \ 121 do { \ 122 ieee_double_shape_type sl_u; \ 123 sl_u.value = (d); \ 124 sl_u.parts.lsw = (v); \ 125 (d) = sl_u.value; \ 126 } while (/*CONSTCOND*/0) 127 128 /* A union which permits us to convert between a float and a 32 bit 129 int. */ 130 131 typedef union 132 { 133 float value; 134 u_int32_t word; 135 } ieee_float_shape_type; 136 137 /* Get a 32 bit int from a float. */ 138 139 #define GET_FLOAT_WORD(i,d) \ 140 do { \ 141 ieee_float_shape_type gf_u; \ 142 gf_u.value = (d); \ 143 (i) = gf_u.word; \ 144 } while (/*CONSTCOND*/0) 145 146 /* Set a float from a 32 bit int. */ 147 148 #define SET_FLOAT_WORD(d,i) \ 149 do { \ 150 ieee_float_shape_type sf_u; \ 151 sf_u.word = (i); \ 152 (d) = sf_u.value; \ 153 } while (/*CONSTCOND*/0) 154 155 /* 156 * Attempt to get strict C99 semantics for assignment with non-C99 compilers. 157 */ 158 #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0 159 #define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) 160 #else 161 #define STRICT_ASSIGN(type, lval, rval) do { \ 162 volatile type __lval; \ 163 \ 164 if (sizeof(type) >= sizeof(double)) \ 165 (lval) = (rval); \ 166 else { \ 167 __lval = (rval); \ 168 (lval) = __lval; \ 169 } \ 170 } while (/*CONSTCOND*/0) 171 #endif 172 173 #ifdef _COMPLEX_H 174 175 /* 176 * Quoting from ISO/IEC 9899:TC2: 177 * 178 * 6.2.5.13 Types 179 * Each complex type has the same representation and alignment requirements as 180 * an array type containing exactly two elements of the corresponding real type; 181 * the first element is equal to the real part, and the second element to the 182 * imaginary part, of the complex number. 183 */ 184 typedef union { 185 float complex z; 186 float parts[2]; 187 } float_complex; 188 189 typedef union { 190 double complex z; 191 double parts[2]; 192 } double_complex; 193 194 typedef union { 195 long double complex z; 196 long double parts[2]; 197 } long_double_complex; 198 199 #define REAL_PART(z) ((z).parts[0]) 200 #define IMAG_PART(z) ((z).parts[1]) 201 202 #endif /* _COMPLEX_H */ 203 204 /* ieee style elementary functions */ 205 extern double __ieee754_sqrt __P((double)); 206 extern double __ieee754_acos __P((double)); 207 extern double __ieee754_acosh __P((double)); 208 extern double __ieee754_log __P((double)); 209 extern double __ieee754_atanh __P((double)); 210 extern double __ieee754_asin __P((double)); 211 extern double __ieee754_atan2 __P((double,double)); 212 extern double __ieee754_exp __P((double)); 213 extern double __ieee754_cosh __P((double)); 214 extern double __ieee754_fmod __P((double,double)); 215 extern double __ieee754_pow __P((double,double)); 216 extern double __ieee754_lgamma_r __P((double,int *)); 217 extern double __ieee754_gamma_r __P((double,int *)); 218 extern double __ieee754_lgamma __P((double)); 219 extern double __ieee754_gamma __P((double)); 220 extern double __ieee754_log10 __P((double)); 221 extern double __ieee754_log2 __P((double)); 222 extern double __ieee754_sinh __P((double)); 223 extern double __ieee754_hypot __P((double,double)); 224 extern double __ieee754_j0 __P((double)); 225 extern double __ieee754_j1 __P((double)); 226 extern double __ieee754_y0 __P((double)); 227 extern double __ieee754_y1 __P((double)); 228 extern double __ieee754_jn __P((int,double)); 229 extern double __ieee754_yn __P((int,double)); 230 extern double __ieee754_remainder __P((double,double)); 231 extern int __ieee754_rem_pio2 __P((double,double*)); 232 extern double __ieee754_scalb __P((double,double)); 233 234 /* fdlibm kernel function */ 235 extern double __kernel_standard __P((double,double,int)); 236 extern double __kernel_sin __P((double,double,int)); 237 extern double __kernel_cos __P((double,double)); 238 extern double __kernel_tan __P((double,double,int)); 239 extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int*)); 240 241 242 /* ieee style elementary float functions */ 243 extern float __ieee754_sqrtf __P((float)); 244 extern float __ieee754_acosf __P((float)); 245 extern float __ieee754_acoshf __P((float)); 246 extern float __ieee754_logf __P((float)); 247 extern float __ieee754_atanhf __P((float)); 248 extern float __ieee754_asinf __P((float)); 249 extern float __ieee754_atan2f __P((float,float)); 250 extern float __ieee754_expf __P((float)); 251 extern float __ieee754_coshf __P((float)); 252 extern float __ieee754_fmodf __P((float,float)); 253 extern float __ieee754_powf __P((float,float)); 254 extern float __ieee754_lgammaf_r __P((float,int *)); 255 extern float __ieee754_gammaf_r __P((float,int *)); 256 extern float __ieee754_lgammaf __P((float)); 257 extern float __ieee754_gammaf __P((float)); 258 extern float __ieee754_log10f __P((float)); 259 extern float __ieee754_log2f __P((float)); 260 extern float __ieee754_sinhf __P((float)); 261 extern float __ieee754_hypotf __P((float,float)); 262 extern float __ieee754_j0f __P((float)); 263 extern float __ieee754_j1f __P((float)); 264 extern float __ieee754_y0f __P((float)); 265 extern float __ieee754_y1f __P((float)); 266 extern float __ieee754_jnf __P((int,float)); 267 extern float __ieee754_ynf __P((int,float)); 268 extern float __ieee754_remainderf __P((float,float)); 269 extern int __ieee754_rem_pio2f __P((float,float*)); 270 extern float __ieee754_scalbf __P((float,float)); 271 272 /* float versions of fdlibm kernel functions */ 273 extern float __kernel_sinf __P((float,float,int)); 274 extern float __kernel_cosf __P((float,float)); 275 extern float __kernel_tanf __P((float,float,int)); 276 extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const int*)); 277 278 /* 279 * TRUNC() is a macro that sets the trailing 27 bits in the mantissa of an 280 * IEEE double variable to zero. It must be expression-like for syntactic 281 * reasons, and we implement this expression using an inline function 282 * instead of a pure macro to avoid depending on the gcc feature of 283 * statement-expressions. 284 */ 285 #define TRUNC(d) (_b_trunc(&(d))) 286 287 static __inline void 288 _b_trunc(volatile double *_dp) 289 { 290 uint32_t _lw; 291 292 GET_LOW_WORD(_lw, *_dp); 293 SET_LOW_WORD(*_dp, _lw & 0xf8000000); 294 } 295 296 struct Double { 297 double a; 298 double b; 299 }; 300 301 /* 302 * Functions internal to the math package, yet not static. 303 */ 304 double __exp__D(double, double); 305 struct Double __log__D(double); 306 307 #endif /* _MATH_PRIVATE_H_ */ 308